
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

January 2001 

Review: Extending Visible Band Computer Vision Techniques to Review: Extending Visible Band Computer Vision Techniques to 

Infrared Band Images Infrared Band Images 

Shih-Schon Lin 
University of Pennsylvania, shschon@seas.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Shih-Schon Lin, "Review: Extending Visible Band Computer Vision Techniques to Infrared Band Images", . 
January 2001. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-01-04. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/156 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/156
mailto:repository@pobox.upenn.edu


Review: Extending Visible Band Computer Vision Techniques to Infrared Band Review: Extending Visible Band Computer Vision Techniques to Infrared Band 
Images Images 

Abstract Abstract 
Infared imaging process bears many similarities to the visible imaging process. If visible band computer 
vision techniques can be used on infrared images with no or small adjustments it would save us the 
trouble of redeveloping a whole new set of techniques. However, there are important differences in the 
practical environmental parameters between visible and infrared bands that invalidates many convenient 
background assumptions inherent to visible-band computer vision techniques. We review here the 
underlying reasons why some computer vision techniques can while some cannot be applied directly to 
infrared images. We also examine a few attempts to extend computer vision to infrared images and 
discuss their relative merits. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-01-04. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/156 

https://repository.upenn.edu/cis_reports/156


Review: 
Extending Visible Band Computer Vision Techniques to Infrared Band Images 

Shih-Schon Lin 
(shschon(ii,grasp.cis.upenn.edu) 
Technical Report MS-CIS-0 1-04 
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Abstract 

Infared imaging process bears many similarities to the 
visible imaging process. If visible band computer vision 
techniques can be used on infrared images with no or 
small adjustments it would save us the trouble of 
redeveloping a whole new set of techniques. However, 
there are important differences in the practicul 
environmental parameters between visible anci infi-cir-ed 
bands that invalidates many convenient buclcgro~rnd 
assumptions inherent to visible-band computer vision 
techniques. We review here the underlying reasons ~ h , v  
some computer vision techniques can while some cannot 
be applied directly to infrared images. We also examine a 
few attempts to extend comp~rter vision to infrared images 
and discuss their relative merits. 

1. Introduction 

Computer Vision, especially the part dealing with 
human vision like imaging modality, evolves mostly 
around images taken within the "visible band" of electro- 
magnetic wave spectrum. The environment we live in 
play a very important role in the selection of this spectral 
band as "visible" to humans. The main energy source, our 
sun, emits all frequencies of radiation with peak around 
the visible band. The temperature of our earth and the 
composition of our atmosphere results in an environment 
that radiation in the visible band can travel long distances 
with relatively low attenuation. Under the level of 
temperature around the surface of the earth, most material 
emits little visible band energy of its own. Thus using 
visible band we have a good passive way of detecting far 
away events with few environment related interference. 

The downside of using visible band, however, is that 
half of the day the sun is not shining overhead and visible 
band signal drops below the level of reliable detection. 

For the average temperature range of the earth's 
surface, however, most common material spontaneously 
emits considerable amount of radiation energy in the band 

loosely termed as infrared band. Since the photon energy 
in the infrared region falls within the range of many 
molecular vibration quantum energy level differences, the 
gas molecules of earth's atmosphere can easily absorb 
some bands within the infrared region. There remains, 
however, several "windows" exist in the infrared band that 
are not strongly absorbed by the earth's atmosphere and 
thus can be used for long-range imaging. 

Infrared band radiation is first discovered in an 
experiment by Sir William Herschel [B5]. The radiation 
is detected indirectly by the heating associated with the 
absorption of infrared radiation energy. This principle is 
still in use today in the latest "uncooled" infiared 
detectors. Although the detection of infrared energy is 
done almost two centuries ago, the precise quantitative 
measurement of infrared radiation is difficult and its 
development lags behind the visible light detectors. One 
major problem is noise. In visible band the main energy 
source is the sun or human controlled light source. while 
in infrared everything around us is a potential light source. 
Another bottleneck in the development of infrared 
imaging camera is the material needed for infrared lenses. 
Except for bands very close to visible bands, ordinary 
optical glasses are opaque in most infrared band. 

Semi-conductor and micro-machining technology 
greatly improve the properties and performances of 
infrared detectors, as well as lowering the costs. The lens 
material, although still few compared to the visible band 
lens material, already have some commercial products 
available. With the rapid advances of infrared imaging 
cameras, the demand of computer vision algorithm to do 
automatic analysis of infrared images is growing. 

Low level computer vision techniques, sometimes 
classified as image processing techniques, make little 
assumption on the underlying imaging modality and can 
thus be applied to infrared images as well with little or no 
modifications. The relative performance, however. can 
differ because most infrared images are generally lower 
resolution and contain more noise than visible-band 
images. This may improve with time but for now we must 
deal with i t  in practical applications. 



For higher level computer vision that extracts more 
abstract or detailed object properties from objects being 
imaged, e.g. shape from shading, the algorithms are 
developed in connection with the particular physical 
properties of the visible band and thus are not directly 
applicable to other spectral bands. 

Since many visible-band computer vision algorithms 
are well understood and field tested, we would like to 
apply as many as possible to the infrared band images. 
We first examine the complete process of visible and 
infrared imaging. Then we look at several attempts to 
extend computer vision into infrared images and how far 
they have gone to expanding the limits. 

2. Physical Similarity and Differences in 
Imaging Process between IR and Visible 

The most general imaging process involves the 
generation of radiation, and altering of the radiation by 
reflection, refraction, absorption, and scattering, and 
finally collected by the optical system and captured by the 
detector. More structured materials, like crystals, can 
have more peculiar optical effects like rotation of the 
polarization direction, but since this effect is hardly 
detectable in usual outdoor or indoor scenes in computer 
vision applications, we do not pursue them further here. 

2.1 Wavelength of Radiation 

The main difference between visible and IR radiation 
is their wavelength (and frequency, since the speed of 
light in vacuum is the same for all wavelengths). The 
visible band i's defined loosely between 350 nm - 780 nm 
and the band between 780 nm to 1 mm are called IR band. 
These definitions are rather loosely defined, as human 
vision has individual variations and IR is not a strictly 
defined term. Within IR band people often subdivide it 
into several sub band for convenience. But since different 
professions work for different ranges of IR the same name 
of an IR sub band might have different definitions. For 
example, scientific researcher who work with the whole 
IR spectrum, defines large sub bands with the "long wave 
IR" or "Extra Long Wave I R  extending up to the 
boundary with microwave. In engineering applications 
like computer vision, the bands of IR that contains more 
interesting information is narrower, only between the limit 
of visible band up to about 15000-20000 nm, thus the 
term "long wave length IR" in computer vision literature 
is often limited to this range. 

radiation within IR band. More specifically, at 
300K(Kelvin, absolute temperature, OC=273.16K) the 
peak emission occurs at around 10000 nm. This prediction 
is made by the concept of "black body radiation". The 
"black body radiation" concept eventually sparked the all- 
important quantum physics. We show only a few results 
related to our discussion. 

There are several factors involved in the surface 
thermal emission. The basic concept ~nvolved is the 
concept of energy conservation. However, the energy can 
be distributed differently among viewing angles and also 
among different wavelength of radiation. The "black 
body" is a conceptual ideal surface that absorbs 
completely any incoming radiation regardless of angle of 
incidence. This inherently ornni-directional definition 
coupled with an imaginary thermal equilibrium condition 
eventually leads to the conclusion that a black body is also 
a perfect emitter that emits the same intensity of radiation 
in all direction. Thus the directional radiance of a black 
body in any direction I S  proportional to the total amount 
of energy emitted per unit surface area per unit time. 

Hence we only need to specify the spectral distribution of 
the black body. Max Planck found the closed form 
formula for the distribution to be[B4] 

where 

h=6.6256E-34 (Js) (Planck's constant) 
c=2.998E8 ( d s )  (speed of light in vacuum) 
k=1.38054E-23 (JIK) (Boltzmann's constant) 
R is the total energy flwc emitted by a unit 
surface patch in thermal equilibrium at 
temperature T(in Kelvin) per unit wavelength 

The form of the formula can be slightly different if we use 
frequency instead for the spectral unit, but the general 
properties arc the same. This function form has a peak 
value that occurs at 

(TI = C, 1 T 

where C1=2897.6 ( ~ m  K) 

This is Wien's Displacement Law[BS] 

2.2 Passive and Active Light Source 

On earth surface under normal room temperature, most 
material surfaces emit little visible light but appreciable 



Figure 1 Wien's Displacement Law 

The total energy, i.e. light energy including all 
possible wavelengths, is given by integrating the Planck's 
Blackbody formula, 

This is Stefan-Boltzman Law, where the constant o = 

5.670e-8 ( K ~ w / ~ * ) .  Historically these laws were 
discovered first experimentally, thus are named after the 
discoverers. 

The blackbody serves as a standard for all surface 
emission of radiation in the sense that it is the best emitter 
in the temperature specified. Some real surface like the 
Sun and some blackened paints have surface emission 
properties very close to that of an ideal blackbody. Other 
surfaces are like blackbody only in certain wavelength 
ranges. To describe this variation from the 'ideal' black 
body the ratio of the actual energy emitted compared to 
the ideal quantity is defined to be 'emissivity' E .  Note that 
real surface emission properties not only differ from the 
ideal blackbody in terms of wavelength dependence but 
also on the directional distribution pattern. This leads to 
several different types of emissivity. The directional 
spectral emissivity of a surface would have different 
values at different direction and wavelength. This leads to 
a large table for only one material. Such table is very 
difficult both to produce and to use. Thus in practice, only 
the 'hemispherical' or 'normal' emissivity is listed in most 
material handbooks. The 'hemispherical' emissivity is the 
ratio of actual to ideal in all energy summed over all 
possible directions(a hemisphere). The 'normal' 
emissivity is the radiance ratio measured along the 
direction of the surface normal. 'Normal' emissicity is 
much easier to measure experimentally and for many 
surfaces the value is roughly proportional to the 
'hemispherical' emissivity. 

