
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 2005

CCGbank: User's Manual CCGbank: User's Manual

Julia Hockenmaier
University of Pennsylvania

Mark Steedman
University of Edinburgh

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Julia Hockenmaier and Mark Steedman, "CCGbank: User's Manual", . May 2005.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-05-09.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/52
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/52
mailto:repository@pobox.upenn.edu

CCGbank: User's Manual CCGbank: User's Manual

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-05-09.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/52

https://repository.upenn.edu/cis_reports/52

CCGbank: User’s Manual

Julia Hockenmaier and Mark Steedman
��������	�
��������,
�������������	���

������������������	���������
�		�

Technical Report MS-CIS-05-09
Department of Computer and Information Science

University of Pennsylvania, Philadelphia

May 2005

Contents

1 Introduction 5

2 Combinatory Categorial Grammar 7
2.1 Categories and the lexicon . 7
2.2 AB categorial grammar . 8
2.3 The combinatory rules of CCG . 9
2.4 Normal-form derivations . 12
2.5 Predicate-argument structure in CCGbank . 12

2.5.1 Category objects . 13
2.5.2 Some lexical entries . 15
2.5.3 Function application and the unify-operation . 16
2.5.4 The combinatory rules . 18
2.5.5 Non-combinatory rules . 23
2.5.6 Co-indexation and non-local dependencies . 25
2.5.7 Non-local dependencies in CCGbank . 27
2.5.8 A note on the depdendencies in CCGbank . 29

3 The translation algorithm 30
3.1 Introduction . 30
3.2 The Penn Treebank . 31
3.3 The basic algorithm . 31
3.4 Atomic categories and features in CCGbank . 34
3.5 Basic clause structure . 35

3.5.1 Simple declarative sentences . 35
3.5.2 Infinitival and participial VPs, gerunds . 36
3.5.3 Passive . 36
3.5.4 Control and raising . 37
3.5.5 Small clauses . 38
3.5.6 Yes-no questions . 40
3.5.7 Inversion . 40
3.5.8 Ellipsis . 44
3.5.9 Fragments in the Treebank . 45

3.6 Basic noun phrase structure . 46
3.6.1 Noun phrases and nouns . 46
3.6.2 Compound nouns . 47
3.6.3 Appositives . 47
3.6.4 Possessive ’s . 48

1

3.6.5 Quantifier phrases . 49
3.7 Other constructions . 49

3.7.1 Coordination . 49
3.7.2 ”Unlike” coordinate phrases . 50
3.7.3 Expletive it and there . 51
3.7.4 Parentheticals . 51
3.7.5 Extraposition of appositives . 52
3.7.6 Multi-word expressions . 53

3.8 Type-changing rules for clausal adjuncts . 55
3.9 Long-range dependencies through extraction . 56

3.9.1 Relative clauses . 57
3.9.2 Wh-questions . 60
3.9.3 Tough movement . 62
3.9.4 Topicalization . 62
3.9.5 Pied piping . 63
3.9.6 Subject extraction from embedded sentences . 65
3.9.7 Clefts . 66
3.9.8 Extraction of adjuncts . 67
3.9.9 Heavy NP shift . 67
3.9.10 Parasitic gaps . 68

3.10 Long-range dependencies through coordination . 69
3.10.1 Right node raising . 69
3.10.2 Right node raising parasitic gaps . 72
3.10.3 Argument cluster coordination . 73
3.10.4 Gapping . 77

3.11 Other null elements in the Treebank . 78
3.12 Preprocessing the Treebank . 79
3.13 Generating the predicate-argument structure . 79
3.14 Summary – the complete algorithm . 80
3.15 Related work . 81

3.15.1 An alternative algorithm . 81
3.15.2 Related work using other grammar formalisms 82

3.16 Summary . 82

4 Statistics of the CCGbank grammar and lexicon 83
4.1 Coverage of the translation algorithm . 83
4.2 The lexicon . 84
4.3 The grammar . 85

5 Conclusion 88

A Identifying heads, complements and adjuncts 90
A.1 Head-finding rules . 90
A.2 Complement-adjunct distinction . 92

2

B Changes to the Treebank 94
B.1 Correcting tagging errors . 94
B.2 Preprocessing ����s . 95

B.2.1 ”So” + adjective; ”as”+ adjective . 95
B.2.2 “Too JJ toVP” . 97
B.2.3 Other changes . 97

B.3 Preprocessing ����s, ������s and ������s . 97
B.3.1 Inserting coordinate structures . 97
B.3.2 Other changes . 98

B.4 Preprocessing �s . 98
B.4.1 Type-changing rules . 98
B.4.2 Changing the bracketing . 99
B.4.3 Other changes . 100

B.5 Preprocessing 	�s . 101
B.5.1 Reanalysis of NP structure . 101
B.5.2 Multiple NPs and modifiers . 105
B.5.3 Insertion of noun level: . 105
B.5.4 Other changes . 106

B.6 Preprocessing ��s . 106
B.6.1 Coordinate ��s . 106
B.6.2 Other changes . 108

B.7 Preprocessing
�s . 109
B.8 Preprocessing ���s . 110
B.9 Preprocessing �	�s . 111
B.10 Preprocessing ����s . 112
B.11 Preprocessing ��s . 112
B.12 Preprocessing ���s . 113
B.13 Preprocessing ��	s . 114
B.14 Preprocessing ����s . 114
B.15 Preprocessing �s . 115
B.16 Changes involving null elements . 115
B.17 Other changes . 117

C Non-local dependencies projected by the lexicon 118
C.1 Extraction dependencies . 118
C.2 Raising and control dependencies . 120

D File formats 134
D.1 The human-readable corpus files . 134
D.2 The machine-readable derivation files . 135
D.3 The predicate-argument structure files . 136
D.4 The lexicon files . 137
D.5 CCGbank and TGrep2 . 137

3

Acknowledgements

This research has benefited enormously from many discussions with our colleagues at Edinburgh, the Uni-
versity of Pennsylvania and elsewhere.

In Edinburgh, Chris Brew’s and also Henry Thompson’s advice was instrumental during the early stages
of this project. Jason Baldridge, Gann Bierner, Johan Bos, Stephen Clark and James Curran have also
provided invaluable feedback. At Penn, we would like to thank in particular Aravind Joshi, Mitch Marcus,
Martha Palmer, Ann Bies, Dan Bikel, David Chiang, Dan Gildea, Alexandra Kinyon, Seth Kulick, Rashmi
Prasad, Carlos Prolo and Libin Shen. We would also like to thank Ted Briscoe, Ewan Klein, Mark Johnson
and Josef van Genabith. We are very grateful to Doug Rohde for adapting his tgrep2 tool to CCGbank.

Most of this research was done at the University of Edinburgh, where it was supported by EPSRC grant
GR/M96889, an EPSRC studentship, ICCS/HCRC and the Edinburgh Language Technology Group. Julia
Hockenmaier is currently at the University of Pennsylvania, where she is supported by NSF ITR grant
0205456.

4

Chapter 1

Introduction

CCGbank is a version of the Penn Wall Street Journal Treebank (Marcus et al., 1993) in which the stan-
dard trees have been mapped into ”normal form” derivations in Combinatory Categorial Grammar (CCG,
Steedman (1996, 2000)). The raison d’etre for developing CCGbank was as a resource for extracting CCG
grammars (and in particular a wide-coverage CCG lexicon) and statistical head-dependency models from
the WSJ treebank for use in a series of wide-coverage CCG-based parsers (Hockenmaier (2001, 2003a,b),
Hockenmaier and Steedman (2002b), Clark et al. (2002), Clark and Curran (2003, 2004)), using the method
pioneered by Collins (1997, 1999), Goodman (1997, 1998) and others for context-free phrase structure
grammars with this more expressive grammar formalism. The point of this exercise was to deliver more
accurate-wide coverage parsers capable of building interpretable structure (which standard context-free
Treebank grammars do not in general do), which could then be used in applications such as question an-
swering or summarization (Clark et al. (2004), Bos et al. (2004)). CCG categories such as ���������, the
lexical category of the transitive verb, map in a regular way to the lexical category types of other lexicalized
grammar formalisms, such as the elementary trees of Lexicalized Tree-Adjoining Grammar (TAG, Joshi
and Schabes (1992))the signs of Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag (1994)),
and Lexical-Functional Grammar (LFG, Bresnan (1982)), among many others. Therefore CCGbank might
be more readily translatable into these other frameworks for use in grammar extraction and parser devel-
opment than the original treebank. In particular, in order to make the extraction of a CCG grammar and
lexicon possible, it was necessary to resolve a number of inconsistencies and minor errors in the original
treebank. Thus, CCGbank is a somewhat improved resource in linguistic terms. One of the purposes of the
present document is also to systematically identify these problems in the original treebank so that they can
be dealt with in any future issue.

A (rightmost) normal form derivation in CCG (Hepple and Morrill (1989), Wittenburg (1986), Witten-
burg and Wall (1991)) can informally be thought of as one in which the combinatory rules of composition
and type-raising are only used when the reading that results is not obtainable without them. For many sen-
tences, such normal form derivations are structurally isomorphic to standard Treebank trees, except that
the 48 non-terminal labels of the Penn POS tag set are replaced by a much larger and more informative
set of around 1300 CCG category types. However, some sentences, notably those involving topicalization,
relativization, and various types of reduction under coordination—in short, those for which the involvement
of combinatory rules is crucial—have non-standard trees, sometimes radically non-standard, since CCG
operates without the classical transformational operations of movement and deletion, which are implicit
in the original treebank annotations. Some of the differences between CCGbank and the original are more
willful, and arise from the lexicalist perspective. Thus the ”small clause” analysis of the complements in
ditransitives, object control, and ”exceptional case marking” have been replaced by more surfacey, ”object
XP” analyses, as they have in other lexicalist theories such as HPSG. The reason for doing this is that the

5

supposed subject in these constructions can extract, a fact that makes them unlike true subjects, and leads
to an increase in the size of the lexicon if small clauses are assumed.

Other details of the CCG analyses are forced by decisions in the original treebank annotation schema
which we were unable to overcome by automatic or semiautomatic means. Of these the one which we regret
most is that postnominal modifiers such as (restrictive) relative clauses have to be analyzed as NP modifiers,
rather than N or N modifiers. This is one of the few places where a category’s syntactic type clashes with
its semantic type, and endangers the otherwise beautifully simple ”surface compositional” relation between
CCG derivation and the building of interpretable structure. We are painfully aware of the difficulties that
this will cause users with an interest in interpretation, not least ourselves.

We try to comment on these details as we describe CCGbank and its uses. The report proceeds as fol-
lows: First, we briefly outline the nature and assumptions of CCG. Next we discuss in detail the process of
transforming the original treebank, providing an algorithm inclusing a number of preprocessing and post-
processing steps. Appendix A describes the procedure for identifying heads, complements and adjuncts
which is crucial to this process. Appendix B lists an number of systematic changes to the original Treebank
that were made and may be of general interest to anyone using any version of the Penn Treebank, particu-
larly the original Treebank II, to whose originators and annotators we remain eternally indebted. Appendix
D describes the file format of this release of CCGbank.

Previous versions of CCGbank are described in Hockenmaier (2003a) and also in Hockenmaier and
Steedman (2002a). Hockenmaier et al. (2004) describes a precursor to the translation algorithm presented
here which only aims to extract a CCG lexicon from the Penn Treebank, not to create a corpus of CCG
derivations. This manual describes the version of CCGbank that is released by the Linguistic Data Consor-
tium (LDC) under catalog number LDC2005T13 (ISBN 1-58563-340-2).

6

Chapter 2

Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG, Steedman (1996, 2000)), is a grammatical theory which provides
a completely transparent interface between surface syntax and underlying semantics. Each (complete or
partial) syntactic derivation corresponds directly to an interpretable structure. This allows CCG to provide
an account for the incremental nature of human language processing. The syntactic rules of CCG are based
on the categorial calculus of Ajdukiewicz (1935) and Bar-Hillel (1953) as well as on the combinatory logic
of Curry and Feys (1958). The main attraction of using CCG for parsing is that it facilitates the recovery of
the non-local dependencies involved in constructions such as extraction, coordination, control and raising.

This chapter provides a brief introduction to CCG. We focus in particular on the definition of cate-
gories and the combinatory rules, the role of derivations within CCG, the problem of so-called “spurious
ambiguity”, and on the representation of predicate-argument structure in CCGbank.

The main references for CCG are Steedman (2000, 1996), and the reader is referred to these for further
details on other aspects of CCG. Wood (1993) provides a good overview of different variants of categorial
grammar.

2.1 Categories and the lexicon

In categorial grammar, words are associated with very specific categories which define their syntactic be-
haviour. A set of universal rules defines how words and other constituents can be combined according to
their categories. Variants of categorial grammar differ in the rules they allow, but categories as defined
below are the building blocks of any categorial grammar.

In general, the set of syntactic categories � is defined recursively as follows:

Atomic categories: the grammar for each language is assumed to define a finite set of atomic categories,
usually ������������ � �

Complex categories: if ��� � � , then ������� � �

Complex categories ��� or ��� are functors with an argument � and a result �. Here we assume a di-
rectional variant of categorial grammar, which differentiates between arguments to the right of the functor
(indicated by the forward slash �) and arguments to the left of the functor (indicated by the backslash �).
We follow Steedman’s notation to represent complex functor categories. In this notation, the result category
always precedes the argument. Hence the category ��������� for transitive verbs in English encodes the

7

information that the verb takes a noun phrase to its right, and another noun phrase to its left to form a
sentence. 1

The lexicon specifies the categories that the words of a language can take. For instance, a categorial
lexicon for English might contain the following entries:

(1) John � ��

shares � ��

buys � ���������
sleeps � ����
well � �������������

Here, John and shares are noun phrases. Buys is a transitive verb. Sleeps is intransitive, as it only takes
one NP argument.Well can modify sleeps, as it takes an intransitive verb (or a verb phrase) as argument to
return a constituent of the same category.

As defined above, the set of categories is infinite. However, it is tacitly assumed that the lexicon of any
specific language will only use a finite subset of these categories, and in CCG there is a strong interaction
between the lexical categories of a language and the combinatory rules allowed in its grammar.2

Each syntactic category also has a semantic interpretation whose type must correspond to that of the
syntactic category. If one chooses to represent semantic interpretations in the language of the λ -calculus
(as is commonly done), then each (syntactic) argument of a complex functor category has a semantic coun-
terpart in the form of a bound variable in the λ -term. Semantic interpretations can be arbitrarily complex
objects (as long as there is a correspondence to the syntactic category). However, logical forms are not
represented in CCGbank. Therefore it is sufficient for our purposes to represent semantic interpretations as
simple expressions like the following:

(2) John � �� : john�

shares � �� : shares�

buys � ��������� : λx�λy�buys�xy
sleeps � ���� : λx�sleeps�x
well � ������������� : λ f �λx�well�� f x�

In CCGbank, a different representation of predicate-argument structure was chosen. This representation
is explained in section 2.5.

2.2 AB categorial grammar

The system defined by Ajdukiewicz (1935) and Bar-Hillel (1953) (hence: AB categorial grammar) forms the
basis for CCG and all other variants of categorial grammar. In AB categorial grammar, categories can only
combine through function application. In directional variants of categorial grammar, there are two versions
of function application, respecting the directionality of the slash in the syntactic category. However, their
effect on the semantic interpretation is the same:3

(3) Forward Application:
��� : f � : a � � : f �a�

1There is an alternative notation originating in Lambek (1958), which also uses forward slashes and backslashes, but puts the
argument “underneath” the backslash. In this notation, a transitive verb becomes ���������

2A recent proposal by Baldridge (2002) presents a refinement of CCG, called Multi-Modal CCG, which assumes a universal set of
combinatory rules, with all the language-specific variation being accounted for in the lexicon.

3Categorial grammar rule schemata are traditionally presented in a bottom-up fashion. In the remainder of this report, rules that are
presented in the form α � X are written in bottom-up manner.

8

Backward Application:
� : a ��� : f � � : f �a�

The rule of forward application states that if a constituent with category ��� is immediately followed
by a constituent with category�, they can be combined to form a constituent with category�. Analogously,
backward application allows a constituent ��� that is immediately preceded by a constituent with category
� to combine with this constituent to form a new constituent of category �.

A string α is considered grammatical if each word in the string can be assigned a category (as defined
by the lexicon) so that the lexical categories of the words in α can be combined (according to the rules
of the grammar) to form a constituent. The process of combining constituents in this manner is called a
derivation, although we will also sometimes refer to the syntactic structure constructed by this process as
a derivation. Since derivations proceed bottom-up, starting from the words, they are usually represented in
the following manner:

(4) John buys shares

�� : John� ��������� : λx�λy�buys�xy ��shares�
�

���� : λy�buys�shares�y
�

� : buys�shares�John�

But note that the constituent structure induced by this derivation corresponds to a tree:

(5) �

��

John

����

���������

buys

��

shares

In this report, derivations will often be represented as trees, since this representation follows naturally
from the translation algorithm. The correspondence to the more traditional notation is assumed to be under-
stood.

2.3 The combinatory rules of CCG

CCG extends AB categorial grammar by a set of rule schemata based on the combinators of combinatory
logic (Curry and Feys, 1958). These combinatory rules enable a succint analysis of the long-range depen-
dencies involved in extraction and coordination constructions.

Syntactically, they allow analyses of extraction and coordinate constructions which use the same lexical
categories for the heads of such constructions as in the canonical case. Semantically, they guarantee that
non-local dependencies fill the same argument slots as local dependencies.

Vijay-Shanker and Weir (1994) demonstrate that both CCG and Tree-Adjoining Grammar (TAG, Joshi
et al. (1975)) are weakly equivalent to Linear Indexed Grammar (LIG) and belong to a family of languages
whose generative power they identify as “mildly context-sensitive”. Therefore, CCG is more expressive
than AB categorial grammar, which has been shown by Bar-Hillel et al. (1960) to be context-free. Note
that combinatory logic itself does not impose any restrictions on the generative power of such combinatory
rules. However, Steedman (2000, p. 54) advocates the following principles to which all combinatory rules
must adhere in order to keep the generative power of the grammar under control:

The Principle of Adjacency Combinatory rules may only apply to finitely many phonologically realized
and string-adjacent entities

9

The Principle of Consistency All syntactic combinatory rules must be consistent with the directionality
of the principal function.

The Principle of Inheritance If the category that results from the application of a combinatory rule is a
function category, then the slash defining directionality for a given argument in that category will be
the same as the one(s) defining directionality for the corresponding argument(s) in the input func-
tion(s).

Composition allows two functor categories to combine to form another functor, whereas type-raising is
a unary rule which reverts the roles of functor and argument by allowing an argument category � to change
into a functor category������� (or �������), where��� can be instantiated by any functor category that
takes � as argument.

(6) a. Forward Composition:
��� : f ��� : g �

�
��� : λx� f �g�x��

b. Forward Crossing Composition:
��� : f ��� : g �

�
��� : λx� f �g�x��

c. Backward Composition:
��� : g ��� : f �

�
��� : λx� f �g�x��

d. Backward Crossing Composition:
��� : g ��� : f �

�
��� : λx� f �g�x��

(7) a. Forward Type-raising:
� : a �

�
������� : λ f � f �a�

where ��� is a parametrically licensed category for the language.

b. Backward Type-raising:
� : a �

�
�������λ f � f �a�

where ��� is a parametrically licensed category for the language.

Composition and Type-raising interact to capture the kinds of long-distance dependencies involved in ex-
traction (8a) and right node raising (8b) as well as argument cluster coordinations (8c) among others:

(8) a. that IBM bought

�������������� �� ���������
��

��������
��

����
�

�����

b. She bought and sold shares

�� ��������� ���� ��������� ��
�Φ�

���������
�

����
�

�

c. spent $325,000 in 1989 and $340,000 in 1990

����� �� ����� ���� �� �����
�� ��

���������� ����������
�� ��

���������� ����������
�Φ�

����������
�

��

10

Note that in all of these constructions the verbs, bought and spent, have the same lexical categories as when
their arguments are in canonical position.

In fact, in CCG all bounded and unbounded dependencies are projected from the lexicon, something
which is expressed by the following two principles (Steedman, 2000, p.32):

The Principle of Lexical Head Government: Both bounded and unbounded syntactic dependencies are
specified by the lexical syntactic type of their head.

The Principle of Head Categorial Uniqueness: A single nondisjunctive lexical category for the head of
a given construction specifies both the bounded dependencies that arise when its complements are in
canonical position and the unbounded dependencies that arise when those complements are displaced
under relativization, coordination, and the like.

As stated above, composition is only allowed into functions of one argument. Note that this is also the
case in the argument cluster construction above, since the second functor has only one argument �����,
albeit a complex functor category in itself. However, generalized composition is required for sentences such
as the following (Steedman, 2000, p.42):

(9) I offered and may give a flower to a policeman

�� ������������ ���� ������������� ������������ �� ��
��2

������������

Steedman defines a “$ convention” which allows him to schematize over functor categories with a varying
number of argument but the same target, or innermost result category.

(10) The $ convention:
For a category α , α$ (respectively α�$, α�$) denotes the set containing α and all functions (re-
spectively leftward function, rightward functions) into a category in α$ (respectively α�$, α�$).

Then generalized composition can be defined as follows:

(11) a. Generalized Forward Composition:
��� : f ������$1 : ���λ z�gz��� �

��n
������$1 : ���λ z� f �g�z�����

b. Generalized Forward Crossing Composition:
��� : f �����$1 : ���λ z�gz��� �

��n
�

�����$1 : ���λ z� f �g�z�����

c. Generalized Backward Composition:
������$1 : ���λ z�gz��� ��� : f �

��n
������$1 : ���λ z� f �g�z�����

d. Generalized Backward Crossing Composition:
������$1 : ���λ z�gz��� ��� : f �

��n
�

�����$1 : ���λ z� f �g�z�����

Each of these rules corresponds to a family of rules for each arity n of the secondary functor. Without
any restriction on the arity of the secondary functor, full context-sensitivity would be obtained. However,
there has not yet been any evidence that this is required to capture natural language syntax. Therefore,
only schemata up to a bounded arity n (Steedman assumes 4 for English) are allowed in practice. The
restrictions on the type-raising rules stated above serve a similar purpose. Together, they preserve mild
context-sensitivity.

Another combinatory rule, substitution, is required for parasitic gaps, such as the following example:

11

(12) articles that I file without reading

�� �������������� �� ����� �����������	
� ���	
����
�� ��

�������� ����������
��

�

����������
��

����

Substitution is defined as follows:

(13) a. Forward Crossing Substitution:
������� : f ��� :g �

�
��� :λx� f x�g�x��

b. Backward Substitution:
��� :g ������� : f �

�
��� :λx� f x�g�x��

c. Backward Crossing Substitution:
��� :g ������� : f �

�
��� :λx� f x�g�x��

d. Forward Substitution:
������� : f ��� :g �

�
��� :λx� f x�g�x��

2.4 Normal-form derivations

“Spurious” ambiguity arises through the availability of type-raising and composition. Depending on the
lexical categories, these operations may make any binary branching derivation structure for a string avail-
able. Under these circumstances, the number of derivations grows as a function of the Catalan number4 of
the words in the string. However, Hepple and Morrill (1989) show for a fragment of CCG consisting of ap-
plication, forward type-raising and forward composition that derivations can always be reduced to a normal
form, in which composition and type-raising are only used when syntactically necessary. Vijay-Shanker
and Weir (1990) demonstrate that spurious ambiguity that arises through composition can be detected and
eliminated by comparing alternative derivations of the form ��αβ �γ� and �α�βγ�� for substrings α , β and
γ . If the right-branching derivation structure is considered normal-form, then it suffices to mark all deriva-
tions that have a left-branching structure and to prefer unmarked derivations whenever there is a choice.
Although Vijay-Shanker and Weir propose this to be done in a stage following recognition, their method
could also be used during parsing. Such a proposal is made by Eisner (1996), who considers a restricted
version of CCG without type-raising. Like Vijay-Shanker and Weir, Eisner suggests to mark constituents
that are not in normal form. However, he makes the slightly stronger proposal that it suffices to assign tags
to categories that are produced by composition rules, so that no constituent which is the result of a forward
(backward) composition can serve as the primary functor in another forward (backward) composition.

The derivations in CCGbank are in a normal form which uses type-raising and composition only when
necessary, eg. for relative clauses, right node raising and argument cluster coordination. Composition is also
used when the adjuncts are combined with their heads: VP adjuncts all have the category �������������
or �������������, regardless of whether they modify a constituent with category ����, ���������, or
��������������.

2.5 Predicate-argument structure in CCGbank

In this report, the term predicate-argument structure is used to refer to the list of local and long-range
dependencies between lexical items that are defined by a CCG derivation. The ������ and the ������ files

4The Catalan number Cn �
�2n�!

�n�1�!n! gives the number of possible binary bracketings of a string of n�1 words.

12

contain this list for each derivation in CCGbank. These bilexical dependencies can be used to approximate
the underlying logical form. They can also serve as features in the probability models used by statistical
parsers (see eg. Hockenmaier (2003b) and Clark and Curran (2004)).

This section explains how predicate-argument structure is represented in CCGbank and gives a descrip-
tion of the data structures and operations that implement this representation in our parser (Hockenmaier,
2003a). Categories and their lexical dependencies are represented as feature structures, following previous
work in categorial grammar such as Zeevat et al. (1987), Uszkoreit (1986) and Villavicencio (2002). How-
ever, these feature structures are merely an implementational device to express the information represented
in CCG categories. General operations that might raise the generative power of the grammar (as discussed
by Carpenter (1991)) are not allowed.

After some introductory terminology, lexical entries for proper nouns, intransitive verbs and adverbs are
given, and function application is used to exemplify the unify-operation which is necessary to implement
the combinatory rules. Then, implementations of coordination and the combinatory rules of type-raising,
composition and substitution are presented. In CCGbank, a number of non-combinatory rules are used to
deal with complex adjuncts and extraposed phrases and to represent coordination. Although these rules are
only motivated in detail in the following chapter, their effect on predicate-argument structure is described
here.

In CCG, bounded and unbounded dependencies are projected from the lexicon. For instance, the lexical
catgory for a relative pronoun is �������������� or ��������������: the relative pronoun takes a
sentence missing a subject or an object to its right and a noun phrase to its left.5 The entire constituent
is also a noun phrase. The noun phrase argument of the relative pronoun is also the missing object or
subject of its sentential argument. Informally, this identity relation can be represented by co-indexing the
two NPs, eg. ������i�������i�. We will use this example to demonstrate how such identity relations can
be implemented to obtain the correct predicate-argument dependencies.

The lexical categories in CCGbank have to be augmented with appropriate co-indexation information
in order to represent these projected dependencies. Therefore, each lexical category in the ������ files is
represented both by its syntactic type (eg. ������������������) and by a string representation of the
underlying feature structure. This section concludes with a brief description of the dependencies that are
projected by the lexical categories of CCGbank.

2.5.1 Category objects

We will distinguish categories (the abstract types the grammar is defined over) from category objects (the
data structures a parser operates on); however, this distinction is omitted when the difference is clear, so
that a symbol like �������� can either refer to the abstract category or to a data structure.
Atomic categories are categories without any arguments, eg. ����� (declarative sentence), �� (noun

phrase) etc. We assume a simple feature system such as the one described in section 3.4, whereby two
atomic categories of the same type (eg. �) can unify if their features match. This is the case if either both
carry the same feature (eg. ����� and �����), or if only one of them carries a feature. Hence, ����� and �
match, but ���� and ����� do not match.
Complex categories are functor categorieswith one or more arguments, eg.���	����, �������������,

������������������. The arguments of complex categories are numbered from 1 to n, starting at the in-
nermost argument, where n is the arity of the functor, eg. ���������1����2, ������1������������2. Ar-
guments can themselves be complex categories; for instance the second argument of ������������������
is ��������. Two complex categories of the same type match if each of their corresponding arguments
match.

5Here and in the remainder of this report we assume the (semantically incorrect) relative clause analysis that is obtained from the
Penn Treebank, in which the relative clause attaches at the NP level. In order to obtain correct scope, it should attach at the N level.

13

Category objects are the data structures that the parser operates on. They represent syntactic categories
and the predicate-argument dependencies that correspond to these categories. An atomic category object �
has three fields,
�CAT�HEADS�DEPS�:

� A category symbol CAT.

� A list of lexical heads HEADS.

� A list of (unfilled) dependency relations DEPS.

HEADS and DEPS can be empty or uninstantiated. DEPS is a list of dependency relations that hold for
each of the element of the HEADS list. When both lists are instantiated with non-empty lists, each elements
of DEPS specifies one relation (“X is the ith argument of the lexical head Y”) that holds for all elements X
of HEADS. Lexical functor categories instantiate the DEPS attribute of their arguments. In the following the
DEPS attribute is usually omitted when both it and the HEADS attribute are instantiated to non-empty lists,
and it is also sometimes omitted when it is an empty list.

A complex category object �CAT�HEADS�DEPS�RES�ARG�DIR� represents a functor with argument cat-
egory ARG and result category RES. DIR indicates the directionality of the argument: FW (forward, �) or
BW (backward, �).

In principle, this representation could be extended; in particular, a semantic interpretation (or logical
form) which corresponds to the syntactic category could be provided. However, since logical forms are
not represented in CCGbank, this is omitted in the present description. Similarly, in the current version of
our parser, filled dependency relations are not stored within the categories themselves, but in another data
structure that forms part of the representation of edges in the chart. Therefore, filled dependency relations
are also omitted here.

The lexicon� is a set of category-word pairs (lexical entries) �c�w�. If �c�w� is a lexical entry, then c
is a lexical category of w. We consider words to be fully inflected word forms, eg. buys, shares. A derived
category is a category object that arises from one or more lexical categories through the application of zero
or more combinatory rules. Each derived category has a list of lexical heads. A lexical head is a �c�w� pair,
where w is a word and c a symbol denoting a lexical category of w.

If the lexical category of a word is complex, the lexicon specifies dependency relations that hold between
the heads of the arguments of the category and the head of the lexical category itself. Formally, we represent
a dependency relation as a 3-tuple ��c�w�� i��c��w���, where c is a functor category with arity � i, and
�c��w�� is a lexical head of the ith argument of c.

A dependency relation ��c�w�� i��c��w��� holds for a derived category C if �c��w�� is a lexical head of
C, and C is the ith argument of �c�w�. The attribute DEPS is a list of all dependency relations that hold for
this particular category. We will use the abbreviation Arg�i��c�w�� to indicate that the lexical heads of this
category are the ith argument of �c�w�. If HEAD has more than one element, this relation holds for each of
its elements.

If an argument of a lexical category is complex, the lexicon can also specify identity relations between
arguments of the complex argument and other arguments of the same category. There are two kinds of
identity relations: the identity of categories is used to indicate that the result and argument categories of
a modifer ��� or ��� are the same, whereas the identity of heads is used to indicate that head of the
result � of a functor ��� is the same as the head of the functor itself. Each category object has therefore
two indices: a head index and a category index. Objects with the same category index necessarily have
the same head index, but not vice versa. Head identity relations also encode certain kinds of (bounded
and unbounded) non-local dependencies. For instance, in the lexical category for object extraction relative
pronouns, ������������������, the head of the first argument is identical to the head of the�� argument
of the second argument. We indicate this identity by indices on the categories: ������i�����������i�.

14

Section 2.5.6 explain this mechanism in detail, and appendix C lists all lexical entries in sections 02-21
where this mechanism is used.

2.5.2 Some lexical entries

Here is the atomic category object representing the�� John. The lexical head of this category is ����John�.
No dependency relations are specified. �

�CAT: ��

DEPS: � �
HEAD:�����John��

�
�

This is the complex category object for the intransitive verb resigned:6

�
�������������

CAT: ��������
DIR: BW
HEAD:�����������resigned�� 1

ARG:

�
�CAT: ��

DEPS: �Arg�1�����������resigned���
HEAD:� �

�
�

RES:

�
�CAT: �����
DEPS: � �
HEAD: 1

�
�

�
�������������

Its lexical head is ����������resigned�. The head of the �� argument is empty; however, a dependency
relation between the �� and the lexical head of the category is established. The head of the result is the
same as the head of the entire category (indicated by the index 1).

The category object of a modifier, such as the adverb ���������������yesterday�, is different from that
of a verb or a noun phrase. When yesterday is combined with a verb or verb phrase, such as resigned,
the head of the resulting constituent resigned yesterday is not the adverb, but the head of the verb phrase,
resigned. There is a dependency relation between the lexical head of the modifier and the lexical head of
the argument. The result category is unified with the argument category; therefore its head is the same as
the head of the argument:�

���������

CAT: �������������
DIR: BW
HEAD:����������������yesterday��

ARG:

1
�
�CAT: ����
DEPS: �Arg�2�����������������yesterday��
HEAD:� �

�
�

RES: 1

�
���������

When this category is applied to a verb phrase argument (or composed with a partially completed verb
phrase), and the HEAD of its argument is instantiated with a non-empty list, the dependencies specified
by the DEPS of the argument are filled. We could therefore omit the DEPS feature in the co-indexed result
category RES.

6In CCGbank, categories are represented as strings, eg. ���������. Features such as ����� (declarative) or ��� (bare infinitive) are
used to distinguish different kinds of sentences and verb phrases (see section 3.4 for a description of these features). These features
ought to be represented directly as attribute-value pairs in the representation used in this chapter. However, for simplicity’s sake, in
CCGbank these features are also represented on the category strings. Since the grammar underlying CCGbank does not have agreement
features, this is also omitted in the examples in this chapter.

15

We assume that the head of a noun phrase is the head of the noun. Therefore, the lexical category of
a determiner such as ����	����� the� specifies that the head of its results is the same as the head of its
argument:7

�
�������������

CAT: ���	����
DIR: FW
HEAD:�����	����� the��

ARG:

�
�CAT: �

DEPS: �Arg�1�����	����� the���
HEAD:� � 1

�
�

RES:

�
�CAT: ��

DEPS: � �
HEAD: 1

�
�

�
�������������

The lexical category for possessive �����	��������� ’s� is defined analogously.

2.5.3 Function application and the unify-operation

When a functor category (such as the �������� resigned) is applied to an argument (eg. to the �� John),
its argument is unified with the category it is applied to:

�
�������������

CAT: ��������
DIR: BW
HEAD:�����������resigned�� 1

ARG:

�
�CAT: ��

DEPS: �Arg�1�����������resigned���
HEAD:�����John��

�
�

RES:

�
�CAT: �����
DEPS: � �
HEAD: 1

�
�

�
�������������

This establishes the dependency relation �����������resigned��1��John����� between John and resigned,
and returns the result category of the functor:

�
�CAT: �����
DEPS: � �
HEAD:��resigned�����������

�
�

We can define a unification operation unify C�C	C over category objects as follows:

� Two atomic category objects C� � �CAT�� HEADS�� DEPS�� and
C�� � �CAT��� HEADS��� DEPS��� can unify if the values of CAT� and CAT�� match. The result category
C � �CAT� HEADS� DEPS� is defined as follows:

– CAT: unify CAT��CAT��.

– HEADS: concatenate HEADS� and HEADS��.

– DEPS: concatenate DEPS� and DEPS��.
7In the current version, this treatment was not adopted for lexical categories of determiners which have other categories, such as

that of temporal modifiers (eg. “that year”).

16

If one of CAT� and CAT�� carries a feature (such as �����), the result of unifying CAT� and CAT�� also
carries this feature. If HEADS and DEPS are both non-empty, then all dep � DEPS must hold for all
elements h of HEADS. Hence, the dependencies filled by this unification operation are given as the
elements of the Cartesian product of HEADS and DEPS.

