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Effect of supercoiling on formation of protein-mediated DNA loops

Abstract
DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of
forming a loop is an important factor in determining whether the associated gene is switched on or off. In this
paper we use an elastic rod model of DNA to determine the free energy of forming short 50–100 basepair,
protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the
energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is
regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the
DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in
modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor.
We also use our theory to make quantitative predictions for the dependence of looping on superhelical stress,
which may be testable both in vivo and in single-molecule experiments such as the tethered particle assay and
the magnetic bead assay.
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Effect of supercoiling on formation of protein-mediated DNA loops
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DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of
forming a loop is an important factor in determining whether the associated gene is switched on or off. In this
paper we use an elastic rod model of DNA to determine the free energy of forming short �50–100 basepair�,
protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the
energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is
regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the
DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in
modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor. We
also use our theory to make quantitative predictions for the dependence of looping on superhelical stress, which
may be testable both in vivo and in single-molecule experiments such as the tethered particle assay and the
magnetic bead assay.

DOI: 10.1103/PhysRevE.74.061907 PACS number�s�: 87.14.Gg, 87.15.La, 82.35.Pq, 36.20.Hb

I. INTRODUCTION AND SUMMARY

A. Introduction

Many genetic processes in bacteria are controlled by pro-
teins that bind at separate, often widely spaced, sites on
DNA and hold the intervening double helix in a loop �1–4�.
For example, the lactose metabolism system in E. coli is
controlled by a repressor protein, LacI, binding to a set of
binding sites. Early evidence for the existence of a looping
mechanism came from the observation that the ability of a
cell to control a particular gene depended in an approxi-
mately periodic way upon the number of basepairs of DNA
intervening between two particular protein-binding se-
quences �called “operators”� �see, for example, Refs.
�1,5–7��. Some recent data appear in Fig. 1. The periodic
modulation was found to be roughly independent of the de-
tails of what basepair sequence was inserted or deleted be-
tween the operators; insertions and deletions elsewhere did
not affect the gene regulation in this way.

The interpretation of these results followed an analogy to
the related process of DNA cyclization. Suppose that a regu-
latory protein binds stereospecifically to the two operators,
forcing them into close physical proximity, with the interven-
ing DNA forming a loop �Fig. 2�. The equilibrium constant
for this isomerization reaction depends on the free energy
change, which contains as a component the elastic energy
cost of forming the loop. The elastic energy, in turn, contains
terms reflecting bending and twisting deformation. For a fa-
vorable value of the interoperator spacing, loop formation
involves only bending of the DNA. For spacing differing
slightly from the optimum, however, bringing the loop ends
into the relative orientation imposed by the protein complex

requires an additional rotation of one end about its axis. The
extra elastic energy cost entailed by this deformation reduces
the equilibrium constant for loop formation relative to the
optimal spacing. But if the spacing is increased by a full
helical turn Lhelix �about 11 basepairs �12��, then we once
again have a twist-free loop solution, a relatively low elastic
energy cost, and hence a relatively high level of gene regu-
lation. Thus the hypothesis of loop formation predicts a pe-
riodic modulation of the regulatory efficacy with loop size,
as observed. Mossing and Record put forward a version of
this theory shortly after the first experimental results �13�.

Later, looped DNA complexes similar to those inferred by
the above argument were seen directly in electron micros-
copy �e.g., Ref. �6�� and other modalities. More recently,
single-molecule experiments have demonstrated DNA loop-
ing in vitro, and enabled the systematic study of the looping
reaction as a function of external parameters such as stretch-
ing force �16,17�. On the structural side, advances in x-ray
crystallography have yielded structures for the operator-
protein complex, for example, in the lac operon system
�14,18,19�. Starting with that work, many authors have
sought to determine the detailed form of the loop using
physical modeling �see Sec. II A�. A more ambitious goal
would be to predict the looping free energy function, which
has recently been phenomenologically extracted from experi-
mental studies of gene repression in vivo �for example, Refs.
�10,11,20,21�; see Fig. 1�b��. This paper is intended as a step
in that direction.

B. Goals of this work

Our goal in this paper is to introduce one important physi-
cal aspect of looping, relevant both in vivo and in single-
molecule assays. This is the presence of significant torsional
stress �supercoiling� in the region of DNA outside the loop-
forming tract. Certainly everyday experience teaches that ex-
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ternal torque can predispose an elastic rod �such as a garden
hose� to form a loop.

A simple estimate shows that this external stress can sig-
nificantly alter the equilibria between the unlooped state and
various alternative looped states. As we will review later,
bacteria maintain their chromosomal DNA in a negatively
supercoiled �undertwisted� state, with a local torsional stress
Mext of about −4 pN nm �see Sec. II A 2�. Formation of a
loop can relax the external DNA by an angle on the order of
±� radians, allowing the external torsional stress to do work
�±�Mext� ±3 kBT on the looping complex. This energy
scale is comparable to the looping energies inferred from
data �Fig. 1�b��, so we must account for it. Indeed, previous
authors have already documented a large effect of supercoil-
ing on a related process, the juxtaposition of sequentially
distant points on a long circular DNA molecule �22,23�. We
wish to study similar effects in a simple way, in the context
of DNA looping. Specifically, we will calculate, in a simpli-
fied model, the quasiperiodic dependence of the looping free
energy �Fig. 1�b�� on the interoperator spacing L.

We also give a procedure to find, in an idealized physical
model, the equilibrium shapes and energies of an elastic rod
under the sort of end constraints appropriate to DNA loop
formation by a protein complex. Our method uses the ex-
plicit analytic solutions to the elastic-rod equations, and
hence enjoys significant computational advantages over
gradient-descent algorithms.

FIG. 1. �Color online� �a� Repression of a gene product con-
trolled by the lac repressor in E. coli cells. The data are from Ref.
�8�, Fig. 3�a�; see that paper for an explanation of the units on the
vertical axis. The horizontal axis gives the distance along the DNA
between the centers of the two operators, each 21 basepairs long. In
this paper we will express operator spacing by a number L that
equals this number minus 21 bp �Fig. 2�. Other experiments have
obtained similar curves using operators located on a plasmid �9�. �b�
Looping free energy inferred from the data in �a�, showing a
roughly periodic modulation with operator spacing �from Ref. �10�,
Fig. 3�. The maxima of this function correspond to poor looping
efficiency, that is, to the minima in panel �a�. There is a slight
minimum in the lower envelope of this function around 70–80 bp,
corresponding to our L�50–60 bp. A similar function emerges
from the more detailed analysis of Garcia et al. �11�.

