View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

Penn

University of Pennsylvania

Libraries ,_
 UNIVERSITY 0f PENNSYLVANIA SChOIarlycommonS
Technical Reports (CIS) Department of Computer & Information Science
March 1999

Chunks in PLAN: Language Support for Programs as Packets

Jonathan T. Moore
University of Pennsylvania

Michael Hicks
University of Pennsylvania

Scott Nettles
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation

Jonathan T. Moore, Michael Hicks, and Scott Nettles, "Chunks in PLAN: Language Support for Programs
as Packets", . March 1999.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-99-15.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/98
For more information, please contact repository@pobox.upenn.edu.

https://core.ac.uk/display/76360053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/98
mailto:repository@pobox.upenn.edu

Chunks in PLAN: Language Support for Programs as Packets

Abstract

Chunks are a programming construct in PLAN, the Packet Language for Active Networks, comprised of a
code segment and a suspended function call. In PLAN, chunks provide support for encapsulation and
other packet programming techniques. This paper begins by explaining the semantics and
implementation of chunks. We proceed, using several PLAN source code examples, to demonstrate the
usefulness of chunks for micro-protocols, asynchronous adaptations, and as units of authentication
granularity.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-99-15.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/98

https://repository.upenn.edu/cis_reports/98

Chunks in PLAN:
Language Support for Programs as Packets

Jonathan T. Moore

Michael Hicks

Scott Nettles

Department of Computer and Information Science
University of Pennsylvania
{jonm,mwh,nettles}@dsl.cis.upenn.edu

March 1, 1999

Abstract

Chunks are a programming construct in PLAN, the
Packet Language for Active Networks, comprised of
a code segment and a suspended function call. In
PLAN, chunks provide support for encapsulation and
other packet programming techniques. This paper
begins by explaining the semantics and implemen-
tation of chunks. We proceed, using several PLAN
source code examples, to demonstrate the usefulness
of chunks for micro-protocols, asynchronous adapta-
tion, and as units of authentication granularity.

1 Introduction

The current IP-based Internet has been a success in
part due to the simplicity of its architecture. How-
ever, this success, while bringing greatly increased
use, has also greatly increased the demand for new
and more complex network services and protocols.
The goal of Active Networking is to allow these de-
mands to be met by increasing the flexibility with
which the network can be changed. Active network-
ing achieves its increased flexibility by making the
network programmable.

In the SwitchWare project [2], we have been explor-
ing how to make the network programmable both by
allowing switches to be dynamically extended with
new services and by allowing packets themselves to
be programs. A key way in which we have explored

the idea of packets as programs is through the design
and implementation of PLAN, the Packet Language
for Active Networks, a domain specific language for
writing packet programs [8]. Using PLAN we have
implemented PLANet [9], an internetwork in which
every packet is a PLAN program, and in which all ac-
tivities in the network proceed by evaluating PLAN
packets. This paper draws heavily from examples de-
veloped while building PLANet.

Just because packets are programs does not mean
that many of the familiar features of conventional
packets do not need to be supported. In particular,
the desire to build networks using layering requires
that PLAN programs support encapsulation, while
the need to support services such as checksumming
and fragmentation means that PLAN programs must
sometimes be treated as data. In this paper, we ex-
plore the key mechanism used in PLAN to support
functionality like encapsulation and treating packets
as data, a language construct called chunks.

Chunks consist of some code, a named function
used as an entry point, and arguments for that func-
tion. When chunks are evaluated, they invoke the
named function using the arguments. By transport-
ing a chunk from one node to another before evaluat-
ing it, we achieve a kind of remote evaluation; such re-
mote evaluation how PLAN supports the distributed
communication and programming from which the
network is built. Chunks are first-class data values,
which means they can be used as function arguments

(notably, as an argument in another chunk), returned
from functions, stored in data-structures, and manip-
ulated as bags of bits.