Figure 2 Real surface vs ideal blackbody. (a) Spectral 
(b) Directional differences 

To  do a qualitative estimation, we can start from 
calculating the peak emission band for black body for 
typical temperatures. As shown in Figure 1, the Sun 
resembles a 6000K blackbody and the peak emission is 
right in the middle of the visible band. A typical surface 
on Earth with ambient temperature around 290K(-17C) 
has peak at 10 pm, inside the IR band. Anothcr ~hing to 
notice is that for an object under room temperature thcrc 
is very littlc crnission in the visible band. Which explains 
why most objects in room temperature do not glow (for 
human eyes) on their own. 

This has several impacts on the construction of 
computer vision algorithms. First, in computer vision 
algorithms developed for visible band, the self-emission 
part can be safely ignored. For example, the classical 
'shape from shading' technique[B7] is based entirely on 
surface reflectance. Such technique, while valid in visible 
band, can not be used in IR band without significant 
modification because in IR the self-emission contribution 
can not be ignored. A second implication is that, since in 
IR image many surface will be light source themselves, 
the brightness contrast may become larger. When this 
contrast exceeds the dynamic range of the camera, we get 
a saturation or decimation effect. This results in loss of 
features inside a very bright or very dark area. This will 
cause significant problem for pattern matching vision 
algorithm designed for visible band. 

2.3 S u r f a c e  in te rac t ion  w i t h  incident  rad ia t ion  

Except for some special phenomenon. all surfaccs 
interact with incident radiation in the following ways: 
reflection, absorption, and transmission. When these are 
the only interactions taking place, from conservation of 
energy we know the incident energy must go into one of 
the interaction. We can thus define the ratio of energy 
going into each interaction compared with the total 
incoming energy as the Absorptivity a, Reflectivity p, and 
Transmissivity T. 

A typical surface spectral emission property is shown 
in Figure 2[B8]. 
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Figure 3 Surface interaction with incident radiation 

Again we are faced with the fact that both direction 
and spectral dependence exists in these concepts. In the 
reflectivity it is further complicated by the fact that we 
have two directions (incident and reflected) directions to 
consider. Like in the case of emissivity, we often simplify 
the matter by using the ratio of the quantity that is 
summed over all direction andlor over all wavelengths. 
From conservation of energy, we have the following basic 
equations: 

p, +a, +z, = 1 

p + c x + z = l  
for semi-transparent surfaces and 

for opaque surfaces. 

Notice that the definitions of these quantities are very 
different from that of emissivity. Emissitivity definition 
involves a standard reference surface while the other 
quantities we see here involve no standard reference. 
Under certain conditions, however, the numerical values 
of some emissivity and absorptivity can be the same. The 
required condition often involves some uniformity in 
spectral or directional distribution or the proportionality to 
blackbody properties. We shall check this when we see 
the use of this convenient equality in some of the 
algorithm we review. 

One of the difficulties involved in IR computer vision 
is that these passive surface phenomena are mixed up with 
the self-emission phenomenon. The reflection process is 
particularly troublesome because the energy can reenter 
the same surface after multiple reflections. In visible band 
since we have more control over the light source the 
problem can often be dealt with by ignoring the weak 
multi-reflection components. In IR images where light 
source is scattered all over the scene the problem is much 
more complicated. 

In general, all the radiation related properties 
discussed so far are functions of temperature, direction(s), 
and wavelength. However, to tabulate all the 
dependencies means that for each material there must be a 
high dimensional grid of data points in order to represent 
the full functional dependency. I t  takes a lot of 
measurement work to build one such table and i t  1s very 
cumbersome to use if we do complete such a table. In 
many engineering applications i t  is usually sufficicn~ to 
have some average property values to be uscd with 
simplified models. Thus in most data tables published, the 
values listed are only for "spectral normal", or "total 
normal", which are the most easily measured quantities. 
For many common materials, this "normal" value is 
roughly proportional to the "hemispherical" value, see 
Figure 4 [BS]. Only when there are special needs will the 
complete functional dependence of a particular material 
be measured experimentally. 

to 
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Figure 4 Representative directional dependence of 
total directional emissivity. The normal (8=0) value is 
not far  away from the mean (hemispherical) value. 

2.5 Atmospheric Effects 

Between the object and the observer it is always filled 
with particles of earth's atmosphere. The earth's 
atmosphere composes of about 415 nitrogen and 115 
oxygen. Carbon dioxide takes up about 1% and water 
vapor level varies greatly from area to area and from time 
to time. Gas niolecules and the much larger aerosol 
particles reflect, refract, absorb, and scatter light with thc 
result of changing the spectral and spatial distribution of 
light energy. 

For indoors visible band vision, the atmospheric 
effects are mostly insignificant because of the short 
distances involved and because the air is often stabilized 
by air conditioning. Thus the air effects are often ignored 
completely in many computer vision algorithm. In fact. 
most visible band optics design also ignores the effects of 
a l o s p h e r e  partly because they can not be controlled. 

2.4 Tabulated Material Properties 



In the visible band, the atomic absorption of 
atmospheric gas molecules is very weak and roughly 
uniform over the entire visible band. However, in the 
infrared region, there are several bands that are strongly 
absorbed by the atmosphere while some there exists some 
"window" bands that are not absorbed by the atmosphere. 
So while the radiation of the Sun is very close to that of a 
5800K black body, the spectral distribution changes 
considerably when it reaches the surface of the earth 
because it passes long distances through the atmosphere, 
see Figure 5[B8]. 

--- 5800 K Blackbody 

Solar ~rrad!at~on 

--- 5800 K Blackbody 

Solar 1frdd!at1011 
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Figure 5 Spectral distribution of the Sun's radiation 
before and after it enters the earth's atmosphere 

The refraction effect is most pronounced when there 
are significant temperature and/or density differences 
between air layers. Since air with different temperature 
and density have different index of refraction, the 
interface between such two layers acts just like the 
interface between the lens and air. This is why in hot 
desert area one can sometimes "see" images of distant city 
floating in the air. This refractive phenomenon is 
important and interesting but it is difficult to control 
because the exact condition of inhomogeneous air is 
difficult to measure and is changing all the time. Thus for 
most part it is considered separately. 

Scattering effect, like atomic absorption, is easier to 
model because it can be modeled in a homogeneous 
atmospheric condition. Depending on the relative size of 
the particle compared to the wavelength of the incident 
radiation, there are two types of scattering: Rayleigh 
scattering which scatters almost uniformly in all direction, 

and Mie scattering which scatters mostly in directions 
close to the original incident direction., see Figure 6.[B8] 
The magnitude of the resulting effects are dependent both 
on the wavelength of the incident radiation and the 
thickness of the atmosphere it passes through. For 
example, the sky looks blue because the scatter cross 
section is greater for shorter wavelength components. The 
setting Sun looks red because the Sun light must pass 
through a thicker layer of atmosphere than in the day time 
and most short wavelength component are lost duc to 
scattering. 

i * I 
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Figure 6 Atmospheric scattering for Sun light 

The net result of atmospheric scattering is most often 
modeled as diffuse lighting, although in fact it is not that 
uniform as light coming in parallel to the ground is ofien 
weak in reality. See Figure 7[B8]. 

Figure 7 Spatial distribution of day light on Earth's 
surface. Left: Actual distribution, Right: Diffuse 
model 

2.6 Focusing Devices 

Imaging device is often composed of a focusing 
element and a 2D array of detecting elements. The 
focusing is necessary because light emanating from a 
point in space becomes weaker and weaker away from the 
point because the same amount of energy is distributed to 



an increasingly larger space. The focusing element 
collects all the light energy covered by the aperture and 
focus them all to the same spot on the 2D array, thus 
greatly enhance the signal strength for the detector. The 
design of such focusing elements is often done under the 
assumption that there is no distortion of scene light by the 
atmosphere. The focusing element can be composed of 
refracting elements or reflecting elements alone or both. 
The index of refraction of a material varies with 
wavelength of the electro-magnetic wave. Thus a focusing 
device designed to work under one wavelength range may 
not work properly under other wavelength. For example, 
most material that is transparent in visible band can 
become opaque in longer wavelength infrared bands. Even 
if the material of the lens remain transparent in other 
wavelength bands, the focusing power and chromatic 
aberration characteristic may be different due to 
differences in index of refraction. The formulae involved 
(Equation 1 and Equation 2) clearly indicates the 
dependence on the indices of refraction of the lens 
materials[B6]: 

Equation 1 Lensmaker's Formula 

lower bound is higher than that of the visible band lens in 
order to avoid strong diffraction effects. 

2.7 Detectors 

The most commonly used digital image detector in 
computer vision today is CCD (Charge Coupled Devicc). 
These device are sensitive to visible band as well as IR 
that is very close to visible band (about up to 1300 nm). 
But for other longer wavelength IR band. especially the 
band that a room temperature black body radiates most 
CCDs can no longer be used because thermal IR photon 
energy is much lower than that of the visible band 
photons. Sensors for the so called "thermal IR" band has 
been devised for about 200 years, but only until recently 
can these thermal IR detectors be miniaturized enough to 
be packaged as a small chip FPA (Focal Plane Array). 
Even so, in general these thermal IR FPAs are still larger 
and possesses less pixel density per unit area than 
ordinary CCD chips due to the special mater~als and 
complex structures involved with these thermal IK 
detector unit. 

The IR dctcctors most widely used today can be 
roughly divided into 2 groups[BS;BZ;B9]. The first group 
measures the IR indirectly by detecting the changes 
caused by the heat introduced when absorbing IR 
radiation. For example, Bolometers measure the heat 
induced electrical resistance changc, while pyroelectric 
detectors measure the heat induced electrical capacitance 
changc for certain crystals. Pneumatic IR detectors 
measure the pressure differences induced by heatcd 
expansion and thermopiles measure the differences in heat 
expansion rates. The most significant shortcomings of 
these types are relatively slow response time but are 
improving with micro-machining technology (smaller 
things heat up faster). The main advantage as compared to 
the other group, the quantum detectors, is that these 
devices operates at relatively higher temperature and thus 
do not need expensive and cumbersome cryogenic 
cooling. 

crystal L I  

Figure 8 Acromatic doublets composed of one 
converging lens with focal length f 1 and one diverging 
lens with focal length f 2 

f 2Y  = - ( n 2 B  - n2R) ' (n2Y  - ' 1  - 
f , Y  (n ,B  - n , ~  l ' ( n , Y  - ' 1  + 

Equation 2 Achromatic doublets formula 

Another wavelength related effect is the diffraction 
limit. The wave property of visible light is not pronounced 

-1 
in many situations because of its relatively short 
wavelength. However, thermal infrared wavelength is 10 
to 100 times longer than that of the visible band so the iris Figure 9 P~roe lec t r ic  IR detectors measure the 

transient current induced by the heated up crystal 



surfaces, which in effect changes the capacitance. 
Since only changes in temperature are detected, a 
chopper is needed to produce continuous heat changes. 