FIG. 2. �a� Crystallographically derived structure of the lac re-
pressor �LacI, dark gray� bound to two operator segments of DNA
�black� �14�. The light gray curve represents a DNA conformation
interpolating between the operator segments, obtained in Ref. �15�.
�b� Cartoon of the class of loops we will study. The DNA is con-
sidered free in the region between the two exit points si and sf.
These exit points are located at ±10.5 bp from the operator centers.
Within the binding sites themselves, the protein may induce kinks
in the DNA, as shown. �c� Definition of the initial and final tangent
vectors t̂i, t̂ f, the separation vector a, and the angle �a characteriz-
ing our idealized DNA-protein complex. a is the vector joining the
two exit points, located at arclengths si and sf. The arclength sepa-
ration between exit points is L=sf −si. The vectors t̂i, t̂ f, and a are
all assumed to be be coplanar, and the angle �a from a to −t̂ f is
equal to that from −a to t̂i �the “planar, symmetric coupler” ideali-
zation�. In the example shown, �a�90°. Although the coupler is
planar, the loop itself will not in general be so, as illustrated here.
�d� The �-loop configuration corresponding to �c� �see text Sec.
III C�. This loop is always planar.
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Our results show that indeed external torque affects loop-
ing equilibria, and can change which of multiple looped
states is most favorable. Specifically, the shape of the loop-
ing free energy curve reflects exchanges of stability as L
increases; the critical values of L for these exchanges �local
maxima of Fig. 1�b�� depend on the external torsional stress.
These results can be tested, for example in vivo by studying
bacteria with varying levels of supercoiling density ��24�,
Sec. 2.II.D�, or in vitro by the methods of Lia et al. �17�. The
methods developed in this paper may also be applicable to
other systems where DNA loops are implicated �4�.

The paper is organized as follows. Section II outlines
some prior work and sets out the many simplifications we
introduce to keep the treatment of external supercoiling rela-
tively transparent. Section III gives more details of our cal-
culation strategy. Section IV presents the actual calculation,
and Section V discusses the results. Expert readers wishing
to see the key new elements of our approach will find them
in Sections III B–III D and IV B.

II. PHYSICAL FRAMEWORK

In the first subsection below we describe some of the
physical ingredients that enter into the problem of modeling
DNA looping. It is not possible to survey here the large
literature on such models, but we will mention some of the
prior work incorporating these ingredients. Mainly we
discuss work on the lac system, but extensive work has
also been done on other regulatory systems, such as gal
�e.g. �25�� and lambda �e.g. �26��, and on the binding of
nucleosomes to miniplasmids �e.g. �27��.

A. Ingredients of the problem and prior work

1. Loop structure

The crystallographic work of Lewis and coauthors gave
only the structure of the regulatory protein complex bound to
two short DNA segments containing the operators. Follow-
ing this work, several authors used elastic models of DNA to
propose structures for the complete looped state �for ex-
ample, Refs. �15,27–32��. �Earlier authors studied similar
mathematical problems in other contexts, for example, Refs.
�33,34��. The basic premise of these works is that the regu-
latory protein complex binds to two specific elements on the
DNA, with a fixed, specified orientation relative to it �the
“strong anchoring end condition” �27��. The DNA between
the two binding regions must accommodate to these con-
straints by adopting a form different from the one it would
otherwise have taken; finding this form is a boundary-value
problem in the elasticity of a slender body. These works
included varying levels of realism in their treatment of the
DNA elasticity: Some included bend anisotropy, sequence
dependence, and electrostatic effects. Some, however, ne-
glected DNA twist stiffness altogether, and so could not ad-
dress the periodic phasing dependence that is part of our
main motivation.

Several authors have recognized that there may be alter-
nate DNA binding patterns, giving rise to multiple looping

states �for example �21,25,35��. We discuss this further in
Sec. II B 3 below.

In addition to purely elastic effects, it has long been rec-
ognized that the conformation of DNA is critically affected
by chain entropy. An early calculation including these effects
was Shimada and Yamakawa’s study of DNA cyclization, the
formation of circular DNA from linear pieces; later work has
extended and refined their results �36–38�. Recent work on
DNA looping has begun to incorporate entropic corrections
following a similar calculational approach �35,39,40�. Al-
though these corrections can be significant, for short loops
the strong anchoring condition constrains the DNA so much
that elastic effects dominate over conformational entropy �at
least for understanding the periodic phasing dependence that
is our central concern�. Other calculations have acknowl-
edged that the protein complex formed in DNA looping may
not be a rigid object; stresses transmitted from the bent DNA
may distort the protein, or even induce major conformational
changes in it �35,39,41,42�.

2. External supercoiling

In the absence of external constraints and thermally in-
duced deformation, DNA would be a double helix with heli-
cal pitch Lhelix�11bp�3.7 nm. We define a corresponding
quantity �0=2� /Lhelix, the angular rate at which the two
strands orbit their common centerline.

Closed circular DNA isolated from bacteria generally
shows negative supercoiling �24�. This supercoiling is ex-
pressed as the fraction � by which the total linking number
differs from the value Ltot�0 /2� appropriate for a torsionally
relaxed, circular loop; thus bacteria have ��0. The value of
� can vary with the life conditions �e.g., temperature� of the
cell; it can vary from cell to cell and with the division cycle
of a single cell; and even within a single cell, at one moment,
there may effectively be domains of different � �24�.

Moreover, the topological linking number is not simply
related to the quantity of interest to us, which is the torsional
stress Mext. First, in the bacterial cell various DNA-binding
proteins can effectively absorb some linking number, simi-
larly to the role of histones in eukaryotes. This binding re-
sults in a reduced effective value �eff �sometimes called the
“superhelical stress”� in the range of −2.5% to −5%
�24,43–45�. �Interestingly the corresponding value for
eukaryotes is close to zero �24�.�

Second, even �eff partitions into two components, corre-
sponding to twist and writhe. Only the twist component,
roughly one quarter of the total �46�, gives rise to torsional
stress Mext. We estimate Mext using Hooke’s law Mext
=Ktw��, where Ktw�70 nm kBT is the twist stiffness of
DNA under zero tension and ��= � 1

4�eff��0�−0.017/nm
from the above estimates. Thus Mext�−1kBT, within the
wide uncertainties implied by the preceding paragraphs. In
particular, the dispersion in Mext values implies that the ob-
served repression curve �Fig. 1�a�� will be an average over a
distribution of Mext values.

None of the prior work mentioned in Sec. II A 1 intro-
duced external torsional stress �supercoiling� quantitatively;
that is the goal of the present work. This neglect is justified
when studying loop formation in open �linear� DNA seg-
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ments. Even in the context of a circular, supercoiled DNA,
the strong anchoring condition implies that the interior of the
loop is unaffected by external torsional stress �if we neglect
possible stress-dependent deformation of the protein�. Hence
for any given looped state, the geometric shape of the loop
does not depend on this stress. However, supercoiling does
alter the equilibrium among the different looped states, and
between them and the unlooped state, and hence it will affect
curves such as those in Fig. 1.