If chucks merely provided an exotic way of doing
what can already be done they would be of limited
interest. However, chunks, and the programs embod-
ied in them, provide flexibility that goes beyond tra-
ditional packet headers. Besides showing how chunks
support traditional networking functionality, we also
show how chunks can be used in three additional
broad ways: to support the implementation of micro-
protocols [11], to provide adaptive protocols [6, 14],
and to solve certain security problems in a novel way.

To provide context, we begin by presenting a brief
background of PLAN and chunks in Section 2. Next,
we discuss and provide examples of the applicability
of chunks to micro-protocols, adaptive protocols, and
security in Sections 3-5. Finally, we discuss related
work in Section 6 and conclude with future research
directions in Section 7.

2 Background

Our examples use PLAN and so here we provide a
brief look at its features, focusing on chunks. The
reader is referred to [8] for a more in-depth treatment.

PLAN is a simple, lexically-scoped language de-
signed to be carried in packets and to fill and extend
the role of traditional packet headers. To this end,
PLAN’s expressiveness is limited to permit active
nodes to evaluate a PLAN program without requir-
ing authentication: PLAN programs are functional
in style and are guaranteed to terminate. Its syntax
resembles that of ML.

To mitigate their limited expressive power, PLAN
programs may invoke node-resident services that pro-
vide access to information (e.g., time of day, number
of network interfaces, etc.) or to more powerful func-
tionality (e.g., fragmentation, reliability, soft state,
etc.). These services may be dynamically loaded over
the network and may be written in a more standard
high-level language like C, Java, or ML.

Every PLAN program contains a top-level “code
hunk,” or chunk. As mentioned, chunks have three
components: PLAN code, an entry point function

within that code, and bindings for the function’s pa-
rameters. A chunk can be viewed as a snapshot of
a traditional function call where the arguments have
been assembled and the program is about to branch
to the function itself. When a PLAN packet arrives
at its destination node, its entry point function is
called with the given arguments.

The most powerful aspect of chunks, however, is
that they are first-class values in PLAN. The PLAN
syntax

|f|(expr, ..., expry)

is an expression of type chunk which creates a new
chunk. Intuitively, the |’s indicate the part of the ex-
pression whose evaluation is to be delayed: the func-
tion call itself. Specifically, the created chunk consists
of the same code as the current execution, an entry
point f, and bindings which are the values obtained
by evaluating expry, ..., expr,. Thus, chunks can be
manipulated, copied, or passed as arguments, and,
most notably, can even appear as bindings in other
chunks. Indeed, encapsulating one chunk within an-
other is a key mechanism we will use in the rest of
the paper.

Besides treating it as data, the main action that
can be performed on a chunk is to execute it: the
eval service evaluates its chunk argument by load-
ing the code segment and invoking the entry point
function on its arguments. If we take the view, as
above, that a chunk is a suspended function call, then
eval resumes the computation, but with of course a
different continuation.

To support such functionality as fragmenting or
checksuming a chunk, we also provide the ability to
create a concrete representation of a chunk in the
form of a byte string. This representation is essen-
tially the marshaled wire-format version of the chunk.
A service related to eval, evalBlob, serves to eval-
uate this representation. Unlike the uses of code as
data in Lisp-like languages, we so far we have found
that uninterpretable strings of bytes suffice for our
concrete representation.

svc verifyChecksum : (blob,int) -> bool
svc evalBlob : blob -> ’a

fun unchecksum(c:blob, sum:int): unit =
if verifyChecksum(c,sum) then
(evalBlob(c); ())
else
() (x drop packet *)

Figure 1: Code for a checksum chunk

3 Micro-protocols

Most commonly-used protocols like TCP and IP are
complex, with a variety of functionality and many op-
tions. Developing and testing such protocols can be
difficult and error prone, and the resulting protocols
are not particularly flexible. These problems have
motivated past research on micro-protocols [13, 14].
Each micro-protocol embodies a single function or
option; more complex behavior is achieved by com-
posing these micro-protocols.

We will present here two micro-protocols: one
for a packet checksum, and one for fragmentation.
These protocols will also serve to show how chunks
provide some basic networking implementation tech-
niques within the context of packets as programs.