The second group is called "quantum detectors" 
because they utilize the quantum phenomenon of 
"photo-electric" effects to detect the IR photon directly. 
The main advantage is fast response time and ultra-high 
sensitivity that approaches the theoretical upper limit. The 
trade-off, however, is that the entire detector must be 
cooled down to very low temperatures in order to suppress 
background noise. If we look at Figure 1, we can see that 
if we cool the detector down to 77K(the temperature of 
liquid nitrogen), the background radiation peak will be 
offset to 380000 nm, far away from the signal we want 
(around 10000 nrn). But such low temperature can not be 
maintained by thermal electric coolers, only specialized 
cryogenic cooling can maintain such low temperature. 
This makes the detector as a whole very expensive not 
only in purchase price but in operation costs as well. The 
cooling devices also make the whole system bulky, heavy, 
and power hungry. There is also this inconvenience of 
having to wait for the pre-cooling every time before use. 

If we can get a IR detector that combines the high 
performance of the quantum detector and the low cost and 
ease of operation of heat sensing IR detectors many 
difficulties encountered in IR computer vision can be 
solved instantly. Recently there are some promising 
advances to improve the quality of heat sensing IR 
detector[B9], which may have great impact in the next 10 
years. For now, for real time applications, even for limited 
task like ditch avoidance using IR stereo, the quality of 
heat sensing IR detectors is still not enough[B 121. 

3. Effects of IR Properties on Visible 
Computer Vision Algorithms 

Computer vision is very diverse field. Anything that 
deduce useful information from one or more digital 
images using computer algorithms counts. For our 
discussion it is convenient to loosely categorize computer 
vision algorithms in the following criteria: 

2D and 3D: 2D computer vision works with the 
2D image data itself and makes little or no 
assumptions on how the 2D data is acquired from 
a 3D world. As a result their method can be 
applied to many different modalities of images but 
they can not extract high-level information 
specific to applications. 3D computer vision, 
however, is based mostly on the projective 
projection principle and makes use of many 
reflective properties common in the visible band. 
Single or Multiple Frames: Computer vision 
algorithms start by trying to extract data from a 

single picture. Since in many imaging process 2D  
image reveals only one aspect of the object of 
interests and there can be many ambiguities or 
unknown information so more sophisticated 
computer vision algorithms uses multiple images. 
Multiple images gives more information in either 
time (video) or space(stere0) or both(moving 
camera video). The problem is how to register the 
same object or feature point in multiple images 
Many resort to human aid but full automation is 
the ultimate goal. For automatic correspondence 
or tracking, there are many intuitive assumptions 
based on reflective visible band properties. 
Single Band (Gray Scale) and Multi Band 
(Color): Many computer vision algorithm works 
with gray-scale images, i.e. each pixel has one 
value associated with it. With the price of color 
digital camera dropping every year, 3 band color 
(RGB) in visible band images are being used 
more often. Ideally, for each pixel one makes 
observations in more than one spectral band 
which yields more information. 

Among the differences of 1R and visible band images 
we can distinguish them between technical problems that 
may improve as we get better IR camera technologies and 
the problems that are inherent to the IR properties and that 
can never be removed by using better IR cameras. 

Technical Problems: High noise, low spatial 
resolution. In part this still has to do with the IR 
properties but we have seen improvement over 
time with newer IR cameras. The problem of thc 
camera emitting thermal radiation itself, though 
can not be completely el~minated. can be 
effectively reduced significantly by cooling down 
the camera substantially. In Figure 1 we see by 
Wien's displacement law the camera peak 
emission band can be shifted away from the 
ordinary room temperature thermal emission 
band. The low resolution of the pixel can be 
improved by micromachining technology to 
produce smaller pixels. 
Inherent Problems: 

History effects: In visible band the 
brightness and color of one point reflects the 
(practically) instantaneous lighting and 
geometry conditions. 117 thermal IR the self- 
emission effects are important. Since the self 
emission depends on the temperature of the 
object surface and temperature change takes 
time (noticeably in human time frame), the 
strength of thermal IR radiation depends not 
only on the instantaneous states of the object 
and the environment, but also on the 
combined effects of the history of state 



changes. This effect is inherent to thermal IR 
and cannot be "removed" by using better 1R 
cameras. 
Emission and reflection: The importance of 
emission component in thermal IR radiation 
means that the fundamental formula of the 
reflectance photometry can not account for 
the whole scene. This is also a material 
property, not a camera property. 
High Dynamic Range Differences: This is 
not to say we get the benefit of high dynamic 
range, instead it is a property not easily 
captured by a camera. This is also a result of 
the importance of self-emission in the IR 
radiation. For most object surface except 
unoxidized metal the reflectance coefficients 
are low. So an object that only reflects light is 
much dimmer compared to a light source that 
emits light itself. In visible band most objects 
only reflects light so it is not uncommon to 
see pictures that contains no active light 
source. Which in turn means all objecrs 
brightness are roughly in the same level so we 
can find one exposurelgain level that spread 
all the brightness variations nicely to the full 
dynamic range of the camera. In thermal IR 
image all objects are emitting radiation and 
since the total radiation strength is 
proportional to the 4a degree of object 
temperature, we expect to see very bright and 
very dark objects at the same picture almost 
every time. In this case either the bright 
object is over exposed or the dark object is 
under exposed, both of which means losing 
local texture information. 

How exactly does these problems influence the 
performance of computer vision algorithms if we use the 
visible band version directly to IR images? 

The noise and resolution problem will decrease the 
performance of 2D, single frame algorithms. Since other 
more complex algorithms are based more or less to the 
performance of the basic 2D, single frame algorithms, 
most of them will suffer indirectly. The reason is that most 
2D, single frame algorithm are developed first under the 
simplified model of no noise and a smooth, continuous 2D 
surface model (infinitely high resolution). For example, 
the edge detection algorithms are based on differentiation 
gradient of a smooth 2D surface. High noise invalidates 
the smoothness model. Low spatial resolution itself means 
losing data, especially high spatial frequency data. When 
the raw data does not contain high frequency information, 
no algorithm can reconstruct them except guessing with 
prior knowledge. Low resolution also hurts the statistical 
assumption of sufficiently large amount of data. In 3D, 
multi-frame, and multi-band computer vision, when there 

is a need for correspondence, the most common automatic 
correspondence finder depends on local statistics of 
windows of textures. When resolution is low. the number 
of pixels representing each object of interests arc low 
which makes statistics based method unstable. 

The history effect invalidates the basic assumption of 
brightness constancy constraint of optical flow, which is 
the basis of multi-frame vision algorithms. The basic 
optical flow formula of 

where E, a function of 2D positions x and y and time t, 

is the brightness of one object point and Ex Ey Et 
represents the partial derivatives with respect to x, y and t .  
Also. u is the 2D apparent object velocity in the x 
direction and v is the 2D apparent object velocity in the y 
direction. This equation is valid in the assumption that 
brightness of an object is constant over time, i.e. dE1dt =O. 
This is never really true in visible band but without history 
effect it 1s not a bad assumption when dt is small The 
history effects invalidate the brightness constancy 
assumption in two ways. Because of the temperature 
dependence of thermal IR radiation, and i t  is common to 
see both extremely fast temperature change, like explosion 
or engine combustion, and very slow temperature change 
like the natural dissipation of heat. The extremely fast 
temperature change means the brightness can change 
significantly even between two consecutive video frames 
(usually 1/25 - 1130 sec). The very slow dissipation of 
heat means there can be "ghost image" left behind after a 
hot or cold object moves, which by applying optical flow 
blindly can lead to ghost object detection. 

The importance of emission in the contribution of 
brightness invalidates a whole family of shape from 
shading formula developed for the reflection dominated 
visible band images. In the reflection case the observed 
brightness is related to two angles, one is the angle 
between the surface normal and the direction of the light 
source, the other is the angle between the surface normal 
and the direction of observer, thus the term "BRDFn(Bi- 
directional reflectance distribution function). The thermal 
emission brightness, however, depends only on the angle 
between the surface normal to the direction of observer In 
addition, the emission is strongly dependent on surface 
temperature while BRDF is relatively insensitive to 
surface temperature, see Figure 10. 



Reflecrtve Shape from Shading IR Em~ss~cr  

Figure 10 Differences in brightness formulas between 
reflection and self emission 

Even more complicated is the fact that IR radiation is 
also reflected by surfaces and in situations where both 
reflection and self-emission are both important 
contributors to brightness. This can happen in the IR 
bands that are close to visible bands. In these cases 
entirely new equations must be used to interpret the 
observed brightness. We shall see such attempt in one of 
the paper we review. 

For the high dynamic range problem, there is always a 
tradeoff between linear brightness value and revealing 
details of every part of  the image. When one chooses to 
have linear pixel values (as required for photometry 
related algorithms), one can either stretch the brightness 
resolution to the entire dynamic range and losing the fine 
resolution in the local variations or one can preserve the 
local variations and leave the some of the region details 
saturated or decimated. 

Figure 11 Saturation and decimation caused by high 
scene dynamic range can be good o r  bad depending on 
the task a t  hand. 

The saturation and decimation is bad for texture based 
matching because the texture pattern inside saturated 
region is missing, but for some segmentation task 
saturation and decimation is good because they make the 
task easier or even saves the trouble altogether, see Figure 
1 1  

night or through smoke when visible band cameras are 
blinded. 