Swigon and co-workers do discuss the role of supercoil-
ing qualitatively �35�. As mentioned earlier, Vologodskii and
co-workers also studied its effect on site juxtaposition, in a
large Brownian dynamics simulation �23�. We seek a frame-
work for looping calculations in which such effects can be
modeled, at least approximately, without recourse to such
large computations.

B. Framework and idealizations used in this paper

We will make many simplifying assumptions in this pa-
per, in order to focus more clearly on effects of interest to us.
Some of these assumptions are already familiar from others’
earlier work. Taken together, these simplifications preclude
detailed quantitative comparison with experimental data
similar to those in Fig. 1. But the lessons we learn can be
readily transferred to more detailed models.

1. DNA

Although bending anisotropy, sequence dependence, non-
linear DNA elasticity �47,48�, and perhaps even strand sepa-
ration are likely to be important to the quantitative under-
standing of loop formation, we neglect them all. That is, we
treat DNA as a continuous, inextensible, isotropic elastic rod,
with a linear relation between stress and the resulting strain
�the Bernoulli-Euler approximation �23��. We will also
neglect electrostatic effects, or more precisely, assume that
they can be effectively incorporated via effective values of
the DNA bend stiffness and the binding constants for the
protein. The advantage of these simplifications is that they
will let us use the elegant closed-form solutions to the elastic
equilibrium equations �Sec. IV�.

Although the free DNA is assumed to be long, and so has
significant configurational entropy, as mentioned earlier we
will neglect fluctuations of the DNA inside the loop, and
their entropy, because we are interested in short loops.
The ideas advanced in this article can be applied to more
elaborate calculations involving chain entropy effects.

We will assume that within the loop, we may neglect self-
contact of the DNA. Thus we can only find the simplest one
or two topoisomers in any given situation, because higher
topoisomers are generally stabilized by self-avoidance. How-
ever, at least at moderate values of the external supercoiling,
the higher topoisomers have very high elastic energy and
may indeed be neglected.

Finally, we will assume that there are no other DNA-
binding proteins in the system that can bind to the loop re-
gion, altering its elasticity or even imposing sharp bends on
the DNA. In fact, at least one such protein was present in the
experiment of Fig. 1, namely, the heat unstable �HU� nucle-

oid protein. But similar data can be obtained from mutant
bacteria that are missing particular proteins �e.g., HU �9��,
and in any case in vitro assays can also be performed with no
other proteins present.

2. Protein

The repressor protein complex, like any protein, is flex-
ible: It can deform under stress, and in the case of LacI can
even pop into an extended conformation. We will neglect
these effects, treating the protein complex as a rigid jig, or
clamp, which we will call the “coupler” �49�. The geometry
of the coupler is independent of the length of the DNA
between the two operators.

3. DNA-protein binding

The LacI protein complex is a tetramer with two binding
sites for DNA. Each binding site can bind strongly to specific
operator sequences, or more weakly to generic DNA, or not
at all. Bintu and co-workers have argued that for LacI, in
vivo, both sites are nearly always bound to DNA; the strong
binding to a few specific sites competes with the weak bind-
ing to many generic sites �11,20�. We will instead simplify
by assuming that the protein consists of two halves, each
permanently bound to their operator sites. The looping reac-
tion then consists of these dimers finding and binding to each
other, thus imposing a fixed relative orientation on their
bound operator DNA �50�.

The specific binding of LacI at each site is thought to
have a twofold degeneracy arising from the symmetry of
each dimer: The operator DNA may be reversed in direction
and still bind equally well. This degeneracy leads to four
competing loop states �21,25,35�. We will neglect this com-
plication, assuming that only a single DNA orientation is
allowed at each binding site. �The binding orientations we
choose produce what is often called the “parallel loop” state
�35�.� The equilibrium between distinct binding orientations
can be handled by the same methods as those used in the
present paper for the equilibrium between different looped
states.

The geometry of the lac repressor complex is known to be
chiral. Thus even in the absence of any external torsional
stress, the protein complex itself predisposes the DNA to
loop with a particular helical sense. One contribution to this
chirality comes from the fact that in the cartoon of Fig. 2�c�,
the arrows representing the required DNA tangent vectors do
not lie in the plane of the figure, but instead tilt slightly into
the page on their right sides, by an angle often called � �35�.
We will neglect this effect, assuming that the two boundary
conditions correspond to tangent vectors in the same plane as
the separation vector between the detachment points ��=0�.
We call this assumption the “planar coupler” condition. The
methods of this paper can be extended to handle the case of
nonzero �. Note that even with a planar coupler, the DNA
loop itself need not, and generally will not, be planar. Thus in
the structure sketched in Fig. 2�c�, the DNA will not in
general contact itself in the middle of the loop.

Protein binding generally bends DNA, and in some
cases untwists it as well. Because we treat the protein as
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permanently bound to each operator, we need not worry
about these effects, as long as the entrance points s̃i, s̃ f �Fig.
2�b��, and their corresponding tangent vectors, also lie in the
same plane as the one just mentioned. We thus add this
requirement to our “planar coupler” condition.

There are two other sources of chirality �besides nonzero
� and protein-induced unwinding mentioned above�, which
we do retain: First, as mentioned above, the axial orienta-
tions of the two binding sites can induce a nonplanar equi-
librium shape for the DNA loop, even if the coupler obeys
the planar condition. Also, of course, any external supercoil-
ing introduces another chiral ingredient into the problem. We
believe that these two effects are more important for the
qualitative structure of Fig. 1 than the twist angle �, and in
any case they are the effects that we have chosen to study in
this paper.

We also assume that the angle �a shown in Fig. 2�c�
equals the corresponding angle on the left side �the “symmet-
ric planar coupler;” see also Ref. �33��. Our choice is moti-
vated by approximate symmetries actually observed in crys-
tallographic data on protein-DNA complexes �14,51�. The
angle �a may have a different effective value in solution
from the one observed in crystallographic structures, so we
will treat it as an unknown parameter in our analysis. How-
ever, we take the separation a between the exit points to have
a fixed value 4.0 nm roughly equal to that seen in the crystal
structure �14�.

III. CALCULATION STRATEGY

A. Mathematical representation

We represent a thin elastic rod as a curve in space �the
rod’s centerline�, together with a set of orthonormal triads at
each point on the curve �the “physical frame”�. The third
vector of each triad ê3�s� is chosen to coincide with the tan-
gent to the curve at arclength location s. We may choose
ê1�s� to point from the centerline toward the major groove of
the DNA at position s, and ê2�s� to complete the triad. Thus
for relaxed DNA in the absence of thermal motion, as s in-
creases ê3�s� points in a constant direction while ê1,2�s� ro-
tate about it a constant angular rate �0 equal to 2� radians
per helical turn. In general we say that a rod has zero excess
twist if the momentary rate of rotation of its physical frame
has three-component equal to �0.