In PLAN, micro-protocols are composed through
chunk encapsulation. In general, each micro-protocol
takes a chunk plus additional arguments and re-
turns one or more new chunks which add the micro-
protocol’s functionality. This is similar to encapsu-
lation in traditional networking, where, as a packet
moves down the network stack, each protocol layer
encapsulates the higher-level packet while perhaps
adding additional header information for itself.

For example, suppose we had a chunk ¢ to which
we would like to add checksumming. We can invoke a
checksum service on ¢ which converts it into a stream
of bits (i.e., a “blob” type in PLAN) via the stan-
dard PLAN marshaling system, computes a check-
sum sum, and then wraps them in a chunk with a
code segment like that shown in Figure 1. When this
new chunk d is evaluated, unchecksum is called us-
ing ¢ and sum as arguments. Unchecksum then calls

svc reassemble : (blob,int,bool,key) -> ’a
fun defrag(frag:blob, seqnum:int,
morefrags:bool, session:key)
: unit =
(reassemble(frag, seqnum, morefrags,
session); ())

Figure 2: Code for a fragmentation chunk

the verifyChecksum service to ensure that c still has
the proper checksum, and then either evaluates ¢ or
aborts, as appropriate.

As another example, consider the task of fragmen-
tation; namely, we have some chunk c to transmit and
evaluate remotely, but it may be larger than the MTU
of the intervening path. We can have a fragment ser-
vice which takes ¢ (and the MTU size), represents it
as a “blob,” and divides it into MTU-sized! pieces.
Each fragment is then wrapped in a chunk with a
code segment as shown in Figure 2. The bindings for
these new chunks would each have a piece of the origi-
nal chunk, a sequence number, an indication whether
it was the last fragment or not, and a unique identi-
fier. The new chunks, when evaluated, simply register
themselves with the reassemble service on the des-
tination. This service collects all the incoming frag-
ments, puts them in the proper order, reconstitutes
the original chunk, and then evaluates it.

Figure 3 shows the composition of our two pro-
tocols to form a UDP-like delivery service. At the
highest level, we have some data (represented as a
blob) which we want to deliver to a specific port on
a specific host. First we create the chunk ¢, which en-
capsulates this behavior. Then we create a new chunk
d which adds checksumming. After querying the ap-
propriate path MTU, we then invoke the fragment
service to get a list of fragmentation chunks. If the
original chunk was small enough to fit within one
link-layer frame, these chunks take the form shown in
Figure 42. Finally, we use foldl to apply send frag

1Less the overhead for the reassembly chunk.

21f fragmentation was actually required, we would have only
a part of the innermost two chunks; however, for ease of illus-
tration, we have not shown this case.

code fun defrag(frag: bl ob, segnumint,
nor ef rags: bool , sessi on: key) unit =
(reassenbl e(frag, segnum nor ef r ags, sessi on);
0))
entr
poir%{ def rag
L - fun unchecksun(c: bl ob, sumint) unit =
bindings | frag code i f verifyChecksun{c, sum then
(eval Bl ob(c); ())
el se
() (* drop packet *)
entry
point unchecksum
bindings | ¢ = | code (empty)
ng{ del i ver
bindings | p = <port>
b = <data>
sum =n
seqnum = 1
nor efrags = false
sessi on = <key>

Figure 4: Chunk encapsulation

to send each fragment to dest.

When the fragments arrive they will be evaluated
causing them to be placed in the reassembly table.
Once all the fragments have arrived, they will be re-
assembled into chunk d, which when evaluated will
verify the checksum, resulting in chunk ¢. When c is
evaluated it will call deliver with port argument p
causing data argument d to be delivered to the cor-
rect port.

Both of the above micro-protocols share the same
basic structure: a service on the source is invoked
with a chunk plus some configuration parameters.
This results in the creation of a new chunk which car-
ries the code to perform the destination side of the
micro-protocol; note that this code may refer to ser-

vices that reside on the destination (but need not nec-
essarily reside on the source). The new chunk could
then potentially be wrapped in yet another micro-
protocol or simply sent across the network. At the
destination, the chunks simply “unwrap” themselves.

