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Partial Computation in Real-Time Database Systems

Abstract

A critical component of real-time systems in the database, which is used to store external input such as
environmental readings from sensors, as well as system information. Typically these databases are large, due to
vast quantities of historical data, and are distributed, due to the distributed topology of the devices controlling
the application. Hence, sophisticated database management systems are needed. However, most of the time
database systems are hand-coded. Off-the-shelf database management systems are not used due in part to a
lack of predictability of response [1, 2]. We motivate the use of partial computation of database queries as a
method of improving the fault-tolerance and predictability of response in real-time database systems.
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Susan B. Davidson and Aaron Watters
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Abstract

A critical component of real-time systems is the database, which is used to store external
input such as environmental readings from sensors, as well as system information. Typically,
these databases are large, due to vast quantities of historical data, and are distributed, due
to the distributed topology of the devices controlling the application. Hence, sophisticated
database management systems are needed. However, most of the time the databases systems
are hand-coded. Off-the-shelf database management systems are not used due in part to a lack
of predictability of response [1, 2]. We motivate the use of partial computation of database
queries as a method of improving the fault-tolerance and predictability of response in real-time
database systems.

1 Introduction and Motivation

Real-time systems define correctness as providing the correct result in a timely manner. If the timing
requirements for a computation cannot be met, the computation fails. To relax this definition of
correctness and somehow tolerate the failure of meeting a deadline, one must either be willing to
accept the results of computation late, or be willing to accept partial, poorer quality results in a
timely manner. The first strategy interprets timing constraints as being “soft”: the completion of
a computation or set of computations has a value to the system which is expressed as a function
of time. The system schedules these computations to maximize the total value to the system;
however, it does not guarantee that all computations will be performed at their local maximum
value [3]. The second strategy requires the computations to have an iterative or multi-phase nature.
Furthermore, they should be monotonic in the sense that “goodness” of the answer is monotonically
non-decreasing as the computation proceeds [4, 5]. An example of such a computation is the
bisection method for finding a root of a function: The interval containing a root is initially very
large, and keeps halving as the computation proceeds. At any point in the computation, the interval
is valid; however, it is best defined when the endpoints of the interval converge to a single point,

the root of the function.



While “soft” timing constraints have recently been proposed for transaction management in
real-time database systems [6], little work has been done on generating partial or iterative answers
to queries. However, we feel that the ability to give such answers is extremely important since the
expected execution time of a query is very difficult to predict. In distributed databases (which is
typically how real-time databases are structured), the unknown size of the relations to be trans-
mitted makes it difficult to bound communication time; long-lived communication failures can also
cause indeterminate delays. Indeterminate delays can also result from locking due to concurrency
control in the local (centralized) databases. Unfortunately, in traditional databases systems, unless
all structures necessary to answer the query are accessible, there is no notion of an answer. Our
notion of partial computation for queries is therefore a “best-estimate” of the final answer, based
on the structures that are currently available. Our interpretation of “monotonicity” is that any fact
which is said to be true remains true as computation proceeds, and any fact which is said to be
false remains false as computation proceeds.

As an example of how a partial answer to a database query could be useful, suppose that we
have a distributed sytem of three blood bank databases. Each blood bank database maintains,
among other information, a relation of how many pints of each blood type is currently on hand.
Suppose that type O- is dangerously low at hospital X, and X is trying to find out if there is any
available within the network of blood banks to meet a current crisis. This query could be expressed
as: “Is there a blood bank that has blood of type O-7”, Thus, the query “Do you have blood of
type O- 77 would be broadcast to each of the three databases, and the final answer would be the
logical “or” of the responses from each of the databases. The initial partial anwer to the query
would be “I don’t know yet.” This partial answer can be changed to “Yes” immediately some blood
bank responds with a “Yes”, regardless of whether all blood banks have responded. The answer
becomes “No” only when all of the blood banks have responded negatively. However, at any point
in time, there is some answer to the query that is correct. If hospital X then wanted to know “How
much blood of type O- is there in the system?”, the initial partial answer would be “At least 07,
and would be improved by adding the total amount from each database as the information became
available. For instance, if the first blood bank responded with “10 pints”, the answer would be
improved to “At least 10 pints.” If the second and third blood banks responded with 5 and 25
pints respectively, the answer would become “Exactly 40 pints.”

This example illustrates several points:

e It is an example of a real-time process in which the response must be predictable: Hospital
X cannot wait indefinitely for an answer from the blood banks since in the worst case that

there is no O- blood it must start rounding up donors to cover any anticipated crisis. Note,



however, that the timing constraint is probably minutes (or hours, depending on how nervous

hospital X is) rather than milliseconds.

e A “hand-coded” query system which anticipates this type of query probably would act as in
the example, while a strict relational algebra system would not be optimized to give partial

information.

e The “goodness” of the answer given to the user is monotonically non-decreasing with time.
Given a partial answer “At least 10 pints.” the user can infer that the total is definitely not
less than 10 pints, and possibly any integer greater than or equal to 10 pints (11 or 1198, for
example). Furthermore, the answer given at an earlier stage is never contradicted at a later

stage.