� Two complex category objects C� and C�� with C� � �CAT�� HEADS�� DEPS�� ARG�� RES�� and
C�� � �CAT��� HEADS��� DEPS��� ARG��� RES��� can unify if CAT� and CAT�� match. The result cat-
egoryC � �CAT�HEADS�DEPS�ARG�RES� is defined as follows:

– CAT: unify CAT� and CAT��.

– HEADS: concatenate HEADS� and HEADS��.

– DEPS: concatenate DEPS� and DEPS��.

– ARG: unify ARG� and ARG��

– RES: unify RES� and RES��

Here, unification of category strings is CAT� and CAT�� is extended in the obvious manner to deal with
features on either CAT� or CAT��.

The concatenation of two lists L1, L2 is defined in the usual manner: if L2 is empty, return L1. Otherwise,
append all elements of L2 to the end of L1, and return the result.
Function application is then defined as follows:

(14) A functor category ����� can be applied to an argument category ��� if �� and ��� unify to �. If
����� is applied to ���, unify �� and ��� to yield a category ���, where � is identical to �� except
for any possible instantiation of variables that might have taken place through the unification of ��

and ���. Return the result � of ���.

Above, it was stated informally that in the lexical entry of the adverb
������������� yesterday, the result ���� is unified with the argument ����. Here is the intermediate
result of applying yesterday to resigned; the result category is co-indexed with the argument category:

�
�����������������������

CAT: �������������
DIR: BW
HEAD:����������������yesterday��

ARG:

1
�
���������������

CAT: ��������
DEPS: �Arg�2����������������yesterday���
DIR: BW
HEAD:�����������resigned�� 2

ARG:

�
�CAT: ��

DEPS: �Arg�1�����������resigned���
HEAD:� �

�
�

RES:

�
�CAT: �����
DEPS: � �
HEAD: 2

�
�

�
���������������

RES: 1

�
�����������������������

Thus, if we omit the (filled) dependency between yesterday and resigned, the result of this function appli-
cation is like the category of resigned itself:

17

�
�������������

CAT: ��������
DIR: BW
HEAD:�����������resigned�� 1

ARG:

�
�CAT: ��

DEPS: �Arg�1�����������resigned���
HEAD:� �

�
�

RES:

�
�CAT: �����
DEPS: � �
HEAD:�����������resigned�� 1

�
�

�
�������������

When this verb phrase combines with a subject such as John, the subject is an argument of the verb, not the
verb phrase modifier.

2.5.4 The combinatory rules

This section explains how the combinatory rules type-raising, composition and substitution are imple-
mented.

Type-raising Type-raising a constituent with category � and lexical head HX to ������� results in a
category whose head is HX . The two � categories unify, and have the same head as the argument ���.
Backward type-raising is defined in a similar fashion.

Here is the �� John typeraised to ��������:

�
���������������������

CAT: ��������
DIR: FW
HEAD:�����John�� 2

ARG:

�
�������������

CAT: ����
DIR: BW
HEAD: 1

ARG:

�
�CAT: ��

DEPS: � �
HEAD: 2

�
�

RES:

3
�
�CAT: �

DEPS: � �
HEAD: 1

�
�

�
�������������

RES: 3

�
���������������������

This can then be applied to the �������� resigned (since the ���� and
�������� match). Here is the intermediate result of unifiying the argument of the type-raised category
with resigned:

18

�
���������������������

CAT: ��������
DIR: FW
HEAD:�����John�� 2

ARG:

�
�������������

CAT: ��������
DIR: BW
HEAD: 1

ARG:

�
�CAT: ��

DEPS: �Arg�1�����������resigned���
HEAD: 2

�
�

RES:

3
�
�CAT: �����
DEPS: � �
HEAD:�����������resigned�� 1

�
�

�
�������������

RES: 3

�
���������������������

And here is the result category of this application:
�
�CAT: �

DEPS: � �
HEAD:�����������resigned�� 1

�
�

Composition Function composition is defined in a similar manner to function application. Here we only
give the definition of forward composition, since backward composition and the crossing variants are de-
fined analogously.

(15) A (primary) functor category ����� can be composed with a (secondary) functor category �������

if �� and ��� unify to �.8 If ����� is composed ������, unify �� and ��� to yield categories ���
and ���, where � is identical to �� and � is identical to ���, except for any possible instantiation
of variables that might have taken place through the unification of �� and ���. The result of this
composition is a category ���.

Let us consider an example. A transitive verb such as buys has the following lexical entry:
�
��������������������������

CAT: �������������
DIR: FW
HEAD:����������������buys�� 1

ARG:

�
�CAT: ��

DEPS: �Arg�2����������������buys���
HEAD:� �

�
�

RES:

�
�������������

CAT: ��������
DIR: BW
HEAD:����������������buys�� 1

ARG:

�
�CAT: ��

DEPS: �Arg�1����������������buys���
HEAD:� �

�
�

RES:

�
�CAT: �����
DEPS: � �
HEAD:����������������buys�� 1

�
�

�
�������������

�
��������������������������

8We make the usual assumption that the arity of �� and ��� is bounded.

19

When the �������� “John” is composed with this category, its argument ���� is instantiated with the
result �������� of the ������������� “buys”, which in turn instantiates the subject �� of buys with
John. The � in the type-raised �������� (“John”) is instantiated with an ����� headed by buys:

�
���������������������

CAT: ��������
DIR: FW
HEAD:�����John�� 2

ARG:

�
�������������

CAT: ��������
DIR: BW
HEAD: 1

ARG:

�
�CAT: ��

DEPS: �Arg�1��buys�����������������
HEAD: 2

�
�

RES:

3
�
�CAT: �����
DEPS: � �
HEAD:��buys���������������� 1

�
�

�
�������������

RES: 3

�
���������������������

Unifying the �������� of the transitive ������������� “buys” with the ���� of the type-raised noun
phrase does not instantiate any variables in the object NP of “buys”. Therefore, the resulting ��������
(“John buys”) is as follows:

�
���������������

CAT: ��������
DIR: FW
DEPS: � �
HEAD:����������������buys�� 1

ARG:

�
�CAT: ��

DEPS: �Arg�2����������������buys���
HEAD:� �

�
�

RES:

�
�CAT: �����
DEPS: � �
HEAD: 1

�
�

�
���������������

So-called argument cluster coordination is another example where composition and type-raising are
required. This is a construction where, unlike in the case considered above, composition does not result in
any filled dependencies. Consider the following derivation:9

(16) give a dog a bone and a policeman a flower

	���� �� �� ���� �� ��
�� �� �� ��

	���	����� ���	� 	���	����� ���	�
�� ��

����	����� ����	�����
�Φ�

����	�����
�

��

This is the type-raised category for a bone:

9We use 	
 to abbreviate the category of a transitive verb, ���������.

20

�
������������������

CAT: ������������������
DIR: BW

ARG:

�
�����

CAT: ���������
DIR: FW

ARG:

�
CAT: ��

HEAD:����dog�

�

RES: 1

�
�����

RES:

1
�
�����

CAT: ����
DIR: BW

ARG:
	
CAT:��

RES:

	
CAT:�

�
�����

�
������������������

And here is the (simplified) type-raised category for a dog:�
������������������

CAT: ����������������������������
DIR: BW

ARG:

�
�����

CAT: ��������������
DIR: FW

ARG:

�
CAT: ��

HEAD:����dog�

�

RES: 1

�
�����

RES:

1
�
�����

CAT: ���������
DIR: FW

ARG:
	
CAT:��

RES:

	
CAT:����

�
�����

�
������������������

This is the result of composing a bone with a dog – no dependencies are filled:�
�������������������

CAT: ����������������������������
DIR: BW

ARG:

�
���������������

CAT: ��������������
DIR: FW

ARG:

�
CAT: ��

HEAD:����bone�

�

RES:

�
������

CAT: ���������
DIR: FW

ARG:

�
CAT: ��

HEAD:����dog�

�

RES:
1
	
CAT:����

�
������

�
���������������

RES: 1

�
�������������������

Substitution Backward crossing substitution is used to account for parasitic gaps in English, such as the
following:

(17) articles that I file without reading

�� �������������� �� ������������� ������������������
��

�

�������������

Recall that backward crossing substitution is defined as follows:

21

(18) ��� ������� �
�
���

Here, the �s and �s are both unified. Substitution is similar to conjunction in that the dependencies that
hold for the � argument of the resulting ��� are the union of the dependencies that hold for the � argument
of the first functor and those that hold for the � argument of the second functor. This operation can be
implemented as follows:

(19) A functor category����� and a functor category ������������� can be combined through substitution
if �� and ��� unify to � and if �� and ��� unify to �. If ����� and ������������� are combined through
substitution, unify �� and ��� and �� and ��� to yield categories ��� and �������, where � is
identical to �� except for any possible instantiation of variables that might have taken place through
the unification of �� and ��� and �� and ���. The result of this substitution is a category ���.

In the parasitic gap example, the ��� of the rule schema is instantiated with �������������, and the
������� with ������������������. This is the category object for without reading:

�
�������������������

CAT: ������������������
DIR: FW
HEAD:

ARG:

�
�CAT: ��

DEPS: �Arg�2����	
���������reading���
HEAD:� �

�
�

RES:

�
�������

CAT: �������������
DIR: BW
HEAD:

ARG:
2
�
CAT:����
DIR: BW

�

RES: 2

�
�������

�
�������������������

The ������������� result of this category is similar to the adverb category given above for yesterday in
that its result is unified with its argument. Hence, the � of the rule schema is unified with the �. Therefore,
substitution results in the following category for file without reading:

�
��������������������������

CAT: �������������
DIR: FW
HEAD:����������������file�� 1

ARG:

�
�CAT: ��

DEPS: �Arg�2����������������file���Arg�2����	
���������reading���
HEAD:� �

�
�

RES:

�
�������������

CAT: ��������
DIR: BW
HEAD:����������������file�� 1

ARG:

�
�CAT: ��

DEPS: �Arg�1����������������file���
HEAD:� �

�
�

RES:

�
�CAT: �����
DEPS: � �
HEAD:����������������file�� 1

�
�

�
�������������

�
��������������������������

22

2.5.5 Non-combinatory rules

The grammar underlying CCGbank (described in chapter 3) uses a number of non-combinatory rules in
order to deal with punctuation, coordination, and certain types of complex adjuncts. This section describes
how these rules can be implemented in the framework developed in this chapter.

Punctuation In CCGbank, punctuation marks such as commas, semicolons, full stops etc. do not have
real CCG categories, but carry instead categories derived from their part-of-speech tags, such as “�”, “;” etc.
There are a number of rules dealing with punctuation, such as ����� � � �����. We assume that there are
no dependencies between words and punctuation marks, and that the result of such a rule is the same as the
category of the non-punctuation category.

Here is the lexical category for the full stop:
�
�CAT: �
DEPS: � �
HEAD:���� .��

�
�

Certain types of punctuation marks, such as opening brackets or dashes, can have specific lexical categories
(such as ���������������–�, see section 3.7.4) and are therefore treated like ordinary lexical items. The
ampersand “&” is also treated like an ordinary lexical item. The plural possessive ’ (as in the parents’) has
also real categories (mainly ���������), and is thus treated like an ordinary lexical item.

Coordination Coordination (see section 3.7.1) is encoded in CCGbank with an intermediate level����	��,
eg.:

(20)

������

�

������

����

This corresponds to rules of the form:

(21) a. ��	� � � ����	��

b. � � � ����	��

c. � ����	�� � �

Commas which occur in coordinate constructions have the same lexical category as described in the previ-
ous paragraph. Conjunctions have similar categories, eg.:

�
�CAT: �
DEPS: � �
HEAD:����	��and��

�
�

Coordination itself is implemented as follows: When coordinating two constituents � and �� with the same
category, the result ��� is the unification of � and �� as defined above. Hence, the head and dependency
relations of ��� and its subcategories are the concatenation of the corresponding head and dependency
relations of � and ��. Here is the result of the coordination of two transitive verbs buy and sell with lexical
category ������������:

23

�
��������������������������

CAT: ������������
DIR: FW
HEAD:���������������buys����������������sells�� 1

ARG:

�
�CAT: ��

DEPS:�Arg�2���������������buy���Arg�2���������������sell���
HEAD:� �

�
�

RES:

�
�������������

CAT: �������
DIR: BW
HEAD:1

ARG:

�
�CAT: ��

DEPS:�Arg�1���������������buy���Arg�1���������������sell���
HEAD:� �

�
�

RES:

�
�CAT: ����
DEPS:� �
HEAD:1

�
�

�
�������������

�
��������������������������

Note that now there are two dependency relations that hold for each of the arguments. Furthermore, this
category has two lexical heads.

In CCGbank, the coordination of constituents that do not have the same category (as in “is 69 years old and chairman”)
is treated by the following rule schema (see section 3.7.2 for details):

(22) ��	� � � ����	��

This is implemented in the same way as the unary type-changing rules described in the next paragraph; the
head of the resulting ����	�� is the same as the head of the � conjunct.

Unary type-changing rules Apart from type-raising, there are several genuine type-changing rules in
CCGbank. The simplest and most common one is � � ��. However, this is merely a change from a
complete noun phrase to a bare noun phrase, which can be implemented by simply replacing the top-level
category string � with ��. Another type of unary rule which appears once in every complete tree is of
the form �� ���. All other type-changing rules are of the form � � ��� or � � ���, where a
complement category � is changed into an adjunct ��� or ��� (see section 3.8 for more details).

We assume that type-changing rules of the form �� ��� or �� ��� can project dependencies if �
is a complex category whose argument is of category �, as in the following rule for postmodifiers of nouns
and noun phrases (again, using the semantically undesirable analysis of N modifiers attaching at the NP
level that is obtained from the Penn Treebank):

� ��������� �����
“the shares John bought”

� ���������� �����
“the shares bought by John”

Binary type-changing rules CCGbank contains a number of binary type-changing rules that are triggered
by certain kinds of NP extraction (explained in section 3.7.5), such as:

(23) a. No dummies, the drivers pointed out they still had space (...)

b. Factories booked $236.74 billion in orders in September,
[NP nearly the same as the $236.79 billion in August]

The binary type-changing rules are as follows:

24

�� � � ���
� �� � ���
� �� � �������������

Note that this is equivalent to assigning the comma categories such as ��������. Being essentially anaphoric,
it is difficult to establish a clear semantic relation between these extracted noun phrases and the sentence or
verb phrase they belong to. Therefore, we assume for the purpose of the model that there is no dependency
between them.

2.5.6 Co-indexation and non-local dependencies

As mentioned above, certain types of bounded and unbounded non-local dependencies are captured in
the predicate-argument structure by co-indexation within complex lexical categories. For example, relative
pronouns, auxiliaries, modals and control verbs are all cases where one (��) argument fills the argument
slot of another ���� argument. We will use the example of relative pronouns and of auxiliaries to show in
detail the effect of co-indexation. Section 2.5.7 lists the different classes of lexical categories that project
long-range dependencies in the current version of CCGbank.

Relative pronouns Here is the category object corresponding to the object extraction relative pronoun
that:10 �

�������������������������

CAT: ������������������
DIR: FW
HEAD:��������������������� that�� 1

ARG:

�
�����

CAT: ��������
DIR: FW
DEPS: �Arg�2��������������������� that���
HEAD:� �
ARG: 2

�
�����

RES:

�
���������

CAT: �����
DIR: BW
HEAD: 1

ARG:

2
�
�CAT: ��

HEAD:� �
DEPS: �Arg�1��������������������� that���

�
�

RES: 2

�
���������

�
�������������������������

This entry specifies that the head of the NP argument of the relative clause be the same as the head of the
NP it modifies. Note that no dependency relations are introduced for the NP argument of the relative clause,
but that instead the dependencies are percolated up to the NP argument of the relative pronoun. Here is the
category of the relative clause which John likes:

10This category assumes that the relative clauses modifies the NP. However, in order to obtain the desired semantic interpretation of
quantified noun phrases, it ought to be attached at the N level. In the Penn Treebank, relative clauses and other modifiers are attached
at the NP level. For simplicity’s sake, we decided to keep this analysis in CCGbank, even though we believe it is incorrect.

25

�
���������

CAT: �����
DIR: BW
HEAD:���������������������which��

ARG:

2
�
�CAT: ��

DEPS: �Arg�2���������������� likes���Arg�1���������������������which���
HEAD:� �

�
�

RES: 2

�
���������

When this is applied to a noun phrase books, the intermediate result is as follows:
�
���������

CAT: �����
DIR: BW
HEAD:�����������������which��

ARG:

�
�CAT: ��

DEPS: �Arg�2���������� likes���Arg�1������������������which����
HEAD:��books����

�
�

RES: 2

�
���������

Auxiliaries We assume that when an auxiliary verb such as will combines with an untensed verb such
as buy, the subject NP is an argument of both verbs. However, the head of this constituent is the auxiliary.
Therefore, the lexical entry for ����������������������will� is as follows:

�
����������������������������������

CAT: ��������������������
DEPS: � �
HEAD:�����������������������will�� 1

ARG:

�
���������

CAT: �������
DIR: BW
HEAD:� � 2

ARG: 3

RES:

�
�CAT: �����
DEPS: � �
HEAD: 1

�
�

�
���������

RES:

�
�������������

CAT: ��������
DIR: BW
HEAD: 1

ARG:

�
�CAT: ��

DEPS: �Arg�1�����������������������will���
HEAD:� �

�
�

3

RES:

�
�CAT: �����
DEPS: � �
HEAD: 1

�
�

�
�������������

�
����������������������������������

Note that the subject NP argument of the untensed ������� verb phrase argument is co-indexed with the
subject NP of the auxiliary. When this category is applied to an ������� argument (which in turn specifies
dependencies on its subject NP), these dependencies also hold for the NP argument of the resulting tensed
�������� verb phrase.

26

2.5.7 Non-local dependencies in CCGbank

Non-local dependencies projected by the lexicon This section lists the types of lexical categories in the
current version of CCGbank that project non-local dependencies. As described in the previous section, non-
local dependencies are encoded by co-indexing arguments of complex arguments of the lexical category
with other arguments of the same lexical category (eg ��������i����������i�, so that there is a dependency
of the co-indexed argument both on the head of this lexical category and on the head of the argument of this
lexical category. Note that expletive it noun phrases (�������) are not co-indexed with other arguments.

Our treatment assumes that all lexical categories of the same type project the same dependencies. While
this generalization leads to the correct results in almost all cases, a more careful word-by-word examination
of the co-indexation rules would be necessary to guarantee that the correct dependencies are obtained in all
cases. We leave this for future versions of the corpus.

When evaluating the accuracy of different parsing models, we might want to distinguish between three
different kinds of dependencies in the predicate-argument structure. Local argument/adjunct dependen-
cies are dependencies between a head and its immediate argument or adjunct when both are in canonical
position, and when the dependency is not mediated through another lexical item. There are two kinds of
non-local dependencies: locally mediated dependencies are dependencies that arise through raising, con-
trol and related constructions. They are not strictly local, since they are projected through co-indexation
in the lexical category of a third lexical item (such as a modal, auxiliary or control verb). Locally me-
diated dependencies hold between two arguments of the same lexical item, and are therefore bounded.
Long-range dependencies are unbounded dependencies, such as object extraction, topicalization, tough
movement and right node raising. Long-range dependencies that arise through co-indexation in the lexicon
differ from locally mediated dependencies in that the projected dependency need not hold between two ar-
guments of the lexical item whose category projects the dependency. For example, object relative pronouns
(������i�����������i�) project a long-range dependency between the noun phrase they modify and an
(unboundedly distant) element inside the relative clause ��������. However, the noun phrase itself need
not be an argument of the head of the relative clause. According to this classification, unembedded subject
relative pronouns project a locally mediated dependency between the noun phrase they modify and the head
of the relative clause (whereas embedded subject relative clauses are analyzed like object relatives in CCG,
and project an unbounded dependency).

A complete list of lexical entries from sections 02-21 that use this co-indexation mechanism to project
dependencies is given in appendix C. Appendix D.2 describes how the indices are represented in the
machine-readable files of CCGbank.

Auxiliaries, modals, raising verbs – ��������i����������i�: In lexical categories that match this pattern,
both ��s are co-indexed. Apart from auxiliaries, modals and raising verbs, this includes entries such
as:

�expects������������������������

�began��������������	
�������

�declined����������������������

These dependencies are locally mediated.

Control verbs – ������������������������: in subject control verbs (forms of promise), the subject ��
argument is co-indexed with the subject of the verb phrase argument:

���������i����������i�����

All other verbs with a category matching ������������������������ (eg. forms of persuade) are
assumed to be object control. In these cases, the object �� is co-indexed with the subject of the verb

27

phrase argument:
�������������������i�����i�

Other cases of object control are categories that have both a verb phrase and a noun phrase argument,
such as �find���������������	
���������� etc. Furthermore, if a verb has a verb phrase argu-
ment, but no other noun phrase argument than the subject, the subject of the verb phrase argument
is co-indexed with the subject of the verb. Dependencies projected by control verbs are also locally
mediated

Subject extraction verbs – �������������i����������i�: lexical entries where the category matches this
pattern (unless the ������� is ���������), are special cases of subject extraction from embedded
sentences. See section 3.9.6. Since this analysis is similar to object extraction, we classify these
dependencies as long-range.

VP modifiers – ������i�
 �����i�����������i�: In categories of pre- and post-verbal modifiers that take
an additional verb phrase argument, the subject of their verb phrase argument is co-indexed with the
subject of the verb phrase they modify. This is a locally mediated dependency.

Small clause PPs – �����������i�����i: in categories that match this pattern (where � can be one of
������, ��, or an adjunct category, such as ����� or �������������), the noun phrase argument
is co-indexed with the subject of the verb phrase argument.
Examples: �with���������������������	
����������, �for������������������������.
This is also a locally mediated dependency.

Relative pronouns – ���i���i����������i� and ���i���i����������i�: The noun phrase argument (and
result) of the lexical category of a relative pronoun is co-indexed with the noun phrase argument of
the relative clause. Subject relative pronouns project locally mediated dependencies, whereas object
relative pronouns project long-range dependencies. This analysis of relative clauses as adjuncts to the
NP is obtained from the Penn Treebank annotation. However, users of CCGbank who are interested
in semantic interpretation should note that this analysis will not yield the desired interpretation for
quantified noun phrases.

Relative pronouns that take a noun argument – ��������
 ��i����i: The head of the noun argument is
co-indexed with the head of the noun phrase argument of the relative clause.
Examples: �whose������������������������, �whatever�������������������.
As before, we consider subject extraction a locally mediated dependency and object extraction long-
range.

Yes-no question words – ��������������i�����i: The noun phrase argument is co-indexed with the sub-
ject of the verb phrase argument. This is a locally mediated dependency.

Tough-adjectives – ����������i����������������i�: eg. tough, difficult, easy,
impossible, reasonable, wrong. These dependencies are long-range.

Non-local dependencies through coordination and type-changing rules Coordination of functor cat-
egories can also create unbounded long-range dependencies. If the direction of the argument of the left
conjunct is forward (as in right node raising), this is a long-range dependency. Similarly, if the direction of
the argument of the right conjunct is backward, then we classify this as a long-range dependency. This also
includes VP coordination.

Unary type-changing rules can also create long-range dependencies. Type-changing rules that corre-
spond to subject extraction are considered locally mediated, whereas type-changing rules that encode object
extraction are considered long-range.

28

Distinguishing non-local from local dependencies In order to be able to distinguish locally mediated
and long-range dependencies from local dependencies, each lexical functor category specifies for each of
its arguments whether this dependencies are local or not, and if the dependencies are not local, whether they
are locally mediated (bounded) or long-range (unbounded). For example, dependencies on the�� argument
of the ���� in the lexical category of a relative pronoun, �������������� are long-range dependencies,
whereas the dependency between the relative pronoun and the head of the noun phrase it modifies is local.
When the relative pronoun is applied to a relative clause, all dependencies that the relative clause ����
defines for its argument are marked as unbounded long-range dependencies. Similarly, coordination of
functor categories marks the dependencies on right arguments of left conjuncts and on left arguments of
right conjuncts as unbounded long-range dependencies. This allows us to evaluate the parser’s recovery of
different classes of non-local dependencies.

2.5.8 A note on the depdendencies in CCGbank

Although we believe that the dependencies in CCGbank are largely linguistically motivated and correct,
there are a number of problems that we have summarized below:

Problems due to the syntactic derivations: Some syntactic analyses in CCGbank are semantically un-
desirable or incorrect because the Penn Treebank annotation does not provide sufficient linguistic
structure, and additional manual annotation would be required to obtain the correct analyses. There-
fore, the internal structure of complex nouns, which is largely flat in the Penn Treebank, is mostly
blatantly wrong. Similarly, a large number of NP coordinations in CCGbank are actually appositives,
because these two constructions are not distinguished in the Penn Treebank. Also, all post-nominal
modifiers such as relative clauses are attached at the NP level. Semantically, this is problematic, since
it fails to distinguish between restrictive and non-restrictive relative clauses, for example. We also
have reason to believe that the distinction between complements and adjuncts is somewhat inconsis-
tent, in particular for PPs, but also for to-VPs and other cases. These inconsistencies are reflected in
our lexical categories.

Problems due to the co-indexation of lexical categories: The co-indexation of lexical categories as de-
scribed above is necessary to obtain the non-local dependencies that arise through control, raising,
extraction and other constructions. We co-indexed all lexical categories of the same type in an identi-
cal manner, even though we believe that this should be done on a word-by-word basis. Inconsistencies
in the complement-argument distinction in the Penn Treebank are reflected in our lexical entries.

Problems due to the nature of the representation: We would like to emphasize that the word-word de-
pendencies in CCGbank are only an approximation to the underlying predicate-argument structure.
They are not logical forms in themselves. This problem is most obvious in the case of VP coordi-
nation. For example, the dependencies of a sentences such as “I was early yesterday and late today”
indicate that yesterday and today modify was, and that early and late are both complements of was,
but fail to represent that this is a statement about two distinct events. Our implementation also fails
to capture control dependencies in argument cluster coordination, eg. the dependencies between you
and go and between him and stay in “I want you to go and him to stay”.

29

Chapter 3

The translation algorithm

This chapter presets an algorithm for translating phrase-structure trees from the Penn Treebank (Marcus
et al., 1993, 1994) to CCG normal-form derivation trees, notes some of the changes to the Penn Tree-
bank representation that are necessary for the translation procedure to yield adequate CCG analyses, and
describes CCGbank, the corpus that results from applying this algorithm to the Penn Treebank.

The work presented in this chapter is an extension of an algorithm to extract categorial lexicons from
the Penn Treebank, which was originally presented in (Hockenmaier et al., 2004) and (Hockenmaier et al.,
2000). Hockenmaier and Steedman (2002a) also describes an earlier version of CCGbank.

3.1 Introduction

The Penn Treebank (Marcus et al., 1993, 1994) is the largest available manually parsed corpus of English,
and has been used as the standard test and training material for statistical parsing of English (see e.g. Collins,
1999; Charniak, 1999). This report presents an algorithm for translating Penn Treebank trees to normal-form
CCG derivations. The resulting corpus, CCGbank, can be used to test and train statistical parser. We can
also obtain a large CCG lexicon from this corpus that can be used by any CCG parser. Moreover, since CCG
derivations have a corresponding semantic interpretation, the creation of a corpus of CCG derivations can
be seen as a first step towards a corpus annotated with logical forms.

This chapter is organized in the following way: section 3.3 presents an algorithm for translating simple
phrase structure trees to CCG. After an overview of the feature system used by the Treebank CCG (section
3.4), the analysis of basic sentence and noun phrase structure as well as the necessary modifications to the
algorithm are shown (sections 3.5–3.7). Section 3.8 shows how unary type-changing rules for certain types
of adjuncts can be introduced into the grammar to ensure a compact lexicon without augmenting the gener-
ative power of the system, demonstrating that a wide coverage CCG does not require a prohibitively large
lexicon. The algorithm is then extended to deal with the various kinds of null elements in the Penn Treebank
which encode long-range dependencies arising through extraction (section 3.9) and coordination (section
3.10). The analysis of specific syntactic constructions is covered in detail; therefore this chapter serves a
double purpose in providing a concise overview over the coverage and analyses of our CCG for English,
which is largely based on Steedman (2000, 1996). In order to obtain the desired categorial derivation trees,
some changes on the original Treebank trees need to be performed before translation. Changes that are re-
quired because the Treebank analysis does not conform to the CCG account are noted in sections 3.5–3.7.
However, a large number of changes are necessary to correct inconsistencies and annotation errors in the
data. These are discussed in sections 3.12 and in more detail in appendix B. In section 3.15 the algorithm
developed here is compared with an alternative procedure for the acquisition of AB categorial grammar

30

lexicons from a subcorpus of the Penn Treebank without null elements (Watkinson and Manandhar, 2001).
A direct comparison with related algorithms for the extraction of Lexicalized Tree-Adjoining Grammars
and Lexical Functional Grammars from the Penn Treebank is less straightforward, however. The size and
coverage of the acquired lexicon and grammar are described in section 4.

The appendix gives more implementational details, such as the head-finding rules, the rules for distin-
guishing complements from adjuncts, and the changes made to the Penn Treebank in the current implemen-
tation.

3.2 The Penn Treebank

The Wall Street Journal subcorpus of the Penn Treebank contains about 1 million words of parsed and
tagged Wall Street Journal text collected in 1989.

The Treebank markup encloses constituents in brackets, with a label indicating the part of speech tag or
syntactic category. A typical example is shown here:

�� ������� ��� �	

��� ��� ��
 ��� ����
 ��� ������

�� �

������� ��� ����	���
 ���� ��	����������

��� ���� ��	��	������

������� ��� �	

��� ��� ��� ������ �
 ��� ������� �	

��� ��� ���

��� ��� �!����

�" "

In the following, part of speech tags and other irrelevant details of the trees will be omitted when
presenting examples.

The Treebankmarkup is designed so that complements and adjuncts can in general be distinguished, ex-
cept for certain difficult cases, such as prepositional phrases. However, the complement-adjunct distinction
is not always marked explicitly. Instead, we use heuristic procedures which rely on the label of a node and
its parent to make this distinction. Syntactic heads are also not indicated explicitly, but existing head-finding
procedures such as those originally given by Magerman (1994) were adapted to our purposes (see appendix
A.1).

The Treebank markup uses different types of null elements to encode long-range dependencies aris-
ing through coordination and extraction. The presence of these null elements is what makes it possible to
translate the Treebank trees to the corresponding CCG derivations for relative clauses, wh-questions and
coordinate constructions such as right node raising. The treatment of these null elements is discussed in
sections 3.9–3.10.

3.3 The basic algorithm

The basic algorithm for translating the Penn Treebank to CCG consists of three steps, each of which is a
simple top-down recursive procedure:

31

(24) foreach tree τ:
determineConstituentType(τ);
makeBinary(τ);
assignCategories(τ);

This algorithm presumes that the constituent structure of the original tree conforms to the desired CCG
analysis. In practice, this is not always the case, and sections 3.5–3.7 give a detailed account of the reanal-
ysis of specific constructions, and show how this algorithm can be adapted to deal with simple coordinate
constructions. Sections 3.9 and 3.10 extend this algorithm to deal with the null elements in the Penn Tree-
bank that encode long-range dependencies in constructions involving extraction and coordination.

This section explains the three steps of the basic algorithm.
First, the constituent type of each node (head (h), complement (c), or adjunct (a)) is determined, using

heuristics adapted from Magerman (1994) and Collins (1999) (for details, see appendix A.2):

��

#���:a

just

��$:h

opened

��:c

its doors

������:a

in July

Then the flat trees are transformed to binary trees.

��

#���:a

just

��:h

��:h

��$:h

opened

��:c

its doors

������:a

in July

This binarization process inserts dummy nodes into the tree such that all children to the left of the head
branch off in a right-branching tree, and then all children to the right of the head branch off in a left-
branching tree:

%
%

��� %
%

� ���

���

Categories are assigned to the nodes in a binary tree in the following manner (corresponding to a reverse
CCG derivation):

32

The root node Each tree is rooted in a node labelled ���. This node has one daughter, whose category
is determined by the Treebank label of the root node of the Treebank tree (eg.����	���
� 	 �, ���� 	
����). Section 3.4 explains the feature system used to distinguish different types of sentences (declarative,
interrogative, embedded declarative, embedded interrogative) and verb phrases.

Complement nodes The category of a complement child is defined by a similar mapping from Treebank
labels to categories.

Adjunct nodes Given a parent category �, the category of an adjunct child is a unary functor ����� if the
adjunct child is the left daughter, or ����� if it is the right daughter.

The category �� is determined by the parent category �. In order to avoid a proliferation of category
types, adjunct categories do not carry any morphological features. This means for instance that VP adjuncts
all have the category ������������� or ������������� - that is, we do not distinguish between adjuncts
appearing in declarative, infinitival, or passive verb phrases. Quickly is
������������� regardless of whether it modifies buys, bought or buying. In a version of categorial gram-
mar without composition, �� would have to be equal to the current head category (without features). How-
ever, in the case of adjuncts of adjuncts, this leads to a proliferation of categories. But, in CCG, adjuncts
can combine with the heads using (generalized) composition. Therefore, �� can be the current head catgory
with the outermost arguments stripped off. Thus, the following strategy is used: A left adjunct, �����, can
combine with the head using (generalized) forward non-crossing composition:

(25) Forward Composition:
��� ��� �

�
���

Forward crossing composition is not permitted in English, since it would lead to greater freedom in word
order than English allows:

(26) Forward Crossing Composition:
��� : f ��� : g �

�
���

Hence, in the case of forward-looking (left) adjuncts (�����), �� is the parent category minus all outermost
forward-looking arguments. ����� can then combine with the current head category through (generalized)
forward non-crossing composition. If any backward-looking arguments were stripped off, ����� could only
combine with the head through forward crossing composition.

A CCG for English allows backward crossing as well as non-crossing composition. Therefore, in the
case of backward-looking (right) adjuncts, �����, all outermost arguments which have the same direction-
ality as the last argument are stripped off from the parent category in order to obtain �� – that is, if the
outermost argument of the current head category is forward-looking, then all outermost forward arguments
are stripped off (corresponding to generalized backward crossing composition). If the outermost argument
is backward-looking, all outermost backward arguments can be stripped off (generalized backward non-
crossing composition).

In the case of VP-adjuncts, however, we stipulate that we do not generalize beyond the ���� level, since
we want to distinguish verbal adjuncts from sentential adjuncts. Consider for instance the adjunct in July.
Since its parent’s category is ���� and it appears to the right of the head verb, it receives the category
�������������.

Punctuation marks In general, the category of a punctuation mark is the POS tag assigned to the punc-
tuation mark. Exceptions to this rule are discussed in section 3.7.4.

33

Head nodes The head child of a parent with category � has category � if the non-head child is an adjunct
or a punctuation mark. If the non-head child is a complement with category �, the category of the head
child is ��� if the head child is left, and ��� if the head child is right.

Here is the previous tree annotated with CCG categories:

���������

�������������

just

���������

���������

��������������

opened

��

its doors

�������������

in July

The category assignment procedure corresponds to a reverse derivation which always uses function appli-
cation, except for adjuncts, where composition can be used in order to provide a more general analysis.
The extensions to this algorithm described below use type-raising and composition only when syntactically
necessary. Therefore, the derivations in CCGbank are in a normal form.

