
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1995

End-Point Resource Admission Control for Remote Control End-Point Resource Admission Control for Remote Control

Multimedia Applications Multimedia Applications

Klara Nahrstedt
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Klara Nahrstedt and Jonathan M. Smith, "End-Point Resource Admission Control for Remote Control
Multimedia Applications", . January 1995.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-95-18.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/218
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76360093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/218
mailto:repository@pobox.upenn.edu

End-Point Resource Admission Control for Remote Control Multimedia End-Point Resource Admission Control for Remote Control Multimedia
Applications Applications

Abstract Abstract
One goal in certain classes of networked multimedia applications, such as full-feedback remote control, is
to provide end-to-end guarantees. To achieve guarantees, all resources along the path(s) between the
resource(s) and sink(s) must be controlled. Resource availability is checked by the admission service
during the call establishment phase. Current admission services control only network resources such as
bandwidth and network delay. To provide end-to-end guarantees, the networked applications also need
operation system resources and I/O devices at the endpoints. All such resources must be included in a
robust admission process. By integrating the end-point resources, we observed several dependencies
which force changes in admission algorithms designed and implemented for control of a single resource.
We have designed and implemented the multi-level admission service within our Omega architecture
which controls the availability of end-point resources needed in remote control multimedia applications
such as telerobotics.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-95-18.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/218

https://repository.upenn.edu/cis_reports/218

End-Point Resource Admission Control for Remote
Control Multimedia Applications

MS-CIS-95-18

Klara Nahrstedt and Jonathan Smith

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

April 1995

End-Point Resource Admission Control for Remote
Control Multimedia Applications

Klara Nahrstedt and Jonathan Smith*
University of Pennsylvania

e-mail: klara,jms@aurora.cis.upenn.edu

Abstract

One goal in certain classes of networked multimedia applications, such as full-feedback remote
control, is to provide end-to-end guarantees. To achieve guarantees, all resources along the
path(s) between the source(s) and sink(s) must be controlled. Resource availability is checked
by the admission service during the call establishment phase. Current admission services control
only network resources such a s bandwidth and network delay. To provide end-to-end guarantees,
the networked applications also need operating system resources and 1/0 devices at the end-
points. All such resources must be included in a robust admission process. By integrating
the end-point resources, we observed several dependencies which force changes in admission
algorithms designed and implemented for control of a single resource.

We have designed and implemented the multi-level admission service within our Omega archi-
tecture which controls the availability of end-point resources needed in remote control multimedia
applications such as telerobotics.

1 Problem Description

New applications enabled by multimedia devices involve the use of sensory data. These new appli-
cations become more interesting when distributed, but there are correspoilding new research chal-
lenges. In particular, computer networks have traditionally been designed with resource-sharing
goals in mind, e.g., the common Ethernet shared bus LAN. Emerging switched technologies such
as Asynchronous Transfer Mode (ATM) offer the possibility of much greater control of the network
subsystem's characteristics, expressed as Quality of Service (QoS) measures. The possibility of such
control has inspired a rethinking of the architectures for application-to-application (end-to-end)
communications in a distributed multimedia environment.

There is an expanding class of applications which, for a variety of reasons (such as insulating
remote operators from hazardous materials, unavailability of a complex scientific instrument locally,
etc.) require sensory feedback remote control. This class of applications shares many characteristics
with teleoperation, which has been known for years (it was first looked a t in the 1960s for space
exploration tasks) t o require hard real-time characteristics t o preserve fundamental properties such

- -

'This work was supported by the National Science Foundation and the Advanced Research Projects Agency under
Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives. Additional support
was provided by Bell Communications Research under Project DAWN, by an IBM Faculty Development Award, and
by Hewlett-Packard.

as stability of the control system. We have abstracted the properties of such systems into what we
call "Remote Control Multimedia Applications" (Figure 1) and use this abstraction to construct
an architecture capable of supporting such applications. Among the most important algorithmic
decisions to be made in such an architecture are those associated with the control of the time-
sensitive system, such as admission and scheduling. We have developed new joint admission schemes
for the type of complex systems (which are organized logically as multi-level systems) under study.