2 Partial queries

The reason why conventional query languages (and the relational algebra in particular) do not seem
to be amenable to an iterative method is that the relationship of individual relations (or whatever
structure is used in the model) to the final result is not explicit. For example, in relational databases,
a query f(R1, Ra, Rs, ..., R;,) can be thought of as some combination of the relations Ry, ..., R, using
relational algebra operators. For simple expressions involving one binary operator, the relationship
of relations R;, Ry to the final result is not difficult to reason about. If f(R;, Re)= R; U Ry, it is
obvious that R; and Ry each contain a part of the answer, although, in general, neither will contain
the whole answer: Ry and Rs can be thought of as consistent approzimations to the final result. If
f(R1, Re)=R; X Ry, then every tuple in the join is contained in both R; and Rs , but each relation
may contain other tuples as well that do not participate in the join. Both can be thought of as
complete approximations to the final result. Note in this case that a tuple of Ry participating in
the join with Ry is a partial description of the tuple in the result since it may not contain all the
fields in Ry X Ry. However, for more complicated expressions like f(R;, Ro, R3)=R; X (Re U R3),
it is difficult to reason about the information in Ry and R3 with respect to the final result.

Using the semantic notions of complete and consistent approximations, we have recently pre-
sented a method of iteratively combining structures as they become available [7, 8]. That is, the
user first specifies the semantic relationship of the answer to the query to the individual structures
in the database. The system then combines the approximations as structures become available in
such a way that a partial answer is always available. The partial result is represented at any point
in the computation by a bounding pair (A, B), where A is a complete approximation of the final

result and B is a consistent approximation of the final result. From the set A, the user can infer



tuples that are definitely not in the answer to the query; from the set B the user can infer tuples
that definitely are part of the answer. Given two bounding pairs for a query, (A1, By), (As, Bs), we
combine them into another bounding pair (A, B) where A is no “larger” a complete approximation
than A; or Ay, and B is “at least as large” a consistent approximation as B; and By. That is, the
new bounding pair is a better approximation of the final result since it squeezes the complete and
consistent approximations closer together. This continues until there are no more bounding pairs
to encorporate, or until A and B describe the same set of objects, i.e., the answer is completely
determined. Furthermore, the partial answer can be shown to improve monotonically.

Expanding on the blood bank example, suppose that hospital X maintained a relation NEAR—
BANKS(Code, Name, Phone) of blood banks in its area, and that a central authority on blood
banks maintained a relation SOURCES(Code, Address, Phone...) (to which hospital X had ac-
cess). Furthermore, assume that the required computation from the each of local blood bank
databases was represented by AMOU NT;(Code, Quantity), and that the query was “Give me the
Name, Phone and Address of all local blood banks, as well as the Quantity of O- on hand.” Then
NFEAR — BANKS and SOURCES are each complete approximations of the final result, and
AMOUNT,, AMOUNT, and AMOU NT3 are each consistent approximations of the final result.
The initial bounding pairs would be: (A4, {}) for each complete approximation A, and (L, B) for
each consistent approximation B (where L is a special set that underdescribes any set). If, for
some reason, relations AMOU NTy and AMOU NTj3 could not be obtained by the deadline, a par-
tial answer of (SOURCES X NEAR — BANK S, AMOUNT) could be constructed. That is, the
complete approximation of the final result would be a relation TEM P(Code, Address, Phone...),
where only the local blood banks would appear. If the first blood bank could supply enough O-
blood, the answer would be sufficient; however, even if it couldn’t, the complete approximation
would at least give the phone numbers of the remaining two blood banks so hospital X could make
a phone call to determine the amount on hand. That is, the partial answer may be useful.

The system has several advantages: (1) it is not tied in to any data model in particular (although
the example given was relational in flavor); (2) it detects anomalies in the database, which can arise
either due to incorrect semantic understanding of the structures in the database, or due to errors
contained in the database; and (3) the deadline of a query can be met by providing a partial answer.
The first advantage is especially important in real-time databases since many of the structures that
need to be stored do not correspond to first-normal form relations, or accepted structures in other
database models (e.g., system information such as stacks and queueus, and historical data). The
second advantage can be demonstrated through the blood bank example: If the telephone numbers
recorded in NEAR — BANKS and SOURCES differed, the user may want to know that they



differed rather than having the system make an ad hoc decision about which was correct.

A disadvantage of this approach is that the complete approximation of the query may be a very

large set, and could take too long to enumerate as a partial answer. We would therefore like to

be able to use rules as a shortened, but accurate, description of this set (as proposed in [9]). For

example, if a monitoring system in a hospital was asked to provide the results of a routine series of

tests performed on a patient (“G-series”), all of which came back with normal results, the system

should avoid listing each test individually but abbreviate with “G-series normal”.
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