This common structure makes many things easy.
For one, we can have policy drive the composition
of micro-protocols, rather than having dependencies
built into complex protocols. Indeed, in our above ex-
ample, rather than have fragments of a checksummed
delivery packet, we could have invoked fragment first,
and then done a checksum on each resulting chunk,
thus ending up with checksummed fragments of the
original chunk. Each micro-protocol takes a chunk
and returns a chunk or list of chunks, so they may be

svc defaultRoute : host -> host * dev
fun send_frag (x:intxhost,c:chunk)
: int * host =
(OnRemote(c,snd x,fst x,defaultRoute);
x)

chunk -> chunk
(chunk,int) -> chunk list

svc checksum :
svc fragment :

svc getMTU : dev —> int
svc length : ’a list -> int
svc getRB : void -> int

fun udp_deliver (b:blob, p:port,
dest:host) : unit =
let val c:chunk = |deliver| (p,b)
val d:chunk = checksum(c)
val p:host*dev = defaultRoute(dest)
val ds:chunk list =
fragment (d,getMTU(snd p))
val l:int = length(ds) in
(foldl(send_frag,
(getRB()/1,dest),
ds); O)

end

Figure 3: UDP-style delivery

arbitrarily ordered in a type-correct way. Of course,
the order does matter from a semantic point of view.

Secondly, micro-protocols may be coded to remove
redundant functionality. For example, if a path only
has Ethernet interfaces, the checksum service might
simply return the original packet, as the checksum
would be redundant with the underlying CRC check.
Similarly, the fragment service can (and does) just
return the original chunk if it was already small
enough. Either of these optimizations remove the
need to execute certain receiving code at the destina-
tion.

In fact, the destination will not even have to do a
test to determine that it need not execute the receiv-
ing code! Since the demultiplexing path is encoded in
the the way the chunks are encapsulated, the unnec-
essary code will simply not be called as an arriving

chunk “unwraps” itself. This mechanism is in fact
quite powerful and allows us to do straightforward
asynchronous protocol adaptation, as we see in the
next section.

4 Asynchronous Adaptation

Adaptive protocols are ones that can be dynamically
reconfigured. In particular, they can react to chang-
ing network conditions to improve performance. For
example, if a data stream is bottlenecked due to a
low bandwidth link, it might be desirable to compress
the stream. Similarly, many checksum errors arising
from a noisy link might suggest using some sort of
error correction scheme to introduce redundancy.

In most approaches to adaptive protocols, a pri-
mary problem is synchronization. Namely, a source
and a destination must agree on the structure of the
protocol stack they are using: a protocol where the
sender encrypts data but the receiver fails to decrypt
it would hardly be useful. As described in [14], such
signaling protocols can often be complex (and some-
times expensive).

With PLAN chunks, there is no need for negotia-
tion between the endpoints for correct functionality.
A sender need only start using a new sequence of en-
capsulated chunks, and they will be correctly handled
at the receiver because the structure of the “protocol
stack” is encoded in the packets themselves. There
need be no delay for the protocol switch to happen
safely. Naturally, though, it may be important for
a sender and receiver to communicate and cooper-
ate to maintain an accurate network view so that a
policy regarding the insertion and removal of micro-
protocols may be reasonably applied.

Furthermore, adaptation with PLAN chunks is not
limited to endpoints. It is straightforward to add
micro-protocols just over some portion of the net-
work infrastructure, as in the style of Protocol Boost-
ers [6]. In this case, a router might intercept incom-
ing PLAN packets, wrap their top-level chunks in a
new “boosting” micro-protocol, and send them on
to a “de-boosting” location. Once there, the wrap-
per chunk will perform the receive-side of the micro-
protocol and then send the original top-level chunk

blob -> (chunk * host)
void -> int
host -> host * dev

svc decode :
svc getRB :
svc defaultRoute :

fun decrypt(cd:blob) : unit =

let (c,d):chunk * host = decode(cd)
in

OnRemote(c,d,getRB() ,defaultRoute)
end

Figure 5: Wrapper chunk for a virtual private net-
work

on to its final destination. Conventional, non-active
packets can be treated the same way, essentially let-
ting them tunnel in an active packet to allow dynamic
protocol composition.