Operator Side (master) Robot Side (slave)

Speaker M 7 1

Arm

Camera

I software ----/
I Hardware 18 Microphone

Network

Figure 1: A Remote Control Multimedia Application - Telerobotics

The paper is organized as follows: Section 2 describes related work in this research area; Section
3 provides a brief overview of the Omega communication system in which our admission service is
embedded; Section 4 describes the design of the multi-level admission service; Section 5 provides
details on schedulability tests for joint schedulingof remote control multimedia applications; Section
6 gives an assessment of implementation issues which result from our telerobotics experiments;
Section 7 concludes the paper.

2 Related Work

The majority of research on admission in distributed multimedia communication systems has fo-
cussed on network resources, such as bandwidth, network delay and buffer space for queues. Several
admission mechanisnis, scheduling policies and tests, and buffer allocation schemes are presented
in [8, 10, 121 and other work.

Independent of network resources, CPU schedulability is analyzed in the real-time systems area,
Several scheduling policies and tests are derived to control the availability of a single processor. For
example, schedulability test for rate monotonic policy, currently preferred in multimedia systems,
is derived in [16] and further analyzed in [14]. Deadline-monotonic scheduling for preemptive pe-
riodic and aperiodic tasks and its schedulability conditions are presented in [15, 131 and used for
admission control of network tasks in [9]. Earliest deadline first algorithm is a dynamic algorithm
which increases the processor utilization when scheduling aperiodic and period tasks [16]. Further,
several real-time extensions for UNIX-compatible operating systems (0 s) have been introduced,
e.g., for Mach, AIX, Solaris and IRIX, to improve support of schedulability for 'delay sensitive'
multimedia applications with their fixed priority preemptive scheduling (However, this scheduling
remains inflexible in its purest form [2]).

The admission and control of individual resources has been achieved in several systems. However,
there has been little orchestration between OS and network resources [9], and even less orchestration
among all three types of resources (multimedia devices, OS resources, network resources). Yet, as
we have shown through experiments [5], the availability of these resources is to a large degree
interdependent. We discovered that these interdependencies exposed some serious limitations in
the canonical real-time scheduling algorithms [16, 14, 15, 131, which we address in Section 5.

3 Omega Architecture

To specify admission service at the communication end-points, two issues need to be addressed: (1)
the communication system model at the end-points, and (2) description of end-point resources.

3.1 Communication Model

The communication system is modeled as a two layer system (Figure 2). We call this end-point
system architecture the Omega Architecture.

Figure 2: The Omega Architecture Communication Model

E s
r,
4
Cn

I .-
I .- -
CL

9

B -
6
CI

rn
t:

5 e
C

The transport subsystem layer includes the functionalities of the network and transport layers
using Integrated Layer Processing [ll]. Functions such as connection management, forward error
correction, timing failure detection and timely data movement form the core of the Real-Time
Network Protocol (RTNP).

The application subsystem layer contains the function of the application and session layers such
as call management, rate control of multimedia devices, input/output functions (e.g., display of
video), fragmentation of application protocol data units (APDUs), integration/disintegration of
APDUs, etc. These functions are the core of the Real-Time Application Protocol (RTAP).

Both subsystems must provide a guaranteed transmission over specified calls/connections in
application-to-application fashion. Therefore, they require guarantees on the resources needed for
the communication. Resource guarantees are negotiated during the call establishment phase by the
QoS Broker protocol [I] (Figure 3), which is an addition to the communication architecture. The
broker orchestrates both local and global end-point resource availability. Local resource availability
is achieved by using services such as translation (between application QoS and network QoS) and

Network Hardware

Real-Time

Application

~rotocol (RTAP)

Real-Time

Network

Protocol (RTNP)

Call

Management

Connection

Management

h

B ,z
rn
8

Application
Subsystem

Resources

A

Operating QoS Translation
System Admission

Resources .