The first difficulty they encountered is the low 
resolution and high noise of the images they had. The 
resolution is so low that there are only 1/4 pixels in both x 
and y image axis with the resultant pixcl count only 111 6 
of that of ordina~y visible band imagcs they used to 
process. There are added difficulties that they are working 
on FLIR(Forward Looking Infra Red) image sequences, 
which is a military sensor installed on Army helicopters. 
The rough operation environment on a battlefield causes 
further image defects like dirty lens and broken pixel 
elements. Thus i t  is imperative for them to decrease the 
noise level and enhance the images before furthcr 
processing. 

The noise remover they use is median filter instead of 
mean filter. The main reason behind this is to fit the nature 
of the noise, however, there is also the added bonus of 
preserving high spatial frequency details in the images for 
pattern based ego-motion removal. Had they used mean 
filter, which has the side effect of suppressing high 
Frequency image features, the image based ego motion 
removal might have failed or performed much worse. 

The inherent high dynamic range nature of the scene 
brightness cause the "cold background" to appear very 
dark. They use the method "histogram equalization" to 
make the contrast more uniformly distributed. Note that 
doing this contrast adjustment destroys the original 
absolute brightness relationships. For example, if there are 
two points, one has twice the brightness of the other, this 
relationship will in general not hold after histogram 
equalization. The only relationship preserved by 
histogram equalization is the strength order, i.e. if one 
pixel is brighter than the other, i t  will still be brighter than 
the other pixel after histogram equalization. This is fine in 
this work because they are not using any photometrv 
information, only the pattern to extract geometric 
information. On the other hand, histogram equalization 
may not work if there are more decimation in the "cold 
background" because histogram equalization only do 
remapping of existing brightness values and never create 
new brightness levels. If the brightness variation in the 
"cold background" is so weak that all background pixels 
have the same brightness values (or too few brightness 
values) then the approach of this paper[B14] will fail 
because they have not feature to do ego motion removal in 

1 1 .  
the second stage 

4. JR image as single band image(s) 
Having reduced noise and equalized contrast, the 

images in the video sequence now have more visible band 
like image properties. However, there are still differences. 

The first we review here try do the As we can see clearly in the sample images they showcd 
tracking and object pose estimation in a video sequence i n  ~i~~~~ 12, even after enhancement the interior details 
using slightly modified algorithnls developed or~ginally the vehicles like door, windows, , , ,etc are not 
for visible band image(s). The main reason for doing this distinguishable, L~~ spatial resolution, saturation due to 
is the capability to do the same targetstracking task at strong emission, and different radiation models behind 



emission and reflection all play a part in this phenomenon. 
The algorithm of this paper[B 141 still managed to extract 
the moving object and their direction of movement due to 
the fact that the contours of the objects are still well 
preserved. The objects of interests are all equipped with 
hot running engines so that they stand out much brighter 
than the background. In this case the saturation both 
helped and causes trouble. It helped in the sense that a 
simple threshold in the brightness can segment the object 
region from the background. It causes trouble in that since 
the detailed pattern inside the object area are lost, it is 
difficult to identify the object type, like telling apart trucks 
fi-om tanks or even distinguish between different brand of 
trucks. 

Figure 12 Overall process flow of IMO detection from 
airborne FLIR video 

Since the video sequence is taken by a moving camera 
on a helicopter the apparent motion in 2D video sequence 
can be a combined result of object movement and the 
camera ego motion. The most accurate way to remove the 
ego motion of the camera is by using motion sensors but 
this is usually not practical in a battlefield or any 
uncontrolled field for that matter. Thus the algorithm 
incorporates an image based ego motion removal method 
that has been used successfUlly in visible band images. 
The core assumptions behind this image based ego motion 
removal are: 

IMOs(1ndependently Moving Objects) occupies 
only a very small portion of each image in the 
video sequences. This is why they can compensate 
for ego motion without separating the IMOs first. 
They just pretend there are no IMOs in the images 
when they are removing the ego motions. 

The background is stationary. 
There are distinguishable and non-ambiguous 
feature patterns all over the background so that 
correspondences of the same points on the 
background can be found between frames 
provided that the point is visible in the frames 
under consideration. 
The camera motion is smooth and the frame rate 
is high enough so that most scene points are 
visible in consecutive frames. 
The scene is practically flat so the apparent 2D 
image captured by the camera can be seen as an 
affine transformation of the planar scene. 
Obviously this is an a approximation but a pretty 
good one for most airborne images as long as the 
airbornc camera is not too close to the scene. 

All of the above assumptions are not foolproof. but 
they hold often enough to be useful. Although these 
assumptions were devised originally for visible cameras, 
we can see that most of them are not attached to properties 
unique to the visible band. Thermal IR band camera only 
makes the "distinguishable pattern" assumption more 
difficult to hold. The pattern can be buried in saturation 
region or decimation region. The pattern can also change 
with rapid thermal disturbances or fail to move with the 
object because of the history effect. Since in the sample 
images provided here this assumption still holds after 
contrast enhancement, the whole ego motion removal 
framework can be applied quite well without any 
modification. In other thermal IR sequences where you 
see these undesirable effects, the method can break down. 
For example, if the tank fires its main gun or the truck is 
hit by a bomb during the sequence, the tracking may be 
disrupted and never recover. 

For the case that the algorithm works, the ego motion 
is removed by calculating optical flow field between two 
frames. Because the background is assumed to be 
stationary and the lMOs are assumed to occupy only a 
small portion of pixels, we expect to see a dominating 
displacement in the optical flow and this i t  can only he 
caused by the ego motion. Now that we have an initial 
estimate of the ego motion, we can use this knowledge to 
exclude flows that deviates a lot from this ego motion. 
These flows are likely caused by the IMOs. We can 
recalculate ego motion estimation using only the flows 
that are likely to be background flows to get a better 
estimate of the ego motion. The number of iteration can 
be increased if we have more time or computing power, 
this is where they claim to have scalability. 

They also mention the use of multi-resolution 
(pyramid). Image Pyramid is a term created in the digital 
image processing community by [B3]. The idea is to build 
smaller images that is %, 1/4, .. . in each dimension of the 
original images, each of which contains only a band of 



spatial frequency information. Since information in lower 
frequencies can be represented without loss in lower 
resolution, we get smaller and smaller replica of the 
original image as well. This aids in the application of the 
optical flow formula. Recall that optical flow forniula is 
an equation concerning local image gradients and 
gradients are good approximations only for small 
displacement. Thus if a point is displaced several pixels 
away in the next frame, the optical flow formula does not 
work well. Having increasingly smaller replica of the 
original image solves the problem, provided that you can 
still find correspondent patterns in low frequency[B 101, 
because any large displacement will eventually become a 
one-pixel displacement if you shrink the image enough. If 
you put all the different sized version of the same image 
one on top of each other, smaller ones on top of bigger 
ones, you have a pyramid, thus the name. Pyramid takes 
time to construct but once constructed the optical flow in 
all the levels can be computed in parallel and becomes 
very fast. Thus this method has become the core of many 
real time applications. Here the algorithm in this 
paper[B14] claims the potential to become real time 
because they use image pyramid. 

Once the apparent ego motion is determined, they 
'warp' one of the frameby affine transformation. They 
can do this without explicitly recovering 3D information 
because of the planar scene assun~ption. This is the main 
reason why they can use 2D affine transformation. The so 
called "2D is more robust than 3D" is not the main point, 
just a side effect. The real problem is that they do not have 
enough information to recover the 3D structure without 
the planar scene assumption. After the 'warp', ego motion 
is removed, and a simple pixel by pixel subtraction would 
reveal the IMO region, provided that the IMO has very 
different brightness than the stationary background. In this 
case thermal IR images actually work better than visible 
images in the subtraction because the IMOs are all much 
brighter than the background. Although the threshold 
value of how much difference in brightness count as an 
IMO region should not be too hard, they should have 
mentioned how the threshold value is determined. After 
initial thresholding, we may get holes in a big 1MO region 
or small fi-agments of IMO region inside background 
region. Through prior knowledge of the types of video 
sequence they are likely to encounter (military FLIRs 
usually focus its field of view on only a few vehicles at a 
time), they use the morphological operation opening and 
closing to weed out fragments. The mask they use is 3 by 
3 but no explanation of why this size is used are given. 

At this stage we have several blobs of possible 1MO 
candidates. They then use the shape and positional 
statistics(mean, variance, skewness and kurtosis of each of 
the coordinates) of each of the region. We can see that 
these descriptors only account for the silhouettes but not 
about the interior features like the shape of the doors, 

windows, ..etc. I t  is clear in even their sample images 
that we human observer can not tell which blob is a tank 
and which blob is a truck unless we read its captions. Thus 
the method they describe only serve to further eliminate 
unlikely IMO regions, not to  distinguish target types like 
telling a truck from a tank. In this process they used many 
prior knowledge that are specific to their test images. like 
having many bad pixels and bad qualities around the 
bottom and right edges(other cameras may do better in 
these area). This may restrict their method to the 
particular camera they were working with. 

Finally, they use the thermal IR image property of 
saturation to their advantage. Through observation they 
found the following phenomenon that can be used to 
locate the head and tail area of a moving vehicle: 

Table 1 Head-Tail conditions 

I disappearing ( not obscrvablc I bccomcs darkcr 1 

objcct is 

appearing 
moving visiblc 

. . 

moving occludcd 1) not obscrvablc not obscrvablc 
-. .. . . 

Notice that those 'not observable' parts are really not 
very useful. This means that when the IMO is partly 
outside the image or several IMOs overlap each other, 
their method can break down. 

After detecting several possible heads and tails. We 
need to pair them in order to find IMO pose and 
movement directions. The heuristics used here is the 
shortest distance pairing, which can fail when multiple 
IMOs are close to each other. This is probably why they 
use edge information as well to reduce the chance of false 
pairing. The extraction of pose not only gives more 
information about IMOs, but they also serves to eliminate 
some spurious IMO candidates. 