3.4 Atomic categories and features in CCGbank

We assume the atomic categories �, ��, � and ��, and employ features to distinguish between declara-
tive sentences (�����), wh-questions (�����), yes-no questions (����), embedded declaratives (������) and
embedded questions (������).1 We also distinguish different kinds of verb phrases ������, such as bare
infinitives, to-infinitives, past participles in normal past tense, present participles, and past participles in
passive verb phrases. This information is encoded as an atomic feature on the category, eg. ��������� for a
passive VP, or ����� for a declarative sentence. Predicative adjectives have the category ���������.

The sentential features are as follows:

(27) a. �����: for declarative sentences

b. �����: for wh-questions

c. ����: for yes-no questions (Does he leave?)

d. ������: for embedded questions (worry [whether he left])

e. �����: for embedded declaratives (he says [that he left])

f. ������: for embedded sentences in subjunctive mood (I demand [that he leave])

g. ����: for sentences in subjunctive mood (I demand (that) [he leave])

h. ����
�: for sentence fragments (derived from the Treebank label ����)

i. ������ for small clauses headed by for ([for X to do sth])

j. ���	���: for interjections

k. ���	��: for elliptical inversion ((as) [does President Bush])

These are the verb phrase features:

(28) a. �������: for bare infinitives, subjunctives and imperatives

b. ��������: for to-infinitives

1In order to improve readability, we will sometimes abbreviate the verb phrase category ���� as
� in derivations. A category
such as
������ always stands for ���������. In some of the derivations given here, features are omitted.

34

c. ���������: for past participles in passive mode

d. ��������: for past participles used in active mode

e. ��	
����: for present participles

We analyze attributive adjective phrases as ���������.
The main purpose of these features is to specify subcategorization information—for instance, the verb

doubt takes both embedded declaratives (doubt that) and questions (doubt whether) as argument, whereas
think can only take embedded declaratives. The complementizer that takes a declarative sentence, and
yields an embedded declarative: that � ������������. These features are treated as atomic, and do not
indicate the full morphosyntactic information. For instance, the infinitival particle to has the category
��������������������, since it takes a bare infinitive (�������) as its argument and yields a to-infinitival
verb phrase �������� in both ”to give” and ”to be given”. Since the information whether the verb phrase is
active of passive becomes available during the derivation, there is no need for separate lexical entries. The
����, ���, �	
�, ���� and ����� features are determined from the POS tags of the head verbs and the presence
of passive traces. ����, �����, ���, ���
� and ����� are determined from the nonterminal labels of the trees.
Adjunct categories other than modifiers of adjectives do not carry features.

Being derived from the POS tags in the Penn Treebank, this feature system is rather coarse; for instance
it does not encode differences in verb mood: subjunctive and imperative appear as bare infinitive, whereas
conditional and indicative appear both as declarative.

Determiners, such as the, are functions from noun phrases to nouns: ���	����2. Expletive it has the
category �������, and expletive there is �������. The category ��	 �� is for numbers that denote ei-
ther amounts of a certain currency (eg. “500 million” in “$!"" ����	�� or days of the month (eg. 30 in
“Nov. 30”). In the first case, the currency symbol takes an ��	 �� argument; in the second case, the month
takes the day as an argument.

There are a few features for specific function words or multiword expressions (explained in section
3.7.6), eg. ����� and �������, and ���� ����� for least, most etc. in at least.

3.5 Basic clause structure

This section shows how standard CCG analyses of basic clause types can be obtained from the corre-
sponding Treebank annotation. We look in turn at simple declarative sentences, infinitival and participial
verb phrases, passive, control and raising, small clauses, yes-no questions, inverted sentences, ellipsis and
fragments. Wh-questions are dealt with in section 3.9.2.

3.5.1 Simple declarative sentences

Declarative sentences are annotated as � in the Treebank. The annotation is flat, with modifiers and punctu-
ation marks appearing at the same level as the subject noun phrase and main verb phrase:

��&� �� ������� ����'

�� �

������� �� � ���	��

�#������� �		��(('

��� ���� ����(

��� ����)*+"* , ((�	

�#�����&� -��(��- ��

�" "

2For historical reasons, the �� carries a “non-bare” ����-feature.

35

Since end-of-sentence punctuation marks modify the entire sentence, a separate sentence level needs to be
inserted which includes everything but the end-of-sentence punctuation mark:

��&� �� �� ������� ����'

�� �

������� �� � ���	��

�#������� �		��(('

��� ���� ����(

��� ����)*+"* , ((�	

�#�����&� -��(��- ��

�" "

Note that otherwise the binarization procedure would analyze the full stop as a modifier of ����. In or-
der to improve readability, end-of-sentence punctuation marks will generally be omitted in the categorial
derivation trees shown.

A sentence carries the feature ���� if its head verb has one of the following POS tags: ��� (3rd person
singular present), ��� (non-3rd-person singular present), ��� (past tense).

3.5.2 Infinitival and participial VPs, gerunds

In the Treebank, participial phrases, gerunds, imperatives and infinitival verb phrases are annotated as sen-
tences with a � null subject (which can be co-indexed with another 	� in the sentence, depending on the
construction), whereas auxiliaries and modals take a �� argument:

(29) a. ��� ��� �� ��(�'

�� ������� ���&�.� /

��� ��& ��

��� ��� ������

��� ��� �(�� 	�� �	�

������� 	�� �� ��� ��(�� �����

b. �� ��������0 �� ,�	1�

��� ���� �������

�� ������� ���&�.� /�0

��� ���2 ������ 	3

��� �� ���1�3��

c. �� ������� ��� � ���

��� ���� ���

��� ���2 ��1 	3

��� ��� �	

Any � with a null subject receives the category ���� (with appropriate verbal feature), which is also the
category assigned to VP arguments. The feature ��� is used for bare infinitives (��). It is also used for
imperatives and the subjunctive, since they cannot be distinguished from bare infinitives. Present participles
carry the feature �	
�.

3.5.3 Passive

The surface subject of a passive sentence is co-indexed with a � null element which appears in the direct
object position after the past participle, for example:

�� ��������0 ��	

��� ���� -��

36

��� ���� �

��� ���&�.� /�0

��� ��� ,'

�����2� � ,�((

In this case, the null element does not indicate an argument which should be reflected in the category of
the participial. Instead, the correct lexical categories are ���������������������� for was and ���������
for hit.

The algorithm uses the presence of the � null element to distinguish past participles in passive verb
phrases from past participles in active verb phrases such as the following example:

(30) �� ��������0 ��	

��� ���$ ��

��� ���� �

��� �� ,�((

In this case, hit has the category �������������.
We analyze the by-PP in passive verb phrases as an adjunct rather than as an argument of the passive

participle. The reason for this is that the by-PP is optional, so the category ����������������#� does not
have to be acquired for all passive verbs.

In the case of verbs like pay for, which subcategorize for a ��, the null element appears within the ��:

�� ��������*4 ����) ���

��� ,��3��

��� ���$ �

��� ���� �� �

������� ��� ���

��� ���&�.� /�*4

��� ��� ,'

�����2� ���� '��

�" "

In this example, the correct lexical categories are ���������������������� for is, �������������������
for paid, and ����� for for.

Note that the preposition has its ordinary category�����, and that the past participle subcategorizes for
the preposition alone, instead of the saturated PP. This means that in passive verb phrases with passive traces
in PPs in object position, the passive trace must be taken into account as an argument to the preposition, but
it must also be percolated up to the �� level in order to assign the correct category to the past participle.

3.5.4 Control and raising

In the Treebank, raising and subject control both have a co-indexed �-trace in the subject position of the
embedded clause, for instance:

(31) a. �� ��������0 ��" ����	��

��� ���$ -�	��

�� ������� ���&�.� /�0

��� ��& ��

��� ��� ������

��� � ���� 	�(��	� �(��(�

37

b. �� ��������0 .5��' ����	��� �	��� 64

��� ���$ �����

�� ������� ���&�.� /�0

��� ��& ��

��� ��� ,�

�#������� �(��	� 	 ����(�� ('� ��

Since an � with an empty subject 	� has category ����, we obtain the correct lexical category
��������������������� for both seems and wants.

In the case of object control (32a), the controlled object appears as a separate argument to the verb and
is co-indexed with a �-trace in subject position of the complement. Object raising 32b is analyzed as a small
clause in which the verb takes a sentential complement:

(32) a. �� ������� ���� -��1

�� �

������� ��� 	3 (�,, ��

��� ���� ���������

����0 ��	3����

�� ������� ���&�.� /�0

��� ��& ��

��� �� �� �� �� (3 ��)076�+89

b. �� ������� �:����(�5�1 �

�#������� �� ((

��� ���$ -�	��

�� ��������0 �� ���

��� ��& ��

��� ��� ,�

��� ���� ,� (�

��� ���&�.� /�0

However, as explained in more detail in section 3.5.5, the CCG account of these constructions (Steedman,
1996) assumes that both elements of the small clause are arguments of the verb, and we modify the tree so
that we obtain the same lexical category (��������������������������) for both verbs.

3.5.5 Small clauses

The Treebank adopts a small clause analysis for constructions such as the following:

(33) a. �� ������� �� ���	��'

��� ���$ -�	��

�� ��������7 �(� �� ��,�

��� ���� ���3 5�	

��� ���&�.� /�7

b. �� ������� ��� 5�(���

��� ���$ ��1��

�� ������� �

������� ��� �� (��3��� ����(��

��� �� �� 3 	�(�� ���3���� 	3

�����&� 	 .�����

If these verbs occur in the passive, they are analyzed as taking a small clause, with a passive 	� null
element as subject (see section 3.5.3):

38

(34) �� ��������0 �� ����	� ���(

��� ��� ��'
 ��� 	��

��� ��� ,�

��� ���� �(�

�� ������� ���&�.� /�0

������� ��� ����3�

Steedman (1996) argues against this kind of small clause analysis on the basis of extractions like “what
does the country want forgiven”, which suggest that these cases should rather be treated as involving two
complements. We therefore eliminate the small clause, and transform the trees such that the verb takes the
children of the small clause as complements. This corresponds to the following analyses:

(35) a. �� ������� �� ���	��'

��� ���$ -�	��

��� �(� �� ��,�

��� ���� ���3 5�	

��� ���&�.� /�7

b. �� ������� ��� 5�(���

��� ���$ ��1��

��� �

������� ��� �� (��3��� ����(��

��� �� �� 3 	�(�� ���3���� 	3

�����&� 	 .�����

c. �� ��������0 �� ����	� ���(

��� ��� ��'
 ��� 	��

��� ��� ,�

��� ���� �(�

��� ���&�.� /�0

������� ����3�

The other case where small clauses are used in the Treebank includes absolutewith constructions, which
are analyzed as adverbial ����:

(36) a. �� ���#��#�� ��� ; �

�� ������� �� (� �

������� 	 ������

�� �

������� ���,���

��� -��(� ,� �,(� �� �!����� ������ �� �� (� � �� ��

�" "

b. �� ���#��#�� ��� ���3

�� ������� ���&�.� /�0

�#������� ��� ������

�� �

��������0 �� ��	3�

��� ���$ ������

�����&����� ,�'�	� �� � (����

�� �

�#��� ���

�" "

We use the same approach for these cases, and assume that the subordinating conjunction (with or though,
in these examples), takes the individual constituents in the small clause as complements. In the examples
above, this gives the following lexical categories:

39

(37) a. with � �������������

b. though � �����������������

3.5.6 Yes-no questions

The Treebank gives yes-no questions (labelled �
) a flat structure, in which the inverted auxiliary/copula is
a sister of both the subject 	� and the �� or predicative 	�:

(38) a. ��< ���$ � �

������� �

��� ��� ,�'

��� �

�" =

b. ��< ���$ ��

������� � �

������� �� ������ �� ���,�� ��� �

�" =

This flat structure corresponds to the categorial analysis of yes-no questions given eg. in Carpenter (1992).
Here is the CCG derivation corresponding to example 38a:

(39) Did I buy it?

���������������� �� ������������� ��
� �

������������� �������
�

���

3.5.7 Inversion

The Treebank analyzes as �	� a number of constructions that do not follow the normal SVO pattern of
English:

� verb fronting

� predicative fronting

� locative inversion

� negative inversion

� elliptical inversion

� conditional inversion

� direct speech inversion

40

Verb fronting The Treebank analyses predicate fronting and verb fronting in terms of movement, similar
to topicalization:

����� ��������0 ���2 >�((�- 	3

��� �� ��� 	 �� �	� ����(�� �	���	���((���

��� ���$ ��

��� ���� ,��	

��� ���&�.� /�/�0

������� � 3�	���((' ,�5 	� �����

�" "

However, the noun phrase labelled as 	� ��� here is actually in accusative case:

(40) a. *Following the lead has been I.

b. Following the lead has been me.

Therefore, we assume that the NP is an object, and the verb phrase subject. The trees are changed so that
the noun phrase appears as an object to the innermost verb. The VP-trace is removed:

����� ��������0 ���2 >�((�- 	3

��� �� ��� 	 �� �	� ����(�� �	���	���((���

��� ���$ ��

��� ���� ,��	

��� � 3�	���((' ,�5 	� �����

�" "

Here is the CCG derivation:

������

��������

Following the ...lead

�����������������

������������������������������

has

��������

�������������

been

��

a generally bovine press

Predicative inversion Predicative inversion around the copula is also analyzed as topicalization within
an �	�:

����� �����&����������0 ��� #��	3

��� �� (��� 	3 ��������

��� ���$ �

�����&����� ���&�.� /�/�0

������� ��� � �(� ���

��� ��� �����

�" "

Both the fronted adverb and the subject are arguments of the verb. Since this construction occurs mainly in
present tense or simple past, a modification of the tree like in the case of verb fronting was not implemented:

������

��

Among the leading products

���������

��������������

is

��

a flu shot for horses

41

Locative inversion With certain verbs of movement the subject can appear to the right of the verb if there
is a modifier to the left of the verb:

����� �#������� ��	

��� ����

������� ��� �� ����?��1�

��� �	�

��� ��� � ����3 	3 ��(�'

��� �� 00 ��'�

�" "

In those cases, both the adverb and subject should be arguments of the verb. This would require a
modification to the adjunct-complement distinction which has not yet been implemented. Therefore, came
receives category �������� in the above sentence:

������

���

Then

������

���������

came

��

the earthquake and...

Negative inversion In negative inversion, the negative element is often part of a sentential modifier, and
hence difficult to identify:

����� �#������� ��5�� �	��

���� � �

������� ���� ��

��� ��� 3��� ��� � �

��� ��

��� ��� �� ,��-

�" "

The only case where negative inversion can be identified easily is after nor:

�� �� ������� � ���(

��� -�	@� ��	� �� �� ��	� � �� �� �	' .��' .33 ���������

�� �

��� 	��

����� ��� - ((

������� ���� �

��� ��� ��'

��� ��� �� �	'� 	3 �(��

�" "

The word order following the negative item is like a yes-no question. This could be captured in CCG by
letting the negative item subcategorize for a yes-no question:

(41) nor will it say ...

��������� ���
�

���

This analysis was only implemented for negative inversion with nor, since in other cases, the negative item
is difficult to detect given the Treebank markup.

42

Elliptical inversion Certain words, such as so, than, as, take an inverted elliptical sentence as argument.
The resulting constituent is either a declarative sentence or an adjunct:

(42) I attend, and so does a television crew from New York City.

The Treebank annotation is flat:

����� �#������������0 ��� ��

��� ���$ ����

�#������� ���&�.� /�/�0

������� � ��(�5 � �	 ���- ���� ��- A��1 � �'

However, we change this to include a special kind of inverted sentence:

����� �#������������0 ��� ��

�����.��.� ��� ���$ ����

�#������� ���&�.� /�/�0

������� � ��(�5 � �	 ���- ���� ��- A��1 � �'

This inverted elliptical sentence consists of a do-form, auxiliary or modal, followed by the subject. A special
feature ��	�� on the CCG categories is used to distinguish those constructions from ordinary declaratives:

������

������

��

I

���������

attend

������������

�

,

������������

����

and

������

�������������

so

������

���������

does

��

a television crew...

Conditional inversion Certain auxiliaries and modals (had, should, etc.) can introduce an inverted sen-
tence which acts as a conditional clause:

�� ��� &	 �� ���� �	�

�� �

���#��#�� ����� ���� ��

������� ���� �

��� ���� �! ����

�#������� ��� ��	

�� �

������� ���' ��������

��� ��� -��(�

��� ��� �5�

��� ���� 	������

��� �)74"9 � ((�	 (���

�" "

Since this construction is triggered by auxiliaries, we treat the auxiliary as head of the adjunct, leading to
the following derivation:

43

������

���

����������������

���������������������

had

��

it

��������

��������

existed

�������������

then

������

, Cray would have...

Recall that the features in our grammar do not distinguish conditional from indicative mood; therefore
we cannot encode the fact that this construction requires the conditional in the main clause.

Direct speech inversion The Treebank analyses sentences where direct speech occurs before the verb as
�	�:

����� �BB BB

�������0 � � ��	����� �� �� B���� (�	� 	3@ ���	�� �

�@@ @@

��� ���� �� �

�� ���&�.� /�/�0

������� .((��� �(���

�" "

However, since this is clearly a lexical phenomenon that can only occur with verbs of direct speech, the
corresponding CCG analysis treats this word order as being determined in the lexicon, rather than being
triggered by a topicalization rule:

������

������

This conforms to the ... scenario

�������������

�

,

�������������

������������������

said

��

Elliott Platt

In fact, verbs which take direct speech as argument can have at least three categories, one for the un-
topicalized case, and two for the sentence-topicalized cases with and without subject inversion:

(43) a. Elliott Platt said: “This conforms to the ‘soft landing’ scenario”

b. “This conforms to the ‘soft landing’ scenario”, Elliott Platt said.

c. “This conforms to the ‘soft landing’ scenario”, said Elliott Platt.

As explained below (section 3.12), quotation marks are cut out by the translation algorithm.

3.5.8 Ellipsis

The Treebank uses the null element �!� as placeholder “for a missing predicate or a piece thereof” (Marcus
et al., 1993). �!� is used for VP ellipsis, and can also occur in conjunction with a VP pro-form do, or in
comparatives:

44

(44) a. �� ������� �� �	�

��� ��� ��	

��� ��� ��'

���#� ���&�.� /=/

�" "

b. �� ������� �� ����(�� 0+ �����

��� ���� -��

�#������� �#��� ��� 3��

���#� ��� ��	

�� ������� ���&�.� /

��� ���� �!������

�� ���&�.� /=/

c. �� �� ������� A��

��� � ���

��� ���� ,�(�5�

���#� ��'���� ��	 �� � �3� 	

��� ��

�� ������� '��

��� ���� ��

��� 	@�

��� ���&�.� /=/

Although the �!� null element indicates a semantic argument of the head of the �� under which it
appears (e.g. of expected or do in the examples above), we do not reflect this argument in the syntactic
category of the heads. We follow the analysis of VP ellipsis under conjunction given in Steedman (2000),
which argues that both conjuncts in examples such as 44c are complete sentences. Therefore, the syntactic
category of do is ����, not ���������. See section 3.5.7 for our treatment of elliptical constructions after
words such as as or than.

3.5.9 Fragments in the Treebank

The Treebank labels any constituent for which no proper analysis could be given as ���� (for fragment).
This can be an entire tree, or part of another constituent:

(45) a. �>�#2 ��� �� 	�!� ���5 	��
 �" =

b. ���#�< �;�� �-
 ��� �,���
 �>�#2 ��� �� ��- 2� 	�� >�	�

 �" =

c. ��&� �>�#2 �>�#2 ��� ��

��� 	��

�����&� ���� � ��3�

�� �

��� ��	

�����&� ��� 	
 ��� ��- A��1

�C D

�>�#2 ��� �

��� 	��

�����&� ��� E"�"

�� �

��� ��	

�����&� �5������

�" "

These constituents are often difficult to analyze, and the annotation is not very consistent. Appendix B lists
some heuristics that were used to infer additional structure.

45

If an node is labelled ����, and there is only one daughter (plus, if this node is the root of the entire
tree, optionally, a punctuation mark), we treat the tree as if it was labelled with the label of its daughter:

��

��

��������

The

�

���

next

�

province

�

?

If the first daughter of a ���� is a conjunction, we analyze it as head. The entire constituent is a fragment
(����
�):

��&� �>�#2 ��� #	�

�#��� ��� ������

��� ��� - �

��� ��� 3���

��� �����	

�" "

Here is the CCG translation:

������

������

���������

���������

And

���

perhaps

��

�����

with

��

�

���

good

�

reason

�

.

3.6 Basic noun phrase structure

3.6.1 Noun phrases and nouns

The Treebank assumes a flat internal structure with no separate noun level:

(46) ��� ��� ��
 ���� ����
 ���2 ��,(� 	3
 ��� 3����

We distinguishe noun phrases (��) from nouns, (�). Determiners, such as the, are functions from
nouns to noun phrases: the � ���	����3. Other prenominal modifiers are functions from nouns to nouns,
eg. Dutch � ���. Nouns are not marked for number. The grammar includes a unary projection from ��

to �, so that verb or other elements do not specify the bareness of their noun phrase arguments. Pronouns
(this, you) and quantifying noun phrases (something, anything, nothing, somebody, etc.) are ��s.

3For historical reasons, determiners carry a “non-bare” feature ����

46

3.6.2 Compound nouns

Compound nouns in the Treebank have in general no internal structure:

��� ���� (�-��
 ��� ����
 ���� 	�������

��� ��� �	('
 ��� >��	�
 ��� ����'
 ���� ?���� �	�

In order to obtain the correct analysis, manual re-annotation would be required, which was not deemed
feasible within the current project. Therefore, compound nouns are simply translated into strictly right-
branching trees. This is particularly problematic for conjunctions within compound nouns:

��� ��� � �

��� ��	�����

���� �(�����	 ��

��� �	�

���� ���(�	���

��� ���� (3

��� �� 	

We include the following non-standard rule in our grammar:

(47) ��	� �� �

This rule allows us to translate the above tree as follows:

��

��������

this

�

���

consumer

�

���

electronics

�

����

and

�

���

appliances

�

���

retailing

�

chain

3.6.3 Appositives

Appositives (48) are not indicated as such in the Treebank:

(48) ��� ��� .(��5 �� �"�"

�� �

��� �� ���� ��,(� 	3 3����

��������0 ��� � ��	

�� �

��� $-�(�1�

�� �

��� � 	�-������ �� ���

�� �

Their markup is indistinguishable from that of NP coordinations such as example (49)

47

(49) ������� ��� 2�5��	��	� ����� ��(�����

�� �

��� �������

�� �

��� ,� �� 	3�

�� �

��� ����� �� � (���' ��� (� ��

�� �

��� ��,(��� �	�

Therefore, our CCG does not distinguish between NP appositives and NP coordination, even though appos-
itives should really be analyzed as modifiers:

��

��

Elsevier N.V.

��������

�

,

��

the Dutch publishing group

Here is the “true” coordinate construction:

��

��

Government press releases

��������

�

,

��

��

speeches

��������

�

,

��

��

briefings

��������

�

,

��

��

tours of military facilities

��������

�

,

��

publications

This leads to a reduction of ambiguity in the grammar, but is semantically not desirable.

3.6.4 Possessive ’s

Possessive NPs in the Treebank have a flat structure in which the possessive ‘s or ‘ is the last daughter:

"	� "	� "�# ��$% "		 &����'(% "�)� *+%%

"		 �$���'%%

In CCG, the possessive ’s and ’ are analyzed as functors from NPs to determiners. In order to obtain this
analysis, we insert a new constituent �)���#, which consists of the innermost 	� and the possessive ’s
itself, so that the final structure (before assigning categories) is as follows:

48

��� ��&���� ��� �� �����	'

��&� @�

��&E� �����	

Within a �)���#, the �)� is head, and the 	� its argument; otherwise a �)���# is like an ordinary
determiner.

��

��������

��

��������

the

�

company

�������������

’s

�

return

3.6.5 Quantifier phrases

The Treebank assumes a flat internal structure for
�s (“quantifier phrases”):

�<� ��� ,��-��	
 ��� *
 ��� F
 ��� �	�
 ��� 9
 ��� F

We use a number of heuristics to identify the internal structure of these constituents, for instance to detect
conjuncts and prepositions. The above example is then re-bracketed as

�<� ��� ,��-��	

�<� �<� ��� *
 ��� F

��� �	�

�<� ��� 9
 ��� F

See appendix B.7 for details.

3.7 Other constructions

3.7.1 Coordination

Note that in the case of coordination (or lists), there is more than one head child, and we need to modify
the translation algorithm accordingly. Coordinate constructions (or lists) are transformed into strictly right-
branching binary trees. We assume that in those cases, all head children have the same category (see section
3.7.2 for a discussion of unlike coordinate phrases ���). The inserted dummy nodes receive the same
category as both conjuncts, but additionally carry a feature ���	��. A node with category ����	�� always has
its head daughter (with category �) on the right, and the left daughter is either a conjunction (��	�), or a
punctuation mark, such as a comma or semicolon:

��

�� ��������

� ��

�� ��������

���� ��

Therefore, coordination is captured in CCGbank by the following binary rule schemata:

49

(50) a. ��	� � � ����	��

b. � � � ����	��

c. � ����	�� � �

3.7.2 ”Unlike” coordinate phrases

The Treebank annotates as ��� (“unlike coordinate phrase”) coordinate constructions where the conjuncts
do not belong to the same syntactic category, eg:

��� ��� �

�E�� ��� �����

��� ��

��� (���(

��� �� (�'

A ��� as head of a modifier is not a problem, because the CCG categories of modifiers only depend on the
CCG category of the head:

��

��������

a

�

���

���

state

���������

����

or

���

local

�

utility

Such constructions only pose a problem for the translation algorithm if they occur as arguments, since
the CCG category of arguments is determined by their Treebank label:

�� ������� ������	� ' �(��

��� ���� ������

�E�� ��� �� 	5�����	� �� � 5 ��	��

��� �	�

���#� ��� ���

�� ������� �� �����	� ' �(�

��� ��	� 	��� ��� � '���

�" "

In order to account for such cases, we modify the grammar slightly, and add special coordination rules of
the following form:

(51) ��	� � � ����	��

This enables us to analyze the previous sentence:

50

������

��

Compound yields

���������

��������������

assume

��

��

reinvestment of dividends

��������

����

and

�����

������������

that

������

the current yield continues...

3.7.3 Expletive it and there

If “it” is annotated with an expletive trace �,��-� or is the subject of a cleft sentence (see section 3.9.7),
its category is �������, and the verb subcategorizes for a �������.

��&� �� ������� ����	 @� ��	�3���	� �'����

��� ���$ ��1��

�� ������� ��� ���� �

�� ���&�.� /.%�/�0

�#������� ��� ���

���0 ������� ���&�.� /

��� �� ����� � � 	3(� �'���� ���������- ��

�" "

The �,��-� trace is cut out, resulting in the following CCG derivation:4

������

��

Japan’s...system

���������

����������������������

������������������������������������

���

makes

��������

it

���������

hard

��������

to impose...

Similarly, we use the POS-tag ,� used for expletive there to obtain the feature �������. Lexical cate-
gories that take ������� or ������� as arguments do not co-index these with other arguments.

3.7.4 Parentheticals

The label ��	 indicates a parenthetical element. A large number of these constituents constitute of a dash
followed by one constituent or a constituent enclosed in parentheses, eg:

���� �C ��

��� ��� �� � ��� 3���

�����&� ��� 	

��� �� ��5�(�� 	3 -��(�

4An alternative analysis might treat the to-infinitive as an argument of the adjective; however, in the Treebank analysis, the to-
infinitive is a sister, not a daughter of the adjectival phrase. Therefore the present analysis is obtained.

51

We treat opening parentheses, dashes or colons as functors which take the following constituent and
yield a modifier:

�����

����������

–

��

��

the third-highest

�����

in the developing world

This is a slightly over-simplified analysis, since it does not take into account that dashes are balanced (see
eg. (Nunberg, 1990)). However, if the enclosed constituent is of a type that could be a modifier within the
local tree under which the ��	 appears, the enclosed constituent is the head of the parenthetical and receives
the same category as if it did not appear underneath a ��	:

���� �C �

��� ��� ��

��� ��� ���	�(����

Here, the �� is a modifier category; hence, the corresponding CCG derivation is as follows:

�����

:

–

�����

����������

as

��

�

translator

The dash is treated like an ordinary punctuation mark, and its category is determined from its part-of-
speech tag (.).

3.7.5 Extraposition of appositives

Appositive noun phrases can be extraposed out of a sentence or verb phrase. However, in written English, a
comma is required before or after the appositive:

(52) a. No dummies, the drivers pointed out they still had space.

b. Factory inventories fell 0.1% in September, the first decline since February 1987.

We analyze these constructions with special binary type changing rules that take into account that these
appositives can only occur adjacent to commas:

�� � � ���
� �� � ���
� �� � �������������

The Treebank analysis does not usually group the noun phrase and comma together, eg.:

�� ���#�� ������� ���&�.� /�0

������� �� ���� ��

�� �

��������0 �� �� 5���

��� �� 	��� ��� ��' �� ((�� ����� """
"

52

Therefore, we insert a new constituent �	� which comprises the NP and the comma:

�� �%�� ���#�� ������� ���&�.� /�0

������� �� ���� ��

�� �

��������0 �� �� 5���

��� �� 	��� ��� """

"

This yields the following CCG analysis:

������

���

��

��������

No

�

dummies

�

,

������

the drivers pointed out...

How these rules are acquired from the Treebank is explained in detail in appendix B.

3.7.6 Multi-word expressions

Multi-word expressions pose a particular problem for a lexicalist framework.With a few exceptions, ex-
plained below, an analysis for multi-word expressions is currently not attempted. This includes phrasal
verbs, which are difficult to spot in the Treebank since particles can be found as ��#, ���� �-� and ����.
Therefore, phrasal verbs do not subcategorize for particles in our grammar. An analysis was attempted for
some common expressions that are either very frequent or where the multi-word expression has a different
subcategorization behaviour from the head word of the expression.

because of...,instead of... We analyze because as the head of this expression. The prepositional phrase
headed by of that follows it is its argument. When instead of appears within a ��, it is analyzed in the same
way as because of.

as if..., as though Two special categories, ����� and ������� are used for this construction. SBARs whose
specifier is if and though have category ������� as a complement. SBARs whose specifier is as and which
contain another SBAR with category ������� have category ����� as complement.

so X that... In adjective phrases of the form “so ADJ that...”, we analyze so as a modifier of the adjective
which also takes the embedded declarative as argument:

�#������� �#��� ��� ��

��� �!��	� 5�

���#� ��� ���

�� �� �

��� �� ,���

�� �

������� �	(' �� (��3��� �!��	3��

��� ��	 ������ �

53

���������

�����������������

�������������������������������

so

���������

expensive

�����

������������

that

������

at best,...

too ADJ to Similarly, constructions of the form “too ADJ to”, where the to-VP is a sister of too is changed
to an analysis where too takes the to-VP as argument:

�#��� ��� ���

���� ����5��

�� ������� ���&�.� /

��� �� 3(��	 ��'((�� @� 	�- ����1(� 	 �� ;���

This is the resulting derivation:

���������

����������������������

������������������������������������

too

���������

removed

��������

��������������������

to

�������

������������

glean

��

psyllium’s...sparkle...

This modification presumes that if the to-VP is an argument of the adjective (as in “happy to do some-
thing.”), the to-VP is embedded within an ����, which in turn is modified by “too”.

at least/most X In this construction, we analyze at as taking a superlative adjective (with category
���� �����) as argument.

Monetary expressions Amounts of currency (eg. $ 1.5 billion, $ 3.85) are among the most frequent type
of multi-word expression in the Wall Street Journal. However, their internal structure is completely regular:
it is always a currency symbol followed by a sequence of numbers (tagged CD), and syntactically, they
behave like one item. In earlier versions of CCGbank, we replaced these expressions by a string DOLLARS.
In the current release, we assume that the $-sign takes the numeral 1.5 billion as argument. We assign a
special category ��	 �� to 1.5 billion, and assume that billion is the head, which is modified by 1.5:

�

��������

$

������

���

1.5

������

billion

Dates In expressions such as “Oct. 30, 1989”, we assume that the name of the month (Oct.) takes the day
of the month (30) as argument. We assign the category ��	 �� to 30.

54

��

��

A form of asbestos

�����

���������������

once

�����

������������������

used

��������

to make cigarette filters

��

��

A form of asbestos

�����

���������

�������������

once

���������

����������������������

used

��������

to make cigarette filters

Figure 3.1: The effect of type-changing rules on lexical categories of adjuncts

3.8 Type-changing rules for clausal adjuncts

Figure 3.1 illustrates how the basic algorithm described in section 3.3 leads to a proliferation of adjunct
categories. For example, a past participle such as used receives different categories depending on whether
it occurs in a reduced relative or a main verb phrase. As a consequence, modifiers of used will also receive
different categories depending on what occurrence of used they modify. This is undesirable, since we are
only guaranteed to acquire a complete lexicon if we have seen participles (and all their possible modifiers) in
all their possible surface positions. Similar regularities have been recognized and given a categorial analysis
by Carpenter (1992), who advocates lexical rules to account for the use of predicatives as adjuncts.

It seems more economical to us to put such type-changing rules in the grammar. Such an approach has
been taken by Aone and Wittenburg (1990) (also in a categorial framework) to encode morphological rules,
and for reduced relatives and other syntactic constructions. Aone and Wittenburg show that these type-
changing rules can be derived from zero morphemes in the grammar. Carpenter (1991, 1992) demonstrates
that, in general, the inclusion of lexical rules can lead to a shift in generative power from context-free to
recursively enumerable. However, this does not hold true if these lexical rules cannot operate on their own
output and hence generate an infinite set of category types. Like Aone and Wittenburg, we only consider a
finite number of instantiations of these type-changing rules, namely those which arise when we extend the
category assignment procedure in the following way: for any sentential or verb phrase modifier (an adjunct
with label �,���� with null complementizer, or ��) to which the original algorithm assigns category �
�,
apply the following type-changing rule (given in bottom-up notation) in reverse:

(53) �$� �
�

where �$ is the category that this constituent obtains if it is treated like a head node by the basic algorithm.
�$ has the appropriate verbal features, and can be ���� or ����. Some of the most common type-changing
rules are:

(54) a. ���������� �����

55

“workers �exposed to it�”

b. ���������� �����
“a forum �likely to bring attention to the problem�”

c. ��	
����� �����
“signboards �advertising imported cigarettes�”

d. ��	
����� �������������
“become chairman, �succeeding Ian Butler�”

e. ��������� �����
“the millions of dollars �it generates�”

In written English, certain types of NP-extraposition require a comma before or after the extraposed
noun phrase:

(55) Factories booked $236.74 billion in orders in September, [NP nearly the same as the $236.79 billion
in August]

We make use of this fact in the following binary type-changing rules:

�� � � ���
� �� � ���
� �� � �������������

These rules are used whenever a 	�-adjunct without functional tags, such as #/�, appears at the periphery
of a sentence or verb phrase and is immediately followed or preceded by a comma.

3.9 Long-range dependencies through extraction

The Treebank represents wh-questions, relative clauses, topicalization of complements, and tough move-
ment in terms of movement. The “moved” constituent is co-indexed with a trace (�#�) which is inserted at
the extraction site:

������� ��� ����1� �������

�� �

���#� �;G���0 �;�� - �

�� ������� ��� ���1�

��� ���� ,��3�

��� ���&�.� /�/�0

������� (��� '���

�� �

CCG has a different, but similarly uniform treatment of these constructions. What in transformational
terms is described as the moved constituent is analyzed in CCG as a functor over a sentence missing a com-
plement. For instance, the relative pronoun in the following examples has the category ��������������,
while the verb boughtmaintains its respective canonical categories ��������� :

(56) Brooks Brothers which Marks bought last year

�� �������������� �� ��������� �������������
�� ��

�������� ���������
��

����
�

�����
�

��

56

CCG allows the subject noun phrase and the incomplete verb phrase to combine via type-raising and
forward composition to form a constituent with the category ����, which can in turn be taken as an argu-
ment of the relative pronoun. As the relative clause itself is a noun phrase modifier, the relative pronoun
has the category ��������������. This treatment of “movement” in terms of functors over “incomplete”
constituents allows CCG to keep the same category for the verb even when its arguments are extracted.