Transport

Subsystem
Resources

Local Availability of Resources

QoS Broker QoS Broker

Global Availability of Resources

(BUYER) (SELLER)

Reseurces

Resources

Figure 3: The QoS Broker Concept

admission. For global resource availability, the broker uses a negotiation service between the end-
points and relies on network resource guarantees provided by the network subsystem, e.g., by
B-ISDN switches. The goal of the broker is to negotiate a resource deal among all the system
components (application, OS, network). The broker assumes different roles (seller and buyer) to
distinguish between the participating partners.

3.2 Resource Model

At the end-point, three logical groups of resources must be managed, namely multimedia devices,
CPU scheduling and memory allocation and network resources. We parameterize all end-point re-
sources through Quality of Service (QoS) parameters maintained in small databases, which represent
the requirements for the resources [I]. The resources in each domain (application, OS, network)
maintain domain-specific representations. Therefore, we introduce multiple views of QoS. Thus,
requirements of the application for multimedia devices are specified through application QoS pa-
rameters. For example, video quality is described through frame rate (30 framesls), frame size
(height * width in pixels), color (bitslpixel), etc. The network QoS parameters describe the re-
quirements for the network resources, e.g., packet rate, packet loss, jitter, end-to-end delay. The
system QoS parameters describe the requirements on CPU scheduling and buffer allocation (e.g.,
task start time , duration, and deadline).

To enforce coordinated management of the resources at the end-points, these multiple QoS views
must be translated among each other. This is done by different services of the QoS Broker. For
example, the translation between application and network QoS is done by the QoS Translator [6].
These different QoS representations are also used by the multi-level admission service, described in
the next section.

4 Admission Control

Admission control is an essential element to achieve guaranteed services. For distributed multimedia
communications systems, each resource must keep track of its availability along the path(s) between
source(s) and sink(s). The state diagram of an admission service is shown in Figure 4.

As we stated in the previous section, three groups of resources are managed at the end-points.

START 0
4

Receive 'admit request7 with QoS Parameters

V
Map QoS Parameters into required Resources 'reject'

I
'accept'

Cheek Resource Availability Allocate Resources

'reserve' if 'accept' if receiver

Receive Response

Figure 4: State Diagram of an Admission Service per Resource

This implies that the admission service must be performed at several levels. We split the admission
service into two levels according to the communicatioil subsystem layering (Figure 2). Hence, the
QoS broker protocol uses the admission service at the application and transport subsystem levels.

For convenience, we assume networked multimedia applications with periodic media streams
(e.g., uncompressed video, sensory data). Our admission tests are therefore limited t o providing
guarantees for this type of traffic. Aperiodic requests (tasks) may occur (e-g., QoS renegotia-
tion/resource adaptation request), however for these requests our scheduler polls periodically and
treats them as deadline-driven requests (tasks).

4.1 Admission Service in the Application Subsystem

The admission service performs four tests at the application subsystem level: (1) device quality
test, (2) local schedulability test, (3) end-to-end delay test and (4) buffer allocation test. These
tests check the multimedia devices and system resources availability for the real-time networked
application.

The device quality test compares the configuration parameters of the multimedia devices with the
specified application QoS requirements. For example, if a video device can provide a maximal frame
rate of 15 frames/second and the user specifies the application QoS sample rate as 30 frames/second,
then the admission must reject the QoS requirement.

The local schedulability test takes the system QoS parameters which specify the application
tasks for processing of multimedia streams (task duration, task period, task deadline, dependency
relations) and checks if the tasks are schedulable. We discuss scheduling policies and tests for this
level in the next section.

The end-to-end delay (EED) test takes the duration of the application tasks and checks them
against the specified QoS EED bound. Here, we make sure that the tasks, although schedulable,
don't violate the EED requirement. This is especially important in cases where task period > E E D .
For example, sensory data in telerobotics provide such a behavior (e.g., the task period is 20 ms
and EED 10 ms).

The bufler allocation test checks if there is enough memory space for the ring buffers assigned

to multimedia devices to smooth the traffic jitter. This is necessary when measured EED <
requested E E D . Real-time networked applications want the right data at the right time (requested
EED), not sooner or later (although sooner is still better than later).