All we can reasonably get from the video sequence 
alone are the position of IMOs and their apparent 2D 
pose. However, in the paper[B14] they discussed methods 
to translate the apparent 2D pose into 3D pose by 
introducing external information, the helght of the camera 
and the range to the target. This 1s possible in their 
specific application because the FLlR camera is often 
mounted on a helicopter or aircraft, on which there is 
always an altimeter. The problem is that the altimeter 
reading gives the pressure height, not height relative to the 
ground. Furthermore, the formula they are using is based 
on the assumption that the ground is level, not sloped. The 
distance information may be available because these army 
helicopters often has laser range finder on board. Overall. 
the 2D to 3D transformation is not accurate, but is better 
than nothing. These are only suggest~ons and no 
experiments are done. 

1 
in fronr of object 
bccomcs brightci- 
bccomcs brightcr 

not obscrvablc 
bccomcs durkcr 



The results shown in the paper[B14] are pretty good. 
On the other hand, all the sample images show good 
natures that may not be true in many situations. All the 
images contain no more than 2 IMOs and the 2 IMOs 
seldom overlap each other. There are no rapid temperature 
changes like firing weapons, starting engines, or being hit 
by enemy fire. There are no history effects like a hot 
vehicle start moving after staying at the same position for 
a while and leaving a hot print on the ground. There is, 
however, a interesting example showing that the method 
can some times detect motion better than human observer, 
as in Figure 13. 

Figure 13 Example showing that the algorithm can 
sometimes outperform human observer 

5. Single IR band multiple views with 
thermal energy considerations 

While in visible band images the pixel values 
represent the combined effects of surface reflectance 
properties and the viewing geometry, in the thermal IR 
band images the pixel values represent predominantly the 
combined effects of surface temperature, surface emission 
properties and viewing geometry (though reflectance is 

still important in some cases). The methods that usc only 
relative pixel values to extract edges ignore this 
underlying physics of pixel value. To niaht. use of thcsc 
additional information inferred by the absolute pixel 
values, the physical fo rm~~la  in~olvltlg reflectance and 
heat transfer must be used. In doing so, however, the 
methods developed would be tied closely to the imaging 
modality and lose some of the gencral~t\ for methods 
based only on relative pixel values. 

The first problem encountered when using the physical 
formula for reflectance and/or heat transfcr is that there 
are a lot of parameters that can not he eutracted from thc 
image pixel values alone. Further more, these parameters 
are vely difficult or labor Inten.;l\e to Int':t\urc in many 
applications. Thus sit-nplify~ng asz~rn~pr~oil.; 31-c invariably 
made in these methods The tn021 notaI>lc ahsumption in 
the visible band is that of Lalnbcrt1;ln s t l r fai~.  \vhich states 
that the surface reflectance values 21-c rhc same in all 
direction. This assumption \\arks \.cry \\ell in many 
applications, but on the othct- hand I I  t ' r t~lb  olicn enough in 
other applications that remedies at-c ncecltd 

This problem is even rnorc complex \\Ili.n we try to 
use the absolute values of 1R i~nages 111 adclltion to the 
reflectance properties we have elnisaion ;~ntt heat transfer 
properties to wony abou~ al~tl thcy a1.c . ) I 1  mixed itp 
together. However, because of the potclitial reward of 
getting a lot more inforniatioi~ about thc objects in thc 
image, more and more methods are d c ~ c l o l ~ c d  using the 
absolute pixel values in the IR images. 

The paper[BI 11 we review here represents one of the 
attempts. The main goal is to be able to d~stlllyuish object 
type and even models using only a few tlie~mal IR (8-14 
pm) images of the samc object taken under different 
conditions. The idea is to extsact sonic '111~;lriants' that 
are the same for a pa~ticular object type or model in all 
these different views. The prlnic c~incllilntcs are the 
physical parameters like heat capacitance. emissitivities, 
. . .etc that in principlc slio~tlii i . ~ ~ i i ; l i ~ ~  t l i ~  a n i e  under 
normal environmental change and ~ c \ \  c t i~npc.  However, 
it is really difficult to recover these values from a set of 
images alone, so an altcrnati\,c 1s to cxtract some 
quantities that are related to thcsc pliystci~l ~xtt.;lmeters. 

To start, the principle of energy conser-\ ation provides 
the best starting point to wrltc cqualittcs. The added 
advantage is that energy is an a(tdltl\ c physical quantity. 
i.e. the total energy is simply ttic sum of all the energy 
fiom each of its contributors. T ' l i l b  ~rnpllc> r i ~ ; t t  we get an 
equality that is linear in form T h ~ s  will lead to lincar 
differential equations or e\wn lincar cquatlons that we can 
manipulate with linear algebra. 

The formulation is based on thc energy conservation 
of a passive (non-heat generating) surface clement: 

Wabs = W,osr 

Equation 3 Heat absorbed equals heat lost 



Here the Sun is assumed to be the only heat generator, 

thus: w,, = W, C O S ~ , ~ ,  

Where 

W ,  : Solarirradiatia wherincidentnormako thesurfact 
8, : Angle between the Sun and surface normal 

as : surfaceabsorptivty 

Figure 14 Energy exchange model a t  the surface of 
imaged object 

There is an unstated simplifying assumption made 
here. The surface absorptivity should be a function of 
incident radiation direction, radiation wavelength, and to a 
lesser extent, surface temperature. Here it is used as if 
there is a single value for a surface under all direction, 
wavelength, and temperature. 

Since they continue with the statement that the 
absorptivity is estimated from visible band reflectivity: 

as = 1 - ps 

Equation 4 Total o r  band reflectance and absorptivity 
for opaque object 

and the 'fact' that 90% percent of solar radiation 
energy on the surface of the earth is in the visible band, 
we can infer that the 'absorptivity' here means 'total 
directional' absorptivity and the absorptivity and 
reflectivity properties are assumed 'Lambertian' or 
'diffuse'. 

Note that this also implicitly restrict the use of this 
formulation to sunny day solar radiation because surface 
reflectivity, even in the visible band only, can vary wildly 
with wavelength (thus we see a colorful world), the 
reflectivity for different incoming light (with different 
spectral distribution) should be different. Here the light 
source is fixed as solar radiation on earth's surface so they 
can get a single value for one surface. Also, the cos 0 
factor comes from modeling the Sun as a distant point 
source, and becomes meaningless in a cloudy day where 
dominant solar radiation is scattered light from the 
atmosphere and the angle 0 loses its meaning. 

The 90% statement is questionable as we can see from 
Figure 5, which comes from [BS], the solar radiation, even 

after atmospheric absorption, still has considerable energy 
in the IR region. 

The absorbed energy must be either stored or 
dissipated. Thus four different ways where the energy 
absorbed by the surface might go arc ~nodclcd. 

W,,,,, = W',,d + Wc, + Wc, + W,,,<i 

Equation 5 Four 'energy sinks' 

W,,, means power lost to heat conduction inside the 
surface, W,, means power gored inside the volume to 
raise temerature, W,, means energy carried away by 
convection of the air, and W,,,, means energv radiated - 
back by the surface. 

Each of these phenomena has well known formulas 
(under certain simplifying assumptions) describing i t :  

Equation 6 Rate of heat flow conducted inward 

Heat conduction is assumed to occur only from the 
surface toward the inner layer. The lateral conduction is 
assumed negligible and not modeled. In the formula k is 
thermal conductivity of the material (assumes uniform 
material type within unit surfice and volurnc). T is the 
surface temperature; Th, is the interior temperature and dx 
is the distance below the surface 7'hlh 1 5  a reasonable 
assumption if 

The surface is smooth and kec kom \hadow 
The surface material is uniform. not mosaic of 
very different materials. 

For energy stored inside the elemental ~ o l u m e  to raise 
surface temperature: 

Equation 7 Energy stored to raise surface temperature 

Within unit volume the temperature I> assumed 
uniform. CT is the thermal capacitance of the material 
comprising the elemental volume, while dt is the unit time. 

Heat convection is quite complicated phenomena but 
here a simplified version is used: 

wo = h(q - ) 

Equation 8 Convected heat transfer 

T,,,, stands for ambient temperature and h alone stands 
for all the combined effects of wind speed. thermophysical 
properties of the air, and surt"~ce geometry A bery crude 
formula, but suits the task here bcca~~sc  we are practically 
unable to measure most of' tllc paramctcl- ~iccded, e g 
wind speed and air temperature distribution. so a detailed 
formula is useless anyway 



Lastly, the surface radiates heat back into the These problems may contribute to the 'not so good' 
environment: results in the experiment section. 

w,, = - An analogy is made to the RC circuits, but the analogy 
is not exploited further in this work. The differential terms 

Equation 9 Energy lost by surface radiation are treated as just one valuc and no differential equations 
are solved. To get the invariant the equalitv is rcwritten 

Hlghly pollshed metals folk l~lrns 
. . Pollshed metals 

Metals, as rece~ved 

into a linear form: 

a,x,  +u,x,  +u,x, +u,x, +ajs,  =aTx=o  
Equation 10 Linear form for extracting invariants 

Where: 
Metals, db rece~ved and u n ~ l ~ s l i e d  

Metals, ox~d~zed 

Ox~des, cerarnlcs 
= CT .Ll = - - 

Carbon graptitles 

Mtnerals glasses 
d l  

Vegetat~on water. sk~n 
;1T, 

a;! = k x2 = - !+-I Specla1 paints, anodlzed f~ntshes dx 
o o 2 0.4 o 6 08 10  a 3 = - ( T , - T u m 4 )  L ! = h  

Total normal em~sslvtiy. E,, 4 4 a4 = - P ( T ,  -T, , , l)  ri = E 

Figure 15 Representative values of the total normal U s  = COS 81 :E5 = W I Q s  
emissivity 

Here the formula left many questions unanswered. The 
Stefan-Boltzrnan relation for total radiated energy only 
holds for blackbody radiation. It is true that one can 
always use a total emissitivity as a multiplicative factor to 
fix the difference between a black body and a real body, 
but then the 'total emissitivity' value then changes with 
temperature. The example data found from one of the 
reference in this paper [B8] suggest against the 
approximation that the total-hemispherical emissitivity 
can all be approximated to be 0.9. See Figure 15, the 
oxidized metal has emissivities ranging from 0.25 to 
0.7and oxides, ceramics has values from 0.4 to 0.8. 