We make these ideas more concrete by presenting
two examples. Both involve micro-protocols which
are applied at points within the network rather than
just at the endpoints of a communication.

Virtual private networks. Our first scenario is
that of virtual private networks, where we have sev-
eral networks of trusted nodes that we wish to con-
nect by traversing untrusted links. We would like to
give all the end hosts the illusion of being within a
single trusted network. This can be accomplished in
a straightforward manner by encrypting and encap-
sulating packets between trusted networks. In the
Internet, IPSec [4] may be used in exactly this way.

We can achieve a similarly elegant implementation
using PLAN chunks. An end host transmits an un-
encrypted packet which is intercepted by a firewall
machine when it is about to leave its trusted net-
work. The firewall extracts the top level chunk and
final destination from the packet, and then encrypts
them using a secret shared with a corresponding fire-
wall on the other side of the untrusted network. The
firewall then creates a new wrapper chunk like that
shown in Figure 5: the binding cd is the bit string
resulting from the encryption.

When the wrapper arrives at the opposite firewall,
it calls the decode service which accesses the fire-
wall’s shared secret to recover the original (unen-

crypted) chunk ¢ and evaluation destination d. Fi-
nally, it sends ¢ along to d. This scheme could be
easily extended to encrypt additional fields (e.g., a
nonce to prevent replay attacks).

Mobile computing. Our second scenario consid-
ers mobile computing over wireless links, which are
more noisy than wire-based LANs. Wireless links of-
ten have poor TCP throughput, as negative acknowl-
edgments due to checksum failures are interpreted
(incorrectly) as network congestion. To compensate
for packet errors, the networking software on the lap-
top could engage a forward error correction (FEC)
micro-protocol when operating in mobile mode.

With PLAN chunks, we can easily limit the FEC
just to the wireless link, thus conserving overall band-
width in the rest of the (less lossy) network. On the
source, we wrap our original chunk and its intended
destination in a wrapper chunk which registers it-
self with the FEC service on the other side of the
link. We would periodically generate an additional
parity packet which also registers itself with the FEC
service. In turn, the FEC service would verify the
encapsulated original chunks and send them out to
their final destinations.

One issue is that the laptop might cross a cell
boundary, thus switching gateways. Normally, this
would require some amount of synchronization and
communication, but since the FEC chunks are car-
ried with the packets, the new gateway immediately
knows that forward error correction is being used by
the laptop. At worst, the laptop may have to retrans-
mit the batch of packets which were being transmit-
ted when the switch occurred. Here, the fact that
PLAN packets actively specify their processing saves
us additional communication over the lossy link.

5 Security

PLAN was designed as a restricted language with
the intention that programs using only services that
provide appropriate protection would not require au-
thentication. In fact, other active networking re-
search [1] has shown that authenticating every active

svc authEval : (chunk,blob,blob) -> ’a
fun wrap (c:chunk, sig:blob, id:blob)
: unit =
(authEval(c,sig,id); O)

Figure 6: Wrapper chunk for authorization

packet results in unacceptable performance degrada-
tion.

On the other hand, for full advantage to be taken
of the flexibility of active networking, we want to al-
low PLAN programs to use services that require that
packets be authorized. Functions about which very
few a priori claims can be made suggest the need
for some sort of authorization policy controlling their
installation and use.

PLAN chunks provide an elegant mechanism for
this sort of authorization. A user with greater-than-
normal privilege could take a chunk and compute a
cryptographic signature for it. In turn, the chunk
and signature could be encapsulated in another chunk
like the one shown in Figure 6. When evaluated, the
authEval service verifies that the signature matches
the chunk and user’s identity (represented by a public
key), thus authenticating the user. The service then
evaluates the chunk in an environment appropriate
to the user’s level of authorization. The advantage of
this approach is that in signing a chunk, the user can
define exactly the scope in which greater privilege is
needed: the duration of the evaluating the chunk. An
alternative certificate-based approach is potentially
less precise.