4.2 Admission Service in the Transport Subsystem

The admission service at the transport subsystem level performs tests on network resources such as
a throughput test, rate control test, network EED test, and system resources such as schedulability
test.

The throughput test controls the assignment of bandwidth to individual connections. The upper
bound of available aggregate throughput at the end-point is determined by the network host interface
and its device driver. For example, in our system the ATM host interface (hardware) provides a
transmission rate of 155 Mbps, however, the ATM transport subsystem, after overhead, provides
135 Mbps [7]. Hence, any throughput requested for the sending or receiving connections is checked
against the 135 Mbps limit bound.

The rate control test checks the number of network packets per second, moved from/to user
space to/from the network host interface, against a certain bound (in our implementation, 1000).
This bound results from the OS cost (due to overhead) of moving network packets between the user
and kernel space.

The end-to-end delay test checks the duration of all tasks (application and network tasks) a t the
end-points against the required end-to-end delay bound.

The schedulability test checks the schedulability of all tasks (application and network tasks).
The bufler allocation test is needed if the network tasks queue the incoming/outgoing packets.

Our current system queues packets (ATM cells) in the network host interface (ATM layer) and
application PDUs at the application subsystem level, but not in the transport subsystem.

5 Schedulability

For the schedulability test, the parameters of interest are: (1) task duration, e; (2) task period, P;
and (3) context-switch time between two OS processes/threads, cs.

Further, we assume that all tasks (application and network) are non-preemptive basic tasks (e.g.,
read sensory sample, read a video frame from a video device). The reason is that although many
multimedia communication systems, when testing for schedulability, assume preemptive scheduling
algorithms, these algorithms assume that any message can be suspended at any time, with a small
overhead, in order to transmit a higher priority message. However, in communication systems, a high
preemption rate is usually synonymous with high message overhead. To avoid this message overhead,
we adapt a non-preemptive scheduling algorithm. Non-preemptive algorithms are relatively easy to
implement, but the drawback is that a high priority message can be blocked by a long low priority
message. This is called priority inversion [3]. To avoid this effect (at least at the processor level), we
negotiate (admit) the proper size of the long low priority message (e.g., proper size of the fragment
for uncompressed video frame) during the brokerage phase.

5.1 Schedulability Test in the Application Subsystem

At the application subsystem level tasks have periodic behavior and provide read and write op-
erations from/to the multimedia devices. There are also some aperiodic tasks, such as requests
for renegotiation, which have a deadline-driven behavior. Therefore, we can test these tasks as if
we scheduled using the earliest deadline first (EDF) policy. For this kind of scheduling, Liu and
Layland provide a schedulability test in [16]. However, because our tasks are non-preemptive, the
schedulability test must be altered l.

Let e$,. specify the duration of an application A task r for medium i (e.g., video/sensory data)

sample in direction o (input/output). Let c s f be the j-th context switching time between application
A tasks. Let min(P;, ,) represent the minimal period among the media i sample periods Pi (inverse
of sample rate) in direction o. The schedulability test in the application subsystem is:

Further, for each medium i in direction o, the following must hold:

If the schedulability test (1) cannot be met, the stream with later deadline (lower rate) will be
rejected. If the schedulability test is satisfied, the task priorities are assigned according to their
deadline (highest priority is assigned to the earliest deadline). If there are input/output tasks with
the same period, the input tasks get higher priority than the output tasks.

5.2 Schedulability Tests in the Transport Subsystem

F'or the transport subsystem, let eF[T denote the processing time of the task r performed over
connection k packet in direction o in transport subsystem NET. Depending on the implementation
of network tasks, csFET represents the n-th context switch between network tasks.

The scheduling at the transport subsystem level, where we test schedulability of tasks (applica-
tion and network tasks) sharing a single processor, must consider the following time dependencies:

1. T i m e dependencies between application and network tasks

We can't use the EDF and priority assignment as discussed in Section 5.1. at the transport
subsystem level. We show this with a counter example.