The �#� traces in the Treebank help us in two ways to obtain the correct categorial analysis: firstly,
their presence indicates a complement which needs to be taken into account in order to assign the correct
category to the verb, and secondly, we can use a mechanism very similar to slash-feature passing in GPSG
(Gazdar et al., 1985) to obtain the correct categories for the wh-word and the incomplete sentence.

The following sections show our treatment of various constructions that involve long range dependen-
cies arising through extraction, such as relative clauses, wh-questions, toughmovement, topicalization, pied
piping, subject extraction from embedded sentences and clefts. We use the example of relative clauses to
explain in detail how the algorithm deals with �#� traces.

3.9.1 Relative clauses

Here is the Treebank analysis of a relative clause:

���#� �;G���0 �;�� - �

�� ������� ��� ��
 ��� ��3�: 	�

��� ���$ ��

��� ���� �������

��� ���� ��5��� ����

��� ���&�.� /�/�0

This is the same tree binarized and marked up with the constituent type:

��#�(h)

;G���0(h)

;��(h)

which

� (c)

������ (c)

�� (h)

the

�� (c)

magazine

�� (h)

��$(h)

has

�� (c)

�� (h)

��� (h)

offered

�� (c)

��� (h)

advertisers

�� (c)

��&�.�

�����

The 	�-node with a �#� null element underneath it is a complement trace. The category of a complement
trace (here ��) is determined (from its label) before the recursive category assignment described above.
This category is then percolated up the head path of the parent of the trace to the next clausal projection.
Depending on the position of the trace node within its local tree, this category is marked as a forward (fw)
or backward (bw) argument:

57

��#�(h)

;G���0(h)

;��(h)

which

� (c) fw:��

������ (c)

�� (h)

the

�� (c)

magazine

�� (h) fw:��

��$(h)

has

�� (c) fw:��

�� (h)

��� (h)

offered

�� (c)

��� (h)

advertisers

�� (c) ��

��&�.�

�����

The � node is a complement, and receives category �����. However, since the � node also has a (forward)
trace �� which is not percolated further to its parent, the head daughter (��	�) subcategorizes for the
unsaturated ��������. Assuming that the category of the ���� parent is �����, the ��	� has category
������������������:

��#�(h) �����

;G���0 (h) �������������������

which

� (c) fw:�� ������

the magazine..advertisers

In the next step, the children of the �-node are assigned categories. The 	� ��� is a backward complement
with category ��, but since the �-node has a forward trace, it is type-raised to ��������. (Like adjunct
categories, type-raised categories do not carry features). The forward trace is also appended to the category
of the parent � node to yield ��������:

� (c) ���������

��������

������ (c) ��

the magazine

�� (h) fw:�� ���������

has..advertisers

Then, categories are assigned to the children of the ��-node. The �� daughter is a complement with category
��������. Since the forward trace is carried up to the parent ��, the head daughter ��� subcategorizes for
�������� and hence receives category ���������������������. The forward trace is also appended to the
category of the parent ��:

�� (h) fw:�� ��������������

��$(h)����������������������

has

�� (c) fw:�� ��������

offered..advertisers

Going down to the children of the �� daughter, the 	� trace is a forward argument. This yields the transitive
verb category ������������� for the ��	 node. However, since the 	� is a trace, this node will be cut out

58

of the tree in a postprocessing stage. The category of the �� parent node is now also changed to take its
forward trace into account.

�� (h) fw:�� ��������������

�� (h) fw:�� ��������������

offered advertisers

�� (c) ���

��&�.�

�����

After cutting out the trace and all unary projections� � �, the subtree of the relative clause is as follows:

�����

�������������������

which

���������

��������

��

the magazine

��������������

����������������������

has

�������������

������������������

offered

��

advertisers

Reduced and zero relative clauses do not have a relative pronoun:

������� ��� �� ����	� 	��	� 5� �(�	

���#� �;G���0 ���&�.� 4

�� ������� �� ��3�: 	�

��� ���$ ��

��� ���� �������

��� ��5��� ����

��� ���&�.� /�/�0

������� 	 ���� '����

As already mentioned in section 3.8, we use unary type-changing rules (corresponding to the zero mor-
phemes of Aone and Wittenburg (1990)) to account for this:

��

��

the ...plan

�����

���������

the magazine has offered...

This algorithm works also if there is a coordinate structure within the relative clause such that there are two
�#� traces:

��� ��� �� 	������ �����

���#� �;G���0 ���&�.� 4

�� ������� ���� ��'

59

��� ��� ���� ��'

��� ���&�.� /�/�0

������� ��� �	

��� �� � ����� ��

��� �	�

��� ��� ���3�

��� ���&�.� /�/�0

������� ��� �	

��� �� � (��	�

This results in the following CCG derivation for the relative clause:

���������

��������

��

they

��������������

��������������

�������������������

pay

������������������

��

�����

on

��

their deposits

��������������������

����

and

��������������

�������������������

charge

������������������

��

�����

on

��

their loans

3.9.2 Wh-questions

�#�-traces are also used for wh-questions (labelled ����
):

��&� ���#�< �;G���0 �;�� ; �

���� ����

��< ���� ��

������� ���� #��� ��	�

��� ��� ��5��

��� ���&�.� /�/�0

�#��� ���� ����

������� ��� ����

���� ��'�

�" =

The Treebank analyses wh-questions as ����
, with the wh-word in specifier position. It assumes a
further level of structure, �
, which includes the rest of the question. By percolating the �#�-trace up to the
�
-level, we obtain the desired CCG analysis:

60

����

�������������

�����������������

Which

�

cars

������

�������������

������������������

do

��

�

Americans

������������

������������

������������

favor

�������������

most

�������������

these days

However, in subject questions, such as the following example, the following two kinds of analyses can
be found:5

(57) a. ���#�< �;G���0 �;� ;�

��< ���$ @�

������� ���&�.� /�/�0

��� ���2 ��((3

��� ��� ��

��� ����

�" =

b. ���#�< �;G���0 �;� ;�

�� ������� ���&�.� /�/�0

��� ���$ @�

��� ���2 ��((3

��� ��� ��

��� ����

�" =

For our purpose, a sentence with a trace in subject position is the same as a verb phrase; and the CCG
analysis assumes in fact the the wh-word subcategorizes for a declarative verb phrase:

����

����

����������������

Who

���������

����������������������

’s

��������

�������������

telling

��

��������

the

�

truth

�

?

However, in order to obtain the correct CCG derivation from the first Treebank analysis, the inverted
subject trace underneath the �
 has to be cut out, and the label �
 has to be changed to ��:

���#�< �;G���0 �;� ;�

��� ���$ @�

��� ���2 ��((3

��� ��� ��

��� ����

�" =

5Erratum: In Hockenmaier et al. (2004), we used an example where the trace was in the wrong place.

61

3.9.3 Toughmovement

Tough movement is also annotated using �#�-traces:

�� ������� ���� ��

��� ���$ �

�#������� ��� � �� ��(�

���#� �;G���0 ���&�.� 4

�� ������� ���&�.� /

��� ��& ��

��� ��� H��� �'

��� ���&�.� /�/�0

The adjective phrase has the following categorial analysis (Steedman, 1996):

(58) difficult to justify

����������������������� ������������ ��������
��

���������
�

���������

We obtain this analysis from the Treebank by percolating the forward �� slash category to the ����-
level. As explained in section 3.5.2, the empty subject in infinitival verb phrases is cut out.

���������

���������������������������

difficult

�������������

��������������������

to

������������

justify

3.9.4 Topicalization

We assume that English has the following schema of a non order-preserving type-raising rule (Steedman,
1987) to account for topicalization of noun phrases, adjective phrases and prepositional phrases:

(59) � � �������
with � � �����������������

(60) The other half, we may have before long

�� ���������
��������

�

�����

The Penn Treebank uses �#�-traces also for topicalization. If a constituent is topicalized, or fronted, it
receives the tag #��, and is placed at the top level of the sentence. A co-indexed �#�-trace is inserted at
the canonical position of that constituent:

��&� �� ��������0 #	 �!��((�	� �	5 ��	��	��(�����

������� ���� �

��� ���$ �

������� ���&�.� /�/�0

�" "

62

We stipulate that categories of the form ������� which can only be derived by non-order-preserving
type-raising, can be assigned by the parser to any constituent of category � in sentence initial position.6

Therefore, this category need not appear in the lexicon. Topicalised noun phrases (� #��) receive the
category ��, but in order to assign the correct category to the verb, an 	� with tag #�� is not considered
a complement:

������

��������

��

An...actor

���������

��������

��

he

��������������

is

If there is a resumptive pronoun (that is, the fronting is an instance of left-dislocation), there is no
coreference between the fronted element and the pronoun:

�� ������� �� ��

�C ��

��������0 �

��� ���� 1���

�� ������� ���&�.� /�0

��� ��� 	3 ,��1

In these cases, we obtain the correct lexical entry for the verb in the same manner, since it suffices to treat
the (� #��) as adjunct:

������

���

�������

the

�

shah

������

:

–

������

��

he

���������

����������������������

kept

��������

coming back

See 3.5.7 for the treatment of � #�� and �� #��.

3.9.5 Pied piping

We follow the analysis of Steedman (1996) for pied piping:

6This assumption is not implemented in the parser or the probability model presented in the following chapters.

63

(61) the swap, details of which were disclosed

�� �� ���������� ����������������������������� ���������
��

����������
��

�����
�

�������������������
�

�����
�

��

In the corresponding Treebank tree the preposition and relative pronoun form a PP which modifies the
head noun.

������� ��� �� �-��

�� �

���#� �;G���7 �;G�� ���� ���� (�

�;G�� ��� ��
 �;G�� �;�� - �

�� ��������0 ���&�.� /�/�7

��� -��� � ��(����

However, in the CCG analysis, the preposition “of” combines first with the noun phrase “details”, and the
relative pronoun “which” takes this constituent as argument. Therefore, a new constituent �0$1�0�$	� is
inserted, which consists of the noun phrase and preposition:

������� ��� �� �-��

�� �

���#� �;G�� �� ��� ���� �;G�� ���� ���� (�

��� ��

�;G�� �;�� - �

�� ��������0 ���&�.� /�/�7

��� -��� � ��(����

The preposition is an adjunct of the noun phrase; however, a special rule during category assignment
guarantees that it is assigned the ordinary category of an NP-modifying preposition, ����������, and
that the noun phrase is type-raised and composed with the preposition. This constituent is then treated as an
argument of the relative pronoun.

�����

�������������������

�����

����������

��

details

����������

of

�����������������������������

which

���������

were disclosed

Similarly, there are cases of pied piping with only the PP:

��� ��� ������ � �� ���1���

�� �

���#� �;G�� ��� 	

�;G�� �;�� - �

�� ������� �������

��� ,�' �	� ��((,�� ��� �� � �-	 �����	� �	� ��� �(�	��

64

Here, we leave the tree as it is, since its constituent structure already corresponds to the CCG analysis.
In this case the ��	� is head. The preposition is an argument and receives the NP-modifying category
����������:

�����

��������������

����������

in

�����������������������������

which

������

traders buy ...clients

In the case of pied piping with “whose”, the relative pronoun also takes a noun as argument:

������� ��� ��� ���� 	3��

�� �

��� � ��	����	 � �' ���	� (-���	

�� �

���#� �;G���0 ��� ��� ����

�;G�� ��� ��

��� �;G�� �;�) -���

���� ���3����

�� �

�#��� ��� �� ������� �(��	� ��	���(

�� �

�� ������� ���&�.� /�/�0

��� �5� ���� �� � -�' 	�� ��" � 	1 	� @� ��� � �	 ������

This is the CCG derivation:

�������������������

�����

����������

��

some

����������

of

�����������������������������

���������������������������������

whose

�

programs

3.9.6 Subject extraction from embedded sentences

Steedman (1996) assumes that the verb which takes a bare sentential complement from which a subject is
extracted has category ������������������. This category is only required when the subject is extracted.

This constituent structure does not correspond to the Treebank analysis, where subject traces are in the
ordinary position:

��� ��� �� ����

��� �� ��������

���#� �;G���0 ��� ���

�� ������� ���� ���	�� ���

��� ���� ��'

���#� ���&�.� 4

�� ������� ���&�.� /�/�0

��� ���� ���

�#������� 	�������'

65

However, in order to obtain the desired analysis, we assume that the verb takes the VP and the NP argument
in reversed order. Therefore, the tree is changed as follows:

��� ��� �� ����

��� �� ��������

���#� �;G���0 ��� ���

�� ������� ���� ���	�� ���

��� ���� ��'

��� ���� ���

�#������� ��� 	�������'

������� ���&�.� /�/�0

This then leads to the following CCG analysis:

�����

�������������������

that

���������

��������

��

�

economists

��������������

����������������������������

say

���������

�����������������������

are

���������

necessary

3.9.7 Clefts

Clefts are annotated as � �-� in the Treebank:

��&� �����> ������� ���� ��

��� ���$ @�

������� �� ����(��(�� �	� �

���#� �;G���7 �;�� ���

�� ������� ���&�.� /�/�7

��� ���$ �

�#������� ��� ������	�

�" "

Although there is no �,���-trace, all subject noun phrases under � �-� are assigned the category
�������. We treat the ���� as argument of the verb. If the focus of the cleft is a 	�, as in the above
example, its category is that of a noun phrase modifier �����:

������

��������

It

���������������

�������������������������

������������������������������

’s

��

the ...relationship

�����

�������������������

that

���������

is important

If the focus of the cleft is an adverb, the ���� is simply an embedded declarative, eg:

66

��&� �����> ������� ���� ��

��� ���� -��

��� 	��

������� �	� (�� ���(' 0I84�

���#� ��� ���

�� ��������7 ����" ; �� 	3��	 �	� �-� 3������� �����	��

��� ,�3�	 �� ��,(� """

�" "

Here is the corresponding CCG translation:

������

��������

It

���������������

�����������������������

����������������������������

����������������������������

was

�������������

not

��

until...1970s

�����

������������

that

������

Prof. ...

3.9.8 Extraction of adjuncts

�#�-traces can also stand for an adjunct (here indicated by the label ���� #/�):

��&� �� ���#����� �;G#����0 �;�� ;�	

�� ������� �� ����1 ���1��

��� ���� �������

�#������� ���&�.� /�/�0

�� ������� �� ��! �� ��	�

��� �(�	3�� �,��� 0+F

�" "

Adjunct traces do not indicate missing complements, and are therefore simply ignored by the translation
procedure.

���

������������

When

������

the stock market dropped

3.9.9 Heavy NP shift

In English, some noun phrase arguments can be shifted to the end of the sentence if they become too
“heavy”:

(62) a. give an engraving to Chapman

b. give to Chapman an engraving by Rembrandt

This kind of construction has been studied extensively by Ross (1967).
In order to provide an analysis according to which give has the same lexical category in the second case,

Steedman (1996) uses backward-crossing composition:

67

(63) a. give an engraving to Chapman

���������� �� ��
�

�����
�

��

b. give to Chapman an engraving by Rembrandt

���������� ���������� ��
��

�

�����
�

��

In the Penn Treebank, heavy NP shift is not marked:

�� ������� �� ���3�

��� ���$,� 	3�

������� �� 	���(' 94

��� ��� �� 	��,��

��� ��� ��

��� ���	��' ��	��

��� ��� �� ���	 - ((,� (���� 	 ��- A��1 �� ��	��	

�" "

From this tree, the following CCG translation is obtained, which does not conform to Steedman’s anal-
ysis:

������

��

The surge

���������

��������������

�������������������

brings

��

to nearly 50

��

the number of country funds ...

Backward crossing composition is also used in Steedman (1996, 2000) to account for certain preposition
stranding phenomena in English. However, in its unrestricted form, this rule leads to overgeneralization. In
order to avoid this overgeneralization, Steedman advocates the use of two features, SHIFT and ANT , on the
arguments of lexical functor categories. At present, such features are not induced from the Penn Treebank.
The grammar which underlies CCGbank only consists of particular rule instantiations, and might therefore
not be prone to the overgeneration problem which motivated Steedman’s features. We leave the question of
whether such features would be necessary for a CCG that consists only of the rule instantiations found in a
corpus, and how they could be obtained, open to further investigation.

3.9.10 Parasitic gaps

Parasitic gaps that arise through extraction, such as the following example, do not seem to occur in the Penn
Treebank:

(64) Which papersi did you file ti without reading ti?

In CCG, this construction is analyzed with the combinatory rule of substitution (Steedman, 1996):

68

Which papers did you file without reading

����������������� � ������������������ �� ������������ �������������������������� �������������
� � ��

������������� ������������� ������������������
��

�

������������
��

������
�

����

If such a construction did occur in the Penn Treebank, and both traces were in the right locations, our
algorithm would be able to obtain the correct analysis. In section 3.10.2, we discuss the related case of right
node raising parasitic gaps, which do occur in the Treebank. Since we obtain the correct derivation (with
substitution) in these cases, the grammar that is implicit in CCGbank predicts the existence of parasitic gaps
that arise through extraction.

3.10 Long-range dependencies through coordination

3.10.1 Right node raising

Right node raising of complements Right node raising constructions such as (65) can be analyzed in
CCG using the same lexical categories as if the shared complement was present in both conjuncts (Steed-
man, 1996):

(65) She applied for and won bonus pay

�� ��������� ����� ���� ��������� ��
��

���������
�Φ�

���������
�

����
�

�

In order to assign the correct lexical categories to such sentences, we need to know where the canonical
location of the shared complement is, ie. that the shared constituent is interpreted as a complement of both
verbs, and that sentence (65) means the same as:

(66) She applied for bonus pay and won bonus pay.

The Treebank adopts an analysis of this construction in which the shared constituent is co-indexed with
two ��	��-traces that occur in the canonical position of the shared element:

��� ������� ��

��� ��� ���� ���(��

������� ��� ���

��� ���&�.� /���/�0

��� �	�

��� ���� -�	

��� ���&�.� /���/�0

����0 ,�	�� ��'

�����&� ��� �	���
 ��� �� ������ (�-

�" "

69

In order to assign correct lexical categories to sentences with right node raising, we need to alter the trans-
lation algorithm slightly. The category assignment proceeds in three steps for sentences which contain
��	��-traces:

1. When determining the constituent type of nodes: Identify all nodes which are co-indexedwith ��	��-
traces (eg. 	� 2). These constituents are neither heads, complements nor adjuncts, and hence will get
ignored in the category assignment. ��	��-traces themselves (or their maximal projections, here 	�s)
are treated like ordinary constituents, and thus they can be either heads, complements or adjuncts.

2. Assign categories to the nodes as before. Nodes which are co-indexed with ��	��-traces (eg. the
	� 2 above) will be ignored because they are neither heads, complements nor adjuncts. ��	��-traces
themselves will receive the category of an ordinary constituent in this canonical position. If an ��	��-
trace is a complement, its category is percolated up to the topmost level of this coordination. This trace
category is treated like a trace arising through extraction.

3. If the ��	��-traces with the same index do not have the same category, this sentence cannot be
processed, as the CCG analysis predicts that both constituents in canonical position have the same
category.7 Otherwise, copy the category of the ��	��-traces, and assign it to the co-indexed node.
Then assign categories in the usual top-down manner to the subtree beneath the co-indexed node.

Ignoring the co-indexed constituent bonus pay in the first pass guarantees that applied is assigned
���������, not ������������. Considering the ��	��-traces as ordinary constituents guarantees that
for is assigned �����, not ��, and won ���������, not ����.

Right node raising of heads In English it is also possible for two conjoined noun phrases to share the
same head:

(67) a U.S. and a Soviet naval vessel

This is also annotated with ��	��-traces.

��� ��� ��� �

���� E"�"

��% ���&�.� /���/�0

��� �	�

��� ��� �

��� ��5 ��

��% ���&�.� /���/�0

��%�0 ��� 	�5�(

��� 5����(

Our algorithmworks just as well with this case: First, the category of the traces is determined and percolated
up the tree (here shown with noun level inserted):

7This would arise if two �����-trace complements did not have the same Treebank label, say if one was a �� and the other a ��,
but in practice this does not happen. Note that in the adjunct case it is also conceivable that the categories of the two �����-traces
differ because they might be attached at different levels in the tree, but again, this does not seem to happen in practice.

70

��

�� fw:�

�� fw:�

��

the

�&E�fw:�

���

U.S.

�%:�

�������

��

and

�� fw:�

��

the

�&E� fw:�

���

Soviet

�%:�

�������

�%�0:

naval vessel

During category assignment, the 	� 2 is ignored. Categories are assigned to all other nodes, resulting in
the following tree:

��:��

��:����

��:����

��:����

the

�&E�:���

���:���

U.S.

�%:�

�������

��:����

and

��:����

��:����

the

�&E�:�

���:���

Soviet

�%:�

�������

�%�0:

naval vessel

Then we assign �� to the shared constituent 	� 2, and assign the corresponding categories to its daughters.
Finally, the ��	�� traces are cut out:

��

����

����

��������

a

���

U.S.

����������

����

and

����

��������

a

���

Soviet

�

���

naval

�

vessel

Right node raising of adjuncts When the shared constituent is an adjunct, the algorithm that we have
just presented works if only the modified constituents are conjoined, although in that case it is not strictly
necessary to use this two-pass procedure:

��� ��� ��� ���� ��	�

��� ���&�.� /���/�0

��� �	�

��� ��� � �� �!���� 5� ��� ���

��� ���&�.� /���/�0

����0 �� ��- .	3(�	� .(���� �

However, the shared constituent can also modify constituents inside the conjuncts:

71

�� ��� #	�

������� ��'

��� ���� �������

�� ������� �((�� � ����(�

��� ��& ��

��� ��� ��� 	������

��� ��� �� �����

��� ���&�.� /���/�0

��� �	�

��� ��� ����5�

��� ��� �� ?��(�'

��� ���&�.� /���/�0

����0 �� �� � �-	 -��1

�" "

We stipulate that the NPs are type-raised to���������� before they are combined with the verbs by com-
position. This analysis requires the following modification to our algorithm: If a ��	��-trace is an adjunct,
we first determine the category of the constituent it modifies (this can only be done if this constituent is
itself a complement, such as an NP, which is generally the case), which allows us to determine the category
of the shared constituent (here �����). The NPs which contain the ��	��-traces are marked, so that their
categories are type-raised to���������� during category assignment. The category of the shared adjunct,
�����, is also percolated up as a forward trace to the ��s. Finally, we obtain the correct derivation:

������

��

they

���������

����������������������

���������������������������

prepare

��

all their people

��������

��������������������

to

�������

�����������������

�����������������

������������

increase

����������

��

the speed

�����������������������

����

and

�����������������

������������

improve

����������

��

the quality

�����

of their own work

3.10.2 Right node raising parasitic gaps

Right node raising can also occur without coordination, and is then similar to parasitic gaps (section 3.9.10)
that arise through extraction:

�� ������� G�	3 J�	3@� �	���' ��(�� �	� � - � � 	�

��� ��� - ((

��� ��� ��� ��	���� 	

��� ���&�.� /���/�0

���� �C ��

72

��� ���3

��� ��� 	��

��� 	 , �

��� ���&�.� /���/�0

�C ��

����0 (�	3����� ���	�� � 3��-�

Like parasitic gaps that arise through extraction, CCG uses substitution (see section 2.3) to analyze this
construction (Steedman, 1996). Our treatment of right node raising traces deals with this case correctly:

�������

������������

������������

constrain

������������������

������������������

�������������������������

–

������������

�������������

though

������������

�������������

not

������������

inhibit

:

–

��

long-term economic growth

However, our algorithm is not able to obtain a CCG derivation for the following example, because
substitution would only work if the from-PP is an argument of go and the to-PP is an adjunct. However,
they both have the same function tag, ��:

�������* ��������0 ��'

��� ��� @((

��� ��� 3�

������� ��� ����

����&� ������� ���&�.� /�0

��� ���2 ,� 	3

������� ��� �	�

��� ��� ��

��� ��� ��

�#��� ���� (�5���3��

��� ���&�.� /���/�7

������� ��& ��

��� ��� �	�

��� ��� ��

��� ��� ��

�#��� (���� (�5���3��

��� ���&�.� /���/�7

����7 ��� 	� �����	 ��

3.10.3 Argument cluster coordination

If two VPs with the same head are conjoined, the second verb can be omitted:

(68) It could cost taxpayers $15 million and BPC residents $1 million.

73

In the CCG account of this construction, taxpayers $15 million and BPC residents $1 million form con-
stituents (“argument clusters”), which are then coordinated. Argument clusters are obtained by type-raising
and composing the constituents of each argument cluster, such that the resulting category is a functor which
takes a verb of the right category to its left to yield a verb phrase (cf. Steedman, 2000, chapter 7). Then the
argument clusters are conjoined, and combine with the verb via function application:8

(69) cost taxpayers $15 million and BPC residents $1 million

�	� �� �� ���� �� ��
�� �� �� ��

	���	� ���	� 	���	� ���	�
�� ��

����	� ����	�
�Φ�

����	�
�

��

The Treebank encodes these constructions like a VP-coordination in which the second VP lacks a verb.
Also, the daughters of the second conjunct are co-indexed with the corresponding elements in the first
conjunct using the 3 notation (referred to in the Treebank manual (Bies et al., 1995) as template gapping):

�� ������� ��

��� ��� ���(�

��� ��� ��� ����

����0 ��!��'���

����7) 09 � ((�	

��� �	�

��� ���K0 ��� ��� ��	��

���K7) 0 � ((�	

�" "

If the second �� contains constituents which do not correspond to constituents in the first ��, a null
element (marked �)#�) with the same label is inserted in the appropriate place in the first ��. This null
element is co-indexed with the corresponding constituent in the second ��:

���#�� ������� ���&�.� /�0

��� ��� ���2 	����� 	3

��������7 �� 7"9 F

��������* 	 >�,����' 0II0

�#��������6 ���&�.� /�&�/

�� �

��� �	�

��� �������K7 �� * F

�������K* �� � ! ��	� 	���5�(�

�#�������K6 ���������

Since the Treebank constituent structure does not correspond to the CCG analysis, we need to transform
the tree before we can translate it. We obtain the CCG constituent structure by creating a new node ����-
consisting of a �� consisting of copies of the co-indexed elements of the first conjunct, the conjunction and
the second conjunct (again using �� to abbreviate ����):

8We use the following abbreviations:
� for ����, 	
 for transitive ��������� and �	
 for ditransitive ��������������

74

��

��

��

���

spent

���7

$325,000

�������*

in 1989

#�2��

��

��K7

$325,000

������K*

in 1989

����	H

��

and

��

��K7

$340,000

������K*

in 1990

Category assignment now proceeds in two phases: first we assign categories in the normal fashion, ignoring
the ����- tree:

������

������

������

���������

spent

��

$325,000

�����

in 1989

#�2��

$325,000...in 1990

Then the constituents which are co-indexed with the elements in the first tree are assigned the same cate-
gories as their antecedents, and all nodes in the first conjunct apart from the verb are cut out:

������

���������

spent

#�2��

��

��

$325,000

�����

in 1989

��

��

and

��

��

$340,000

�����

in 1990

Then category assignment proceeds underneath the co-indexed nodes (not shown here), as well as above
them. Category assignment within an argument cluster is a bottom-up, right-to-left process. The leftmost
node (�� #/�34) is an adjunct and does not need to be type-raised. However, the object noun phrase is
backward-typeraised to ���������� (instantiating the � in the type-raising rule with the category of the
parent of the argument cluster). If there was another object to the left of this noun phrase, with category �,
its type-raised category would be �������������������, instantiating the � with the argument category
of the previous complement.

75

������

���������

spent

#�2��

��

����������

��

$325,000

�����

in 1989

����	H

��

and

��

����������

��

$340,000

�����

in 1990

Then category assignment proceeds, bottom-up:

������

���������

spent

����������

����������

����������

��

$325,000

�����

in 1989

����������������

����

and

����������

����������

��

$340,000

�����

in 1990

�)#�-null elements, which are inserted in the first conjunct for elements in the second conjunct that do
not have a counterpart in the first conjunct, are treated like ordinary constituents and are then later cut out.

This algorithm does not work for all sentences that are annotated with template-gapping (*3*) in the
Treebank. In particular, it does not work for sentential gapping (discussed below). It also does not work
for cases such as the following, where the tree that contains the antecedents in the first conjunct is not
isomorphic to the analysis of the second conjunct:

���#����� �;G#����6 �;�� ;�	

�� ������� �� ������� ��5 ��

��� ��� ���� ������

��� ��� (�-�

����7 �	 -��1���@ � 3��

��������* 	 ��' 0I+8

��� �	�

��� ���K7 �	 ��(����	�3 	3 �������� 5��

�#�������K* � '��� (����

�#������� ���&�.� /�/�6

CCG is perfectly capable of handling such cases. For example, here is the derivation of the above
example:

76

passed laws on..rights in..1987 and on..cooperatives ..later

������������� ����� �� ������������� ���� �� �������������
�� �� ��

������������� ������������������ ������������������
�� ��

������������������ ������������������
�Φ�

������������������
�

��������

Unfortunately, there is a lot of variability in the Treebank annotations, and we did not attempt to modify
the algorithm to deal with each of these cases. This is a shame, because we believe that CCG’s analyses of
these constructions are one of its main advantages. Future issues of the treebank could consider providing
a more consistent annotation of gapping, along lines such as the following:

��� ��� ������ ��� (�-� /%/�0
 /%/�7

�2#� �2#� ����0 �	 -��1��@� � 3��

��������7 	 ��'

��� �	�

�2#� �2#� ����0 �	 �������� 5��

�#��������7 � '��� (����

3.10.4 Gapping

The Treebank uses a similar annotation to argument cluster coordination for sentential gapping:

�� �� ��������0 &	(' �� ��� ���	� ��	�3��

��� ��� ��	

��� ��� ��(1

��������7 ��� ��

��� �� ��	�3��

��� �	�

�� �������K0 �� ��	�3��

�������K7 ��& ��

��� �� 3�	���(��	�3��

This construction cannot be handled with the standard combinatory rules of CCG that are assumed for En-
glish. Instead, Steedman (2000) proposes an analysis of gapping that uses decomposition, which is a rule
that is not based on combinatory logic. Decomposition allows a constituent to be split apart into two sub-
parts, and is used to yield an analysis of gapping that is very similar to that of argument cluster coordination:

(70) The a. manager can talk to the manager and the manager to the g. manager

� ���� �� ��
. .

�dcomp �� ��

��������� ������������� ������������������ ��������
��

�������������
�Φ�

�������������
�

�

However, this analysis is problematic for our current purposes. Since the derivation is not a tree anymore,
and since the decomposed constituents do not correspond to actual constituents in the surface string, this
derivation is difficult to represent in a treebank.

77

Therefore, these sentences are currently not translated to CCG. However, we could use a set of special
coordination rules of the form

(71) � ��	� ���� �

where ��� is the category of the second conjunct, eg. �������������.

3.11 Other null elements in the Treebank

Besides the null elements discussed above, the Treebank contains further kinds of null elements, all of
which we ignore when extracting a lexicon from the Treebank.

���� (“Insert constituent here”) is used for extraposition of modifiers. When there is intervening ma-
terial between a modifier and the constituent it modifies, and if the intervening material causes a difference
in attachment height, a ���� null element is inserted as adjunct to the modified constituent:

(72) a. �� ������� ��� #���� �� �� ������'

���#� ���&�.� /��G/�7

��� ���� -���

�#������� ���� ��(��(' ����'

���#��7 -��� �� ���� ��(�� -�� ����

�" "

b. �� ������� ����

��� ���$ @�

������� ��� ��� �	

��� �	������	� 	3

���#� ���&�.� /��G/�0

��� �	 �� ���� �� �� E�

���#��0 ��� ����	 �� �� �!��	� �� ��	�� �	� 	 #� �

Like in the case of ellipsis, this is a case of a semantic dependency which should not be reflected in the
syntactic category. Note that a constituent which is co-indexed with an ���� null element is not a comple-
ment.We therefore treat all constituents which are co-indexedwith an ���� null element as adjuncts. In ex-
ample (72a), for instance,were has category ����������������������, not �������������������������������.

The null element ����� (“Permanent Predictable Ambiguity”) is used for genuine attachment ambigu-
ities:

�� ������� G�

�#������� �(����'

��� ���$ ��

��� ���� � 	�3(��

��� ��� �) 7 , ((�	 (��	

��� ���&�.� /��#/�0

��������0 ���� �� ����	��� 3�5��	��	�

�" "

Since the Treebank manual states that the actual constituent should be attached at the more likely attache-
ment site, we chose to ignore any ����� null element.

Another null element, ���, is used to “mark the interpreted position of a unit symbol” (Marcus et al.,
1993). This null element is ignored. See section 3.7.6 for the treatment of monetary expressions.

��� �<� �))
 ��� 0"9
 ��� , ((�	

���&�.� /E/

78

3.12 Preprocessing the Treebank

The previous sections presented the general translation procedure. Some necessary preprocessing steps,
such as the insertion of a noun level and our reanalysis of small clauses, were mentioned. However, other
problems remain. For instance, usually �� daughters of �� are adjuncts, but the functional tag �-� on a ��
daughter can be used to indicate that there is a closer relationship between the PP and the verb. For instance,
a �-� tag on a PP can indicate that this is the second object of a ditransitive verb. However, it is well known
that this tag has not been used in a very consistent manner, and there is an estimated POS tagging error rate
of 3% (Ratnaparkhi, 1996). The translation algorithm is sensitive to these errors and inconsistencies: POS
tagging errors can lead to incorrect categories or to incorrect features on verbal categories (eg. when a past
participle is wrongly tagged as past tense); the omission or addition of functional tags causes errors in the
complement-adjunct distinction; and certain types of coordinate constructions are not recognized as such
if the bracketing is not correct. Additionally, the algorithm presented in section 3.3 requires the constituent
structure of the phrase-structure tree before binarization to conform to the desired CCG analysis. Some
systematic changes that are necessary have already been mentioned, but there are other cases that require
modification. For instance, if the flat tree of a coordinate construction contains any adjuncts or arguments to
the conjuncts, a separate level has to be inserted before binarization can proceed. This is true for constituents
which are co-indexed with a right node raising trace (��	��), but there are also other cases which are either
not explicitly marked as right node raising constructions, or where adjuncts to one of the conjuncts appear
as sisters rather than daughters of the constituent they modify. Some heuristics were developed to correct
POS tag errors that are likely to lead to errors in the translation process. For instance if a simple past tense
form occurs in a verb phrase which itself is the daughter of a verb phrase whose head is an inflected verb,
it is highly likely that it should be a past participle instead. Using the verb form itself and the surrounding
context, we attempt to correct such errors automatically. Originally, quotation marks (“ and ”) also caused a
number of problems for the translation algorithm, since they can appear in various positions in the tree and
surface string. We therefore decided to eliminate them in the preprocessing step.