Apart from the 'not so good' assumption, the formula 
also implies that the surface absorptance for the ambient 
radiation is loo%, if the ambient temperature is the actual 
ambient temperature. It is true that you can see ambient 
radiation be written in this same form as black body 
radiation to make the equation look neat. But in that 
situation the 'ambient temperature' is NOT the ambient 
temperature measured with a real thermometer, rather, it is 
used, like the color temperature, a variable that is adjusted 
to fit in the formula. The color temperature of the sky is 
even higher than that of the sun but that does not mean the 
actual temperature of the air in the sky is that hot. 

The distinction is not important if the symbol Tamb 
appears only once here. But now there is another Tanb in 
the convection formula and that Tamb is clearly the actual 
measurable ambient temperature, then this causes a 
conhsion of symbols. 

Equation 11 Separation of "known" and "unknown". 

The first question one asks is why divide parameters 
this way. The answer provided by the authors is that all 
quantities in the 'a' parts can be guessed with prior 
knowledge of the object and or der~ved from image pixel 
values with the aid of simplifying assumptions. I t  is really 
odd, however, that E is given a guess of 0.9 and still listed 
in the 'x '  unknown side. This raises the q~~est ion that the 
acclaimed 5D thermophysical space may actually has only 
4 degrees of freedom in their own logic system. (In reality 
the value E varies with many pararncters as wc discussed 
earlier. This may have saved their experimental data from 
degenerating.) 

Each point on an object imageid at a particirlar timc 
and place yields one measurement vector 

- T 
a = ( a l , a 2 , a 3 , ~ ~ , , ~ l j )  
which is measuredlguesscd. and corresponding vector 
- 
x = ( x , , x 2 , x , , ~ 4 , ~ j ) '  
which is never used nor measured. 
Then comes the introduction of invariants. This is 

actually misleading because the "invariants" introduced 
are invariant only under a specific group of 
transformation, the linear transformation. The authors 
learned this from the works done in geometric invariants 
for computer vision [Bl],  in which the "invariant" are 
associated with a fixed shape and is unchanged under 
different view. In the geometric case the "points" or 
"point sets" physically retain their geometric rcli~tionship 



in 3D space. However, here the abstract "thermophysical 
points" do not undergo simple linear transformation in the 
different pictures. In fact, if the two pictures are taken at 
the same time, e.g. two views from a stereo rig, the 
'measurement vector' would remain the same provided 
the two thermal cameras are calibrated. This is because 
the equality derived from 'conservation of energy' 
involved no observer at all. The only angle 8, is the angle 
between the surface normal and the direction of the sun. 
This angle has nothing to do with the angle of 
observation, maybe with the exception that the observer 
may block the sun. 

As we discussed in the overview, one of the special 
properties of thermal images is that they have 'history 
effect'. This is in complete contrast to affine 
transformation which has no history effect at all. Put it in 
another way, the affine transformation operators are 
commutable, which means the order of application does 
not effect the final outcome. For thermal process, 
however, the order of 'transformation' is important as 
each 'path' incurs different energy and entropy changes. 
The 'shape' formed by the N points chosen from the an 
object in this abstract '5D' space may change in each 
image and the 'affine invariant' may not exist at all. Thus 
in general this is not the right way to derive 'invariant'. 

Figure 16 Top row: the car and van object types with 
points selected on the surface with different material 
properties andlor surface normals. Bottom row: 
assignment of point labels under erroneous hypothesis. 

Furthermore, the '5D' space is neither a subset of the 
all possible 'thermophysical states' nor a superset of them. 
The set of all '5D' point that corresponds to legitimate 
physical states does not even form a linear space. The 
basic properties of a vector space require the existence of 
zero vector and inverse for each vector. However, the zero 
vector here is not legitimate physical state because it 
involves a material with zero heat capacitance, which can 
assume any temperature without heat input. With no zero 

element the inverse is ill-defined. In fact. a pliys~cal state 
can never have negative values for a , ,  a:. and ;I, Also, 
there are legitimate physical states that can ho'f bc 
represented by any po~nt  in thc '5D' space Any tlme the 
Sun is not directly visible in front of the ~urtacc polnt. the 
value of cos 0, and thus a5 becomes undefined. 'This is not 
a uncommon situation as cvery night thc Sun is no1 \ isible 
for any surface point. The experiment data listed in the 
paper[Bll], though spans two days, have no night data. 
All data were taken between 9AtvI to 4PM (See Figure 
17, Figure 19, Figure 20) This signifies that thev have 
discovered the problem in experiment but failed to 
recognize the structural failurc of the whole algorithm. 
Even in day time, if the Sun is blocked by clouds, the cos 
8, is ill-defined because the whole solar radiation model 
should be changed from a distant point source to that of 
diffise illumination and very different spectral 
distribution. This is NOT captured by the '5D' space that 
is associated only with the point source lighting model 
pictured in Figure 14. The real physical invariant should 
be invariant with respect to the transformation between 
the set of all possible physical states. not the linear 
transformation on the artificial '5D' spacc The linear 
transformation in the 'SD' space can translbrnl legitimate 
physical state into an illegitimate state, or vice versa, and 
some physical states can never be thc output of thc linear 
transformation. The real physical transforniation relation 
can output any legitimate physical statc so i t  is clearly 
different from the linear transformat~on discussed In this 
paper[B 1 11. 
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Figure 17 TABLE 1 of the original paper 



Figure 18 Three of the vehicles used to test the object 
recognition approach (clockwise from top left) tank, 
truck 1, and t ruck 2. 
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Figure 19 TABLE 2 of the original paper 

With the '5D' linear space model fundamentally 
deviate from physical reality, any further derivation based 
the non-physical '5D linear space' can only be classified 
as heuristic method, not physics based. In the very limited 
experiment setup, there is, however, a possibility that in 
the limit of very short period of time and small 
environmental change, the result of linear transformation 
may not differ too much from the result computed by real 
physical formula. This would impose serious limitation to 
the application to the whole method, like the weather must 
be stable with no strong wind and the either the time 
between views are short or the area must be a remote, 
undisturbed area. For otherwise even the energy 
conservation equation would not hold. The authors never 
mention these fundamental shortcomings in the 
paper[BI I ] .  Their experiments are all performed under 
most favorable conditions. The data were acquired over 
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Truck 1 
Truck 1 
-0.16 
-0.28 
-0.09 
.0.48 
-0.86 
-1.42 
.0.31 
-0.20 

one good weather day(if thcre were clo~idy or rainy pcriod 
the angle of the sun loses mcaning and the measurement 
matrix could not be taken) in an undisturbed test ground. 
The vehicles are all parked, not running their own engine 
and no heavy traffic ncar by during the testing Still, the 
"invariant" values can vary quite a bit, one value may bc 7 
timcs greater than the othcr. This is possibly causcd b)  thc 
fact that the big temperature difference between day and 
night in a clear day is too much tbr thc I~ncar 
approximation. 
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i 3 pm 4.12 -290 50 -12 , lR  
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-193.47 
-387.66 
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-79.45 
-498.51 
-454.87 
-13.90 

Figure 20 TABLE 3 of the original paper 

Trtck 1 

Tank 
59.70 
20.20 
-1 1.23 
-29.38 
-80.83 

rn 

-9.30 
-7.78 

Trtck 1 
Car 

-60.39 
-143.09 
-150.70 
-39.01 
.1.7e5 
50.76 

-252.78 
-240.88 

Coming back to the ideal situation where the linear 
approsimation works, the method is st111 s~rongly 
dependcnt on hand picking the points and a rather detailed 
prior knowledge of the sccne Out of the fivc coniponents 
in the 'measurement vector', thrcc of thcm arc ~LII -c ly  
hypothesized with detailed prior knowledge. with thc rest 
still dcpend quite heavily on simplifying assumptions. 
With only 4 points used, at most 4 diffcrcnt typcs of 
material can influence the valuc of the 'invariant'. Thus 
the same object can have quite diffcrcnt 'invariant' \,slues 

for the same image if the other 4 points arc chosen. 
Further, it may be situations that no points can be chosen 
for this method because every visible point on thc body of 
the object may all have the same temperature with the 
environment and a, and a, are zero for all points. 

The experiment data shows good 'inter-class' 
separation for the 'invariants' but this is expected because 
the way they do 'inter-class' is to put wrong estimated 
parameters into the system. With wrong valucs for the 
parameters even the equality derived from conservation of 
energy would not hold in general and all the conditions for 
ranks fall apart. It is evident in that many determinants are 
degenerate and the computed 'invariant' becomes infinity. 

This method suggested here, evcn ~vithou~ the 
fundamental theoretical flaws, would be wry inipracrical 
for actual applications. For the number one reason people 

Truck 1 
Truck 2 

w 

-1.01e5 
1 02e5 
5.2e5 

w 

29.9e5 
r., 



use thermal IR camera is to see hot things in the dark, at supplement each other because one mode works bctrcr in 
night. This method fails in exactly .these situations, it can daylight while the other better at night If a Lon-L.ight- 
not see hot things at any time, fails at night, even in day Visible camera provides the visible band, then the visible 
time if it is cloudy. It is even more restricted than a visible band can supplement the normal reflective texture 
band camera. information while the IR band provides ern~ssive 

properties of  the objects in the image. The representation 

6. IR as part of multiple band image 
extending visible band color methods 

The more spectral band we can observe an object, the 
more know about the object. Even if the intensity images 
of two or more different bands of some object are exactly 
the same, it still gives provides us a specific signature of 
the object: maybe most other object we want to 
distinguish always have different image intensity patterns 
in different bands. Although it is agreed that more 
information can potentially improve object recognition, 
more information also means more data to process for 
each object. How to efficiently incorporate multi-band 
image data to aid our computer vision task is an still 
evolving research area called sensor fusion. 