Consider an application task which reads video frames from a video device. Network tasks
send packets (fragments of a video frame, which are typically larger than the largest network
packets) (Figure 5). If we assume EDF policy for this example, we assume that the application
and network tasks are independent, periodic, their deadlines are task periods and the priorities
are assigned according to their deadlines. In our example (Figure 5), the network tasks have
earlier deadline than the application task, therefore they would be scheduled first which is
semantically wrong (network tasks can't send packets which don't exist).

The application and network tasks share a single processor, are time dependent on each other,
and network tasks may not be strongly periodic, as is the case for application tasks which

'The schedulability test is tighter for non-preemptive tasks: XI"=, 2 5 & xy=l ei 5 1

Application Task
7

(Read a Sample)

Network Task
(Send Packet)

15

Resulting Schedule

15 30

Figure 5: Counter Example

must be considered in the schedulability tests and priority assignments. In our example,
the dependency (precedence - [4]) relation is read-sarnple(k) - sendpacket(kl) +

sendgacket(k2). A further implicit precedence between application and network tasks is
receive-packet(k) - writesample(k).

The priority is assigned by the application subsystem to the application tasks (according t o
the deadline) and the network tasks must inherit these priorities in order to enforce joint
scheduling.

The schedulability test in the transport subsystem for this type of dependency is:

N E T C ~ o , k , , I P o , k

The added network tasks (sendinglreceiving) might violate the schedulability test, hence, they
can be preempted t o the next interval (in the case of sending tasks) if they satisfy the network
EED test 2 . In the case of receiving tasks, the application task might be preempted (see Figure
8). Again, the EED test needs to be checked too. Hence, the schedulability test, especially
the decision of preemption of tasks to the next intervals, is coupled t o the end-to-end delay
test.

2. Time dependencies between input/output streams

When testing for schedulability of tasks a t the end-points, other types of time dependencies
can occur and must be considered.

For example, Figure 6 shows sensory data dependency relations in our telerobotics application,
where the operator sends position data mk, the slave receives them and sends back force
feedback data f (mk) . The application would like t o receive f (m k) so that the computation
of sample mk+l can be based on f (mk) (write(f (mk)) + read(mk+l)) .
If this kind of dependency occurs, a wait for feedbuck time interval must be included into the
schedulability test because the input and output stream information are interdependent.

 umber of possible intervals to preempt a task is l c ~ ~ , ' (; , ~ '

8

Operator Network Slave

.
APP. m k

Host-Host Delay ... Net. m
Net. m k

APP. m k

APP. f(mk)

Net. f(m
k)

Figure 6: Distributed Scheduling - Precedence Graph (Example)

The schedulability test for these types of dependencies at an end-point (e.g., the operator side
in the telerobotics) is:

T" + e g [T + c C E T + W F F 5 m i n (P o , ;) (5)

where W F F (Wait for Feedback) is specified as:

NET NET W F F = 2 x H H D + C C ein,r,i; + C ec,r , i + C C eo,,,,,, + C e%,T3i
k(i) r r k (i) r

(6)
r

HHD is the host to host-interface delay. The knowledge of WFF time can be utilized for
scheduling of another task which serves a different medium. At the slave side the schedulability
test (3) can be used.

The QoS broker gets the application precedence relations from the user (through application
QoS parameters) and together with the implicit application/network precedence relations it creates
a precedence graph. According to the precedence graph, negotiation and admission services provide
the distribution and acceptance of the system QoS parameters (tasks). The broker suggests a joint
scheduler based on t i m e slicing (slicing feasibility and a solution to the slicing problem are described
in [4]).

6 Implementation Issues

The admission service is executed at each point along the path between source(s) and sink(s).
The establishment of a resource deal between operator and slave sides by the QoS Broker and the
placement of the admission service in the protocol are shown in Figure 7.