Of course, this scheme only permits a user to au-
thenticate himself to an active node, but not vice
versa. There is also a vulnerability to replay attacks,
and public key cryptosystems are notoriously slow.
Fortunately, all three of these problems can be ad-
dressed, as described by the Secure Active Network
Environment (SANE) [3], and implemented in our
current testbed, PLANet [7].

6 Related Work

Micro-protocols are used in the z-kernel [11, 13].
However, the stress there is on software engineer-
ing and code reuse; although their approach enables
the relatively simple development of new protocols,
they must still be composed statically, whereas micro-
protocols implemented with PLAN chunks can be dy-
namically reordered.

Ensemble [14] is a toolkit for distributed appli-
cation development. Unlike the a-kernel, applica-
tions may adapt and dynamically reconfigure their
protocol stacks. However, Ensemble uses a Proto-
col Switch Protocol which halts communication, syn-
chronizes through a central coordinating participant,
and then resumes communication. PLAN chunks do
not require this pause for synchronization and do not
need centralized coordination. Furthermore, PLAN
chunks are not limited to an end-host only regime of
operation.

Protocol Boosters [6, 12] interpose additional func-
tionality within the network infrastructure. These
boosters enhance performance in a way that is trans-
parent to the applications communicating across the
“boosted” subnets. However, for multi-component
boosters, signaling is required to support the addition
or removal of a booster. Finally, because they reside
in the network infrastructure itself, some boosters are
subject to failures due to routing changes sending
boosted packets around their intended de-boosting el-
ement. PLAN chunks are not subject to these failures
because the chunk encapsulation essentially records
which micro-protocols have been applied and must
be undone at the destination.

Application-specific safe message handlers
(ASHs) [15] also support dynamic protocol lay-
ering in the Exokernel [5]. Dynamic code generation
is used to allow integrated layer processing based on
upcalls. Since PLAN chunks are carried in packets,
it is not clear that dynamic code generation or
just-in-time compilation will provide an advantage
over simple interpretation. Furthermore, the evalua-
tion of PLAN chunks already naturally suggests an
upcall-based organization. Lastly, PLAN chunks are
not limited to end hosts.

Other active networking projects such as

Netscript [17] and ANTS [16] offer flexible net-
working as well. In particular, Netscript permits
dynamic recomposition of protocols, but still re-
quires synchronization across nodes to make sure
that protocol stacks match correctly. It is not clear
whether ANTS protocols are composable as their
programming abstractions ensure that protocols
cannot interfere with one another.

7 Future Work and
Conclusions

One of the drawbacks of our current implementation
is that PLAN evaluation is currently quite costly.
Partially this is a result of lack of tuning, and the use
of a byte-code interpreted language implementation.
A faster PLAN interpreter and service routines might
be constructed using certified run-time code genera-
tion techniques as in the Cyclone [10] compiler.

A general concern about our approach is the space
cost of carrying the code in the packet. To miti-
gate this overhead, we are currently considering ways
in which the participants in a protocol may cache
code rather than always transmitting it with the
packet. One promising approach is to add language-
level remote-references that may be thought of as
pointers to remote objects. Since all PLAN values
(including chunks) are immutable, the contents of a
remote reference may be safely cached without the
need for a coherence protocol. This approach might
also allow us to cache some of a chunks bindings as
well, which might result in further space savings.

Implementation of various Protocol Boosters
should be straightforward using PLAN chunks.
Given a more streamlined PLAN infrastructure, it
should be possible to experimentally demonstrate the
utility of these techniques as well as other adaptive
protocols. In particular, it would be intriguing to
boost regular TCP/IP traffic across a PLAN-based
subnet.

In this paper, we have described chunks, a con-
struct of our domain-specific programming language,
PLAN, and have provided several examples of their
use. Firstly, chunks representing micro-protocols can

be arbitrarily ordered and composed to create more
complex protocols. Secondly, since the encapsulated
chunks are carried in the packets themselves, they
permit asynchronous protocol adaptation. Finally,
chunks provide a convenient level of granularity for
program authentication. Indeed, chunks are a power-
ful enough abstraction to permit the elegant expres-
sion of a number of powerful networking mechanisms.