As we have seen from two examples that uses only IR 
image or images, we get new information about surface 
thermal properties but the rich reflectance properties in 
the visible band is not available. This leads to many trade- 
offs. If we have simultaneously many spectral band 
images covering a wide range of EM bands then that will 
give us more information than individual bands. In order 
to use many bands of information in a cohesive way, the 
first natural place to look for method is again the visible 
band. Inside the visible band, a 'color' camera often 
captures 3 different band information, which when viewed 
by human eyes would be perceived as Red, Green, and 
Blue. Although visible band is only a very narrow band 
compared to the whole EM spectral band, there still exists 
great variations of spectral properties inside the visible 
band that the crude division of  Red, Green, and Blue 
bands does not capture all the details. However, since the 
human eye color vision are approximately based on 
detecting the RGB bands, it suffices for 'color cameras' to 
capture the 3 band information and then reproduce them 
using a mixture of these colors(in the case of printing, the 
mixture of  3 complementary colors paints Yellow, Cyan, 
and Magenta). In order to classify 'color' information, a 
3D coordinate is established for RGB and later more 
intuitive alternative, HSV, YUV, . . .etc. These are the 
most studied ways of processing multiple bands in a 
cohesive manner, thus if we can apply this method beyond 
the visible band then we can save the effort of developing 
new band fusion scheme for each different bands. 

Depending on the application at hand, the most 
important advantage derived from using multiple band 
images may be different. For displaying images for human 
viewers, the combination of IR and visible may 

that best suits human viewer is not a triv~al issue By 
displaying a single monochrome Image, ~t is alv.ays 
necessary to throw out some information because we are 
displaying two pixel values with only onc pixcl valuc If 
we display a pseudo color image, there I S  room for more 
information but the choice of how to map pseudo color to 
image information is tricky. A color scheme that makes 
perfect sense for one human operator may appear very 
confusing for another human operator. 

We have mentioned the fact that the names of sub- 
bands inside the IR region differs greatly between ficlds of 
study, even between individuals. In the follow~ng we will 
use the terminology uscd in thc papcl- [B I ? ]  for 
convenience of discussion. See Table 2 

Table 2 IR sub-band definition in the paper 

The paper [B13] provides a very interesting tablc for 
approximate flux levels incident on Earth's surface for 
bands in the visible and IR and during d~ffcrenr timc and 
moon conditions: 

Table 3 Approximate flux levels on Earth's surface 

Since in the two extremes reflecrcd iomponenr and 
emitted component domlnares resprctl\cly. 111 thc ln~ddle 
there are transitions between the two nlodc of dom~nancc 
and exhibits diurnal variation of texture conti-ast 

There is also a list of bands and par-wise con-elation 
charts from a satellite ERlM M-7 The trcnds are high 
correlation between visible bands, mild correlation 
between visible and SWIRIMWIR, and mild anti- 
correlation between visible and LWIR. Since these are 
satellite images, the imaging condition is somewhat 
different from that on Earth's surface e.g iuuch thicker 
atmosphere between the imaged object and the camera, 



different angle of views, ... etc. The results may not be 
directly applicable to computer vision tasks on Earth's 
surface. 

Table 4 Spectral response of ERlM M-7 sensor 

Table 5 Correlation coeff~cients of the 16 bands for 
ERIM M-7 data 
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About the spectral reflectivity and emissitivity, the 
function form presented in the paper[B13] is p(h) and 
&(A). This form dose not include the dependence on 
direction(s). Although BRDF (2 directions) and DHR (one 
direction) are mentioned, the graph presented still does 
not contain any directional dependence of the reflectivity. 
We can thus assume that a diffuse assumption for 
reflectivity and emissitivity is made and the data plotted 
might be Normal Hemispherical or Normal Normal 
Reflectance values (under diffuse assumption these values 
are related by a constant multiplicative factor so the shape 
of spectral plots are similar). See Figure 2 1. 

&(A) = 1 - p(A) 

Equation 12 This equation holds only under diffuse 
light o r  surface 
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Figure 21 Comparison of measured reflectivity 
coefficients of green paint (solid), conifers(dashed- 
dot), and grass(dotted). Inset (b) is a detailed plot of 
the visible region 

This equation actually comes from the conservation of 
energy of an opaque surface plus the equation that equates 
a(h) and ~ ( h ) .  As we have discussed, emissivities are 
defined differently than absorptivities and reflectivities. 
The equality is only for the numerical value. The only 
assumed true relation is: 

~ A , * ( A > Q > @ )  = E,i.#(A>Q,@) 

Equation 13 The only equalitv that is always true 
between a and E 

Here the subscripts are used to denote the value is per 
wavelength and per unit solid angle bascd, bccause the 
values may be angle based but with no angle dependence 
(diffuse) or wavelength based but no wavclength 
dependence (gray). To get the coefficients that are not 
angle based we need to do the following integration: 

aA (A) = 

n 

There is also another evidence that they used diffuse 
assumption because of the equation: 



( A )  = 
J I ~ ; A , ~  ( 2 ,  ~ ) d @  
n 

Equation 14 The derivation of hemispherical 
coefficients 

Here the integration is done over the hemisphere about 
dm, the differential solid angle. The subscript i under I 
indicates incident irradiation and the subscript b under I 
indicates black body radiation. Since black body radiation 
by definition is diffuse(ang1e independent), thus it can be 
taken out of the integration both in the numerator and the 
denominator. The only two conditions that the equation: 

a,l(A> = &A (4 
would hold is that either the incident irradiation is 

diffuse or both the surface absorptivity and emissivity are 
diffise. Since the incident irradiation can take any form, 
the surface must be diffuse. 
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Figure 22 Simple vector representation of an RCB 
color image, showing the transform coordinates, i.e., 
the principle component direction and the two 
chrominant axes in the chromaticity plane 

Because of the RGB bands chosen to collect 'color' 
information in the visible band, mathematically the image 
signal data can be represented as an array of three-values 
for each point in the image. This is crude but is quite 
sufficient for human to discern quite a lot of information. 

The most convenient way to integrate the information 
in all 3 bands is to do a coordinate transform that 
separates 'brightness' from 'color hue and saturation'. As 
in Figure 22, often the distribution of pixel values in a 
typical image will cluster around a prolate spheroid 

extending from the origin. This direction of pixel 
concentration is taken to be the brightness direction and 
the plane orthogonal to this dil-ectiori 1s uscd as the 
chromaticity plane. On this plane either a polar coordinate 
of hue(0 to 360 degrees) and satusation(a non-negative 
value) or in rectangular coordinates. 

The idea here is to emulate this representation by 
substituting the 3 visible bands RGB with some other set 
of 3 bands. This is quite natural because R, G, and B 
represents long, middle and short wave length bands 
inside the visible band. This extension is just to stretch 
the overall band coverage. Many of the convenicncc this 
formulation brings in the visible band can  bc cnloyed by 
the IR counterparts, however. somc pr.opc1llc.5 may not be 
the same as the authors expected. 

The model starts with n-dimensional coordinate 
system representing n-bands of sensor outputs. Each pixel 
has n values that can be expressed as: 

Equation 15 Sensor outputs for reflectance dominated 
bands 

and 

Equation 16 Sensor outputs for emission dominated 
bands 

where 
v, : signal out of a detector for band k 
[(A) : spectral distribution of illurninant 
RdA) : spectral distribution of black body at 
temperature T .  
p(A) : spectral reflectivity of'thc s ~ l r h c c  
&(A) : spectral emissivity of the surficc 
qk(A) : detector spectral responsc 
A, , ,  A,,,,, : lower and uppcr limit of a band 

This representation already incorporates several big 
simplifying assumptions: 

Diffuse surfaces: &and p has no angle dependence. 
Atmospheric effects ignored: no term related to 
atmospheric effects(scattering, air light, . .ctc) is 
involved. 

Still, more simplifications are needed to get the oticll-used 
linear form. The simplifying ass~~nlption is. 

Spectral dependence functions of surface 
reflectivity can be approximated by a linear sum 
of finite number (n) of basis functions: 



Equation 17 Approximated reflectivity spectral 
dependence 

We know this simplification will introduce errors in 
general, but it does introduce big simplification in 
computation and algorithm design, and many applications 
do not require high precision in color values. In this 
simple system we can have 

v' = A 6  and 

5 = ~ - ' v '  
where the matrix A can be derived by substituting 
Equation 17 into Equation 15 and arrange terms: 
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Equation 18 Linear Transformation matrix between 
sensor value and reflectance coordinates 

So far this is for one particular pixel, one particular 
surface point being observed. To really get convenience 
we would like to have only one matrix A that can be used 
for all pixels/(scene points) in the same image. The 
problem comes fiom the term /(A). In a typical scene there 
are always shadows. Further, there are inter-reflections 
between surfaces. These all cause /(A) to vary fiom point 
to point and as a result the matrix A should vary from 
point to point. In many applications obtaining individual 
matrix A is practically impossible. So further simplifying 
assumptions are introduced: 

Ignore inter-reflection: or assume the effects are 
much weaker than that of the main illuminant. 
Ignore shadow: or assume the number of pixels 
in shadow is relatively small. 

To this point, after so many simplifying assumptions, the 
model already has 'color constancy' built in. If we know 
the exact function form of /(A) and all the spectral 
dependent terms to compute the matrix A, then from the 
observed value vector v we can always get the intrinsic 
reflectance parameter vector o, which by assumption of 
this model is invariant. 
In actual applications, none of the spectral distributions in 

the model are known! Thus the practical color constancy 
reduces to only the situation that the strength of illuminant 
is scaled up or down(while the spectral distribution of the 
illurninant remains unchanged). Then by one fbrther 
assumption: 

Gray World: this is not to say that everything in the 
scene looks gray, which is not a very usefbl 
assumption. Rather, it is to assert that, because of the 

diversity of material reflectance, i t  is possible tl~at in 
a scene the reflectance valucs are scattcrcd iilnlost 
uniformly in all possible valucs. In other word>. rherc 
are pixels that reflect strongly on red, on grcerl. on 
blue but none of thcm is tlominating. I'hls a ~ ~ i ~ n l p t i o n  
can fail, for example, in sccncs rich \vith ;r.ccn 
vegetation. 

The 'color' of the global illuniinant is reco\.ercil using 
principle component analysis mentioned iri the 
paper[B13], that statistically trcat all points as a whule as 
a gray reflecting surface and recover the 'color direction' 
in the color space, which is often the RGB space. H S V  is 
just a change of coordinate that defines two components H 
and S on a plane orthogonal to thc brightness and 
normalized them so it  is more convenient to exploit the 
'color constancy'. 