The admission service has access to profiles, which store the application QoS in an application
profile (these are the databases we mentioned earlier in Section 3.2.), the system QoS in the system
profile and the network QoS in the network profile. When all resources are allocated, the brokered
deal for each group of resources is added to these profiles.

QoS Broker - Buyer QoS Broker - Seller
6 :

I Admission': system QOS 1 1
(~ e g o t i a t i o d Application QoS I I

, , , .
Admiss ion i : System QoS

Negot ia t ion Network QoS

Application QoS Negot ia t ion

. - --p

system Q ~ S 9 4 Admiss ion
, . , .

I . . I - - - - - 4 :

QoS Trans la tor

Network QoS
...............

: :
System QoS ! Admiss ion

Figure 7: Establishment of a Resource Deal - QoS Broker Protocol

One issue with respect to the system profile must be mentioned. The system profile at the
beginning includes a priori precomputed task durations for each medium supported at the end-
point which participates in the real-time networked multimedia application. This is required to
make the schedulability decisions. The result of the schedulability tests is a suggested feasible
schedule of all the tasks participating in that particular application. This schedule is stored in the
system profile as the deal for CPU scheduling. An important part of computing a feasible schedule
is to determine the least common multiple (lcm) among all the I/O media periods, so we known

'CmO'(POi)) might be scheduled differently. An example of a joint schedule at how many intervals (mi;(P,,;)

the operator side for transmitting (1) one sensory stream from operator to slave (application task
period - 20 time units), (2) one sensory stream from slave to operator (application task period - 20
time units) and (3) one video stream from the slave to the operator (application task period - 60
time units) is shown in Figure 8. The lcm is 60 time units, and the number of intervals, scheduled
differently, is 3.

Prio 1 Prio 2 Prio3 Prio 1 Prio 2 Prio3 Prio 1 Prio 2 Prio3

0
Legend:

0 Task Duration of "Read Sensory Sample from the Input Device"

0 Task Duration of "Write Sensory Sample to the Output Device"

Task Duration of "Display Video Frame"

Task Duration of "Receive Network Packet (carrying Video Fragment)"

0 Task Duration of "Receive Network Packet (carrying Sensory Sample)"

0 Task Duration of "Send Network Packet (carrying Sensory Sample)"

Figure 8: Example of a Joint Schedule

A prototype of the Omega architecture is currently implemented on the IBM RS/6000 work-
station where we utilize the real-time (RT) extension support (RT priorities with fixed-priority
scheduling, and a page locking mechanism) of the AIX OS. However, the AIX RT extension does
not provide enough control of the AIX scheduler to the user, therefore we split the scheduling. The

RTAP/RTNP Other Tasks QoS Broker

used by RTAP/

v /

Fixed Priority Scheduling Priority-based Scltedulinr I
Figure 9: Mapping of the Scheduling

networked application and network tasks (RTAP/RTNP) run as a separate process where the indi-
vidual tasks are scheduled according t o the joint scheduler, and the single process uses fixed priority
scheduling (Figure 9). We assign to the process(es). which need RT guarantees, RT priorities higher
than the AIX scheduler. This guarantees that the process is not preempted by the scheduler.

The RTAP/RTNP tasks perform very well under joint scheduling as implemented. The measured
end-to-end delays of the sensory data for our telcrobolics application are 2 ms (average value) using
an ATM LAN environment [I], which is a factor of 500 better than the application had previously
achieved with TCP/ IP over Ethernet (1.2 sec!).

IIowever, when several applications share the processor, and the additional applications don't
register with the QoS broker, and hence don't undergo admission control of the CPU scheduling,
the AIX RT extension cannot provide guarantees. Thus once another process is scheduled (even a

non-real-time process), priority inversion may occur, and tlie r~al-t ime task under joint scheduling
misscs the deadline.

7 Conclusion

Admission service is an important element for prediction of resource availability when end-to-end
guarantees are required from the communication system. The communication system tasks require
not only network resources but also multimedia devices and system resources a t the end-points.
Current admission services for single resources must be extended. Our multi-level admission service
provides this extension. Our studies of admission arriong the end-point resources showed several time
dependencies which must be included into schedulability tests to provide correct CPU scheduling.