For many purposes, it is convenient to replace the physi-
cal frame given above by an “untwisted frame” obtained by
rotating the physical frame at each point about ê3�s� by the

angle −�0s. We will denote the untwisted frame by d̂i�s�, and
use it in the calculations of Sec. IV B.

We represent the coupler mathematically as a condition
specifying the relative spatial locations and physical frames
of the DNA as it exits the two binding sites and enters the
loop region �see Fig. 2�. That is, stereospecific binding to the
protein complex requires that the location and orientation at
positions si and sf are related by a fixed element of the Eu-
clidean group E�3�. In particular, this relation is independent
of the interoperator spacing L.

We can express the same condition in the untwisted frame

�d̂i�. Now the relation between frames at si and sf does de-

pend on L, but in a simple way: Compared to the physical
frame, the required final orientation has an additional
rotation about ê3�sf�, by −�0L.

For certain special values of L, we will be able to meet the
coupler’s boundary condition in a very simple way, with a
loop that stays in the plane determined by the coupler and
has zero excess twist. These values take the form

L = L0 + jLhelix, �1�

where j is any integer and L0 is a constant depending on the
coupler geometry. For generic values of L, however, any
loop must either writhe out of the plane, or have twist
density different from �0, or both.

B. Why the problem is conceptually difficult

Suppose that we are studying looping in a large, closed
DNA molecule �Ltot= thousands of basepairs�, with a particu-
lar small separation between the operator sites �L=dozens of
basepairs�. We divide all states into broad classes, or “loop-
ing states” �Fig. 3�: those that are unlooped, and a set of
looped states. The fraction of time spent in the unlooped
state determines the level of gene repression �20�, and is in
turn determined by the relative free energies of the various
states �52�.

The transitions between looping states do not change the
total linking number of the full DNA molecule. Nevertheless,
there is a topological distinction between the classes of
looped states, which allows us to refer to them as “topoiso-
mers.” To see this, imagine clipping out the looped regions
of the looped states in Fig. 3�a�. The strong anchoring
condition implies that we can find a small reference arc C
such that each such clipped region can be completed to a
continuous closed loop by gluing in the same piece C �Fig.

FIG. 3. �Color online� �a� Equilibria between the unlooped state
U and various looped states n, n�. We have omitted the regulatory
proteins, indicating the operator sites by tick marks. We wish to
treat the system as a small subsystem of interest �inside dashed
line�, thermodynamically coupled to a large reservoir �outside�.
Each looped state differs from the others by a 2� rotation of one
strand of the DNA about its axis at its binding site. Thus, although
the total linking number is the same for every state shown, never-
theless the set of looped states divides into classes labeled by an
integer. The two looped states shown have the same elastic energy
inside the dashed lines, but quite different total free energy changes
because of the torsional stress arising from supercoiling outside the
dashed lines. �b� One way to distinguish topological classes of
looped states is to choose a standard reference arc C that completes
each of the looped configurations, then compute the linking num-
bers of the resulting closed loops.
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3�b��. After this operation we can calculate the linking num-
bers of the two resulting small closed loops, which will in
general differ by an integer.

Clearly the equilibrium between the looped and the vari-
ous unlooped states will be affected by the initial degree of
supercoiling in the molecule. We would like to treat the re-
gion outside the looping region as a “reservoir” and charac-
terize it by a “thermodynamic force” acting on the loop re-
gion. To see why this is not entirely straightforward, we
contrast to an easy problem: Suppose we have a small box of
air in contact with a large room via a pinhole. For the pur-
poses of calculating the average number of gas molecules in
the box �N1	, we can forget about the size and shape of the
room, instead characterizing it by a single number, the pres-
sure. The rest of the calculation is easy because there is a
local, additive conservation law relating N1 to the number N2
of molecules in the room, and because the boundary between
the two subsystems is fixed. In contrast, in our problem the
linking number, although conserved, is not locally defined,
and the two operator sites are free to move in the unlooped
state.

C. The �-loop state

1. Decomposition of the free energy change

Our problem would be easier if we had only to investigate
the equilibrium between various looped states, not that be-
tween looped and unlooped states. After all, a direct transi-
tion between the states n and n� in Fig. 3�a� simply involves
an axial rotation by 2�. In the limit where the total DNA
length Ltot	L, the external torsional stress Mext is constant
during this process, so the exterior region does work on the
looping region given by 2�Mext. Adding this work to the
change in elastic energy gives the total free energy change of
the transition.

To see how to extend the above remark to include loop
formation, we found it useful to introduce a fictitious looping
state, which we call the �-state, and to divide the free energy
change of looping into two pieces: That for the transition
from unlooped to the �-state, and that for a subsequent tran-
sition to the desired physical looped state. The �-state is
characterized by a modified �-coupler, identical to the actual
coupler except for the axial orientation it imposes on the
outgoing DNA, which is always chosen to admit a planar,
untwisted loop regardless of L. One such loop is a non-self-
contacting-solution to the elastic equilibrium equations; we
call it the �-loop configuration �see Fig. 2�d��.

Thus we write the free energy change for formation of
looped state n as

�Gopen→loop n = �Gopen→� + �G�→loop n. �2�

We wish to calculate each term on the right. In fact, the
second term can be evaluated by the same method as out-
lined in the first paragraph of this subsection. We now turn to
discuss the first term.

2. �-loop formation free energy

In the unlooped state, the full circular DNA is freely fluc-
tuating. It has a certain free energy, which we assume to be

extensive �at least over the small length changes we are
studying�: Gun�Ltot ,��=Ltot
���, where the free energy den-
sity 
 depends on the fractional degree of supercoiling �. We
imagine cutting the DNA, introducing a full extra unit of
linking number, and resealing it. Examining the resulting
change of free energy yields a formula for the external
torsional stress Mext:

d


d�
= �0Mext. �3�

We now turn to loop formation. The �-loop is planar and
untwisted. Thus its formation not only reduces the length of
the remaining free exterior region from Ltot to Ltot−L; it also
expels some linking number from the looped region, chang-
ing � to ��=�Ltot / �Ltot−L����1+ �L /Ltot��. Neglecting
higher orders in L /Ltot, the corresponding change of free
energy is thus

�Gbind + Gun�Ltot − L,��� − Gun�Ltot,��

� �Gbind + �Ltot − L�

� +
L�

Ltot
�

− Gfree�Ltot,�� ,

��Gbind + L�− 
��� + ��0Mext� ,

��Gbind − L
�0� . �4�

Here �Gbind is the binding free energy for assembly of the
protein complex �53�. The total free energy change �Gopen→�

is the quantity in Eq. �4� plus the elastic energy E� of the
�-loop �recall that we neglect the conformational entropy of
the looped regions�.