3.13 Generating the predicate-argument structure

In CCG, every syntactic derivation has a corresponding semantic interpretation. In order to obtain this in-
terpretation, the lexicon has to pair words and their syntactic categories with an appropriate semantic type.
We did not attempt to furnish our lexicon with fully-fledged predicate-argument structures or logical forms.
Instead, we chose to use word-word dependencies which approximate the true semantic interpretation. Al-
though simplistic in nature, these word-word dependencies include the non-local dependencies that arise
through extraction, right node raising, argument cluster coordination, as well as control and raising. In order
to capture these non-local dependencies, we co-index arguments of certain lexical functor categories, such
as those of relative pronouns or control verbs. This mechanism is explained in section 2.5.6. A complete
list of the lexical entries in sections 02-21 which use this co-indexation mechanism is given in appendix C.
We believe that in practice this mechanism is largely correct, even though it is based on the (fundamentally
flawed) assumption that all lexical categories that have the same syntactic type project the same depen-
dencies. That this assumption is incorrect is most obvious in the case of control verbs: both promise and
persuade have the syntactic category ����������������������, yet for persuade, the subject of the to-VP
should be co-indexed with the object NP, whereas for promise, it should be co-indexed with the subject.
It may be possible to use the indices on the pro-null elements (� 2) in the Penn Treebank to recover this
information; we leave this to future research.

79

3.14 Summary – the complete algorithm

Here is the complete translation algorithm, including the preprocessing step described in section 3.12 and
the modifications necessary to deal with traces and argument clusters:

foreach tree τ:
preprocessTree(τ);
preprocessArgumentClusters(τ);
determineConstituentType(τ);
makeBinary(τ);
percolateTraces(τ);
assignCategories(τ);
treatArgumentClusters(τ);
cutTracesAndUnaryRules(τ);
verifiyDerivation(τ);
getPredicateArgumentStructure(τ);

preprocessTree: Correct tagging errors, ensure the constituent structure conforms to the CCG analysis for
noun phrases, coordinate constructions and small clauses, and eliminate quotes.

preprocessArgumentClusters: Create the constituent structure that corresponds to an argument cluster in
argument cluster coordination. This argument cluster contains a copy of the first conjunct. Within this
copy, constituents are co-indexed with the original constituents in the first conjunct.

determineConstituentType: For each node, determine its constituent type. We distinguish the following
constituent types: heads, complements, adjuncts, conjunctions, constituents that are co-indexed with
a ��	��-trace, spurious traces, and argument clusters.

makeBinary: Binarize the tree.

percolateTraces: Determine the category of �#� and ��	�� traces in complement position, and percolate
them up to the appropriate level in the tree.

assignCategories: Assign categories to nodes in the tree, starting at the root node. Nodes that are co-
indexed with ��	�� traces are ignored at first, and then receive the category of the corresponding
traces. Argument clusters are also ignored in this step.

treatArgumentClusters: Determine the category of constituents within an argument cluster that are co-
indexedwith elements in a first conjunct. Assign categories to the nodes within these constituent in the
ordinary top-down fashion. Use type-raising and composition to assign categories to the intermediate
nodes within the argument cluster.

cutTracesAndUnaryRules: At this point, the tree contains certain constituents that are not part of the CCG
derivation, such as traces and the copy of the first conjunct within an argument cluster. These are all
cut out. Resulting unary projections of the form �� � are eliminated.

verifyDerivation: There is a small fraction of trees for which the algorithm does not produce a valid CCG
derivation. These trees are discarded in this step. In most cases, this is due to argument cluster coor-
dination (“template gapping”) that is not annotated in a way that our algorithm can deal with.

getPredicateArgumentStructure: Use the co-indexation mechanism described in section 2.5.6 to project
non-local dependencies, and generate the word-word dependencies that constitute the underlying
predicate-argument structure.

80

As described above,we do not translate trees that contain gapping constructions (indicated by 	� ���3���).
The last step in the algorithm verifies that the translation is indeed a valid CCG derivation.

3.15 Related work

3.15.1 An alternative algorithm

Watkinson and Manandhar (2001) present an alternative algorithm for the extraction of AB categorial lex-
icons from the Penn Treebank. However, they do not offer a way of dealing with the various null elements
in the Treebank, which means that they can only process a small subset of the sentences in the corpus.9

Furthermore, unlike ours, their algorithm does not correspond to a reverse derivation, and therefore it is
unclear how the correctness of their translation can be guaranteed unless categories assigned in the initial
step can later be modified.

In particular, without such a correction, it would be possible for their method to assign lexical categories
to a sentence which cannot be combined to derive a sentential category. Their algorithm proceeds in four
stages:

1. Map some POS tags to categories.

2. Look at the surrounding subtree to map other POS tags to categories

3. Annotate subtrees with head, complement and adjunct information using heuristics similar to Collins
(1999).

4. Assign categories to the remaining words in a bottom-up fashion.

In the first step, Watkinson and Manandhar map some part-of-speech tags deterministically to CG cat-
egories. The example they give is �#	 ����. However, this analysis is only correct for determiners ap-
pearing in noun phrases in complement position. For instance, it is not the correct analysis for determiners
in temporal NPs.10 Consider the 	� #/� in the following example:

(73) �� ������� ���� J����

��� ���$ ��

��� ���� ��������

��� � ����� ����(��

������� ��� � �

��� '���

�" "

Here is the derivation of the embedded verb phrase:

(74) recorded a trade surplus this year

������������� �� ����������������� �
� �

�������� �������������
�

��������

9A search with ����	 showed that out of the 49,298 sentences in the Treebank, 34,318 contain a null element matching the regular
expression ����
10It is also not the correct analysis for ��s which only consist of one
� daughter, such as the following:

��� �
� ������, ��� �
� ������, ��� �
� �����

81

In step 3, they use very similar heuristics to ours (both are based on Collins (1999)) to identify heads,
adjuncts and complements. Thus, the 	� #/� would be identified as an adjunct, and either the analysis
given in the first step would have to be modified, or the categories cannot combine:

(75) recorded a trade surplus this year

������������� �� ���� �
� �

�������� ��

Assuming that such cases can be detected and are corrected, it is not clear that their bottom-up translation
procedure yields different results from our top-down method if the same heuristics are used to identify
heads and distinguish between complements and adjuncts. In step 4, they assign variables to the lexical
categories of words which have not been assigned categories yet, then traverse the whole tree bottom-up and
instantiate these categories using the head/complement/adjunct information already available to instantiate
these variables. However, some of this information will only be available at the top of the (sub)tree, and will
thus presumably be percolated down the tree through the variables. In such cases, the resulting categories
should be the same.

As Watkinson and Manandhar use AB categorial grammar, which only has function application, it is
also not clear how they could extend their algorithm to deal with the �#� and ��	�� traces in the Treebank.
Furthermore, they could not strip off the outer arguments of the head category when determining the cat-
egories of adjuncts, because AB categorial grammar does not allow composition. We would expect this to
lead to a larger, less compact lexicon.

3.15.2 Related work using other grammar formalisms

The algorithm presented here is similar to algorithms which extract Lexicalized Tree-Adjoining Grammars
from the Penn Treebank (Xia et al., 2000; Xia, 1999; Chen and Vijay-Shanker, 2000; Chiang, 2000, 2004).
All of these algorithms rely crucially on head-finding procedures and heuristics to distinguish complements
from adjuncts; therefore different implementations of the same algorithm can yield very different lexicons
(see Chen and Vijay-Shanker (2000) for the impact of different complement/adjunct heuristics). Cahill et al.
(2002) present an algorithm to annotate the Penn Treebank with Lexical Functional Grammar F-structures.

3.16 Summary

This chapter presented the algorithm which creates the syntactic derivations in CCGbank by translating the
phrase-structure trees in the Penn Treebank and outlined the kinds of changes that need to be performed
on the trees before this algorithm can applied in order to obtain correct CCG analyses. The head-finding
rules and heuristics that were used to distinguish complements from adjuncts are listed in appendix A.
Appendix B contains a detailed list of the preprocessing steps. The next chapter analyses the coverage of
the translation algorithm and the resulting grammar and lexicon.

82

Chapter 4

Statistics of the CCGbank grammar
and lexicon

Here we first examine briefly the coverage of the translation algorithm on the entire Penn Treebank. Then
we examine the CCG grammar and lexicon that are obtained from CCGbank. Although the grammar of
CCG is usually thought of as consisting only of the combinatory rule schemata, we are interested here in
the instantiations of these rules, because statistical parsers such as Hockenmaier and Steedman (2002b) or
Clark and Curran (2004) are trained on these instantiations. We report our results on sections 02-21, the
standard training set for Penn Treebank parsers, and use section 00 to evaluate coverage of the training set
on unseen data.

4.1 Coverage of the translation algorithm

CCGbank contains 48,934 (99.44%) of the 49,208 sentences in the entire Penn Treebank (sections 00-
24). For the remaining 274 sentences, the translation algorithm failed to provide a CCG derivation. 173
of these cases are due to gapping constructions. There are 107 instances of sentential gapping, where the
second conjunct consists of a subject NP and arguments of the verb. As explained in section 3.10.4, we
did not attempt to adapt the algorithm to this construction, which Steedman (2000) analyzes with the rule
of decomposition. An additional 49 instances of (non-sentential) gapping could not be processed by the
translation algorithm. One example that cannot be processed by our algorithm is discussed in section 3.10.3.
For 117 out of the missing 274 sentences the output of the algorithm was not a valid CCG derivation; this
includes 17 cases of gapping.

A fundamental assumption behind the automatic translation of syntactially annotated corpora into dif-
ferent grammatical formalisms such as CCG, TAG, HPSG or LFG is that the analyses that underly the
original annotation can be mapped directly (or, at least, without too much additional work) into the desired
analyses in the target formalism. This is only the case if all constructions that are treated in a similar manner
in the original corpus are also treated in a similar manner in the target formalism. As our research and the
work of others (Xia (1999), Chiang (2000), Chen and Vijay-Shanker (2000), Cahill et al. (2002)) on the
Penn Treebank has shown, such a correspondence exists in most cases. Gapping seems to be one kind of
construction where this correspondence does not seem to hold.

83

4.2 The lexicon

The lexicon, which pairs words with their lexical categories, is crucial in CCG. From CCGbank, we can
obtain a lexicon that can be used by any CCG parser, including non-statistical ones.

Number of entries A lexicon extracted from sections 02-21 has 74,669 entries for 44,210 word types (or
929,552 word tokens). The expected number of lexical categories per token in sections 02-21 is 19.19. This
is because some high-frequency function words also have a large number of categories (see table 4.1).

Word #Lexical Categories Word frequency
as 130 4237
is 109 6893
to 98 22056
than 90 1600
in 79 15085
– 67 2001
’s 67 9249
for 66 7912
at 63 4313
was 61 3875
of 59 22782
that 55 7951
-LRB- 52 1140
not 50 1288
are 48 3662
with 47 4214
so 47 620
if 47 808
on 46 5112
from 46 4437

Table 4.1: The 20 tokens with the highest number of lexical categories (sections 02-21)

Category frequency f Number of categories
100,000 f � 220,000 2
10,000 f � 100,000 13
1,000 f � 10,000 49
100 f � 1,000 108
10 f � 100 253
5 f � 10 131
2 f � 5 291
0 � f 1 440

Table 4.2: The frequency distributions of lexical categories (section 02-21)

Number and growth of lexical category types There are 1286 lexical category types. 847 of these appear
more than once, 680 appear more than twice, and 556 appear five times or more. The frequency distribu-

84

tion of lexical categories is shown in table 4.2. Figure 4.1 examines the growth of lexical category types in
sections 02-21. New categories that appear only once keep appearing, but the numbers seem to have con-
verged for categories that appear at least twice or more. After having processed 58% of the training data,
all categories that appear at least five times have been seen. In fact, 95% of the categories that appear at
least five times have been seen after 27% of the data have been processed. Inspection of the category types
that appear only once suggests that many arise from noise in the annotation and should not be used by the
parser. However, a large number of the categories that occur only once are linguistically important, since
they include pied piping constructions or verbs which take expletive arguments, etc.

 0

 200

 400

 600

 800

 1000

 1200

 1400

0K 100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K

N
um

be
r

of
 le

xi
ca

l c
at

eg
or

y
ty

pe
s

Word tokens (in 1000)

Growth of lexical categories

All
f>1
f>2
f>4

Figure 4.1: The growth of lexical category types (sections 02-21)

Lexical coverage Howwell does the lexicon cover unseen data? The lexicon from sections 02-21 contains
the correct entries for 94.0% (42,707 out of 45,422) of the tokens in section 00. 96.2% of the tokens that
appear in section 00 also appear in sections 02-21. 952 (35.1%) of the unseen entries have the category �,
and 791 (29.1%) have category ���.

4.3 The grammar

Size and growth of the grammar The grammar in sections 02-21 has 3262 specific rule instantiations.
Of these, 1146 appear only once, and 2027 appear less than five times. However, these low-frequency rules
are not necessarily due to noise, since many are instantiations of type-raising, coordination or punctuation
rules. Table 4.3 lists the most frequent rule instantiations. The distribution of rule frequencies is given in
table 4.4. The growth of rule instantiations is shown in figure 4.2. As in the case of lexical categories, new
types keep appearing. Each new lexical category requires at least one new rule, therefore this correlation is
hardly surprising. Like lexical categories, the number of rules that appear at least twice has converged.

Grammatical coverage Out of the 51,984 individual rule instantiations (corresponding to 844 different
rule types) in section 00, 99.9% (51,932) appear in sections 02-21. Out of the 52 missing rule instantiations
(corresponding to 38 rule types, because one rule1 appears 13 times in one sentence), six involve coordina-
tion, and three punctuation. One missing rule is an instance of substitution. Two missing rules are instances
of type-raised arguments that combine with a verb.

1��������������� � ����������������������� �����

85

Rule Frequency
147622 � 	 ��� �

115516 �� 	 �

91536 �� 	 ���	���� �

64404 �� 	 �� �����
56909 ����� 	 �� ��������
43291 ����� 	 ���������� ��

37386 ��� 	 �����
35423 ����� 	 ����� �
22184 ������������� 	 ������������������ ��

16969 �� 	 ����� ��

16585 �������� 	 �������� �������������
15686 �������� 	 ������������� ��

15293 �� 	 �� �����	��
13847 ����� 	 ��� �����
12669 ������� 	 ������������ ��

12519 �������� 	 �������������������� �������
10546 �� 	 �� �
10504 �������� 	 �������������������� �������
9283 ����� 	 � �����
8184 ���	���� 	 �� ����	��������

Table 4.3: The 20 most frequent rule instantiations in CCGbank, section 02-21

Rule frequency f Number of rules
100�0000 f � 150�000 2
10�000 f � 100�000 16
1�000 f � 10�000 75
100 f � 1�000 219
10 f � 100 604
5 f � 10 319
2 f � 5 882
0 � f 1 1146

Table 4.4: The distribution of rule frequencies in CCGbank, section 02-21

86

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0K 100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K

N
um

be
r

of
 r

ul
e

in
st

an
tia

tio
ns

Word tokens (in 1000)

Growth of rule instantiations

All
f>1
f>2
f>4

Figure 4.2: The growth of rule instantiations(Section 02-21)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0K 100K 200K 300K 400K 500K 600K 700K 800K 900K 1000K

N
um

be
r

of
 n

on
-le

xi
ca

l c
at

eg
or

y
ty

pe
s

Word tokens (in 1000)

Growth of non-lexical categories

All
f>1
f>2
f>4

Figure 4.3: The growth of non-lexical category types (Section 02-21)

87

Chapter 5

Conclusion

CCGbank is a corpus of canonical CCG derivations that is obtained from the Penn Treebank by an auto-
matic translation process. It has enabled the creation of robust, accurate, wide-coverage CCG parsers such
as Hockenmaier and Steedman (2002b), Clark et al. (2002), Hockenmaier (2003b) and Clark and Curran
(2004), which return not only syntactic derivations, but, unlike other wide-coverage Penn Treebank parsers
such as Collins (1999) or Charniak (2000), also word-word dependencies which represent the underlying
deep predicate-argument structures. Although these predicate-argument structures are only an approxima-
tion of the true semantic interpretation, and despite the problems highlighted in section 2.5.8, they may
nevertheless prove useful for tasks such as summarization and question-answering (Clark et al., 2004). Be-
cause of CCG’s transparent syntax-semantics interface, CCGbank can also be seen as a first step towards
the creation of a treebank annotated with semantic interpretations, and Bos et al. (2004) and Bos (2005)
have demonstrated that the output of a parser trained on CCGbank can in fact be translated successfully into
Kamp and Reyle (1993)’s Discourse-Representation Theory structures.

A fundamental assumption behind the automatic translation of syntactially annotated corpora into dif-
ferent grammatical formalisms such as CCG, TAG, HPSG or LFG is that the analyses that underly the
original annotation can be mapped directly (or, at least, without too much additional work) into the desired
analyses in the target formalism. This can only hold if all constructions that are treated in a similar manner
in the original corpus are also treated in a similar manner in the target formalism. Our research and the
work of others (eg. Xia (1999), Chiang (2000), Chen and Vijay-Shanker (2000), Cahill et al. (2002)) on the
Penn Treebank has shown that such a correspondence exists in most cases. Although the output of current
Penn Treebank parsers is linguistically impoverished, the Penn Treebank annotation itself is not, and it was
precisely the additional information present in the null elements and function tags that are ignored by other
parsers that made the creation of CCGbank possible.

However, as explained in this report, a number of obstacles remain to the translation of Penn Tree-
bank trees to a linguistically richer formalism such as CCG. The flat noun phrase structure is one of them:
although it is possible to introduce a separate noun level, compound nouns still have a flat internal struc-
ture, which is semantically undesirable, and leads us to assume a strictly right-branching (but often in-
correct) analysis. The Treebank markup also makes appositives difficult to distinguish from noun phrase
lists. Moreover, postnominal modifiers are always attached at the NP-level which is also undesirable from a
semantic point of view. At the verb phrase and sentence level, there are other problems. For instance, the ac-
quired CCG lexicon does not have a proper analysis of phrasal verbs. The distinction between complements
and adjuncts is similarly difficult to draw, especially for constituents annotated with the �-�-tag, which is
known to be used fairly inconsistently across the corpus. Kinyon and Prolo (2002) describe a different set
of heuristics for distinguishing complements from adjuncts than those used here, and it would be interesting

88

to compare the two approaches. In a future version of CCGbank, it might be possible to make use of the
complement-adjunct distinction that is implicit in the semantic role annotation of the Penn Treebank that is
currently being developed within the Proposition Bank project (Palmer et al., 2005).

There are certain other constructions, such as gapping, where the correspondence between the Penn
Treebank analyses and ours (and possibly others) breaks down. However, these constructions are so varied,
and yet so rare, that manual annotation may be better suited to their analysis. Other linguistic phenomena,
such as fragmental utterances, or multi-word expressions, lack an adequate syntactic analysis in the source
corpus. We cannot fault the creators of the Penn Treebank for this: in many cases, the correct analyses for
these constructions are unclear.

We believe that CCGbank is an important first step towards the creation of a corpus that contains logical
forms. However, as outlined above, more work is required to obtain the desired syntactic derivations.We are
also painfully aware that our current method of generating interpretations or predicate-argument structures
is flawed, since it assumes that all lexical categories that have the same syntactic type use the same co-
indexation mechanism to percolate dependencies between their arguments. This is clearly not the case,
because subject control verbs such as promise have the same syntactic category as object control verbs like
persuade. Future research should address this problem, although we have found our current co-indexation
to be largely correct.

Despite these shortcomings, the grammar that is implicit in CCGbank covers a wide range of syntactic
and semantic phenomena, and we hope that CCGbank will be a valuable resource, not just for statistical
parsing, but also for other applications.

89

Appendix A

Identifying heads, complements and
adjuncts

A.1 Head-finding rules

The head-finding rules are adapted from the rules developed by Collins (1999) and Magerman (1994). They
are given for each non-terminal label, and are to be read as follows: going from left to right (�), or from
right to left (), the first constituent with label �� is head. Otherwise, search for the next constituent in the
list. A� or	 next to the nonterminal label indicates the search direction for all head finding rules for this
nonterminal label. If none of the constituents listed is found, the leftmost (�) or rightmost () constituent
is chosen. In general, constituents which carry a functional tag are not identified as heads, unless this is
indicated by an “all” next to the rule.

���� "�% �)�5 "�% ����5 "�% �)--��5 "	% ��	5 "	% ���5 "	% ��5 "	% ���5 "	% ���5

"	% 		5 "	% 		�5 "	% 		�5 "�%
�5 "�% �#5 "	% ��5 "	% ��5 "	% ����5 "	%

���5 "�% 	5 "�% ���5 "�% ���5 "�% ��5 "�% 	�5 "�% ��5 "�% ���5 "�% ����5

"�% ��#

���� If the rightmost daughter is ���, �� or ���, it is head. Otherwise: () ��5 ����5 ��5 ���5

���5 	5 ���5 ���5 ��5 #)5 ��5 ���5 ��5 	5 ������ "���%5 	�5 ���5 		5 ��

	�� �: �#5 		5 		�5 		�5 		��5 	�5 	��5 ,�5 �)--��5 ��5
�5 ���5 ���5 ��5 ���5 ���5

����5 ��

� ��� �: /�5 ��5 �� ���

� �: /�5 ���5 ���5 ���5 #)5 ��5 6 ���65 ����5 �5 ����5 �	�5 ���5 	#�5 	�

�	� If the first daughter is ���� with head word “so”, “So”, or “SO”, it is head. Otherwise�: ���5

���5 ���5 ��5 /�5 ��5 �5 �	�5 ����7 	�

�
 �: ���5 ���5 ���5 ��5 /�5 ��5 �
5 ����

���� If there are two daughters and the first one is ��	� with trace, and the second daughter is a � with a
to-infinitival VP, the � is head. Otherwise,�:
	5 ��	�5 ����5 ������5 ������5 ��#5 ��5 /�5 �#5 �5 ��5 ��	5 ���5 ���5 ��5 �5

�
5 �	�5 ����5 ����

����
 �: ��	�5 ������5 ������5 ����5 �� "����� �+ ����
%5 ����

90

�� If the first daughter is ��	, it is the head, otherwise 	: 	5 #)5 ���5 ��	5 ��5 ��5 ��5 ��

Else the leftmost child is head.

�� �: #)5 ���5 ��	5 /�5 ���5 ��5 ���5 ���5 ��5 ��5 �5 �8/5 		5 		�5 	�

� �:
�5 ��#��5 	�5)�	5 		5 		�5 ���5 ��5 	�5 �)--��5 �8/5 �� Else, the rightmost
child is head.

��	� �: ��#5 ��5 ���5 ������5 ������5 ��	�5 	5 ���

������ �: ���5 ������5 ��5 ��

������ 	: ���5 	

���� 	: ��	�

�)	�� 	: ��5 ��5 	5 ��5 �)	��

��� The leftmost child is head

���� If the first child is �� or �)	��, and the second child is not ����5 ����
5 ��, take the first child.
otherwise,�:
��5 ������5 ��5 ����5	5 �5 	�5 ����5 ��

��	 If the first child is ”:” or -��, and the last child is not “:”, then the first child is head, unless the second
child is ����5 ��5 ��	5 	, or if there are only two children.

If the first child is ��	, it is is head. Otherwise,�:
��	�5 �5 	�5 ��5 ��5 ����5 ��5 ���5 ����5 ����5 �� ��	� is the label that is inserted
for �, or �	� under ��	 to trigger the unary type-changing rule.

	#� The leftmost child is head

� �: �#, otherwise take the leftmost child

��� 	: ��5 	�5 ����5 ����5 ��

��# (): ��

-�# (): -�, �)-)	

	�, 	�'�'���$ or 	�: � Within a 	� or 	�'�'���$: going from left to right, find the first 	� that does
not have an adjunct tag.

� Otherwise: if the first child is a determiner or quantifier, the first child is head. Determiner or
quantifier labels are:
��5 �#5 ���5 �)���#5
�5 ��#5 ���5 ���5 ��5 ��5 �)�� The only exception to this
rule is that if the second child is a “non-bare” NP, it is head. This arises if the first child is both,
neither, such a, etc.

� Otherwise: if the last child is �)�, it is head.
� Otherwise: Going from right to left, the first constituent that has a noun label is head. Noun
labels are the following:
		5 		�5 		��5 		�5 	� (not co-indexedwith a ��	��-trace)5 �)�5 ���5 ���5 ��5 ���5

��	5 ���5
�

� Otherwise, going from left to right, search for a 	� or ��	� (this is for NPs with NP adjuncts).
� Otherwise, search for a 9 or ���� from right to left.
� Otherwise, search for a �� from left to right.
� Otherwise, search from the right for a ��5 ��5
�5 �#

� Otherwise, search from the left for a ����5 ��5 	#�5 �)��

� Otherwise, take the leftmost node.

91

In parallel coordinations (coordinate constructions of the form "�� �� �� ��%), go from left to right,
and identify the first constituent with the same label as the parent as head.

Head-finding rules for additional nonterminals The translation procedure adds a number of additional
nonterminals and POS tags in order to deal with specific constructions. These serve the purpose of recog-
nizing specific constructions. For example, �#� is the constituent that contains the words at least/most; �)
is the POS tag assigned to so in constructions of the form so ��� that. �)--�� is the POS tag assigned to the
string DOLLARS which replaces monetary expressions. The constituent �	� contains a 	� and a comma,
and is required to trigger the binary type-changing rules that account for extraposition.

��	� (the label that is inserted for �, or �	� under ��	 to trigger the unary type-changing rule)�: ��5
��

�#� (for “(at least/most) X”) (�) 	

	� (“(in order) to do something” (): 	

�0�$1�0�$	� The leftmost child is head

#��	� (the constituent that is inserted in
�s such as more than three times, and that includes than and
everything that follows it): The rightmost child is head

�)���# (The constituent that includes the possessive “’s” and the preceding noun phrase): The rightmost
child (ie. the possessive “’s”) is head

�)��� (�): ���� Otherwise: (): ��	5 ���5 ��5 ���5 ���5 		5 		� Otherwise: (�) ��5 ���.
Else, the leftmost child is head.

�#� (a constituent consisting of a predeterminer and a determiner) (): �#

�	� rightmost (all)

A.2 Complement-adjunct distinction

If the node has a complement tag (���, �-�, �#�, #��, ���), it is a complement, unless it is an
���� �-� which expands to a null element, or it also has an adjunct tag in addition to a �-� tag. �� #��
nodes are only complements under �	�, or if they carry a ��� tag. Nodes with ��� tag that are children
of ���s are not complements. ���s themselves are treated as if their label was the label of their first child.
Nodes with adjunct tags (���, �)�, �	�, ��, -)�, /	�, #/� (with the exception of �� #/� nodes
under ����) and ���) cannot be complements. 	� #�� nodes that are not co-indexed (eg. 	� #�� 2) are
also treated like adjuncts, since there is a resumptive pronoun or other element.

For each constituent type, this is a list of the constituents that are recognized as complements when they
appear as children of this constituent:

����: �� unless it is left to the head or headed by 	 “than”, �, ���� (not if the complementizer is “than”,
“as”, “so”, “which”), 	�, �)���

����: ��, unless it is left to the head or headed by 	 with head word “than”, 	�, �)���, ���� (not
“than”, “as”, “so”, “which”, “before” or ������, and not if there is an intervening punctuation
mark)

	�:)�	, 	�'�'���$

92

	�:)�	, 	�'�'���$

	��:)�	, 	�'�'���$

)�	: ����

�: � with numerical index, but not co-indexed with a ��	��-trace; �� if the head of � is /�

�	�: 	�, � (and not a parallel conjunction), ����
, ��

�
: ��, 	�, ��, �

����: 		 (“in order to...”), �, �
, ��, �	�, ����
 (���� is changed to ����
)

����
: �
, ��	�, �	�, �, ����
, 	�, ��

��: 	�

��: 	�, �� (unless a parallel conjunction), ����
, �, �
, ����, ��s with �#�-trace

� under �� an � under a �� parent is a complement if it is not preceded by a comma and another �.

���� under �� An ���� is a complement if it is:

� not preceded by a comma

� preceded by a comma, and a relative clause with “which”

� preceded by a comma, and if there is no other intervening complement between the comma
and the verb (this is wrong for intransitive verbs).

� preceded by a comma, and if there is another comma somewhere in the yield between the
verb and the immediately preceding comma.

��	�:)�	

������: ��, ����, ����

������: ��, ����, ���� (unless is the first child), �� (unless it is the first child or headed by “not”)

����: 	, #), �0$1�0�$	�

���: treat like it had the same label as its first child

����: 	�, �� (if left from head)

��	: ���, �)-)	 (if the head is -�� or �)-))

�: ����, ���

Complement-adjunct distinction for additional constituents Additional constituents that are inserted
during translation have their own complement-adjunct rules.

�)���#: 	�,)�	

�)���: ��, unless it is left to the head or headed by 	 with head word “than”, 	�, �)���

�#�: ���, ���, �#

93

Appendix B

Changes to the Treebank

This chapter specifies how the constituents Treebank are translated. For each nonterminal label, the prepro-
cessing steps, head-finding rules and complement-adjunct rules are given. In general, only preprocessing
changes that apply to more than one tree are listed.

B.1 Correcting tagging errors

The following heuristics attempt to correct some systematic tagging errors. Only tagging errors that led to
errors in category assignment were attempted to correct.

Under ����: if a 		, ��	, or ��� appears after a conjunction, it is a second head in a coordinate construc-
tion – change it to ��

“whether” as ��; any �� as first child of ����: change to 	 (preposition). Subordinating conjunctions
in CCG are like modifiers, not like coordinating conjunctions.

Infinitives tagged as ���: change to ��, eg. within inverted questions

Infinitives within “do/would” questions: if the first child of an �
 is any form of “do” or “would”, and
the first child of the �� underneath the �
 is not a ��, /�, ��� or)	, , it is changed to ��.

“and” is always ��

If the last child of an 	� is ��, it is changed to 		. This tagging error leads to errors with the head-finding
rules, hence it is changed.

���mistagged as �� under �
, if the first or second child is ��, it is changed to ���.

Mistagged 		�s: occasionally words in capital letters are tagged 		� even though they are not, eg. “Does”,
“Should”. Under ����, if the adverb has only one child, and it is tagged as 		�, change this to ��.
This is a tagging error, and we do not want unknown 		�s to have adverbial categories.

Unrecognized prepositions and subordinating conjunctions: if the first child of a �� is tagged 		, it is
changed to 	.

Possessive ’s as ���: if the possessive “’s” under �)���# is labelled ���, it is changed to �)�

��� as possessive “’s”: under a ��, possessive “’s” is labelled ���.

94

Simple past tense (���) mistagged as past participles (��) If a ��	 is the head of a �� and its grand-
parent is a �, we assume it should not be a past participle but a simple past tense form (���). Under
�	�, if the first child is ��	, it is changed to ���.

Bare infinitives (��) mistagged as ���, ��� or ��	: in to-infinitives – if they are children of a �� which
itself is the child of a �� whose head is #).

-ing forms tagged as 		, 		�, ��, �� If an “ing”-form appears within a ��, and is tagged as 		, 		�, ��
or ��, it is changed to ���.

-ed forms tagged as 		, 		�, �� If a form eding in “ed” appears within a �� and is tagged as 		, 		� or
��, it is changed to past tense ��� if the parent of the �� is �, and to past participle ��	 if the parent
of the �� is a �� or if the �� is passive. (This only captures mistagged regular verbs.)

Other forms tagged as 		, 		� or �� Other verbs are also somtimes mistagged as 		, 		� or ��. They
are changed to ��� if the parent of the �� is a sentence, yielding a declarative sentence, to �� if the
parent of the �� is a �� headed by a do-form, and to ��	 otherwise.

�� as first child of ��: changed to ��:���:��	 (depending on ending) if there is no other head in the ��.

���mistagged as 		� underneath �� if an 		� is the first or second child of a ��, or the third child and
immediately preceded by a conjunction, it is a ���.

��mistagged as ���: if a ��� is a child of a �� that is a child of an �	�, the ��� is changed to ��.

��	mistagged as ���: if a ��� is a child of a �� that is a child of an �	�, the ��� is changed to ��	.

��mistagged as 		: if a 		 is a child of a �� that is a child of an �	�, the 		 is changed to ��.

“that” underneath a 	� is �# (not).

�� as head of ��s embedded in #) ��s (there should be other cases too, but this one is easiest to detect).
Are changed to ��

		� appearing as first or second child in a �� Are changed to ��� (3rd person singular verb)

B.2 Preprocessing ����s

B.2.1 ”So” + adjective; ”as”+ adjective

� ”so” �������: If there is a �� and an ����, we want the �� to be an argument or modifier of the
adjective itself, and the ���� to be an argument of the “so”:

�#������� �#��� ��� ��

��� �(���

��� ��& ��

��� ��� ����(�� �	

�� �

���#� ���&�.� 4

�� ������� ���� ��� 	3

��� ���$ @�

��� ���� ��(�

��� ���� ��

95

���#� ���&�.� 4

�� ������� �.% ����

��� ��� -�

��� 	@�

��� ��� ,�

������� ��� �

��� ���,(��

���������

�����������������

�����������������

�������������������������������

so

���������

��������������

close

��

�����

to

��

�

completion

�

,

�����

Boeing ’s told us...

� Within a noun phrase, an adjective phrasewith “so” or “as” canmodify a determiner, eg “so personal
an issue”, “as good a year” (Note that this is different from “so many people”). The Treebank gives
this construction a flat analysis:

��� �#��� ��� ��

��� �����	�(

��� �	

��� ����

However, since we distinguish determiners and nouns, we analyze this construction as follows:

��� ���� �#��� ��� ��

��� �����	�(

��� �	

����	 ��� ����

Here the ���� modifies the determiner:

��

��������

�����

���������������

as

�����

good

��������

a

�

year

96

��

��������

�����

�������������������

so

���������

wholesome

��������

an

�

outcome

B.2.2 “Too JJ toVP”

This construction is treated in a similar way to the “so JJ” cases. The flat Treebank analysis (see below) is
modified so that too takes the adjective and the to-VP as argument:

�� ������� �� � ��� ���	�

��� ���� -��

�#������� ��� ���

��� ���('

�� ������� ���&�.� /

��� ��& ��

��� ��� ��1�

��� ���� ��	���� �	�

Here is the CCG translation:

���������

����������������������

������������������������������������

too

���������

early

��������

��������������������

to

�������

������������

make

��

�

concessions

B.2.3 Other changes

� If an ���� expands to a conjunction of ����s, the following heuristics were implemented to deal
with adjuncts of these conjuncts that appear at the same level as the coordination itself: If a ��	 child
immediately precedes an ����, it is re-analyzed as a child of its ���� sibling. Anything that appears
after the last ���� is re-analyzed as a child of this ����.

� ���� ��� under 	� is changed to ����. This is an appositive, and should be treated as an adjunct,
not a complement.

B.3 Preprocessing ����s, ������s and ������s

B.3.1 Inserting coordinate structures

The Treebank gives coordinate ADVPs a flat structure:

97

�#��� ��� � ���

��� (�3�(('

��� ��

��� ((�3�(('

In order to correctly identify the heads in these cases, a new ���� which consists of the conjunction and
the two constituents surrounding it is inserted. This also disambiguates constructions such as the following
in a manner that assigns the modifier wide scope over both conjuncts (which is correct in this example, but
might not always be the right analysis):

�#��� �#��� ���� ����

��� ?� �1('

��� �	�

��� ��������('

���#� ��� ��	

�� """

�������������

�������������

���������������������������

more

���������

���������

quickly

���������������

����

and

���������

accurately

�������������������������������

than...