We validated our admission service by using it in the implementation of a non-trivial telerobotics
application. In this application, we successfully provided hard-real time guarantees for the sensory
data and soft-real-time guarantees for the video traffic.

References

[I] K. Nahrstedt, J. Smith, "The QoS Broker", IEEF,'n/lultimedia, Spring 1995, pp.53-67

[2] N.C. Audsley, R.I.Davis, A. Burns, "Mechanisms for Enhancing the Flexibility and Utility
of Hard Real-Time Systems", Proceedings Real- Time Systems Symposium, San Juan, Puerto
Rico, December 7-9, 1994

[3] R. L.R. Carmo et al. "Real-Time Communication Services in a DQDB Network", Proceedings
Real-Time Systems Symposium, San Juan, Puerto Rico, pp. 249-258, December 7-9, 1994

[4] M. Di Natale, J. A. Stankovic, "Dynamic End-to-end Guarantees in Distributed Real-Time
Systems", Proceedings Real-Time Systems Symposium, San Juan, Puerto Rico, pp. 216-227,
December 7-9, 1994

[5] K. Nahrstedt, J . Smith, "Experimental Study of End-to-End QoS", MS-CIS-94-08, Technical
Report, University of Pennsylvania, February 1994

[6] K. Nahrstedt, J. Smith, "A Service Kernel for Multimedia Endstations", Multimedia: Advanced
Teleservices and High-Speed Communication Architectures, 1994, Heidelberg, pp. 8-22

[7] J. Smith, B. Traw, "Giving Applications Access to Gb/s Networking", IEEE Network, July
1993

[8] J. M. Hyman, A. A. Lazar, G. Pacifici, "A Separation Principle Between Scheduling and
Admission Control for Broadband Switching", IEEE JSAC, Vol. 11, No. 4, May 1993, pp.
605-616

[9] H. Tokuda, Y. Tobe, S.T.-C. Chou, J. M. F. Moura "Continuous Media Communication with
Dynamic QoS Control Using ARTS with an FDDI Network", Proceeding SIGCOMM '92, Bal-
timore, ML, pp. 88-98, August 1992

[lo] T. Murase, H. Suzuki, S. Sato, T. Takeuchi "A Call Admission Control Scheme for ATM
Networks Using a Simple Quality Estimate", IEEE JSAC, Vol. 9, No. 9, December 1991, pp.
1452- 1460

[ll] D.D. Clark, D.L. Tennenhouse, "Architectural Considerations for a new generation of proto-
cols", Proceedings ACM SIGCOMM '90, Philadelphia, PA, pp. 200-208, September 1990

[12] D. Ferrari, D.C. Verma, " A Scheme for Real-Time Channel Establishment in Wide-Area
Network", IEEE JSAC, Vol. 8, No. 3, April 1990, pp. 368-379

[13] N. Audsley, "Deadline Monotonic Scheduling", Technical Report, Department of Coniputer
Science, University of York, Heslington, York, September 1990

[14] J . Lehoczky, L. Sha, Y. Ding, "The Rate-Monotonic Scheduling Algorithm: Exact Character-
ization and Average Case Behavior", Proceedings IEEE Real-Time System Symposium, Santa
Monica, California, pp. 166-171, IEEE Computer Society Press, 5-7 December 1989

[I51 J. Y. T. Leung, J. Whitehead, "On the Complexity of Fixed-Priority Scheduling of Periodic,
Real-Time Tasks", Performance Evaluation (Netherland), 2(4), pp. 237-250, December 1982

[16] C. L. Liu, J. W. Layland, "Scheduling Algorithm for Multiprogramming in a Hard Real-Time
Environment", Journal of the ACM, 20(1), pp. 40-61, 1973

	End-Point Resource Admission Control for Remote Control Multimedia Applications
	Recommended Citation

	End-Point Resource Admission Control for Remote Control Multimedia Applications
	Abstract
	Comments

	tmp.1183140769.pdf.cDKLh