The free energy Gun of supercoiled DNA has been inves-
tigated both theoretically and experimentally �45�. Rather
than attempting to evaluate it explicitly, we now just observe
that, Eq. �4� is a fixed, linear function of L; it does not con-
tribute to the quasiperiodic modulation seen in Fig. 1, and it
does not depend on which looped state n we will eventually
form. We can drop these parts of the free energy change if
we understand that our result will be correct only modulo the
addition of some linear function of L to our calculated free
energy change of looping. This limitation does not impair
our ability to predict the periodic modulation of the free
energy change, nor to find nonlinear behavior such as a dip
in its envelope at a particular value of L, nor to investigate
the equilibrium between competing topoisomers �various n�,
nor to explore the � dependence of the looping free energy.
Again, henceforth we will drop the contributions to the loop-
ing free energy given by Eq. �4�, or in other words we take
�Gopen→�=E� in Eq. �2�.

D. From �-loop to physical looped states

For the special values L=L0+ jLhelix mentioned in Sec.
III A, the �-state coincides with one of the physical looped
states. For other values of L, the �-state is a useful interme-
diate, because as we have seen its formation has a simple
effect on the DNA outside the looping region, and so does
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the passage from it to the actual looped states.
Our procedure, then, is the following. We begin by choos-

ing starting guesses for the unknown parameter L0 describing
the periodically spaced special values of L, and the poorly
known parameter �a. We set reasonable values for the re-
maining parameters Mext�−1kBT, a�4.0 nm and for the
elastic constants of DNA.

We then step through the various values of L in the range
of interest. For each L, we construct the �-loop �Sec. IV B 1
below� as the planar, non-self-intersecting loop that meets all
the boundary conditions imposed by the coupler except for
axial orientation, and solves the elastic equilibrium
equations. We call its elastic energy E�.

If L is one of the special values, then the �-loop is one of
the possible physical looped states. Whether or not this is
true, we next perturb the �-loop through a family of nonpla-
nar solutions to the elastic rod equilibrium equations, main-
taining always the same relative position and tangents at the
ends �Sec. IV B 4 below�. Each solution in this family has a
final orientation differing from the �-loop by an axial rota-
tion. The corresponding rotation angle � is a real number
�not ambiguous modulo 2��. Each time � passes through a
value

�n = �L − L0��0 + 2�n for an integer n , �5�

we get a physical looped state. The angle �n may be either
positive or negative �or zero if L takes one of the special
values�. We compute the elastic energy of this loop and call
it En. For each physical loop found, we correct the energy to
En�=En−�nMext to account for the external torsional stress,
obtaining �G�→loop n=En−�nMext−E�.

The quantity E� cancels when we compute the total free
energy change �Eq. �2��; as described in Sec. III C 2, we also
drop the linear contribution Eq. �4�. Thus

�Gopen→loop n = En� = En − �nMext, �6�

modulo the addition of a fixed, linear function of L.
Equation �6� embodies one of the main points of this

paper. We can understand it physically by thinking about
Fig. 3�a�: The two looping states n and n� have the same
elastic energy, but one is favored and the other disfavored by
external torsional stress. The correction term in Eq. �6�
incorporates this effect.

In general, we will only obtain one or two solutions in this
way for each value of L; as mentioned earlier, higher topoi-
somers are stabilized by self-contact, which our model ne-
glects. We now plot each energy value En� versus its L. Taking
the smallest En� for each L gives a graph �Fig. 5 below�.
Finally, we repeat the whole procedure with different values
of the parameters L0 and �a, and seek values that are reason-
able and that roughly reproduce experimental data such as
those in Fig. 1.

IV. CALCULATION DETAILS

We now give details of the calculation outlined in the
previous section.

A. Two dimensional warmup problem

As a warmup problem, we consider the analogous elastic-
ity problem in two dimensions. That is, we find the profile
z�s� and y�s� of a planar elastic loop �Fig. 4�, where s denotes
the arc length along the loop with the origin s=0 placed
midway along the contour. Our equations will be simple
because twist elasticity plays no role in two dimensions.

The boundary value problem for the loop can be stated as

Kbend�� + F sin � = 0, ��0� = 0, �
L

2
� = � + �a, �7�

where Kbend is the bending modulus of the elastic rod, ��s� is
the angle from the positive z axis to the tangent and F is an
unknown force acting along the z axis and exerted by the end
clamp on the rod. Primes denote differentiation with respect
to the arclength s.

The solution to the second order differential equation
above is well known �54� and can be written as

��s� = 2am
 s

�k
�k� , �8�

where am�x �k� is the elliptic function of the first kind with

modulus k. �=Kbend

F and k are independent parameters, to be
determined from the boundary data. Thus

cos ��s� =
dz

ds
= 1 − 2sn2
 s

�k
�k� , �9�

FIG. 4. �Color online� The geometry of our 2D exercise. The
contour length of the DNA in the loop is L. The size of the protein
complex is represented by a; its geometry is summarized by the
parameter �a. a and �a determine the boundary conditions for the
boundary value problem for the geometry of the loop. The element
at arclength s from the center exerts a force F on the element at s
+ds. Due to the assumed symmetry, F points along the negative z
axis as shown. F is also the sideways force exerted on the ends of
the rod by the protein complex.
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sin ��s� =
dy

ds
= 2sn
 s

�k
�k�cn
 s

�k
�k� . �10�

We can integrate these equations and obtain the following
solution for z�s� and y�s�, which are the coordinates of the
material point denoted by s on the rod:

z�s� = s − 2�
0

s

sn2
 

�k
�k�d , �11�

y�s� = �
0

s

2sn
 

�k
�k�cn
 

�k
�k�d =

2�

k
�1 − dn
 s

�k
�k�� .

�12�

Figure 4 shows a typical solution from this family.
The two constants � and k can be determined in terms of

the given a and �a by imposing the boundary conditions,
leading to the following two equations:

� + �a = �
L

2
� = 2am
 L

2�k
�k� , �13�

a

2
=

L

2
− 2�

0

L/2

sn2
 

�k
�k�d . �14�

We denote yp� L
2�k and eliminate � in favor of yp, obtaining

� + �a = 2am�yp�k� , �15�

yp
1 −
a

L
� = 2�

0

yp

sn2���k�d� =
2

k2 �yp − E�yp�k�� , �16�

where E�yp �k�=�0
ypdn2�x �k�dx is the incomplete elliptic inte-

gral of the second kind with modulus k. Once we solve nu-
merically for yp and k from these equations we can obtain the
unknown force F as

F =
Kbend

�2 =
4Kbendyp

2k2

L2 . �17�

Also, the bending moment M applied by the protein at s= L
2

is given by

M = Kbend��
L

2
� = 4Kbend

yp

L
1 − k2 cos2 �a

2
. �18�

Finally we calculate the elastic energy stored in the loop.