B.3.2 Other changes

� Incorrect complement tags: ���� under 	� are not complements; therefore ��� tags are deleted.

� If an ���� consists of a determiner (�#) followed by a nominal tag (), its label is changed to
	� #/�, and it is preprocessed in the same manner as 	�s. This guarantees that nouns are inserted.

� The label of ����s that consist of three children where the second child is “to” is changed to
� ���,
and they are preprocessed like
�s, eg:

�#��� ��� +68

��& ��

��� L66

� The label of ���� ��� #��s that appear under � and whose first daughter is “so” or “So” is changed
to ����.

� “(ADJP (ADVP more than) JJ)”: here we assume that “than” is head and takes “more” as argument.

B.4 Preprocessing �s

B.4.1 Type-changing rules

� A binary type-changing rule for sentences that are followed by a comma is triggered if the first
element of a sentence is a � ��� small clause with empty 	� ��� and 	� ���:

98

�� ���#�� ������� ���&�.� /�0

������� �� ���� ��

�� �

��������0 �� �� 5���

��� �� 	��� ��� ��' �� ((�� ����� """
"

This is changed to:

�� �%�� ���#�� ������� ���&�.� /�0

������� �� ���� ��

�� �

��������0 �� �� 5���

��� �� 	��� ��� """

"

This yields the following CCG analysis:

������

���

��

��������

No

�

dummies

�

,

������

the drivers pointed out...

� There are two similar binary type-changing rules for 	� adjuncts that appear either at the end of a
sentence and are preceded by a commas or that appear at the beginning of a sentence and are followed
by a comma.

� Sentential subjects �)/ ��� are treated like NPs, and we assume a type-changing rule that can
change an NP to a sentence.

B.4.2 Changing the bracketing

� Under an �, constituents such as ����, ��, #) that appear adjacent to a �� are moved under the ��,
not at �-level. If the �� is surrounded by commas, the modifier and the commas are all appear under
the ��.

� "� 	� ��� �� �� �%: An � spanning the 	� ��� and �� in the first conjunct is inserted.

� In coordinate construction, premodifiers of the second or further conjunct that appear as sisters of
the conjunct are moved underneath that conjunct. There are similar preprocessing steps for other
constituents, eg. fir ��s and 	�s.

� If an 	� ��� or other consistuent with ��� tag in an � is surrounded by parentheses that appear at
the � level, the parentheses are moved underneath that constituent:

�� ������ �����

������� ��� ��

��� ���������

������ �����

��� """

99

This is changed to:

�� ������� ������ �����

������� ��� ��

��� ���������

������ �����

��� """

� If there is an ���� after a �� in clefts (� with a �-� tag), the ���� is moved underneath the �� and
its label is changed to ���� �,-, so that the cleft analysis comes out correctly in the translation.

� so in �	�: If an � has an �	� daughter whose first daughter is “so”, we analyze the “so” as taking
an inverted sentence as argument, and returning a declarative sentence:

� �� �� �&����2 �&�#��.� H��� 3�� ��� ��

�� �

��� ��

����� �#��� ��� ��

��� ���$ �(� ��

������� ��� ��'��� ����"

�" "

In order to obtain this analysis, an �	� is inserted which contains the �� and 	� ���, the original
�	� is relabeled ����, resulting in the following CCG analysis:

������

������

...

������������

����

or

������

�������������

so

������

���������

claims

��

Scypher Corp

B.4.3 Other changes

� "� � 	 �%. If an � has a daughter with label 	 which is follwed by an �, an ;;���� ���** node
is inserted, and the 	 and � are made daughters of this ;;���� ���**. In most of these cases, the
	 is so or for:

�� �� �� 3�5��	�� ���(�	@� ��1� �

�� �

��� ��

�� �� (����	�	� 3�5��	�� -�(����� �� ���� �(3�����

�" "

This results in the following CCG analysis:

100

������

������

The governor..

���

������������

so

������

the lieutentant governor...

� � #�� with a null subject is changed to � ���.

� In coordinate �5 ��	�5 ����5 �	�5 ��: 1 If ��	, “...” or “–” follow the first conjunct, they are
moved underneath the first conjunct.

� If there is a child 	 immediately followed by a �, both of them should go under a ���� ���:

�� �� �� 3�5��	�� ���(� 	@� ��1� �

�� �

��� ��

�� �� (����	�	� 3�5��	�� -�(����� �� ���� �(3�����

�" "

� If there are two children marked with the ��� tag, only the second one is the real subject, so the first
��� tag is deleted.

B.5 Preprocessing 	�s

Most changes to 	�s have to do with the insertion of a noun level into base (non-recursive) 	�s, the reanal-
ysis of possessive “’s”, and the placement of modifiers in coordinate constructions.

B.5.1 Reanalysis of NP structure

� The possessive ‘s and ‘ are analyzed as functors from 	�s to determiners: a new constituent (labelled
�)���#) is inserted, which consists of the 	� and the possessive ‘s.

� A “non-bare” 	� is inserted in an 	� after the first child if the first child is a ��# (all, such, both, half
etc.), a �� (what else, what other means), or a �� with head word such), or if the first child is a �#,
and the new token to be added is a 	�:

��� ��� ,��

��� ��� ��
 ��� ?��1�

��� �	�

��� ���� G�3�

��� ��� �((

��� ��� ��
 ��� �3�	�'
 ��&� @�

���� ��(� ��

� In coordinate construction, �)/ should be recognized as conjunct, and a unary projection 	� 	
�)/ is inserted.

1this is not just S!

101

� In dates (� #/�) of the form “Feb. 18”, the month takes the number as complement (which is
assigned the category ��	 ��).

� If 	�	 	� #) 	�, we obtain the same analysis as for
�s

��� ��� �<� ��� +
 ��� 0MN7

��� F

��& ��

��� �<� ��� +
 ��� *MN+

��� F

��

��

�

���

�����������

9

���

3� /4

�

%

�����

����������

to

��

�

���

10

�

%

� If there are two adjacent 	� children, the first of which has a comma as last child, the comma is lifted
up to the top level in order to obtain the appositive analysis for the second 	�:

��� ��� ��� ����(� ����1

�� �

��� ���� � �"

�� �

��� � � �' ��� ��((� ���(� �� ,���1���� ��� ��(�� �� -��(�

��

��

��

�

���

Battle

�

Creek

��������

�

,

��

�

Mich.

��������

�

,

��

a city that...of the world

� If there are any clausal postmodifiers within a base 	�, insert another 	� consisting of the base 	�
only. This avoids the postmodifier becoming a modifier of the noun. For example, if the last child of
an 	� is a
�, the
� is a postmodifier (or more, or so, out of X)

��� ��� ��

��� (���

��� '���

�<� ��� ��

��� ��

This tree is changed in the following way before the noun level is introduced:

102

��� ��� ��� ��

��� (���

��� '���

�<� ��� ��

��� ��

Here is the CCG reanalysis:

��

��

��������

the

�

���

last

�

year

�����

���������������

or

�����

so

We do not make this change if the
� is a purely numerical expression such as the following:

��� ��� ��

���2 ���� 	 	3

�<� ��� 7"7

��� � ((�	

��� ��� �3�

�<� ��� 9I

��� 0MN7

Similarly, there are cases where appositions are not recognized because there is an adjunct such as a
��5 ����5 ��	 after the first 	�:

��� ��� ��� ��
 ���� ��	���

��� ��� ���
 ��� ���� ����� �'
 ���� ��(�'

�� �

��� ��� �
 ��� ��	���5�� 5�
 ���� ;�� 	3��	
 ��� � 	1���	1

In these cases, we insert a 	� which includes the 	� and its adjunct.

Also, if there is a �� followed by a 	� within a 	�, an 	� which includes the �� and 	�, is inserted.

In coordinate 	�s, if there is a postmodifier adjacent to one of the conjunct 	�s (except the last one).
attach it to this NP. Postmodifiers are ��, ��	, ����, ���, ����. These postmodifiers must not be
coindexed with a ��	�� trace.

��� ��� ��� ��

���� ��	���

��� ��� ���

��� ���� ����� �'

���� ��(�'

�� �

��� ��� �

��� ��	���5�� 5�

���� ;�� 	3��	

��� � 	1���	1

103

This becomes

��� ��� ��� ��� ��

���� ��	���

��� ��� ���

��� ���� ����� �'

���� ��(�'

�� �

��� ��� �

��� ��	���5�� 5�

���� ;�� 	3��	

��� � 	1���	1

��

��

��

��������

the

�

Center

�����

����������

for

��

�

���

Security

�

Policy

��������

�

,

��

��������

a

�

���

conservative

�

���

Washington

�

think-tank

A similar preprocessing step deals with �� and ���� immediately preceding a conjunct 	�.

� If the last child of a 	� with more than two children is a
�, it is usually an adjunct to the whole NP
such as or more, or so, out of X, and we insert a separate 	� level that includes everything up to the

�:

��� ��� ��

��� (���

��� '���

�<� ��� ��
 ��� ��

��� ��� �	�

��� 	�-

��� � 	3��

�<� ��� ���
 ��� ��
 ��� 04

The new structure is then:

��� ��� ��� ��
 ��� (���
 ��� '���

�<� ��� ��
 ��� ��

��� ��� ��� �	�
 ��� 	�-
 ��� � 	3��

�<� ��� ���
 ��� ��
 ��� 04

We do not make this change if the
� is a purely numerical expression such as the following:

104

��� ��� �

��� � !��

�<� ��� 048
 ��� *MN6

��� ��� ��

���2 ���� 	 	3

�<� ��� 7"7
 ��� � ((�	

Similarly, there are cases where appositions are not recognized because there is an adjunct such as a
��5 ����5 ��	 after the first NP:

��� ��� ��� ��
 ���� ��	���

��� ��� ���
 ��� ���� ����� �'
 ���� ��(�'

�� �

��� ��� �
 ��� ��	���5�� 5�
 ���� ;�� 	3��	
 ��� � 	1���	1

In these cases, we insert a 	� which includes the 	� and its adjunct.

If there is a �� followed by a 	� within a 	�, an 	� which includes the �� and 	�, is inserted.

These changes mean that only 	�s appear under 	�s if there is a conjunction, or an adjunct such as a relative
clause or �� at the same level. There are still some cases of 	�s under nouns, eg:

��� ��� ��

��� ���� &��"
 ��� 0I
 �� �
 ��� 0I+8

��� ���1��

��� ��((����

These are treated as adjuncts.

B.5.2 Multiple NPs and modifiers

Similarly, if there are appositives and other modifiers such as relative clauses (����), reduced relative
clauses (���, ��) or ��s modifying the same 	�, additional structure has to be imposed to obtain the correct
analysis. There are three types of cases:

� 	� 	 	�5 	�5 /)��,� "5%

The second NP is an appositive, and the modifier modifies the first NP. This becomes
	� 	 "	�5 	�% 5 /)��,� "5%

� 	� 	 	� 5 	� /)��,�

The modifier modifies the second NP. This becomes
	� 	 	� 5 "	� /)��,�%

� 	� 	 	�5 /)��,� 5 	�

Since appositives are analyzed like coordinate lists, merge the first NP and the modifier to an NP:
	� 	 "	�5 /)��,�% 5 	�

B.5.3 Insertion of noun level:

There are a few cases where annotators inserted an NP as a noun level, but these are extremely rare, and we
leave them as they are:

105

��� ��� �

��� ��� ��� ���((

�� �

��� � 3�

��� ��� �(

��� ���

��� ��� ��

��� ��� ���� ��5 �

���� � 	1 	�

�� �

��� ��� ��� �������� �

��� ��	� ����

��� ��� ���

��� ��� ��� ��'��

��� ��� ��

��� ���� ��-

���� A��1

���� � �'

��� ��� ��

��� ��� ��� �(

���� ���� ��

��� ���� �	

��� ��� �

��� ���� ��(������

��� ,�����

	�'�'���$: this is inserted in any 	� whose first child is a ��#.

NPs with determiners/quantifiers: Insert a noun into a 	�, 	�� or 	� after �#5 �)��5 �)���#5
�5

��#5 ���5 ��9 if they are not followed by a conjunction, a punctuation mark or a 	�'�'���$, or
appear within a parallel conjunction ("�� �� �� ��% or parallel list ("�� �� 5 ��%.

Inserting nouns into mass nouns, proper nouns, bare plurals: If a noun phrase does not have a deter-
miner, and is not a personal or demonstrative pronoun, we insert a noun level immediately under the
	�, so that the entire 	� is also a noun. This applies to bare plurals, mass nouns and proper nouns.

Possessives: If a �)���# (see possessives above) is followed by an 	�, change the 	� to a noun.

See below for the treatment of pied piping.

B.5.4 Other changes

� The Treebank analyzes some 	�+ that are modified by two ����s as being modified by one ����
which consists of these two ����. In order to obtain the correct CCG analysis, these cases are changed
so that the NP is modified firectly by the two ����s.

B.6 Preprocessing ��s

B.6.1 Coordinate ��s

� Sometimes, �� coordinations are not bracketed properly, so that the main verb of the first �� appears
at the same level as the �� conjuncts, eg:

106

��� ���$ �

��� ����� ���� �� � ��� ��� �� �� ��'

��� �	�

��� �	@� �((�-�� �� -��1 �� � H���	�(��

In these cases, a �� is inserted which contains the verb and the following ��:

��� ��� ���$ �

��� ����� ���� �� � ��� ��� �� �� ��'

��� �	�

��� �	@� �((�-�� �� -��1 �� � H���	�(��

This can also happen with the verb of the second conjunct:

��� ��� ��� 5��' ���������

��� �	�

���� ���

��� 3� 	3 �� ������ 3 ���	�5��

This is changed in a similar way.

� Another type of bracketing error in coordinate ��s attaches the main verb of the first conjunct outside
the entire conjunction, eg:

��� ���$ ��

��� ��� �!��	��� �� ��(� ����� �� �,��� 74 ����(� ���� �,��� 09

��� �	�

��� ���$ ����

�� �� �!��	� �� ��(�� """

This error can be recognized by the fact that the verb in the second conjunct is tagged ��� (other
cases include ���). This is changed to the correct bracketing:

��� ��� ��� ���$ ��

��� �!��	��� �� ��(� ����� �� �,��� 74 ����(� ���� �,��� 09

��� �	�

��� ���$ ����

�� �� �!��	� �� ��(�� """

Similarly, coordination of modal verbs is sometimes not bracketed properly:

��� ��� ��	

��� �	�

��� ���(�

��� ,� 	�� ����� ����3��� �� 	�����'

We insert a VP that contains both modals. Since this VP preceeds the other VP, it is recognized as the
head.

� VP coordination/lists:

�� ��O ��� ��� #�� ��� ��

107

is rebracketed as

�� ��O ��� ��� �#��N�� ��
� ��

Similarly,

�� ��O #���N�� ��� ��"""

is changed to

�� ��O �#���N�� ��
� ��"""

even though there is a genuine ambiguity.

B.6.2 Other changes

� Sometimes, 	�s in ��s aren’t bracketed properly:

��� ��� ,�'

�#��� ��� �(���('

���� �(�

���� ��	���	�

� �� conjunctions within �� are sometimes not bracketed properly:

��� ��� �- ��

��� � ��� ����	� �����	��

������� ��� �� ���� ����1 ��	��

��� �	�

������� 	�� � ��	�' ���1�� ��	�

In order to recognize the �� coordination, an extra �� is inserted:

��� ��� �- ��

��� � ��� ����	� �����	��

��� ������� ��� �� ���� ����1 ��	��

��� �	�

������� 	�� � ��	�' ���1�� ��	�

� Ellipsis null elements (�!�) are cut out.

� If the last two children of a �� are ”5 	�” and there is another VP at the same level, the 	� is out of
construction:

��� ��� ���� ��((

����.%� 4"0 F

������� 	 ������,��

�� �

��� ��� �� � ��� ���(�

������� � 	�� >�,����' 0I+8

108

We introduce a separate level �	� that includes the comma and the 	�, which then triggers a binary
type changing rule �������������	���

��� ��� ���� ��((

����.%� 4"0 F

������� 	 ������,��

�%�� �� �

��� ��� �� � ��� ���(�

������� � 	�� >�,����' 0I+8

Sometimes the comma appears as last child of the �� child. This is also changed to the �	� structure.

B.7 Preprocessing
�s

The Treebank assumes a flat internal structure for
�s (“quantifier phrases”).

Coordination in
�+ If there is a conjunction within the
�, and the conjunction is not the first child, we
assume that everything to the left and everything to the right of the conjunction is a
�. If there is a
preposition () before the conjunction (between...and...), then the first conjunct is only what comes
between the preposition and the conjunction. Examples:

�<� ��� �((
 ��� ,��
 �))
 ��� 64�444

�<� ��� ,��-��	
 ��� 0
 ��� F
 ��� �	�
 ��� *
 ��� F

Prepositions in
�+ If there is one of the following prepositions within the
�, then everything that comes
after the preposition is rebracketed as a 	�, and a �� is inserted which consists of the preposition and
the 	�: of, out, as, in, than, to. Examples:

�<� ���� ����
 ��� ��	
 ��� *4

�<� ��� &	('
 ��� � 5�
 ��� ��
 ��� ��
 ��� 64

�<� ��� ��
 ��� ���
 ��� ��
 ��� 09

�<� ��� &	('
 ��� �	�
 ��� 	
 ��� ����

These 	�s are further preprocessed to insert nouns etc. The prepositions to and in are analyzed like
conjunctions which take the left and right noun phrases as arguments. Their category is the category
that is assigned to the
�.

“as much as...”: The first “as” subcategorizes for the “much” and the following preposition.

“well over...”, etc. If the first child of a
� is an adverb (��), and the second is a preposition (, but not
from), then the adverb modifies the preposition. Example:

�<� ��� -�((
 ��� �5��
 ��� I

“nearly a third”, etc: If the first child of a
� is an adverb (��), and the second is a preposition (, but
not from), then the adverb modifies the entire
�. Examples:

�<� ��� 	���('
 ��� �
 ��� � ��

109

B.8 Preprocessing ���s

��� is a label assigned to reduced relative clauses. However, a search with tgrep finds only 55 ���s in
the entire Treebank, since most reduced relative clauses are annotated differently. For instance, reduced
relatives consisting of past or present participles should be annotated �� (Bies et al., 1995, p. 230), eg.:

��� ��� 3�5��	��	� � 3����

��� ���� ��(�����

��� ���&�.� /

������� ���� ;��	����'

Some instances of ��� expanding to �� can be found:

��� ��� ���� -��1���

���� ��� ���� �!�����

��� ���&�.� /

������� �� �

�#������� ���� ��	 *4 '���� �3�

These are re-labelled as ��.
There are also ���s with a ���� child:

��� ��� ���� ������

���� �#��� ���	

������� ���� ��	 �	� '���

These are also re-labelled as ����, given that the same construction can appear elsewhere as ����:

��� ��� ���� ��	��

�#��� ��� ���	

��� �	(' �� 	�� ��� �	�

Appositives consisting of a sentential modifiers and a noun phrases, such as the following examples, are
also annotated as ���:

��� ��� ���	�� 	�, 1� � ���

�� �

���� ������� ��� '����

��� ��� � ���� �(:�� ����	3�(�

Given that in our grammar, appositives are analyzed like NP-coordination,we simply relabel these instances
of ��� as 	�; the sentential modifier is then treated like a premodifier of the second noun phrase:

��

��

mountain-bike tires

�����	��

�

,

��

�����

����������

for

��

�

years

��

a Specialized stronghold

110

Note that this leads to overgeneration in the grammar, since only appositive noun phrases can be modified
in this manner.

Otherwise, if a ��� contains a �� child, it is re-labelled as ��. These are constructions consisting of a
�� and a modifier, eg:

��� ��� �	 ��� ����� I7 �����	 � ��

�� �

���� �#������� ����	

�����&� ��� 	

��� ����(�����

��

��

...communities,

�����

���������������

often

�����

in rural areas

B.9 Preprocessing �	�s

Elliptical inversion As described in section 3.5.7, we analyze elliptical inversion after certain function
words like so, than, as by letting the function word subcategorize for an inverted, elliptical sentence.
Than and as are analyzed as specifiers of ����:

���#��#�� ��� ��

����� ���$ ����

������� ���� ��	� ���

��� ���&�.� /=/

so appears as within an �	�:

����� �#��������0 ��� ��

��� ���$ ����

�#��� ���&�.� /�/�0

������� ��� �(���� �5��'�	� �(��

�����&� 	 �� ,��1

This analysis is modified so that so is also a specifier of an ����.

Verb fronting: As described in section 3.5.7, we analyze the subject 	� as an object of the verb; therefore
we replace the ��-trace with the 	� ���:

����� ��������0 ���2 >�((�- 	3

��� �� ��� 	 �� �	� ����(�� �	���	���((���

��� ���$ ��

��� ���� ,��	

��� ���&�.� /�/�0

������� � 3�	���((' ,�5 	� �����

�" "

This example becomes:

111

����� ��������0 ���2 >�((�- 	3

��� �� ��� 	 �� �	� ����(�� �	���	���((���

��� ���$ ��

��� ���� ,��	

��� � 3�	���((' ,�5 	� �����

�" "

B.10 Preprocessing ����s

“(Six months) before/after �”: The temporal 	� receives a complement tag and is therefore analyzed as an
argument of the subordinating conjunction.

Free relatives: Free relatives are analyzed as ����)/ and receive category ��.

so that, as though, as if etc: If an ���� has two adjacent subordinating conjunctions as children (tagged
as) next to a sentence �, another ���� is inserted which consists of the second subordinating
conjunction and the �.

what about, what if: If an ���� has a �� child that is immediately followed by 	, a new constituent is
inserted which constists of the 	 and its right sister. If the right sister is an 	� (what about...), this
new constituent is a ��-complement, if it is a � (what if...), the new constituent is a ����-complement.

however/whatever: In ����s with complementizer whatever or however that take a small clause argument
where the second element is a trace, the trace is deleted:

�� ���#��#�� �;G#����0 �;�� G�-�5��

��� � �1'

�� ������� �� ,�� 	���

�#������� ���&�.� /�/�0

�� �

�� �@� ,� �1 ���� ��'�

The CCG derivation is:

������

���

��������

����������������������

However

���������

risky

��

the business

������

, it’s brisk these days

B.11 Preprocessing ��s

��s under ��	�s: ��+ under ��	�modify the noun under the first ��	� or 	�, not the ��	� itself, eg:

�;G���0 �;G�� �;� -��

��� 1 	�

��� �� 	 � �� 5�

112

This is rebracketed so that the �� modifies the noun kind. The following example is rebracketed so
that the �� modifies the noun opposition.

�;G���* ��� �;�) -���

��� ����� � �	

��� �� ���� 3	 � �(� 	5�����	�

��s under 	� do not carry the ��� tag.

If a �� has a ��	� child, it is relabelled as WHPP.

“because of”, “instead of”: a ��with complement tag is inserted, which consists of the preposition of and
the adjacent 	�.

Within a ��, if a relative clause (an ���� with ��	� in specifier position) appears which is adjacent to an
	�, a new 	� is inserted which consists of the 	� and the relative clause.

B.12 Preprocessing ���s

���s in small clauses: if a ��� ��� appears within a small clause (�) where the subject 	� is empty, cut
out the empty subject and the �-node.

���s with more than three daughters: Most ���s have three daughters: the two conjuncts and the con-
junction. We use the following preprocessing steps in order to recognize the conjuncts in ���s with
more than two daughters:

� If the first daughter is �#, 	, or has the headword either, a new node is inserted that contains
all but the first daughter. The label of this new node is determined by the label of the second
daughter of the ���: it is)�	 if the second daughter is a nominal POS-tag (etc.)

�E�� ��� ,��

��� ������(�

��� �	�

��� � ����

� We assume that ����, �� and ��	 that follow immediately after a comma or conjunction and
do not immediately precede a comma modifiy the element that follows after them, eg:

�E������ ��� 	 5 �(�� �	 �� #�� �(� ��

�� �

��� �	�

��� ���

�#��� 5� � �	� ��5���,(�

This is rebracketed as

�E������ ��� 	 5 �(�� �	 �� #�� �(� ��

�� �

��� �	�

�#��� ��� ���

�#��� 5� � �	� ��5���,(�

If the first daughter of a ��� is �� with headword “not” or a �)	��, we also rebracket this in the same
manner.

113

B.13 Preprocessing ��	s

Trees rooted in ��	: If a complete tree is rooted in ��	, its label is changed to the label of its first child,
or to it second child if the first child is an opening parenthesis.

Sentences as ��	s: In direct speech, parentheticals indicate the speaker, eg.:

���� �� �

�� ������� ���� �

��� ���$ ��3���

���#� ���&�.� 4

�� ���&�.� /�/�0

�� �

This construction is analyzed with a unary type-changing rule:

������

��

The other side

���������

�������������

�

,

�������������

�������������

��������

��

he

������������������

argues

�

,

���������

knows Giuliani has always been pro-choice

If a colon is followed by a ��	, insert the colon into the parenthetical, and reanalyze the parenthetical.

��	s that appear under coordinate constructions and that are adjacent to constituents that are conjuncts
(have the same label as the parent node) are re-analyzed as children of this conjunct.

B.14 Preprocessing ����s

	� ��� traces: 	� ��� null elements under ���� are eliminated.

“not” is head: in a ����, an adverb (��) with head word “not” is head, unless it is preceded by ���5
������5 	�:

�>�#2 ��� ����� 	('
 ��� 	��
 ��� �� (�-'���
 �" "

�>�#2 ��� #	�
 �;G#��� -'
 ��� 	��
 �" =

����s that contain a wh-word are ���� (if the ���� is a child of a ��), or ����
.

If a conjunction (��) is immediately followed by a ����, the conjunction is re-analyzed so that it takes the
fragment as complement:

114

��&� �� �� ������� �� �����	�

��� �����	����� �� 	����

�� �

��� ,��

�>�#2 ��� 	��

��� - ���� � �������

�" "

������

������

The student surrendered the notes,

���

������������

but

������

���������

not

��

without a protest

B.15 Preprocessing �s

If the first child is 	�, 		, 		� or �8/, then the entire constituent is relabelled as 	�. If the headword of the
first child is , relabel the � as � ���, so that it is recognized as an adjunct. If the first child is 	, #) or ��,
the constituent is relabelled as ��. If the first child is �# and it is the only child, or if the last child is a 		
or 		�, relabel the constituent as 	�. Otherwise, if the parent of the node is ���� and this node is its first
child, relabel the � as �. Else, relabel it as ����.

B.16 Changes involving null elements

�#�-traces in subjects of to-VPs: In some instances where the object of an object control verb such as
expect is extracted, the trace appears as the subject of an � that contains the to-VP:

��� ��� 84 ,�� 	�����

���#� �;G���0 ��� ���

�� ������� ���� �

��� ���� � �

��� 	@�

��� ��� �!����

�� ������� ���&�.� /�/�0

��� �� ������� 04F ������ 	3 ���3 	�

In order for our trace-finding algorithm to work correctly, the 	� ��� that contains the trace and
theto-VP are moved up to the ��-level, and the � node is deleted, yielding the lexical category
������������������������� for expect.

�#�-traces with adjuncts: There are a few examples of 	�s that expand to an 	� with �#� trace as well as
a modifier such as �� or ����.

�� ������� &	� �����	 ��� � 3(���

��� ���$ �

������� ��� � -��1(' ��(('

���#� �;G���0 ���&�.� 4

115

�� ������� ���� �

��� ���$ 1����

��� ��� ���&�.� /�/�0

��� �� ����1� - � 	 � �� 	� �� �� 	3 	�- 3� �� (�-�

�" "

If, as in this example, the trace indicates object extraction in a relative clause, its modifier is lifted up
to be an adjunct of the 	� to which the relative clause is attached. The CCG derivation is as follows:

��

��

��

a weekly tally

�����

��������

��������

��

he

�������������

keeps

�����

of stocks...

There are also cases of passive traces that are modified, eg.:

��� ���$ ��

��� ���� ,��	

��� ���� ,� (�

��� ��� ���&�.� /�0

���#����� �;G���7 ���&�.� 4

�� ������� ���&�.� /�/�7

��� �� ����' � ����3 �� ���	� � �	 ��� ��

Here the modifier (���� ���) is lifted up to the lowest �� level.

�#� traces within VPs containing a PP which contains a passive null element (�) or a “logical subject”
(indicated by the -�� tag), are changed to � if the VP has no other child that expands to a � null
element.

Eliminating �!� null elements (ellipsis): �!� null elements are ignored by the translation algorithm. If a
constituent has only one child which is a �!� null element, it is eliminated. However, sometimes they
are heads of constituents that have other, non-null elements, eg.:

��� ���� ��

��� ���&�.� /=/

�����&� 	 ���� ����(�

In this case, the non-null elements (here the �� -)�) are moved up one level in the tree, and the
constituent which now contains only the null element is eliminated:

��� ���� ��

�����&� 	 ���� ����(�

116

B.17 Other changes

”at least/most X” If at is immediately adjacent to a superlative adjective or adverb (eg. least or most), it
subcategorizes for this adjective, which receives category ���� �����.

Parentheses, dashes: for any constituent, if it has a sequence of three children of the form ;;-��:1�+�

�� ���:1�+�**, and it is not the case the �� and its parent are both 	�s, let the parentheses or dashes
be children of the ��.

As explained in section 3.7.4, we analyze parentheticals that consist of a dash followed by a constituent
that is not normally an adjunct so that the dash and the adjacent constituent are an adjunct where the
dash is “head” and the adjacent constituent its “argument”. We also follow this analysis for dashes
and colons under � and ��.

117

Appendix C

Non-local dependencies projected by
the lexicon

Here is a list of lexical categories that use the co-indexation mechanism described in section 2.5.7 to project
long-range dependencies. Also given are the words that are found to have these lexical categories, followed
by the frequency with which this lexical entry occurs in the corpus. This data is generated from sections
02-21 only. We classify the categories broadly into whether they project control and raising dependencies
(this includes auxiliaries and modals) or extraction dependencies that arise in relative clauses and tough-
movement. These lists include a number of spurious, but mostly low-frequency, categories, which are mostly
due to annotation errors. All lexical categories of the same type have the same co-indexation, even though
we believe that this ought to be done on a word-by-word basis.

C.1 Extraction dependencies

Relative pronouns:

� ���i���i����������i� that (1), which (1)

� ���i���i����������i� – (2), -LRB- (2), : (12), as (1), besides (1), except (1), of (1), than (5),
that (8), which (1), who (9)

� ���i���i�����������i� That (1), as (3), that (299), what (4), whatever (1), which (121), who
(7), whom (18)

� ���i���i�����������i� - (2), – (1), -LRB- (1), : (3), That (1), WHO (2), What (1), as (2),
brand (1), on (1), than (4), that (1957), what (2), which (1600), whichever (2), who (1484),
whose (1)

� ���i���i������������i� - (1), – (11), -LRB- (20), as (31), if (3), than (9), when (2)

� ���i���i�����������i� that (1)

� ���i���i����������i� Who (1)

� ���i���i�����������i� – (1), -LCB- (1), : (5), How (2), as (2), how (1)

Relative pronouns which subcategorize for a noun:

� ���������������������������i����i whose (1)

118

� �����������������i����i whose (3)

� �����������������i����i which (2), whose (156)

� ������������������������i����i how (1)

� ����������������i����i whose (1)

� ���������������i����i Whatever (2)

� ���������������i����i In (3)

� ���������������i����i in (1)

� �����������i����i which (1)

� ������������i����i What (1), double (1), what (9), whatever (7)

� ������������i����i how (1), what (7), whatever (3), which (1)

� ������������i����i a (1), the (1)

� �����������i����i in (3)

� ��������������i����i what (1)

� ����������������i����i a (1), an (2), how (24), what (6), which (3), whichever (1), whose (3)

� ����������������i����i how (6), what (2), which (13), whichever (1)

� ���������������i����i What (1), what (1)

� ���������������i����i How (1), Which (2)

� ��������������i����i How (1), What (4), Which (1), the (1), what (4)

Pied-piping relative pronouns:

� ����i���i�������������������������i� what (1), whom (1)

� ����i���i�������������������������i� which (4)

Free relative pronouns: (do not pass a dependency)

� ������������ what (1)

� ������������ to (1)

� �������������What (36), Whatever (1), what (296), whatever (5), who (1)

� �������������What (32), what (144), whatever (1)

Tough-movement adjectives:

� ����������i����������������i� able (1), difficult (14), easier (8), easy (6), even (1), expensive
(2), fairer (1), hard (11), harder (4), impossible (8), reasonable (1), tough (2), willing (1), wrong
(1)

Tough-movement verbs:

� ���������i����������������i����� cost (2)

� ����������i����������������i����� cost (1), take (1)

� ����	
����i����������������i����� taking (1)

� ����������i����������������i����� got (1)

119

Subject extraction verbs:

� �������������i�����������i� realize (1), say (1)

� ��������������i�����������i� agrees (1), alleged (1), argued (1), believe (9), believes (4),
claimed (2), confirm (1), contends (2), estimate (1), estimated (1), expects (1), fear (2), feared
(1), feel (1), hope (1), hopes (4), knew (1), read (1), said (24), say (11), says (11), suggested (1),
think (7), thought (3)

� ��������������i�����������i� feared (1), hoped (2), said (2)

C.2 Raising and control dependencies

Object control verbs:

� ���������������������i�����i Call (1), Keep (1), Make (1), Sock (1), Spend (1), accept (1),
add (1), be (1), benefit (1), bid (1), buy (1), call (1), cut (4), find (5), force (1), get (13), give (2),
have (2), hit (1), hold (2), keep (30), knock (1), lead (1), leave (9), let (1), make (93), nudge (1),
place (1), plow (1), prove (1), push (3), put (7), reduce (1), rein (1), run (1), see (1), sell (1), set
(2), shake (1), start (1), steal (1), steer (1), sweeten (1), take (3), think (1), turn (6), walk (1),
win (1), woo (1), wring (1)

� �������������������i�����i Help (1), Let (16), build (1), have (10), hear (1), help (42), let
(45), make (32), see (21), tell (1), watch (2)

� ��������������	
����i�����i appreciate (1), be (1), get (2), have (10), imagine (1), involve
(1), justify (1), keep (13), leave (3), ruin (1), save (1), see (12), send (3), set (1), show (2), spend
(7), take (2), tolerate (1), want (3), waste (2)

� ���������������������i�����i find (1), get (2), have (9), hear (1), keep (3), leave (1), see (2),
want (1), watch (1)

� ��������������������i�����i get (5), have (7), keep (1), make (1), see (1)

� ��������������������i�����i Allow (1), Use (1), abandon (1), advise (1), allow (71), allowed
(1), arouse (1), ask (8), attract (1), authorize (1), be (4), become (1), bring (2), call (1), cause
(11), challenge (1), chisel (1), compel (1), convince (2), cost (3), declare (1), dispatch (1), do
(3), enable (19), encourage (8), entitle (3), expect (23), find (1), force (27), free (2), get (18), go
(1), have (1), help (3), induce (3), inspire (1), invest (1), invite (1), lead (3), like (4), make (2),
modify (1), motivate (1), need (5), offer (1), order (1), pay (1), permit (10), persuade (19), prod
(2), prompt (3), push (3), rally (1), release (1), require (25), send (1), sensitize (1), set (1), show
(1), spend (2), spur (1), take (18), teach (4), tell (5), urge (7), use (48), want (6), wish (1)