The thermal IR band, wherc emission st~.cngth 
dominates, can be f i t  into similar model but thcrc are 
advantages and problems unique to i t .  Substituting 
emission counter parts in Equation 17 and Equation 18, 
we again encounter the problem of getting a global 
version of RdA) that can be used for the wholc image. The 
good thing is that there is only one family of spectral 
distribution, the Planck's black body radiation, and the 
general form is known. However, to get the exact spectral 
distribution we need to know thc surface temperat~rl-e T. 
This is tricky. Because for scenes that ~ : c  want rv use 
thermal IR camera, there is ~isually solnc intcl-c.bting 
temperature differences betwcen scent. points. So ii we 
use the simplifying assumption that all surface ha> the 
same temperature, we get to continue the argument of 
'color constancy' but we can not use the results on most of 
the interesting scene, like inspecting high ternpcrature 
factory machinery. In the case we do procccd with color 
constancy argument, the assumptions changc to: 

Thermal Equilibrium: surface temperature is 
constant across the scene. At first, this may sccrns to 
be a good approximation for many situations. I t  is 
not. The reason is that earth's surface is rcg~ilarly 
heated up during the day and cools down during the 
night. There are always some materials that lhcat up 
and cool down faster or slower than othcrs so there 
are almost always temperature gradient differences. 
Furthermore, there are a lot of chemical reactions and 
physical movements taking place all around the 
world. Chemical reactions generate or absorb heat, 
physical movement creates heat by friction or from 
gravitational energy (like rock or water falling down). 
In fact only in a man-madc closed system that thcrrnal 
equilibrium can be maintained hi- a long p e ~ ~ o d  of 
time. 
Ignore any reflection: this is a rcstatcmcnt 01 what 
we start with, but more emphasis on intcr-retlcction. 



Note that since reflection is assumed to insignificant, 
shadow never arises as a separate problem. The thermal 
equilibrium assumption can be somewhat relaxed, not by 
assuming constant temperature, but by arguing that when 
the temperature differences are small enough, the 
'functional shape' of RdA) does not change too much. 

This argument has the added advantage in that it  also 
enables the statistical recovery of RdA) because unlike 
[(A), RdA) never simply scale up and down, it only varies 
with surface temperature with the result of changing both 
intensity and shape of function. This is evident in that we 
have Wien's displacement law about the shifting of 
function peak with temperature change, see Figure 1. In 
our argument it is possible then to have simple scaling of 
RdA) just like that of 1(A), and thus the statistical recovery 
of the 'color direction of radiation' is possible under the 
assumptions: 

Gray World: Similar to that of reflectance case, 
just substitute p by E. However, it is similarly 
prone to fail, maybe even more so than the 
reflectance counterpart. 
Small surface temperature variation between 
tlie scenes: as discussed this is to avoid big 'color 
change' associated with temperature change. 

As a side note, the scheme here is not directly applicable 
to the usual one-band mono thermal IR images. There 
must be at least 3 bands or more in the emission 
dominated bands in order to have meaningful 'color 
constancy' problem. For mixing up reflectance dominated 
bands and emission dominated bands or even bands that 
both phenomena are important, the coordinate scheme 
extends naturally, but the 'combined color constancy' is 
infeasible because now the illuminant and radiation varies 
independently, structurally changing the transformation 
matrix A between scene to scene. This change involves 
more than one parameter and can not be recovered by a 
simple principle component analysis. Also, the model 
becomes more artificial because now both the assumption 
groups necessary for reflection and emission must be 
instated, furthermore, as the bands involved grows wider, 
the 'linear sum of basis function' deviates more from 
reality. This is also this question of how many reflectance 
basis functions should be used, but this is not discussed 
further in the paper[B 131. 

At the last paragraph the author actually talked about 
some thing not related to color constancy. With only 2 
bands, there is only one plane and it is not possible to get 
a chromaticity plane, only a line is possible. The subject 
discussed is actually that about Equation 12, i.e. since 
emissivity has this tendency to vary in the negative 
direction of reflectivity, use 'black is hot' display looks 
more like a visible band image and makes pilot(a human 
viewer who is used to see visible band reflectance images) 
feel more comfortable. For 'color constancy' 

computation, this only amount to a sign change for some 
of the transformation component and is not essential. 

Up to now it is taken for r a n t e d  that all the pixels 
fi-om each band are registered, i.e. they are collecting light 
from the same points for corresponding pixels. This is 
easier in the case of all visible biind irnage because all 
bands can share the same optics and even thc same 
detector array, like many color visible band mneras. 
However, when combining bands with grcat ~vavtlength 
differences, i t  is usually the case the optics useful in one 
band becomes opaque for the other. Furthcrmo~-c. the 
sensor arrays are not sharable. I t  is still possible to dcsign 
optically registered device, like we have donc in MOOSE 
project, but the author is right about onc thing, f o r  hand 
adjustment it is difficult to do the alignment to high 
precision. However, this can be done in factory and fixcd. 
When the demands for multi-spectral camel-a grows and 
the IR components get cheaper, such product will come to 
consumer market in no time. 

The 'software solution' of 'rubber sheeting works fine 
for faraway scene. Since this paper[B13] comes from a 
Naval research lab, the camera they were working with are 
probably mounted on airplane or warships and looking for 
objects at least miles away. In that case the 'parallax' 
effect caused by bore-sight arrangement is negligiblc and 
the scene can often be approximated as planar scene. For 
indoor close range view that objects are only a few meters 
away, parallax effects are important(we gct sterco ~ i s i o n  
out of it) and can not be 'corrected' by software. 

. - 

Figure 23 Chromaticity plane scatterplot of vehicle 
pixels (asterisks) and natural vegetation background 
pixels (diamonds) 



The last application mentioned in this paper[B13] is between 300 and 330 and thcn making a thrcshold~ng on 
improving performance for object-background separation. saturation can be expected to perform well from Figure 23 
By mapping pixel values from VIS, MWIR and LWIR of alone and it does shows order of magnitude improvcrncnt 
a scene to a 3D coordinate treat them as if they are RGB in Figure 24 as it is much closer to the origin. 
image. On the chromaticity plane(Figure 23), it is clear The results shown in this particular picture are 
that the man-made object stands out as they all cluster in promising but we can not draw a conclusion from only 
the lower right comer of the plot.(this should be the one example. However, qualitatively we can cxpect this 
ground truth produced by human observer.) They did not scheme to work well in the specific task nient~oned. to 
provide the original 3 band images so we do not know separate vehicles from background uslng gcncral 
how representative it may be. However, we can see this argument in physical properties. Vehiclcs are often 
separation happening because the vehicle most probably composed of materials that are quite diffcrent in thermal 
contains metal, or plastics that has very different thermal properties to vegetation. Further, vehicles have englnes 
properties than the vegetation. and move around often so are heated by frictions, too. 

The performance of an algorithm that classify a pixel Further, the paint used by people only look good in visible 
into two categories can be described by a graph called band only because human eyes can not tcll differences 
'ROC curve', receiver-operator-characteristics curve, see beyond the visible range so no efforts are put into making 
Figure 24. The axes are respectively, false alarm rate and the paints look like vegetation in the IR bands. All these 
missed detection rate. ~ a l s e  alarm means declaring a c a n ~ b e  well exploited by the 'colol- schemc' proposed 
background pixel as object pixel. Missed detection means here. However, it should be noted that this schcnic is not 
declaring a object pixel as background pixel. In a scheme connected to 'color constancy' 11' another sct ot' plctilres 
of simple thresholding, setting a high standard for a pixel were taken of the same scene, but with different ligliring 
to be classified as an object will increase the missed condition, e.g. at night, then we may still see good 
detection rate while lowering the false alarm rate and vice separation, but all the 'colors' will change beca~~sz the 
versa. For one particular algorithm, the curve of a series thermal temperature do not change lincarly with visible 
of thersholding values will most likely a curve going from light level. 
upper left to lower right. If a new algorithm that performs To sum up, the paper[B13] presents somc promising 
better, then both the missed detection and false alarm goes ideas of extending visible band color into IR  bands. Some 
down and the curve as a whole will be closer to the origin, of them work as described but there are also some 
which represents perfect case. misconceptions involving color constancy. Using thc color 

Figure 24 ROC curves for detection of a vehicle in a 
background of natural vegetation. Single band results 
are for individual pixel intensities and three band 
color results are for pixel values in the chromaticity 
plane with prescribed hue and saturation intensities. 

Since here the authors are only demonstrating the 
advantage introduced with 3 band colors, the methods of 
separating background and object are all very simple 
thresholding. The methods that select pixels only with hue 

scheme in one shot to do segnientation 1s fine, but track~ng 
'color constancy' is impractical. Thcrc are s~mply too 
many unknowns involved and the authors failed to 
recognize that. It is also interesting to see the authors 
providing numerical statistics of light flux level in day and 
night and different moon phase, but thcy did not say how 
the data is collected or where it conics from, which leaves 
a lot of questions. 

7. Summary 

Extending existing visible band image computer 
vision techniques to infrared band images w~th  no or 
minor modifications potentially saves a lot of 
redevelopment time. However, we must be very careful in 
examining the assumptions, simplifications behind cach of 
the methods. In some cases the problem disappears in 
infrared, in some cases the problem is worse in infrared. 
One of the most important cause in these diffcrcnces i s  the 
different dominating modes of brightness genel.ation. In 
visible band the brightness strength of a sccnc point 
comes primarily from reflection. Thc difficulties involved 
in this mode are that there are at least two angles involved 
and for man-made light source the spectral d~stribution 
can vary wildly. For infrared band therc are only one 



angle and one family of reference radiation function (the 
Planck distribution). However, the close connection with 
surface temperature introduces a lot of complexities, like 
history effects. We must examine the functional forms as 
well as the typical range of parameter variations. 
Sometimes a reasonable simplification exists within small 
parameter ranges. Finally, it should be noted that terms 
like 'constancy', 'invariants', . . .etc often comes with a 

long list of assumptions and may be applicable inside only 
a specific domain. Misuse of the concept can lead to 
unpredictable conclusions. 
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