Eelas���s�� = �
−L/2

L/2 
Kbend

2
��2�s� − F cos ��s��ds

= F�
−L/2

L/2 
 2

k2dn2
 s

�k
�k� + 2sn2
 s

�k
�k� − 1�ds

= F�
−L/2

L/2 
 2

k2 − 1� = FL
 2

k2 − 1� . �19�

Similar formulas have appeared in earlier work �e.g., Ref.
�34��.

It is well known that the equations describing the shape of
a bent rod are similar to the equations of motion of a pendu-
lum and that this analogy can be utilized to obtain rod shapes
corresponding to different regimes �54�. In the above we
looked at the solution corresponding to the revolving orbits
of the pendulum. We can also have solutions corresponding
to oscillating orbits of the pendulum. In that case the solution
is given by

cos ��s� = 1 − 2k2sn2
 s

�
�k� . �20�

Corresponding to this solution we find that

F =
4Kbendyp

2

L2 , M =
4ypKbend

L
k2 − cos2 �a

2
, �21�

Eelas���s�� = FL�2k2 − 1� .

B. Elasticity theory: 3D calculation

1. �-loop

The �-loop is by definition a planar, untwisted solution of
the elastic equilibrium problem with given separation and

FIG. 5. �Color online� �a� The elastic energy of DNA loops as
calculated from an elastic rod model of DNA. We have assumed
�a=71° and a=4.0 nm with �p=50 nm, �t=18 nm, and Mext=
−1.0kBT. The graph shows the quantity defined in Eq. �6�, plus an
arbitrary linear function of L, because such a function was dropped
in our derivation of Eq. �6�. The exchange of stability between
various topoisomers at the peaks of the modulations �40,52,63,74
bp� has been emphasized by plotting the energy of the two compet-
ing topoisomers with different symbols �circles and stars�. The con-
tinuous line connects the lowest energy topoisomers at each value
of the length L of the loop. �b� The black curve plots the elastic
energy of a planar loop without any twist, as calculated using Eq.
�19�. This curve would be appropriate for looping with nicked
DNA.
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tangent vectors at the ends. As such its centerline coincides
with the 2D solution found in Sec. IV A above. Its physical
frame has ê3 and ê1 always in the yz plane, and ê2 along x̂.

2. Rod equilibrium

We now repeat our exercise for a uniform, inextensible,
isotropic elastic rod with twist stiffness, not necessarily con-
fined to a plane. We again idealize the protein complex form-
ing the loop as a rigid object attaching to two specified points
�representing specific binding sites� on the rod. We assume
that the length of the vector connecting one binding site to
the other is given, and we call it a= �a�. The orientation of the
physical frame attached at one site relative to the one at-
tached at the other site, as well as the orientation of a relative
to either of those frames, are also assumed to be given. The

derivatives of the untwisted frame vectors �d̂i�s�� as the
arc-length s changes contain information about the local
curvature and torsion of the rod

d̂i� = � � d̂i, for i = 1,2,3. �22�

We define �1,2,3 as the components of the curvature vector

��s� expanded in the frame �d̂i�.
The moment �or torque� M�s� at any point on the rod is

assumed to have the Bernoulli-Euler form

M = Kbend�1d̂1 + Kbend�2d̂2 + Ktw�3d̂3, �23�

where Kbend and Ktw are the bending and twisting moduli of
the elastic rod �55�. Equivalently we can specify the persis-
tence lengths �b=Kbend/kBT and �tw=Ktw/kBT, where kBT is
the thermal energy scale. The equilibrium equation for the
rod is then simply given by force balance F�=0 and by
torque balance

M� + d̂3 � F = 0. �24�

As in Fig. 4, F�s� is the force each element exerts on the
next; it is also the force applied by the protein on the DNA.

Following Nizette and Goriely �54�, we will assume that
the laboratory coordinate frame is chosen in such a way that
the constant internal force F is aligned with the laboratory z
axis: F=Fẑ. We write the position vector P�s� of any point
on the loop as �X�s� ,Y�s� ,Z�s�� or in cylindrical coordinates
as �R�s� ,��s� ,Z�s��:

P�s� = X�s�x̂ + Y�s�ŷ + Z�s�ẑ

= R�s�cos ��s�x̂ + R�s�sin ��s�ŷ + Z�s�ẑ . �25�

Because we assume that our protein complex obeys the
symmetric coupler condition �Sec. II B 3�, we will be inter-
ested in loops that are also symmetric in a way that general-
izes Fig. 4. Specifically, we will find suitable equilibrium
solutions satisfying our boundary conditions, which also
obey

X�s� = − X�− s�, Y�s� = Y�− s�, Z�s� = − Z�− s� .

�26�

Equations �26� reduce to our planar form when X�s��0. It
may appear to treat the X and Y directions asymmetrically,

but what is meant is that the solutions of interest can
be brought to this form by translation and rotation about ẑ.
Thus for example, if the loop is planar then we agree to
place it in the yz plane, with the center point s=0 at the
origin. Equations �26� suggest that ��s� will take the form
��s�= �

2 −�s� with �−s�=−�s�, and indeed our solutions
will have this property.

3. Boundary conditions

We are now in a position to formulate the boundary con-
dition describing the relative position of the ends of the loop.
Our first condition again imposes a separation of length a:

�P
L

2
� − P
−

L

2
��2

= a2, �27�

where again L is the loop contour length. Taking account of
the symmetry of the loop, this statement amounts to

R2
L

2
�cos2 �
L

2
� + Z2
L

2
� =

a2

4
. �28�

Notice that our choice of loop orientation implies that the
end-to-end vector of the loop a lies in the xz plane, though
not in general along the z axis as in Fig. 4.

The tangent vector at any point on the rod is given by

t̂�s�=
P��s�

�P��s�� . Explicitly,

P��s� = �R��s�cos ��s� − R�s����s�sin ��s��x̂

+ �R��s�sin ��s� + R�s����s�cos ��s��ŷ + Z��s�ẑ
�29�

which can be rewritten as

t̂�s� = P��s� = T�s�cos ��s�x̂ + T�s�sin ��s�ŷ + cos ��s�ẑ ,

�30�

where we define ��s�, ��s�, and T�s� through

cos ��s� = Z��s� , �31�

tan ��s� = tan
��s� + tan−1 R�s����s�
R��s�

� , �32�

T2�s� = R�2�s� + R2�s���2�s� = 1 − Z�2�s� . �33�

The last equation reflects the inextensibility of the rod.
Our planar coupler requires that the vectors a, P��− L

2
�,

and P�� L
2

� all lie in a common plane, even if the full loop is
not planar. Accordingly, we will seek solutions satisfying a
second boundary condition

a · �P�
−
L

2
� � P�
L

2
�� = 0. �34�

Using the assumed symmetry of the shape of the loop, we
see that this boundary condition can be satisfied if either
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ax

az
=

R
L

2
�cos �
L

2
�

Z
L

2
�

=

R�
L

2
�cos �
L

2
� − R
L

2
���
L

2
�sin �
L

2
�

Z�
L

2
� �35�

or

R�
L

2
�sin �
L

2
� + R
L

2
���
L

2
�cos �
L

2
� = 0. �36�

Substituting Eqs. �36� into �32� shows that the second of
these conditions would imply ��± L

2
�=0. This in turn would

imply that the end tangents P��± L
2

� are parallel and lie on the
xz plane. This violates the assumed geometry of the coupler
depicted in Fig. 2: The end tangents need not be parallel. So
in this section we pursue only the condition represented by
Eq. �35�, which allows for loops with the desired coupler
geometry.