� ����������������������i�����i Make (1), bid (1), brought (2), call (2), called (27), calls (4),
consider (6), considered (3), considers (1), created (1), cut (1), declared (2), deemed (1), deems
(1), dragged (1), drives (2), drove (1), earned (1), filed (1), find (8), finds (4), flattened (1),
forced (1), found (10), get (2), gets (1), has (2), hold (1), keep (1), keeps (1), kept (4), kicked
(1), labeled (2), leave (2), leaves (5), left (2), made (18), make (16), makes (31), moved (1),
nursed (1), outnumbered (1), proclaimed (1), pushed (3), pushes (1), put (8), puts (2), rates (1),
remanded (1), resembles (1), sent (3), set (1), sets (2), showed (1), snatched (1), take (2), termed
(3), thought (1), took (4), tugged (1), turns (1), want (2), was (2), wish (1), wishes (1), won (1)

� ��������������������i�����i Make (1), adds (1), felt (2), had (1), hear (1), heard (2), help
(2), helped (16), helps (6), let (19), lets (6), made (11), make (6), makes (11), said (2), saw (14),
watched (4)

120

� ���������������	
����i�����i ’s (1), began (1), busies (1), covers (1), devotes (1), displayed
(1), envision (1), expects (1), fear (1), featured (1), find (3), finds (1), found (6), had (6), has (5),
have (8), hear (1), heard (2), keeps (1), kept (1), leave (2), leaves (1), left (1), necessitated (1),
posted (1), recalls (1), reported (1), saw (4), see (10), sees (1), sent (12), show (1), showed (3),
shows (3), spend (3), spends (3), spent (14), spotted (1), took (1), wore (1)

� ����������������������i�����i finds (2), found (3), had (2), has (1), have (2), hear (1), is (1),
observed (1), ordered (2), see (2), spent (2), wanted (2), wants (2), was (1)

� ���������������������i�����i got (1), had (2), have (1), paid (1), see (1), slashed (1), want
(1)

� ���������������������i�����i ’s (1), EXPECT (1), FORCE (1), adapted (1), added (2), ad-
vise (2), advised (2), advises (1), allow (13), allowed (21), allows (24), amended (1), appointed
(1), ask (2), asked (32), asks (3), authorized (3), believes (1), brought (1), call (1), called (2),
cause (2), caused (16), causes (6), cautioned (2), charge (2), chose (1), commissioned (1), con-
sider (4), considers (1), construed (1), convinced (1), costs (2), declared (1), defined (1), defy
(1), did (2), directed (3), dispatched (1), drove (1), elected (1), empowers (1), enabled (5), en-
ables (5), encourage (3), encouraged (4), encourages (1), entitle (1), entitles (1), expect (68),
expected (17), expects (95), extends (1), flew (1), flies (1), forbade (1), force (4), forced (10),
forces (5), found (3), free (1), freed (1), frees (1), gained (2), galvanized (1), gave (1), get (1),
got (1), has (1), helped (1), hired (2), induced (1), inspired (1), instructed (2), instructs (1),
introduced (1), invested (1), invited (3), invites (3), is (1), judge (2), lead (4), leads (3), led (10),
left (2), meant (2), moves (1), named (2), need (5), needed (2), needs (4), offset (1), ordered (17),
pays (1), permit (1), permits (4), permitted (2), persuaded (6), prepare (1), pressure (1), priced
(1), prompted (9), prompts (1), rallied (1), require (5), required (9), requires (10), retained (1),
selected (1), set (1), shed (2), showed (1), signed (1), spent (1), spurred (1), structured (1), take
(3), takes (2), taunted (1), teaches (1), tell (1), tells (3), tempt (1), tempts (1), told (7), took (6),
train (1), trains (1), trusted (1), understood (1), urge (1), urged (22), urges (6), use (10), used
(24), uses (9), want (19), wanted (3), wants (14), warned (1)

� ����	
����������������i�����i Calling (1), Holding (1), Keeping (2), Making (1), Putting
(1), bidding (1), bleeding (1), bringing (1), burying (1), calling (7), declaring (1), driving (2),
finding (3), getting (4), holding (4), inviting (1), keeping (15), knocking (1), leaving (4), making
(28), moving (3), plying (1), pulling (1), punching (1), pushing (1), putting (3), rendering (2),
setting (1), slicing (1), taking (2), tugging (1), turning (3), wishing (1)

� ����	
��������������i�����i Letting (1), Watching (1), having (8), helping (8), letting (11),
making (9), seeing (3), watching (7)

� ����	
���������	
����i�����i adopting (1), having (5), keeping (2), leaving (3), seeing (1),
sending (1), setting (1), showing (2), signing (1), spending (3), surviving (1), watching (2)

� ����	
����������������i�����i Having (1), driving (1), getting (1), having (5), keeping (1),
leaving (2), seeing (1)

� ����	
���������������i�����i getting (2), having (2), leaving (1)

� ����	
���������������i�����i Allowing (1), Amending (1), Commissioning (1), Getting (1),
Persuading (1), Urging (1), abetting (1), admonishing (1), advising (3), aiding (1), allowing
(28), asking (11), believing (1), broadening (1), causing (6), cautioning (1), counseling (1),
directing (1), driving (1), enabling (7), encouraging (3), entitling (1), expanding (1), expecting
(5), forbidding (3), forcing (12), getting (5), helping (1), hiring (1), imploring (1), instructing
(1), inviting (1), leading (1), leaving (1), lobbying (1), naming (1), needing (1), ordering (4),
permitting (4), persuading (2), picking (1), prepping (1), pressuring (3), prodding (1), prompting

121

(7), pushing (2), requiring (12), restructuring (1), spending (3), taking (3), telling (4), training
(1), urging (17), using (34), warning (2)

� ����������������������i�����i believed (1), brought (1), called (2), found (1), got (1), gotten
(2), kept (4), left (3), made (18), played (1), proved (1)

� ��������������������i�����i heard (1), helped (3), let (1), made (3), seen (9), watched (2)

� ���������������	
����i�����i been (1), called (1), done (1), filed (2), had (4), left (2), op-
posed (1), seen (1), sent (2), spent (3)

� ����������������������i�����i got (1), had (2), heard (2), left (1)

� ���������������������i�����i advised (1), allowed (10), asked (13), called (1), cast (1), caused
(2), done (1), enabled (3), encouraged (3), expected (5), forced (4), found (1), hired (2), in-
structed (1), invited (3), led (3), left (1), lobbied (1), mobilized (1), modified (1), moved (1),
ordered (2), permitted (1), persuaded (2), positioned (1), preferred (1), pressed (1), prodded
(1), prompted (2), required (2), sent (2), shown (2), signed (1), steered (1), told (2), tried (1),
urged (4), used (15), waited (1), warned (1), wished (1)

Auxiliaries, modals and raising verbs:

� ��������i������������i� Be (1), Get (1), Go (1),Make (1), Put (1), Rest (1), Step (1), accelerate
(1), appear (13), are (1), back (2), band (1), be (850), become (36), begin (1), bode (1), bounce
(1), bow (1), break (4), buzz (1), change (1), close (2), come (16), comprise (1), continue (1), cut
(2), decline (1), do (11), drift (1), dry (1), earn (1), end (1), expire (1), fall (5), feel (18), fetch
(1), find (1), finish (2), fly (1), get (43), glaze (1), go (28), grow (3), have (1), hold (1), hum (1),
keep (3), level (1), lie (1), look (17), make (10), mean (1), move (3), open (2), pass (1), plead
(2), pop (1), prove (11), pull (3), read (2), remain (41), report (1), rise (2), roll (1), run (2), say
(3), seem (8), settle (1), shift (1), sink (1), sit (3), sound (3), split (1), stay (23), step (3), take (2),
think (4), trend (1), turn (3), walk (1)

� ��������i����������i� Do (2), GET (1), Go (1), Please (1), be (6), can (1), come (1), could
(1), dare (1), do (6), get (3), go (1), help (97), may (2), respond (1), say (4), start (1), to (2)

� ��������i�����������i� DON’T (1), be (1), help (1), say (1), spot (1)

� ��������i�����	
����i� Consider (1), Try (1), advocate (1), authorize (1), avoid (16), be (204),
begin (45), bother (1), cease (1), come (1), consider (12), contemplate (2), continue (36), delay
(2), deny (1), discuss (1), end (11), enjoy (2), favor (1), get (1), go (4), hate (1), help (4), hesitate
(1), include (3), involve (4), justify (3), keep (10), like (2), mean (2), mind (3), permit (1), prefer
(2), recall (1), recommend (2), reconsider (2), relish (1), replace (1), require (1), resist (1),
resume (2), risk (4), rule (2), see (1), stand (1), start (21), stop (21), try (4), wind (2)

� ��������i������������i� Be (1), Get (1), are (2), be (1764), become (4), get (19), go (1), have
(2), stay (1)

� ��������i�����������i� ’ve (2), Get (1), Have (1), feel (1), get (8), has (1), have (429)

� ��������i�����������i� act (1), afford (12), agree (8), appear (14), attempt (7), be (22), begin
(8), bid (1), bother (1), choose (4), combine (1), continue (97), dare (1), decide (3), do (1),
elect (1), endeavor (1), expect (10), fail (5), get (3), go (2), gon (1), grow (2), happen (1), hate
(1), have (170), help (4), hesitate (4), hope (3), intend (6), know (1), learn (4), like (32), listen
(1), love (4), manage (3), meet (1), move (5), need (19), offer (4), plan (8), pop (1), prefer (7),
prepare (1), proceed (1), promise (1), prove (4), refuse (5), return (1), rush (1), say (1), seek
(20), seem (25), serve (3), set (1), sought (1), start (7), stay (1), stick (1), struggle (1), tend (6),
threaten (1), try (67), turn (6), undertake (1), vote (4), wait (5), want (70), wish (1), work (6)

122

� ���������i������������i� ’S (1), ’m (55), ’re (77), ’s (190), Are (3), Fires (1), IS (1), Is (2),
Sounds (1), Steps (1), Was (1), act (1), acts (1), am (19), appear (10), appeared (8), appears (9),
are (888), be (1), became (43), become (10), becomes (14), bounce (1), bounced (1), broke (3),
came (9), closed (52), come (6), comes (3), continues (2), cool (1), cooled (1), costs (1), counts
(1), crawls (1), curled (1), dates (1), did (6), do (3), does (1), drifted (1), edged (5), ended
(39), ends (1), expires (1), falls (4), fare (1), feel (11), feels (2), fell (15), felt (11), finished (17),
finishes (1), flew (1), fly (1), get (5), gets (9), go (6), goes (14), got (15), grew (4), has (1), hit (1),
holds (2), increased (1), is (1403), joined (1), kept (1), know (1), lashed (1), live (1), look (12),
looked (5), looks (9), looms (1), lost (1), makes (2), melts (1), move (1), moved (2), multipled (1),
narrowed (1), obscures (1), opened (3), picks (1), pleaded (11), proved (6), proves (3), pulled
(3), ran (1), ranked (1), ranks (1), reached (1), remain (31), remained (30), remains (63), replied
(1), report (1), returned (1), rose (3), runs (1), s (1), said (3), scuttled (1), see (1), seem (16),
seemed (11), seems (30), sees (1), sell (1), set (1), settled (3), settles (1), shine (1), slipped (1),
smells (1), snapped (1), sounded (1), sounds (5), split (2), stand (1), stands (2), stay (2), stayed
(2), steered (1), stepped (2), steps (1), stood (1), stopped (1), stops (1), stretches (1), surged (1),
survived (1), test (1), thrashed (1), took (3), traded (5), turn (2), turned (5), turns (3), was (715),
went (27), were (504), wore (1), yelled (1)

� ���������i����������i� ’d (69), ’ll (115), ’s (3), Ca (1), Can (2), Could (1), Did (1), Do (10),
HAS (1), May (1), Should (1), WILL (2), Would (1), announced (1), announces (1), are (1), ca
(184), can (863), chanted (1), could (1032), dare (2), did (415), do (520), does (381), got (1),
had (2), has (2), help (9), helped (52), helps (13), is (18), let (1), may (772), might (328), mighta
(1), must (238), need (8), said (5), say (3), says (6), shall (23), should (394), was (3), were (1),
will (2944), wo (230), would (2089)

� ���������i�����������i� ’d (2), advises (1), ca (1), can (1), could (1), deem (1), did (1), do
(1), has (1), have (9), helped (3), hovered (1), may (2), said (4), say (1), says (2), start (1), that
(1), think (1), will (2), would (3)

� ���������i�����������i� is (1)

� ���������i�����	
����i� ’m (43), ’re (190), ’s (103), ARE (1), Means (1), admits (1), admitted
(2), ai (1), am (8), anticipate (1), anticipated (1), anticipates (4), are (1004), avoid (2), avoided
(2), avoids (1), been (1), began (71), begin (6), begins (5), came (2), chance (1), confirm (1),
consider (1), considered (7), continue (2), continued (3), delayed (1), denied (2), denies (2),
deny (2), described (1), disclaims (1), discussed (1), end (1), ended (2), endorsed (1), ends (1),
enjoy (2), enjoys (1), favor (4), favors (3), fears (1), gave (1), gets (1), go (2), hates (1), include
(4), included (1), includes (5), inhibit (1), involve (2), involved (3), involves (2), is (1298), keep
(4), keeps (3), kept (12), lies (1), like (1), loves (1), mean (1), means (7), meant (1), missed
(1), originated (1), pioneered (1), ponder (1), prohibits (1), proposed (4), proposes (3), quit
(1), recalls (2), recommend (1), recommended (1), recounts (1), regrets (1), remembered (1),
reported (3), requires (1), resembles (1), resisted (1), resumed (2), risk (2), risked (2), risks
(3), spent (2), stand (1), start (7), started (38), starts (2), stop (2), stopped (14), suggested (3),
suggests (1), tried (1), was (313), went (2), were (225), wind (2), wound (2)

� ���������i������������i� ’m (6), ’re (6), ’s (15), Is (1), WAS (1), am (4), and (1), appeared
(2), are (854), be (3), became (3), been (5), climbed (1), felt (2), get (8), gets (7), got (6), had
(8), has (1), have (3), helped (1), is (1166), remains (1), rose (1), seem (3), seemed (1), seems
(1), sounds (1), was (1495), were (748), will (1), wree (1)

� ���������i�����������i� ’d (17), ’m (5), ’re (9), ’s (75), ’ve (174), HAS (2), IS (1), ai (1),
became (4), could (4), did (4), does (2), feel (1), feels (2), felt (4), get (1), gets (3), got (5), had

123

(1017), has (2512), have (1421), helped (1), might (2), remained (1), remains (1), seems (2),
should (1)

� ���������i�����������i� ’s (1), Expects (1), FAILED (1), Helps (1), PLANS (1), Seems (1),
act (1), agree (3), agreed (165), aim (1), aimed (1), aims (10), allowed (1), appear (17), ap-
peared (25), appears (38), are (15), arranged (1), asked (14), aspire (1), attempt (6), attempted
(5), attempts (5), awoke (1), began (18), begin (3), begins (6), came (4), care (1), ceased (1),
charged (1), choose (3), chooses (2), chose (5), claim (2), claims (4), combine (1), consented
(1), conspire (1), conspired (5), continue (38), continued (65), continues (63), contracted (2),
contributed (1), dared (1), decide (6), decided (37), decides (8), decline (5), declined (122),
declines (12), deserve (1), deserves (1), designed (1), determined (2), dived (1), dove (1), eased
(1), edged (1), elected (2), exercise (2), expect (18), expected (13), expects (104), fail (4), failed
(66), fails (6), fell (19), fights (1), figures (3), filed (1), flocked (1), fought (1), get (1), gets (2), go
(1), goes (4), got (6), had (58), happen (2), happened (2), happens (5), has (48), hate (3), have
(83), help (1), helped (5), helps (2), hesitate (2), hope (17), hoped (5), hopes (40), intend (9),
intended (12), intends (44), is (136), jumped (2), learn (3), like (9), likes (4), lobbied (1), looks
(1), love (1), loves (1), manage (3), managed (17), manages (2), mean (1), meant (3), met (1),
moved (7), moves (1), need (40), needed (8), needs (15), offered (12), opt (1), opted (1), ought
(32), plan (36), planned (24), plans (166), pledged (4), plummeted (2), plunged (1), prefer (5),
prefers (2), prepared (4), prepares (4), proceeds (2), professed (1), professes (1), promise (1),
promised (7), promises (9), proposed (5), proposes (2), proved (1), purport (1), purports (1),
pushed (1), rebound (1), recovered (1), refuse (8), refused (21), refuses (6), remain (3), remains
(3), resolved (1), rose (13), rush (1), rushed (6), say (2), scramble (3), scrambled (9), scurries
(1), seek (5), seeks (11), seem (29), seemed (19), seems (49), served (2), serves (1), set (6), sets
(1), signed (1), soared (2), sought (8), spreads (1), stand (2), stands (4), start (2), started (8),
starts (2), stood (4), strive (1), strove (1), struggled (4), struggles (5), sufficed (1), surged (2),
tend (36), tended (3), tends (11), threaten (1), threatened (10), threatens (5), tried (36), tries
(16), try (27), tumbled (1), turn (2), turned (5), turns (4), unites (1), used (27), volunteered (2),
vote (1), voted (25), vowed (11), vows (1), wait (1), waited (1), waits (1), wake (1), want (107),
wanted (52), wants (72), was (55), went (5), were (21), wish (5), wishes (2), worked (6), wrote
(1)

� ���������i����������i� will (1), would (1)

� ���	
����i������������i� Being (1), Keeping (1), Looking (4), Punching (1), becoming (15),
being (38), blinking (1), breaking (2), buying (1), clanging (1), closing (1), coming (4), cruising
(1), doing (7), drifting (1), edging (1), eroding (1), falling (5), feeling (4), fighting (1), finish-
ing (1), flaring (1), flying (1), following (1), getting (33), going (8), growing (11), hanging (1),
holding (1), inching (2), keeping (1), leading (1), looking (5), lying (1), making (4), meaning
(1), moving (1), opening (1), pleading (1), prancing (1), proving (1), rearing (1), remaining (3),
riding (1), running (4), settling (1), sitting (3), slowing (1), sounding (1), staggering (1), stand-
ing (1), staying (1), steaming (1), steering (1), stepping (1), talking (1), tapering (1), tottering
(1), trading (2), trailing (2), trending (1), turning (2), winding (1), yielding (1)

� ���	
����i����������i� being (2), chanting (1), helping (7), saying (2), trying (1)

� ���	
����i�����������i� meaning (1), saying (1)

� ���	
����i�����	
����i� beginning (1), considering (24), contemplating (1), exploring (1),
finishing (1), regarding (1), ruling (2), rushing (1)

� ���	
����i������������i� Being (1), being (334), getting (13)

� ���	
����i�����������i� Having (12), getting (2), having (38)

124

� ���	
����i�����������i� Having (1), Hoping (2), SEEKING (1), Seeking (2), Trying (3), about
(16), acting (2), agreeing (10), aiming (2), appearing (2), applying (1), ascending (1), asking
(1), attempting (24), beginning (34), bothering (1), choosing (1), claiming (3), closing (1), con-
spiring (6), continuing (15), deciding (2), declining (2), easing (1), expecting (1), failing (19),
gearing (1), going (202), gon (4), having (12), helping (6), hoping (14), jumping (1), learn-
ing (2), leaving (1), lobbying (2), looking (7), moving (6), negotiating (3), offering (9), opting
(2), planning (15), pledging (1), preferring (3), preparing (9), pressing (1), proceeding (1),
promising (5), proposing (4), proving (2), racing (2), refusing (7), remaining (1), rushing (7),
scrambling (7), seeking (33), setting (1), sitting (1), starting (16), striving (2), struggling (9),
taking (1), threatening (10), toiling (1), trying (175), turning (1), voting (2), vowing (3), waiting
(14), wanting (5), willing (1), wishing (1), working (8)

� ����������i������������i� Carried (1), Rated (16), are (2), believed (3), blown (2), booked
(1), bought (1), broken (1), brought (1), called (2), carved (1), caught (1), come (1), considered
(26), converted (1), crowded (1), cut (1), declared (5), deemed (5), feared (1), filed (1), found
(9), gunned (1), held (6), invited (1), is (1), jammed (1), judged (1), kept (1), labeled (1), left
(3), located (1), made (20), opened (2), paid (2), passed (2), peeled (1), pegged (1), phased (1),
plowed (1), pressured (1), presumed (1), priced (2), proved (1), proven (1), published (1), pulled
(2), pushed (1), put (5), rated (34), rendered (2), reported (1), revised (1), scaled (1), sealed (1),
set (1), shut (1), spread (1), stitched (1), stretched (1), stripped (1), taken (3), tangled (1), termed
(2), thought (5), thrown (2), tilted (1), torn (2), turned (5), was (1), watered (1), wired (1)

� ����������i����������i� does (1), should (1)

� ����������i�����	
����i� caught (3), found (1), heard (1), left (1), quoted (1), seated (1), seen
(4), spent (2), tied (1)

� ����������i������������i� are (3), believed (1), discovered (1), found (1), is (1), left (2), or-
dered (1), reported (1), was (3)

� ����������i�����������i� had (3), have (1)

� ����������i�����������i� Asked (2), URGED (1), adjusted (1), agreed (1), alleged (3), allowed
(32), amazed (1), appalled (1), appointed (2), approached (1), asked (22), assigned (2), autho-
rized (3), believed (18), born (1), bound (3), built (1), called (1), cast (1), chosen (2), claimed
(1), cleared (2), compelled (3), conditioned (1), considered (5), constructed (1), counted (1),
created (3), designated (3), designed (48), destined (1), determined (2), discovered (1), disin-
clined (1), disposed (1), elected (1), employed (1), encouraged (5), engineered (1), entitled (2),
equipped (1), estimated (4), expanded (1), expected (288), flattened (1), forced (52), formed (1),
found (3), freed (1), held (1), hired (5), inclined (4), inflated (1), instructed (1), intended (25),
invited (5), known (6), led (2), left (4), made (2), meant (16), modified (1), motivated (1), named
(5), needed (21), obligated (3), obliged (2), ordered (6), paid (2), perceived (3), permitted (6),
picked (1), planned (1), pleased (1), poised (3), positioned (3), prepared (13), pressured (2),
priced (55), programmed (2), projected (4), provided (1), put (1), raised (1), reached (4), refo-
cused (1), reported (2), reputed (1), required (29), restated (1), restructured (1), retained (1),
rumored (7), said (25), scheduled (59), seen (2), selected (3), sent (1), set (11), shown (5), signed
(1), slated (10), solicited (1), stopped (1), structured (1), stunned (1), supposed (33), surprised
(1), tapped (1), targeted (3), taught (1), tempted (1), thought (14), timed (1), told (4), trained
(1), understood (1), urged (2), used (83), vexed (1)

� ���������i������������i� averaged (1), become (36), been (242), broken (3), changed (1),
closed (1), come (4), done (1), fallen (4), gone (10), gotten (5), grown (5), held (2), kept (1),
moved (2), pleaded (2), proved (6), remained (3), retreated (1), run (2), sat (2), seemed (1),

125

sounded (1), stalled (1), stayed (2), stopped (1), surged (1), taken (2), turned (6), voted (1), was
(1), were (1), worked (1)

� ���������i����������i� been (1), did (1), helped (13), told (1), will (1), would (1)

� ���������i�����	
����i� admitted (1), avoided (2), been (331), begun (11), considered (2),
discussed (1), finished (1), involved (1), proposed (4), regretted (1), reported (1), started (11),
stopped (9), suggested (1), targeted (1)

� ���������i������������i� Been (1), are (1), become (4), been (640), done (1), gotten (1)

� ���������i�����������i� has (1)

� ���������i�����������i� REQUIRED (1), acted (1), afforded (1), agreed (63), asked (1), at-
tempted (2), been (7), begun (13), believed (2), chose (2), chosen (4), climbed (1), come (6),
committed (1), compelled (2), continued (5), decided (8), declined (2), destined (1), elected
(3), emerged (1), expected (6), failed (16), forced (1), forgotten (1), gone (2), got (13), grown
(2), guaranteed (1), had (9), helped (4), hoped (4), hurried (1), impelled (1), intended (1), in-
tervened (1), learned (1), legitimized (1), liked (1), loved (1), managed (6), materialized (1),
moved (4), needed (1), obligated (1), obliged (1), offered (6), planned (4), pledged (1), poised
(1), prepared (1), promised (4), proposed (1), proved (1), pushed (1), refused (10), resolved (1),
rung (1), rushed (3), seemed (4), served (2), set (2), sought (5), started (6), striven (1), struggled
(1), sued (1), supposed (3), sworn (1), taken (1), tended (2), threatened (2), tried (15), used (1),
voted (2), waited (3), wanted (2), worked (1)

� ���������i����������i� TO (3), To (124), na (5), to (12824)

� ���������i�����	
����i� to (3)

� �����i����������i� could (1)

Verbs that take a VP or adjectival complement:

� ��������i������������i� Be (1), Get (1), Go (1),Make (1), Put (1), Rest (1), Step (1), accelerate
(1), appear (12), are (1), back (2), band (1), be (850), become (36), begin (1), bode (1), bounce
(1), bow (1), break (4), buzz (1), change (1), close (2), come (15), comprise (1), continue (1), cut
(2), decline (1), do (11), drift (1), dry (1), earn (1), end (1), expire (1), fall (5), feel (18), fetch
(1), find (1), finish (2), fly (1), get (43), glaze (1), go (28), grow (3), have (1), hold (1), hum (1),
keep (3), level (1), lie (1), look (17), make (10), mean (1), move (3), open (2), pass (1), plead
(2), pop (1), prove (11), pull (3), read (2), remain (41), report (1), rise (2), roll (1), run (2), say
(3), seem (8), settle (1), shift (1), sink (1), sit (3), sound (3), split (1), stay (23), step (3), take (2),
think (4), trend (1), turn (3), walk (1)

� ��������i����������i� Do (2), GET (1), Go (1), Please (1), be (6), can (1), come (1), could
(1), dare (1), do (6), get (3), go (1), help (97), may (2), respond (1), say (4), start (1), to (2)

� ��������i�����������i� DON’T (1), be (1), help (1), say (1), spot (1)

� ��������i�����	
����i� Consider (1), Try (1), advocate (1), authorize (1), avoid (15), be (204),
begin (44), bother (1), cease (1), come (1), consider (12), contemplate (2), continue (36), delay
(2), deny (1), discuss (1), end (11), enjoy (2), favor (1), get (1), go (4), hate (1), help (4), hesitate
(1), include (3), involve (4), justify (3), keep (10), like (2), mean (2), mind (3), permit (1), prefer
(2), recall (1), recommend (2), reconsider (2), relish (1), replace (1), require (1), resist (1),
resume (2), risk (4), rule (2), see (1), stand (1), start (21), stop (21), try (4), wind (2)

� ��������i������������i� Be (1), Get (1), are (2), be (1761), become (4), get (19), go (1), have
(2), stay (1)

126

� ��������i�����������i� ’ve (2), Get (1), Have (1), feel (1), get (8), has (1), have (429)

� ��������i�����������i� act (1), afford (12), agree (8), appear (15), attempt (7), be (22), begin
(8), bid (1), bother (1), choose (4), combine (1), continue (97), dare (1), decide (3), do (1),
elect (1), endeavor (1), expect (10), fail (5), get (3), go (2), gon (1), grow (2), happen (1), hate
(1), have (170), help (4), hesitate (4), hope (3), intend (6), know (1), learn (4), like (32), listen
(1), love (4), manage (3), meet (1), move (5), need (19), offer (4), plan (8), pop (1), prefer (7),
prepare (1), proceed (1), promise (1), prove (4), refuse (5), return (1), rush (1), say (1), seek
(20), seem (25), serve (3), set (1), sought (1), start (7), stay (1), stick (1), struggle (1), tend (6),
threaten (1), try (67), turn (6), undertake (1), vote (4), wait (5), want (70), wish (1), work (6)

� ���������i������������i� ’S (1), ’m (55), ’re (77), ’s (191), Are (3), Fires (1), IS (1), Is (2),
Sounds (1), Steps (1), Was (1), act (1), acts (1), am (19), appear (10), appeared (8), appears (9),
are (888), be (1), became (43), become (10), becomes (14), bounce (1), bounced (1), broke (3),
came (9), closed (52), come (6), comes (3), continues (2), cool (1), cooled (1), costs (1), counts
(1), crawls (1), curled (1), dates (1), did (6), do (3), does (1), drifted (1), edged (5), ended
(39), ends (1), expires (1), falls (4), fare (1), feel (11), feels (2), fell (15), felt (11), finished (17),
finishes (1), flew (1), fly (1), get (5), gets (9), go (6), goes (14), got (15), grew (4), has (1), hit (1),
holds (2), increased (1), is (1405), joined (1), kept (1), know (1), lashed (1), live (1), look (12),
looked (5), looks (9), looms (1), lost (1), makes (2), melts (1), move (1), moved (2), multipled (1),
narrowed (1), obscures (1), opened (3), picks (1), pleaded (11), proved (6), proves (3), pulled
(3), ran (1), ranked (1), ranks (1), rated (1), reached (1), remain (31), remained (30), remains
(63), replied (1), report (1), returned (1), rose (3), runs (1), s (1), said (3), scuttled (1), see (1),
seem (16), seemed (11), seems (30), sees (1), sell (1), set (1), settled (3), settles (1), shine (1),
slipped (1), smells (1), snapped (1), sounded (1), sounds (5), split (2), stand (1), stands (2), stay
(2), stayed (2), steered (1), stepped (2), steps (1), stood (1), stopped (1), stops (1), stretches (1),
surged (1), survived (1), test (1), thrashed (1), took (3), traded (5), turn (2), turned (5), turns
(3), was (715), went (27), were (503), wore (1), yelled (1)

� ���������i����������i� ’d (69), ’ll (118), ’s (3), Ca (1), Can (2), Could (1), Did (1), Do (10),
HAS (1), May (1), WILL (2), Would (1), announced (1), announces (1), are (1), ca (185), can
(867), chanted (1), could (1031), dare (2), did (414), do (519), does (382), got (1), had (2),
has (2), help (9), helped (52), helps (13), is (18), let (1), may (783), might (329), mighta (1),
must (240), need (8), said (5), say (3), says (6), shall (24), should (394), was (3), were (1), will
(2968), wo (237), would (2096)

� ���������i�����������i� ’d (2), advises (1), ca (1), can (1), could (1), deem (1), did (1), do
(1), has (1), have (9), helped (3), hovered (1), may (2), said (4), say (1), says (2), start (1), that
(1), think (1), will (2), would (3)

� ���������i�����������i� is (1)

� ���������i�����	
����i� ’m (43), ’re (189), ’s (106), ARE (1), Means (1), admits (1), admitted
(2), ai (1), am (8), anticipate (1), anticipated (1), anticipates (4), are (1007), avoid (2), avoided
(2), avoids (1), been (1), began (71), begin (6), begins (5), came (2), chance (1), confirm (1),
consider (1), considered (7), continue (2), continued (3), delayed (1), denied (2), denies (2),
deny (2), described (1), disclaims (1), discussed (1), end (1), ended (2), endorsed (1), ends (1),
enjoy (2), enjoys (1), favor (4), favors (3), fears (1), gave (1), gets (1), go (2), hates (1), include
(4), included (1), includes (5), inhibit (1), involve (2), involved (3), involves (2), is (1298), keep
(4), keeps (3), kept (12), lies (1), like (1), loves (1), mean (1), means (7), meant (1), missed
(1), originated (1), pioneered (1), ponder (1), prohibits (1), proposed (4), proposes (3), quit
(1), recalls (2), recommend (1), recommended (1), recounts (1), regrets (1), remembered (1),
reported (3), requires (1), resembles (1), resisted (1), resumed (2), risk (2), risked (2), risks

127

(3), spent (2), stand (1), start (7), started (38), starts (2), stop (2), stopped (14), suggested (3),
suggests (1), tried (1), was (312), went (2), were (225), wind (2), wound (2)

� ���������i������������i� ’m (6), ’re (6), ’s (15), Is (1), WAS (1), am (4), appeared (2), are
(853), be (3), became (3), been (5), climbed (1), felt (2), get (8), gets (7), got (6), had (8), has
(1), have (3), helped (1), is (1165), remains (1), rose (1), seem (3), seemed (1), seems (1), sounds
(1), was (1493), were (749), will (1), wree (1)

� ���������i�����������i� ’d (17), ’m (5), ’re (9), ’s (77), ’ve (174), HAS (2), IS (1), ai (1),
became (4), could (4), did (4), does (2), feel (1), feels (2), felt (4), get (1), gets (3), got (5), had
(1020), has (2533), have (1440), helped (1), might (2), remained (1), remains (1), seems (2),
should (1)

� ���������i�����������i� ’s (1), Expects (1), FAILED (1), Helps (1), PLANS (1), Seems (1),
act (1), agree (3), agreed (165), aim (1), aimed (1), aims (10), allowed (1), appear (17), ap-
peared (25), appears (40), are (15), arranged (1), asked (14), aspire (1), attempt (6), attempted
(5), attempts (5), awoke (1), began (18), begin (3), begins (6), came (4), care (1), ceased (1),
charged (1), choose (3), chooses (2), chose (5), claim (2), claims (4), combine (1), consented
(1), conspire (1), conspired (5), continue (38), continued (65), continues (64), contracted (2),
contributed (1), dared (1), decide (6), decided (37), decides (8), decline (5), declined (122), de-
clines (12), deserve (1), deserves (1), determined (2), dived (1), dove (1), eased (1), edged (1),
elected (2), exercise (2), expect (16), expected (13), expects (104), fail (4), failed (66), fails (6),
fell (19), fights (1), figures (3), filed (1), flocked (1), fought (1), get (1), gets (2), go (1), goes (4),
got (6), had (58), happen (2), happened (2), happens (5), has (49), hate (3), have (83), help (1),
helped (5), helps (2), hesitate (2), hope (17), hoped (5), hopes (40), intend (9), intended (12),
intends (44), is (136), jumped (2), learn (3), like (9), likes (4), lobbied (1), looks (1), love (1),
loves (1), manage (3), managed (17), manages (2), mean (1), meant (3), met (1), moved (7),
moves (1), need (40), needed (8), needs (15), offered (12), opt (1), opted (1), ought (33), plan
(36), planned (24), plans (166), pledged (4), plummeted (2), plunged (1), prefer (5), prefers (2),
prepared (4), prepares (4), proceeds (2), professed (1), professes (1), promise (1), promised (7),
promises (9), proposed (5), proposes (2), proved (1), purport (1), purports (1), pushed (1), re-
bound (1), recovered (1), refuse (8), refused (21), refuses (6), remain (3), remains (3), resolved
(1), rose (13), rush (1), rushed (6), say (2), scramble (3), scrambled (9), scurries (1), seek (5),
seeks (11), seem (29), seemed (19), seems (52), served (2), serves (1), set (6), sets (1), signed
(1), soared (2), sought (8), spreads (1), stand (2), stands (4), start (2), started (8), starts (2),
stood (4), strive (1), strove (1), struggled (4), struggles (5), sufficed (1), surged (2), tend (36),
tended (3), tends (11), threaten (1), threatened (10), threatens (5), tried (36), tries (16), try (27),
tumbled (1), turn (2), turned (5), turns (4), unites (1), used (27), volunteered (2), vote (1), voted
(25), vowed (11), vows (1), wait (1), waited (1), waits (1), wake (1), want (107), wanted (52),
wants (72), was (55), went (5), were (21), wish (5), wishes (2), worked (6), wrote (1)

� ���������i����������i� will (1), would (1)

� ���	
����i������������i� Being (1), Keeping (1), Looking (4), Punching (1), becoming (15),
being (38), blinking (1), breaking (2), buying (1), clanging (1), closing (1), coming (4), cruising
(1), doing (7), drifting (1), edging (1), eroding (1), falling (5), feeling (4), fighting (1), finish-
ing (1), flaring (1), flying (1), following (1), getting (33), going (8), growing (11), hanging (1),
holding (1), inching (2), keeping (1), leading (1), looking (5), lying (1), making (4), meaning
(1), moving (1), opening (1), pleading (1), prancing (1), presumed (1), proving (1), rearing (1),
remaining (3), riding (1), running (4), settling (1), sitting (3), slowing (1), sounding (1), stagger-
ing (1), standing (1), staying (1), steaming (1), steering (1), stepping (1), talking (1), tapering
(1), tottering (1), trading (2), trailing (2), trending (1), turning (2), winding (1), yielding (1)

128

� ���	
����i����������i� being (2), chanting (1), did (1), helping (7), saying (2), trying (1), will
(2)

� ���	
����i�����������i� meaning (1), saying (1)

� ���	
����i�����	
����i� beginning (1), considering (24), contemplating (1), exploring (1),
finishing (1), regarding (1), ruling (2), rushing (1)

� ���	
����i������������i� Being (1), being (332), getting (13)

� ���	
����i�����������i� Having (12), getting (2), having (38)

� ���	
����i�����������i� Having (1), Hoping (2), SEEKING (1), Seeking (2), Trying (3), about
(16), acting (2), agreeing (10), aiming (2), appearing (2), applying (1), ascending (1), asking
(1), attempting (24), beginning (34), bothering (1), choosing (1), claiming (3), closing (1), con-
spiring (6), continuing (15), deciding (2), declining (2), easing (1), expecting (1), failing (19),
gearing (1), going (202), gon (4), having (12), helping (6), hoping (13), jumping (1), learning
(2), leaving (1), lobbying (2), looking (7), moving (6), negotiating (3), offering (9), opting (2),
planning (15), pledging (1), preferring (3), preparing (9), pressing (1), proceeding (1), promis-
ing (5), proposing (4), proving (2), racing (2), refusing (7), remaining (1), rushing (7), scram-
bling (7), seeking (33), set (1), setting (1), sitting (1), starting (16), striving (2), struggling (9),
taking (1), threatening (10), toiling (1), trying (175), turning (1), voting (2), vowing (3), waiting
(14), wanting (5), willing (1), wishing (1), working (8)

� ����������i������������i� Carried (1), Rated (16), are (2), believed (3), blown (2), booked
(1), bought (1), broken (1), brought (1), called (2), carved (1), caught (1), come (1), considered
(26), converted (1), crowded (1), cut (1), declared (5), deemed (5), feared (1), filed (1), found
(9), gunned (1), held (6), invited (1), is (1), jammed (1), judged (1), kept (1), labeled (1), left
(3), located (1), made (20), opened (2), paid (2), passed (2), peeled (1), pegged (1), phased (1),
plowed (1), pressured (1), priced (2), proved (1), proven (1), published (1), pulled (2), pushed
(1), put (5), rated (34), rendered (2), reported (1), revised (1), scaled (1), sealed (1), set (1),
shut (1), spread (1), stitched (1), stretched (1), stripped (1), taken (3), tangled (1), termed (2),
thought (5), thrown (2), tilted (1), torn (2), turned (5), was (1), watered (1), wired (1)

� ����������i����������i� does (1), should (1)

� ����������i�����	
����i� caught (3), found (1), heard (1), left (1), quoted (1), seated (1), seen
(4), spent (2), tied (1)

� ����������i������������i� are (3), being (1), believed (1), discovered (1), found (1), is (1), left
(2), ordered (1), reported (1), was (3)

� ����������i�����������i� had (3), have (1)

� ����������i�����������i� Asked (2), URGED (1), adjusted (1), agreed (1), alleged (3), allowed
(32), amazed (1), appalled (1), appointed (2), approached (1), asked (22), assigned (2), autho-
rized (3), believed (18), born (1), bound (3), built (1), called (1), cast (1), chosen (2), claimed
(1), cleared (2), compelled (3), conditioned (1), considered (5), constructed (1), counted (1),
created (3), designated (3), designed (48), destined (1), determined (2), discovered (1), disin-
clined (1), disposed (1), elected (1), employed (1), encouraged (5), engineered (1), entitled (2),
equipped (1), estimated (4), expanded (1), expected (288), flattened (1), forced (52), formed (1),
found (3), freed (1), held (1), hired (5), inclined (4), inflated (1), instructed (1), intended (25),
invited (5), known (6), led (2), left (4), made (2), meant (16), modified (1), motivated (1), named
(5), needed (21), obligated (3), obliged (2), ordered (6), paid (2), perceived (3), permitted (6),
picked (1), planned (1), pleased (1), poised (3), positioned (3), prepared (13), pressured (2),
priced (55), programmed (2), projected (4), provided (1), put (1), raised (1), reached (4), refo-
cused (1), reported (2), reputed (1), required (29), restated (1), restructured (1), retained (1),

129

rumored (7), said (25), scheduled (59), seen (2), selected (3), sent (1), set (11), shown (5), signed
(1), slated (10), solicited (1), stopped (1), structured (1), stunned (1), supposed (33), surprised
(1), tapped (1), targeted (3), taught (1), tempted (1), thought (14), timed (1), told (4), trained
(1), understood (1), urged (2), used (83), vexed (1)

� ���������i������������i� averaged (1), become (36), been (242), broken (3), changed (1),
closed (1), come (4), done (1), fallen (4), gone (10), gotten (5), grown (5), held (2), kept (1),
moved (2), pleaded (2), proved (6), remained (3), retreated (1), run (2), sat (2), seemed (1),
sounded (1), stalled (1), stayed (2), stopped (1), surged (1), taken (2), turned (6), voted (1), was
(1), were (1), worked (1)

� ���������i����������i� been (1), did (1), helped (13), told (1), will (1), would (1)

� ���������i�����	
����i� admitted (1), avoided (2), been (331), begun (11), considered (2),
discussed (1), finished (1), involved (1), proposed (4), regretted (1), reported (1), started (11),
stopped (9), suggested (1), targeted (1)

� ���������i������������i� Been (1), are (1), become (4), been (640), done (1), gotten (1)

� ���������i�����������i� has (1)

� ���������i�����������i� REQUIRED (1), acted (1), afforded (1), agreed (63), asked (1), at-
tempted (2), been (7), begun (13), believed (2), chose (2), chosen (4), climbed (1), come (6),
committed (1), compelled (2), continued (5), decided (8), declined (2), destined (1), elected
(3), emerged (1), expected (6), failed (15), forced (1), forgotten (1), gone (2), got (13), grown
(2), guaranteed (1), had (9), helped (4), hoped (4), hurried (1), impelled (1), intended (1), in-
tervened (1), learned (1), legitimized (1), liked (1), loved (1), managed (6), materialized (1),
moved (4), needed (1), obligated (1), obliged (1), offered (6), planned (4), pledged (1), poised
(1), prepared (1), promised (4), proposed (1), proved (1), pushed (1), refused (10), resolved (1),
rung (1), rushed (3), seemed (4), served (2), set (1), sought (5), started (6), striven (1), struggled
(1), sued (1), supposed (3), sworn (1), taken (1), tended (2), threatened (2), tried (15), used (1),
voted (2), waited (3), wanted (2)

� ���������i����������i� TO (3), To (124), na (5), to (12806)

� ���������i�����	
����i� to (3)

� �����i����������i� could (1)

� �����������i������������i��������� opened (1)

� �����������i�����������i�����������������i� was (1), were (1)

� ���������i������������i����� look (1), settle (1)

� ���������i����������i����� live (1)

� ���������i�����������i����� be (1), rely (5), wait (1), work (4)

� ���������i����������������i� bode (1), close (1), come (2), cut (2), do (3), emerge (1), feel
(1), focus (1), get (2), go (5), jump (1), make (1), plead (5), press (1), start (1), take (1), think
(1)

� ���������i�������������������i� make (5)

� ���������i�������������������i� be (2), make (2), rule (1)

� ���������i������������������i� prove (1)

� ���������i��������������������i� be (14), wait (1)

� ���������i��������������������i� be (1), care (1)

130

� ���������i�����	
����i�������������i� be (1), end (2), keep (1)

� ���������i�����������i�������������i� be (16), become (1), cost (1), do (1), seem (1)

� ����������i������������i����� closed (17), fattened (1), grew (1), settled (1)

� ����������i�����	
����i����� ’re (1)

� ����������i�����	
����i�������� said (1)

� ����������i�����������i����� agreed (2), called (6), calls (1), contracted (1), converged (1),
ended (2), joined (1), merged (1), pleaded (1), relies (2), rely (1), splits (1), went (1), were (1)

� ����������i����������������i� are (1), came (1), closed (16), comes (3), ended (4), finished
(3), gets (2), got (3), is (2), look (1), looked (1), peck (1), pleaded (4), sat (1), settled (3), start
(1), stopped (1), think (1), wake (1), was (17), went (1), were (1), woke (1)

� ����������i���������	
����i� began (1), regards (1)

� ����������i���������������i� is (1)

� ����������i�������������������i� become (1), makes (2), yelled (1)

� ����������i�������������������i� is (1), made (2), make (1), turned (1), voted (1)

� ����������i��������������������i� is (1)

� ����������i��������������������i� ’s (1), is (1)

� ����������i���������������i� is (1)

� ����������i��������������i� opted (1), wants (1)

� ����������i������������i�������������i� came (1), is (1), traded (1), were (1)

� ����������i����������i�������������i� could (1), may (1)

� ����������i�����	
����i�������������i� are (1), feel (1)

� ����������i�����������i�������������i� ’re (1), ended (1), has (3), have (1), is (1), served
(1), set (1), turn (1), was (2), were (1)

� ����������i�����������������������������i� take (1)

� ����	
����i������������i����� closing (1)

� ����	
����i����������i����� whispering (2)

� ����	
����i�����������i����� appealing (1), counting (2), depending (1), negotiating (2), re-
lying (1), waiting (1), working (1)

� ����	
����i����������������i� Looking (1), buying (1), chipping (1), closing (2), ending (1),
fighting (1), getting (1), going (3), holding (1), pressing (1), steering (1), thrashing (1)

� ����	
����i���������������i� going (1)

� ����	
����i�������������������i� making (1)

� ����	
����i�������������������i� making (2)

� ����	
����i������������i�������������i� leaving (1)

� ����	
����i�����������i�������������i� getting (1)

� ����	
����i�����������i������������i� going (1)

� �����������i������������i����� sold (1)

� �����������i�����������i����� designed (1), offered (2), organized (1), priced (64), quoted
(6), scheduled (1), used (1)

131

� �����������i����������������i� brought (1), pieced (1), piled (1), put (1), rolled (1), set (1),
spread (1), taken (1), thrown (1), whittled (1)

� �����������i�������������������i� forced (1)

� �����������i�����������i���������� called (3)

� ����������i�����������i����� depended (1), signed (1)

� ����������i����������������i� appeared (1), been (1), brushed (1), pleaded (1)

� ����������i�������������������i� become (2), been (1), made (1)

� ����������i��������������������i� left (1)

� ����������i�����	
����i�������������i� been (2)

� ����������i�����������i�������������i� banded (1), been (4), seemed (1)

� ����������i����������i�����������i� to (1)

� ����������i�����������i�����������i� to (1)

� ����������i������������i�����������i� to (1)

� ���������i������������i� adjusted (1)

� ���	
����i������������i� beginning (1), declining (1)

� ����������i������������i� designated (1)

VP-modifiers with VP or adjectival argument:

� ������i�������i�������������i� – (1), -LRB- (1), In (1), although (2), by (1), for (2), in (5),
on (1), since (1), slightly (1), though (4), until (1), whether (1), while (7)

� ������i�������i�����������i� – (1), than (1)

� ������i�������i������������i� as (2)

� ������i�������i������	
����i� – (1), Without (1), after (4), by (4), in (7), on (1), though (1),
upon (1), while (8)

� ������i�������i�������������i� – (1), -LRB- (1), as (9), if (8), once (1), though (3)

� ������i�������i������������i� had (1)

� ������i�������i������������i� – (1)

� ������i�������i�������������i� than (29)

� ������i�������i�������������i� – (24), -LCB- (2), -LRB- (3), about (1), albeit (1), although
(2), around (1), as (10), at (9), between (1), by (8), for (16), from (48), if (15), in (14), like (3), of
(2), possibly (1), than (7), their (1), though (1), through (1), to (3), until (5), where (1), wherever
(1)

� ������i�������i�����������i� – (5), -LRB- (5), than (3), to (6)

� ������i�������i������������i� – (2), : (1), as (7), on (1), so (1), that (34), what (1), which
(59), who (18)

� ������i�������i������	
����i� - (1), – (18), -LRB- (1), By (1), In (1), When (2), Without (3),
about (7), after (108), around (1), as (2), at (2), before (62), beyond (1), by (402), despite (4),
for (50), from (17), if (1), in (135), including (3), into (3), like (1), of (6), on (2), over (2), since
(3), than (5), through (1), thus (1), to (10), toward (4), upon (3), when (11), while (71), with (2),
without (70)

132

� ������i�������i�������������i� – (1), as (34), if (6), than (2), unless (6), until (1), when (11),
while (1)

� ������i�������i������������i� - (1), have (1)

� ������i�������i������������i� – (5), -LRB- (1), as (3), enough (8), except (4), if (1), likely
(1), so (1), sufficient (1), sufficiently (2), than (5), threatens (1)

� ������i�������i�������������i� than (4)

� ��������������i����������������i��������������i� as (1), from (1)

� ��������������i����������������i�������������i� as (1)

� ��������������i����������������i�������	
����i� by (1), from (1)

� ��������������i����������������i��������������i� than (5)

� ��������������i����������������i��������������i� – (1), as (1), for (1), from (2), than (9)

� ��������������i����������������i������������i� than (1)

� ��������������i����������������i�������������i� as (2), than (2), that (1), which (1),
whichever (1)

� ��������������i����������������i�������	
����i� before (1), than (1)

� ��������������i����������������i��������������i� as (3), than (7)

� ��������������i����������������i�������������i� as (1)

Yes/no questions:

� ����������������i�����i Are (3), Is (4), Was (1), Were (1), is (6), was (2)

� ��������������i�����i Can (5), Could (4), Did (4), Do (10), Does (8), Must (1), SHOULD (1),
Should (7), Will (5), Would (4), ca (1), can (12), could (5), did (11), do (18), does (20), might
(1), must (1), should (11), will (9), would (14)

� ���������������i�����i Will (1), had (2), has (1), should (1), was (1)

� ���������	
����i�����i ’s (3), Are (1), Is (5), Was (1), am (1), are (3), is (5)

� ����������������i�����i ARE (1), Is (1)

� ���������������i�����i Has (1), Have (2), has (2), have (1)

� ���������������i�����i ’s (1)

133

Appendix D

File formats

There are three sets of files which mirror the directory and file structure of the Penn Treebank: the human-
readable files in HTML format, the machine-readable corpus files (������), and the predicate-argument
structure files (������).
For the “yy”th file in section “xx”, “wsj xxyy.mrg”, there is a corresponding human-readable HTML
file “wsj xxyy.html” in the directory tree under 1���:�#/-:, a derivation file “wsj xxyy.auto” under
1���:��#): and a predicate-argument structure file “wsj xxyy.parg” under 1���:����:.
The distribution also includes two lexicon files (extracted from sections 02-21 and 00), and a file that con-
tains the entire corpus (sections 00-24) in a format that can be read by Douglas Rohde’s TGrep2 search
tool.

D.1 The human-readable corpus files

The human-readable corpus is a set of HTML files, corresponding to each file in the original Penn Treebank
distribution. These files are provided to allow easy inspection of the derivations and the corresponding
predicate-argument structure. For each sentence that could be translated successfully to a CCG derivation,
the syntactic derivation tree itself is shown as a pretty-printed bracketed string, followed by the list of
bilexical dependencies in the predicate-argument structure (not shown here):

�������� �

������� ������� ��� �� ���� ����

�� !�"�����

�������#�� ��������#������ !��

��� ��� �� ��!������

���#�� ����#������ �$�

��� ��� �� ���� %���&!���

�� �� ����

�������'� �((�

��� �����)��� ���

�� ����
*���

�� ���� 	*)�!�!���

�� ���*	����������

�� ��

The format of the word-word dependencies in the predicate-argument gives first the head word of the
functor, followed by its lexical category and the head word of any filled arguments of this functor. Which
argument slot is filled by which word is indicated by appropriate colors.

134

Sentences for which no CCG derivation could be produced are indicated as such.

D.2 The machine-readable derivation files

Themachine-readable derivation files contain the syntactic derivations in a format that is designed to be read
in automatically. They do not indicate the word-word dependencies in the predicate-argument structure.
Each sentence appears on one line, preceded by one line which identifies the sentence:

��K-�H4440"0 �#��.�K2&�� �E��#��.K0

�P� �Q��(R 4 7O �P� �Q��(R 0 7O �P� �� 4 7O """

The sentence ID consists of the original Penn Treebank file name, followed by the number of the sentence
in this file. Each node is indicated by parentheses “(“ and “)” and a description, which follows the left
parenthesis. The node description itself is delimited by angled brackets ;;7����<**, where � is - for leaf
nodes and # for other nodes. In leaf nodes, the description contains six fields:

7- ���&�� ��1=�)� ��� ��0�=�)� ��� >��1 ��$1������<

The original POS tag is the tag assigned to this word in the Penn Treebank. The modified POS tag might
differ from this tag if it was changed during the translation to CCG. ��$1������ is another representation
of the lexical category (���&��) which encodes the underlying predicate-argument structure (described in
more detailed below). The node description of a leaf node is also enclosed in parentheses:

"7- 	 		 		 &��0���' 	<%

��$1������, the last field of the node description of leaf nodes, is designed to encode the word-word
dependencies in the underlying predicate-argument structure. This is a simplified version of the predicate-
argument structure representation presented in section 2.5. Recall that complex categories are recursive
structures that consist of a result and an argument category. Each category has a head index, such that the
identity of the lexical heads of two arguments can be indicated by giving them the same head index. This
mechanism (explained in more detail in section 2.5) is used to indicate non-local dependencies that are
mediated through lexical items such as relative pronouns or control verbs.

The head of a lexical category is simply the word itself, and in complex categories, the head of the result
is the same as the head of the entire category (with the exception of determiners ����, where the lexical
head of the �� is the same as the head of the �. Since we only annotate lexical categories with their head
indices, the head index for the entire category is omitted. Similarly, the head index of any part of a complex
category is omitted if it is identical to the head index of the entire category.

� For atomic categories (�, etc.), the head index is not indicated, since it is simply the word itself: P�
� ��� ��� � 	1�	 �O

� In ordinary complex categories that do not mediate any non-local dependencies (������������
etc.), each argument has a distinct head index:
P�� ��Q��(R���
N�� ��� ��� ���1 ���Q��(R��� L
N�� 8

O

If an argument is complex, the head index of each of its parts is given:
P� ������	3����� �� �� �� ������	3� 0+*��� 0+0� 0+*O

� In adjuncts of the form �
�, the head indices of the result � are identical to that of the argument
� (recall that the head index of the entire category, which is different, is omitted): P� �N� ��� ���

� ���� � 8*N� 8*O

This is also the case if � itself is a complex category, eg.:

135

P� �����
������
 �� �� '�������' �� I��� 6
 I��� I��� 6
 IO

Similarly, in adjuncts that take themselves arguments, eg. ���������� or �����������������,
the head indices are adjusted accordingly:
P� ������
N�� �� �� �� ��� 9��� 9
N�� LO

P� ������
������

N�� �� �� ,' ��� L��� 0
 L��� L��� 0
 L
N�� 8O

� The mediation of non-local dependencies is indicated by co-indexation.As explained in section 2.5.7,
we distinguish between locally mediated (bounded) and long-range (undounded) dependencies. Lo-
cally mediated dependencies are indicated by .� (bounded):
P� �����(���������������� ��$ ��$ �� �����(���� *�������� 6��� * :�� 6O True long-range depden-
cies are indicated by .� (unbounded):
P� �������������(����� �� �� ��� ��� +��� +�������(� I��� + :E� IO

For non-leaf nodes, the description contains the following three fields: the category of the node ���&��,
the index of its head daughter �$�1 (0 = left or only daughter, 1 = right daughter), and the number of
its daughters, 1��+: 7# ���&�� �$�1 1��+<1 The following example describes a node with category
�������� and two children (0 and 1), the left of which (child 0) is the head:

7# �?1&�@A	� B C<

Sentences that are not translated are not indicated in this file format.

D.3 The predicate-argument structure files

The predicate-argument structure files give for each sentence a list of the word-word dependencies in the
predicate-argument structure, including locally mediated and long-range dependencies, which are indicated
as such. For each file in the original Treebank, there is one corresponding predicate-argument structure file.
Each sentence is enclosed by 7+< (followed by the index of the last token in the sentence) and 7�+<. Each
dependency appears on one line.

P�O 07

0 4 �N� 0 � 	1�	 ��"

0 7 ��Q��(RM��
N�� 0 � 	1�	 �

* 7 ��Q��(RM��
N�� 7 �� ���	 �

* 6 ���M��
N�� 0 �� ���	 ��

L 6 ���M��
N�� 7 �"�" ��

L 9 �N� 0 �"�" .(��5 ��

00 6 ���M��
N�� 7 3���� ��

00 + ��Q	,RN� 0 3���� ��

00 I �N� 0 3���� ����

00 04 �N� 0 3���� ��,(� 	3

PM�O

A dependency between the ith and jth word (>��1 0 and >��1 D) where the jth word has the lexical
(functor) category cat j, and the ith word is head of the constituent which fills the kth argument slot of
cat j is described as follows:

0 D &��=D ���=E >��1=0 >��1=D

1With the exception of argument clusters, the head corresponds generally to the lexical head.

136

Words in each sentence are numbered from 0 to n.
In the sentence “Mr. Vinken is chairman of Elsevier”, Vinken is the second word in the sentence and

head of the constituent which fills the first (and only) argument slot of the ��� Mr.. At the same time, the
� Vinken is head of the constituent which fills the first argument slot of the ������������� is, which is
the third word in the sentence. Therefore:

0 4 �N� 0 � 	1�	 ��"

0 7 ��Q��(RM��
N�� 0 � 	1�	 �

Missing sentences are indicated by a pair of 7+< and 7�+< which does not enclose any dependencies:

P�O 4

PM�O

D.4 The lexicon files

The distribution contains two lexicon files that are extracted from sections 02-21 and 00. Each line contains
one entry:

������ ��Q,RM��
N�� 0+ 4"440*+004I6I07I0**86 4"97I6008L6849++76

������ ��Q,RM��
N�Q��(R * 4"400L78I4LI8L8660+L 4"4++7*97I6008L684L

������ ��Q,RM��
N�Q��R L 4"470I8+470I8+470I+ 4"08L6849++7*97I60*

������ ��Q��(RM��
N�� 7 0"769808+66I4+07+*.�6 4"49++7*97I6008L6849

������ ��Q��(RM��
N�Q��(R 6 8"06LL+98766I97L9.�6 4"008L6849++7*97I60

������ ��Q��(RM��
N�Q��R 0 6"*+47406+I7L+94L.�6 4"47I6008L6849++7*9*

The word and its lexical category are followed by the frequency of the entry, the probability (relative
frequency) of the word given the category and the probability of the category given the word.

D.5 CCGbank and TGrep2

CCGbank is searchable with TGrep2, an expressionmatcher for trees developed by Douglas Rohde. TGrep2
is available from ����.::�$1��F��0��$1�:G1�:#��$�C:. The directory 1���:#��,�C contains a file
&&�F�'E�BB CH��C& which can be searched by TGrep2. If TGrep2 version 1.15 or higher is used on
ccgbank00-24.t2, it will run in CCG mode, which differs from its standard mode in the following ways:

� In TGrep2’s CCG mode, brackets (”[” and ”]”), parentheses (”(” and ”)”) and slashes (”�” and ”/”)
can be part of a node label, but have to be preceded by a backslash in regular expression searches.

� In TGrep2’s CCG mode, curly brackets (”�” and ”�”) are used instead of parentheses (”(” and ”)”) to
specify dominance relations and to bracket the output trees.

� In TGrep2’s CCG mode, the plus and minus signs (”+” and ”-”) are used instead of brackets (”[”
and ”]”) to group disjunctive terms. For example, ”	� � � ��
 � � �” in standard TGrep2 becomes
”	� � � ��
 � �� ” in CCG mode.

137

Bibliography

Ajdukiewicz, K. (1935). Die syntaktische Konnexität. In S. McCall, editor, Polish Logic 1920-1939, pages
207–231. Oxford University Press. Translated from Studia Philosophica, 1, 1-27.

Aone, C. and Wittenburg, K. (1990). Zero morphemes in Unification-based Combinatory Categorial Gram-
mar. In Proceedings of the 28th Annual Meeting of the Association for Computational Linguistics, pages
188–193, Pittsburgh, PA.

Baldridge, J. (2002). Lexically Specified Derivational Control in Combinatory Categorial Grammar. Ph.D.
thesis, School of Informatics, University of Edinburgh.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Language, 29, 47–58.

Bar-Hillel, Y., Gaifman, C., and Shamir, E. (1960). On categorial and phrase structure grammars. In
Y. Bar-Hillel, editor, Language and Information, pages 99–115. Addison-Wesley, Reading, MA. 1964.

Bies, A., Ferguson,M., Katz, K., MacIntyre, R., Tredinnick, V., Kim, G., Marcinkiewicz, M. A., and Schas-
berger, B. (1995). Bracketing Guidelines for Treebank II Style Penn Treebank Project. University of
Pennsylvania.

Bos, J. (2005). Towards wide-coverage semantic interpretation. In Proceedings of Sixth International
Workshop on Computational Semantics IWCS-6, pages 42–53, Tilburg, The Netherlands.

Bos, J., Clark, S., Steedman, M., Curran, J. R., and Hockenmaier, J. (2004). Wide-coverage semantic rep-
resentations from a CCG parser. In Proceedings of the 20th International Conference on Computational
Linguistics (COLING’04), Geneva, Switzerland.

Bresnan, J., editor (1982). The mental representation of grammatical relations. MIT Press, Cambridge,
MA.

Cahill, A., McCarthy,M., van Genabith, J., andWay, A. (2002). Automatic annotation of the Penn Treebank
with LFG F-structure information. In LREC 2002 Workshop on Linguistic Knowledge Acquisition and
Representation - Bootstrapping Annotated Language Data, pages 8–15, Las Palmas, Spain.

Carpenter, B. (1991). The generative power of Categorial Grammars and Head-driven Phrase Structure
Grammars with lexical rules. Computational Linguistics, 17(3), 301–314.

Carpenter, B. (1992). Categorial grammars, lexical rules, and the English predicative. In R. Levine, editor,
Formal Grammar: Theory and Implementation, chapter 3. Oxford University Press.

Charniak, E. (1999). A Maximum-Entropy-inspired parser. Technical Report CS-99-12, Department of
Computer Science, Brown University.

138

Charniak, E. (2000). AMaximum-Entropy-inspiredparser. In Proceedings of the First Meeting of the North
American Chapter of the Association for Computational Linguistics, pages 132–139, Seattle, WA.

Chen, J. and Vijay-Shanker, K. (2000). Automated extraction of TAGs from the Penn Treebank. In Pro-
ceedings of the 6th International Workshop on Parsing Technologies, Trento, Italy.

Chiang, D. (2000). Statistical parsing with an automatically-extracted Tree Adjoining Grammar. In Pro-
ceedings of the 38th Annual Meeting of the Association for Computational Linguistics, pages 456–463,
Hong Kong.

Chiang, D. (2004). Evaluation of Grammar Formalisms for Applications to Natural Language Processing
and Biological Sequence Analysis. Ph.D. thesis, University of Pennsylvania.

Clark, S. and Curran, J. R. (2003). Log-linear models for wide-coverage CCG parsing. In Proceedings
of the 2003 Conference on Empirical Methods in Natural Language Processing (EMNLP’03), Sapporo,
Japan.

Clark, S. and Curran, J. R. (2004). Parsing the WSJ using CCG and log-linear models. In Proceedings of
the 42nd Annual Meeting of the Association for Computational Linguistics, Barcelona, Spain.

Clark, S., Hockenmaier, J., and Steedman, M. (2002). Building deep dependency structures using a wide-
coverage CCG parser. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 327–334, Philadelphia, PA.

Clark, S., Steedman, M., and Curran, J. R. (2004). Object-extraction and question-parsing using
CCG. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing
(EMNLP’04), pages 111–118, Barcelona, Spain.

Collins, M. (1997). Three generative lexicalized models for statistical parsing. In Proceedings of the 35th
Annual Meeting of the Association for Computational Linguistics, pages 16–23, Madrid, Spain.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, Computer
and Information Science, University of Pennsylvania.

Curry, H. B. and Feys, R. (1958). Combinatory Logic, volume I. North-Holland, Amsterdam.

Eisner, J. (1996). Efficient normal-form parsing for Combinatory Categorial Grammar. In Proceedings of
the 34th AnnualMeeting of the Association for Computational Linguistics, pages 79–86, Santa Cruz, CA.

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985). Generalised Phrase Structure Grammar.
Blackwell, Oxford.

Goodman, J. (1997). Probabilistic feature grammars. In Proceedings of the International Workshop on
Parsing Technologies, Cambridge, MA.

Goodman, J. (1998). Parsing Inside-Out. Ph.D. thesis, Harvard University, Cambridge, MA.

Hepple, M. and Morrill, G. (1989). Parsing and derivational equivalence. In Proceedings of the Fourth
Conference of the European Chapter of the Association for Computational Linguistics, pages 10–18,
Manchester, UK.

Hockenmaier, J. (2001). Statistical parsing for CCG with simple generative models. In Proceedings of
Student Research Workshop, 39th Annual Meeting of the Association for Computational Linguistics and
10th Meeting of the European Chapter, pages 7–12, Toulouse, France.

139

Hockenmaier, J. (2003a). Data and models for statistical parsing with Combinatory Categorial Grammar.
Ph.D. thesis, School of Informatics, University of Edinburgh.

Hockenmaier, J. (2003b). Parsing with generative models of predicate-argument structure. In Proceedings
of the 41st Annual Meeting of the ACL, Sapporo, Japan.

Hockenmaier, J. and Steedman, M. (2002a). Acquiring compact lexicalized grammars from a cleaner Tree-
bank. In Proceedings of the Third International Conference on Language Resources and Evaluation
(LREC), pages 1974–1981, Las Palmas, Spain.

Hockenmaier, J. and Steedman, M. (2002b). Generative models for statistical parsing with Combinatory
Categorial Grammar. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 335–342, Philadelphia, PA.

Hockenmaier, J., Bierner, G., and Baldridge, J. (2000). Providing Robustness for a CCG System. In
Proceedings of ESSLLI’2000 Workshop on Linguistic Theory and Grammar Implementation, pages 97–
112, Birmingham, UK.

Hockenmaier, J., Bierner, G., and Baldridge, J. (2004). Extending the Coverage of a CCG System. Research
on Language and Computation, 2(2), 165–208.

Joshi, A. and Schabes, Y. (1992). Tree adjoining grammars and lexicalized grammars. In M. Nivat and
M. Podelski, editors, Definability and Recognizability of Sets of Trees. Elsevier, Princeton.

Joshi, A., Levy, L., and Takahashi, M. (1975). Tree-adjunct grammars. Journal of Computer Systems
Science, 10, 136–163.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic. Kluwer, Dordrecht.

Kinyon, A. and Prolo, C. (2002). Identifying verb arguments and their syntactic function in the Penn
Treebank. In Proceedings of the Third International Conference on Language Resources and Evaluation
(LREC), pages 1982–1987, Las Palmas, Spain.

Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170.

Magerman, D. M. (1994). Natural Language Parsing as Statistical Pattern Recognition. Ph.D. thesis,
Department of Computer Science, Stanford University.

Marcus, M., Kim, G., Marcinkiewicz,M., MacIntyre, R., Bies, A., Ferguson,M., Katz, K., and Schasberger,
B. (1994). The Penn Treebank: Annotating predicate argument structure. In Proceedings of the Human
Language Technology Workshop.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. (1993). Building a large annotated corpus of English:
the Penn Treebank. Computational Linguistics, 19, 313–330.

Nunberg, G. (1990). The linguistics of punctuation. Number 18 in CSLI Lecture Notes. CSLI Publications.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The Proposition Bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1), 71–105.

Pollard, C. and Sag, I. (1994). Head Driven Phrase Structure Grammar. CSLI/Chicago University Press,
Chicago, IL.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech tagger. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 133–142, Philadelphia, PA.

140

Ross, J. R. (1967). Constraints on Variables in Syntax. Ph.D. thesis, MIT. Published as “Infinite Syntax!”,
Ablex, Norton, NJ. 1986.

Steedman,M. (1987). Combinatory grammars and parasitic gaps. Natural Language and Linguistic Theory,
5, 403–439.

Steedman,M. (1996). Surface Structure and Interpretation. MIT Press, Cambridge,MA. Linguistic Inquiry
Monograph, 30.

Steedman, M. (2000). The Syntactic Process. MIT Press, Cambridge, MA.

Uszkoreit, H. (1986). Categorial Unification Grammars. In Proceedings of the 11th International Confer-
ence on Computational Linguistics (COLING), pages 187–194, Bonn, Germany.

Vijay-Shanker, K. and Weir, D. (1990). Polynomial time parsing of Combinatory Categorial Grammars.
In Proceedings of the 28th Annual Meeting of the Association for Computational Linguistics, pages 1–8,
Pittsburgh, PA.

Vijay-Shanker, K. and Weir, D. (1994). The equivalence of four extensions of context-free grammar. Math-
ematical Systems Theory, 27, 511–546.

Villavicencio, A. (2002). The Acquisition of a Unification-Based Generalised Categorial Grammar. Ph.D.
thesis, Computer Laboratory, University of Cambridge.

Watkinson, S. and Manandhar, S. (2001). Translating Treebank Annotation for Evaluation. In Workshop
on Evaluation for Language and Dialogue Systems, ACL/EACL, pages 21–28, Toulouse, France.

Wittenburg, K. and Wall, R. (1991). Parsing with categorial grammar in predictive normal form. In
M. Tomita, editor, Current Issues in Parsing Technology, pages 65–83. Kluwer, Dordrecht. Revised
selected papers from International Workshop on Parsing Technology (IWPT) 1989, Carnegie Mellon
University.

Wittenburg, K. B. (1986). Natural Language Parsing with Combinatory Categorial Grammar in a Graph-
Unification Based Formalism. Ph.D. thesis, University of Texas at Austin.

Wood, M. M. (1993). Categorial Grammar. Linguistic Theory Guides. Routledge, London.

Xia, F. (1999). Extracting Tree Adjoining Grammars from bracketed corpora. In Proceedings of the 5th
Natural Language Processing Pacific Rim Symposium (NLPRS-99).

Xia, F., Palmer, M., and Joshi, A. (2000). A uniform method of grammar extraction and its applications.
In Proceedings of the 2000 Conference on Empirical Methods in Natural Language Processing, pages
53–62, Hong Kong.

Zeevat, H., Klein, E., and Calder, J. (1987). An introduction to unification categorial grammar. In N. e. a.
Haddock, editor, Edinburgh Working Papers in Cognitive Science, 1: Categorial Grammar, Unification
Grammar, and Parsing, pages 195–222. University of Edinburgh.

141

	CCGbank: User's Manual
	Recommended Citation

	CCGbank: User's Manual
	Comments

	report.dvi