The third boundary condition that we need to satisfy in-
volves the angle at which the DNA exits the protein
complex. Generalizing Eq. �7�, we will require that

a · P�
L

2
� = a cos �a. �37�

Together Eqs. �27�, �35�, and �37� can be recast as the bound-
ary conditions

Z�
L

2
�

Z
L

2
� =

2 cos �a

a
, �38�

R2
L

2
�cos2 �
L

2
� + Z2
L

2
� =

a2

4
, �39�

R�
L

2
�

R
L

2
� − ��
L

2
�tan �
L

2
� =

2 cos �a

a
. �40�

We will solve these equations starting from the most gen-
eral solution to the differential equations for the equilibrium
of a bent and twisted rod. The solution yields analytical ex-
pressions for R�s�, Z�s�, and ��s�, which will be substituted
in the above to obtain algebraic equations. Nizette and Go-
riely �54� give the solution in terms of four parameters �1,2,3
and � as

Z�s� = �3s − ���3 − �1�E
 s

�
�k� , �41�

R2�s� = 2�2�h̃ − Z��s�� , �42�

��s� =
�

2Kbend
�Mz

s

�
+

M3 − Mzh̃

h̃ − �1

�
 s

�
�ñ,k�� −

�

2
,

�43�

where � is the elliptic integral of the third kind and

M3 =
Kbend

2�
��1 + �1��1 + �2���3 + 1�

+ �1 − �1��1 − �2���3 − 1�� , �44�

Mz =
Kbend

2�
��1 + �1��1 + �2���3 + 1�

− �1 − �1��1 − �2���3 − 1�� , �45�

h̃ =
1

2
��1 + �2 + �3 − �1�2�3 + �1 − �1

2��1 − �2
2���3

2 − 1�� ,

�46�

ñ =
�2 − �1

h̃ − �1

, k2 =
�2 − �1

�3 − �1
, n =

�2 − �1

h − �1
. �47�

The quantities M3 and Mz turn out to be the components of

the moment vector along d̂3 and ẑ, respectively �54�.
We must now fix the parameters �1,2,3 and � by imposing

boundary conditions. In addition to Eqs. �38�–�40�, we also
need an expression for how the frames at each end of the rod
are oriented with respect to each other. To formulate such an
expression, note that for any choice of a and �a there will be
one non-self-intersecting loop solution with zero excess
twist—the �-loop. Taking this as a reference configuration,
any other equilibrium solution with the same a and �a and

the same initial d̂1�− L
2

�= d̂1,ref�− L
2

� will have a final orienta-

tion d̂1�+ L
2

� differing from d̂1,ref�+ L
2

� by a rotation about
t̂�+ L

2
�. We need to find the corresponding rotation angle �,

then impose the condition �5�.
The angle �, divided by 2�, may be regarded as a linking

number difference, generalized to the case of open curves. To
evaluate it, we need a generalization of the Fuller-White-
Calugareanu relation �Lk=�Tw+�Wr for open curves. We
start with the �-loop, with its untwisted frame. Next we con-
struct a plane, untwisted, circular arc C, attached to the two
ends of the �-loop to form a closed, smooth, framed curve.
Completing the �-loop in this way gives a closed loop with
Tw=Wr=0. Also, the tangents at the ends of C match the
tangents at the ends of any of the family of loops we are
studying.

Completing any other loop in our family with the same C
gives a discontinuity in the axial orientation at one of the
attachment points. Hence the formula for linking number
will not give an integer; instead, 2�Lk is the desired formula
for �. Setting it equal to one of the desired values �Eq. �5��
gives our fourth boundary condition.

In summary, our fourth boundary condition is
�= �L−L0��0+2�n for an integer n, where �56�
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� = 2�Lk = 2��Tw + Wr�

= �
− L

2

L
2 �3ds +

1

2
� � t̂�s� · t̂�s�� �

P�s� − P�s��
�P�s� − P�s���3dsds�.

�48�

Here �¯ds refers to a line integral over the closed loop
consisting of the arc C plus the open loop under study.

4. Solution strategy

There are four parameters in the above equations: �1, �2,
�3, and �. As in Sec. IV A, we must find values for these
parameters by imposing the boundary conditions. These four
parameters can be determined by enforcing the boundary
conditions �Eqs. �27�, �35�, �37�, and �48��. This leads to a set
of equations that must be solved numerically, using New-
ton’s method. Our initial guess for �1, �2, �3, and � for given
boundary data corresponds to the values of these parameters
for a planar loop. For example, we know how to solve for k
and � for a planar loop �for which �=0� of length L, end
separation a and end angle �a. For a three-dimensional loop
with similar data �but ��0� we initialize Newton’s method
with the guess �1=−1, �2=2k2−1, �3=1. We then make a
small increment in � and solve a system of four algebraic
equations to obtain the nearby values of �1, �2, �3, and � that
give this value of �. We continue this incremental process
until we have achieved one of the values of �n dictated by
the contour length L between the repressor binding sites �Eq.
�5��. This numerical procedure corresponds physically to
holding a rod into a planar loop and subsequently rotating
one end, continuously changing the shape of the loop. Once
we have computed this solution, the elastic energy stored in
the DNA is evaluated using the following expression �see
Ref. �54��:

En =
FL

2
��1 + �2 + �3 − �1�2�3 − �1 − �1

2��1 − �2
2���3

2 − 1��

+
M3

2L

2Ktw
. �49�

Then we continue the incremental search both forward and
backward in � looking for other topoisomers.

V. RESULTS

Our goal is to capture certain broad features of the loop-
ing free energy change as obtained from experiments in the
analysis of Refs. �10,11� �Fig. 1�b��. Beyond the gross struc-
ture, there is a shallow minimum in the looping free energy
change, in the 70–80 bp range. Keeping in mind that the
horizontal axis of the graph differs from our L by 21 bp, this
minimum corresponds to L�50–60 bp. In contrast, for
loops formed in cyclization reactions �57� the minimum in
free energy change occurs at about 500 bp �36�. We will see
that our elastic rod model, incorporating supercoiling effects
and a highly simplified form of the geometry of the
repressor-DNA complex, does reproduce some qualitative
features in the length dependence of the free energy change.

To do this, we now apply the methods of analysis outlined in
the previous sections.

Section II described the idealizations we have made to
keep the role of external torsional stress as clear as possible.
These idealizations limit our ability to make quantitative pre-
dictions for specific systems, but nevertheless we will apply
our method using parameters partially inspired by the struc-
ture of the lac repressor complex. Thus, we estimate the
distance between the two ends of the DNA to be a
�4.0 nm. We estimate Mext=−1.0kBT �see Sec. II A 2�, and
take effective values for the elastic constants from experi-
ments on the cyclization of short DNA �58�: �b=50 nm, �tw
=18 nm �57�. Finally, we make initial guesses �a=71° and
L0=0 for the unknown parameters.

Figure 5 shows the free energy of loops with Mext=
−1.0kBT. This result shows that a simple elastic rod model of
the DNA is able to capture the general trend in the modula-
tions of the free energy. The amplitude of the modulations
�about 4kBT� is correctly reproduced and the maxima of the
modulations are sharp, as found from experimental data by
Saiz et al. �10�. The curve also shows a dip in free energy at
about 45 bp, fairly close to the dip in the experimental data.
No such dip is seen in the free energy of looping for nicked
�nontwist storing� DNA, so its appearance is influenced by
the external torque due to supercoiling.

Figure 6 shows the looping free energy change as a func-
tion of length for the three values Mext=−1, 0, and +1kBT,
illustrating our point that the exchanges of stability that de-
termine the dominant topoisomer at a given value of L de-
pend on the magnitude and sign of the external torsional
stress. This is easily seen by comparing panels �a� and �c� of
Fig. 6 which show that changing the sign of Mext shifts the
maxima of the modulations by about 4 bp. The sign of Mext
can in principle be controlled in an in vitro experiment, such
as a magnetic bead assay �employed in Lia et al. �17��. As a
result the preference for a particular topoisomer of a loop
will change and this will result in an altered dependence of
the looping free energy on the contour length. Figure 6 sum-
marizes how this dependence will be altered for zero torque
and a positive torque. Figure 6 has been constructed for the
geometry of the lac repressor but the conclusion that the
magnitude and sign of the external torque Mext controls the
locations of the minima and maxima of the modulations in
the free energy of loop formation remains valid for any other
DNA looping protein as well.

VI. DISCUSSION

We have shown in this paper that an elastic rod model of
DNA can explain certain the features observed in the length
dependence of in vivo DNA looping free energy, if we ac-
count for the size and shape of the repressor-DNA complex,
and for the external torsional stress from supercoiling in the
bacterial chromosome. These features have not been ad-
equately examined in the theoretical literature, although they
are critical in determining the function of the repressor-DNA
complex. We have also obtained predictions that could elu-
cidate the mechanics of protein-DNA interactions, and we
hope that they will inspire future experiments. One can
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adjust Mext in vivo by studying bacteria with varying levels
of supercoiling density, for example, by disabling the topoi-
somerases that normally maintain the genome under tor-
sional stress �24�. Or the present theory can be generalized to
incorporate the effects of stretching force; then a magnetic
bead assay could be used to test our prediction that the loca-
tions of the minima and maxima in the modulations of the
free energy of loop formation can be controlled by the ap-
plied external torque. An important limitation of our theory,
as presently stated, is that it does not address entropic effects
and therefore is applicable only for short contour lengths of
DNA. However, the efficient numerical approach developed
in this paper remains applicable for longer contour lengths as
well and could be used in conjunction with Monte Carlo
methods or molecular dynamics to explore the effects of
entropy on the mechanics of protein DNA interactions.
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APPENDIX: SUMMARY OF NOTATION

Kbend, Ktw are the bend and torsional elastic constants of
DNA; the corresponding persistence lengths are �b and �tw.
�0 is the natural twist rate of DNA, about 2� radians per 11
bp. Lhelix is the helix pitch of DNA, about 11 bp.

si, sf are the arclength positions at which the DNA exits
its binding sites and enters the loop interior; s̃i, s̃ f are the
corresponding positions where the DNA enters the exterior
region. L=si−sf is the spacing between exit points; L0 is a
special value of this spacing for which the coupler admits a
planar, untwisted loop.

�êi�s� , i=1,2 ,3� denote the physical orthonormal frame

attached to the DNA at arclength position s; �d̂i�s�� is the
corresponding untwisted frame. �1,2,3�s� denote components
of the curvature vector at location s, measured in the un-

twisted frame. t̂= ê3= d̂3 is the tangent vector to the DNA
centerline, as a function of arclength position along the
DNA.

The “coupler” refers to a geometrical representation of a
regulatory protein complex, imposing a fixed relation be-
tween the spatial locations and physical orientations of two
points on the DNA. It is independent of the spacing L. A
“physical loop configuration” is one obeying the boundary
conditions imposed by the coupler. The “�-coupler” is a fic-
titious, modified coupler differing from the physical one by
an L-dependent axial rotation of one of the DNA strands
relative to the other. Quantities associated to it are denoted
by a subscript �. The “�-loop configuration” is the loop of
minimal elastic energy obeying the boundary conditions im-
posed by the �-coupler. a is the spatial separation between
DNA detachment points; a denotes its length. �a is the exit
angle characterizing the regulatory protein complex. � twist
angle of the DNA-protein complex, set equal to zero in this
paper.

Mext torsional stress outside the looping region, same
units as energy; M1,2,3�s� are the components of the moment
�torque� vector inside the loop at arclength position s, ex-
pressed in the untwisted frame. Note that Mext�M3 in
general.

E� denotes the elastic energy of the lowest-energy �-loop
configuration; E denotes the elastic energy of a physical
looped state. n indexes which of the possible physical loop
states is under discussion; U is the unlooped state. �n is the
axial rotation angle by which physical loop n differs from the
�-loop.

Gun�Ltot ,�� denotes the free energy of an unlooped circu-
lar DNA of length Ltot with fractional excess linking number

FIG. 6. �Color online� Predicting the effect of changing the sign
and magnitude of Mext. Again we took �a=71° and a=4.0 nm with
�b=50 nm, �tw=18 nm and plotted the energy for three values of
Mext. All three panels have the same, arbitrary, linear function of L
added to the looping free energy change. The sign of the assumed
torque Mext in panel �c� is the opposite of that in panel �a�. The
minima and maxima in panel �c� are shifted by about 4 bp as com-
pared to those in panel �a�.
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�; 
��� is the corresponding free energy per unit length.
am, sn, cn are the usual elliptic functions. k is the modulus

of an elliptic function. E�y �k� is the incomplete elliptic inte-
gral of the second kind; ��y �n ,k� is the elliptic function of
the third kind.

�1,2,3 are parameters entering the general elastic equilib-
rium solution in 3D. R�s� ,��s� ,Z�s� are cylindrical coordi-
nates for the position of the rod at arclength position s.
��s� ,��s� are spherical polar coordinates for the unit tangent
vector to the rod at position s.
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