References

[1] D.S. Alexander, Kostas G. Anagnostakis, W. A.
Arbaugh, A. D. Keromytis, and J. M. Smith.
The Price of Safety in an Active Network. Tech-
nical Report MS-CIS-99-02, University of Penn-
sylvania, January 1999.

[2] D. Scott Alexander, William A. Arbaugh,
Michael W. Hicks, Pankaj Kakkar, Angelos D.
Keromytis, Jonathan T. Moore, Carl A. Gunter,
Scott M. Nettles, and Jonathan M. Smith. The
SwitchWare Active Network Architecture. IEEE
Network Special Issue on Active and Control-
lable Networks, 12(3), May/June 1998.

[3] D. Scott Alexander, William A. Arbaugh, Ange-
los D. Keromytis, and Jonathan M. Smith. A Se-
cure Active Network Architecture: Realization
in SwitchWare. IEFE Network Special Issue on
Active and Controllable Networks, 12(3):37-45,
May/June 1998.

[4] R. Atkinson. Security Architecture for the In-
ternet Protocol. RFC 1825, August 1995.

[5] Dawson R. Engler, M. Frans Kaashoek, and Jr.
James O’Toole. Exokernel: An Operating Sys-
tem Architecture for Application-Level Resource
Management. In ACM Symposium on Operating
Systems Principles (SOSP), 1995.

[6] D. C. Feldmeier, A. J. McAuley, J. M. Smith,
D. Bakin, W. S. Marcus, and T. Raleigh. Pro-
tocol Boosters. IEEE JSAC, Special Issue
on Protocol Architectures for the 21st Century,
16(3):437-444, April 1998.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Michael Hicks. PLAN System Security. Tech-
nical Report MS-CIS-98-25, University of Penn-
sylvania, July 1998.

Michael Hicks, Pankaj Kakkar, Jonathan T.
Moore, Carl A. Gunter, and Scott Nettles.
PLAN: A Packet Language for Active Networks.
In Proceedings of the 1998 ACM SIGPLAN In-
ternational Conference on Functional Program-
ming (ICFP’98), pages 86-93, September 1999.

Michael Hicks, Jonathan T. Moore, D. Scott
Alexander, Carl Gunter, and Scott Nettles.
PLANet: An Active Internetwork. In IEEFE
Conference on Computer Communications (IN-
FOCOM), March 1999. To appear.

Luke Hornof and Trevor Jim. Certifying com-
pilation and run-time code generation. In
ACM SIGPLAN Conference on Partial Evalu-
ation and Semantics-Based Program Manipula-
tion (PEPM), January 1999.

Norman C. Hutchinson and Larry L. Peter-
son. The z-Kernel: An Architecture for Imple-
menting Network Protocols. IEEE Transactions
on Software Engineering, 17(1):64-76, January
1991.

A. Mallet, J. D. Chung, and J. M. Smith. Op-
erating Systems Support for Protocol Boosters.
In HIPPARCH Workshop, June 1997.

Sean W. O’Malley and Larry L. Peterson. A
Dynamic Network Architecture. ACM Transac-
tions on Computer Systems, 10(2):110-143, May
1992.

Robbert van Renesse, Ken Birman, Mark Hay-
den, Alexey Vaysburd, and David Karr. Build-
ing Adaptive Systems Using Ensemble. Techni-
cal Report TR97-1638, Cornell University, July
1997.

Deborah A. Wallach, Dawson R. Engler, and
M. Frans Kaashoek. ASHs: Application-Specific
Handlers for High-Performance Messaging. In

ACM Communication Architectures, Protocols,
and Applications (SIGCOMM’96), August 1996.

[17] Y. Yemini and S. da Silva.

[16] David J. Wetherall, John Guttag, and David L.

Tennenhouse. ANTS: A toolkit for building and
dynamically deploying net work protocols. In
IEEE OPENARCH, April 1998.

Towards pro-
grammable networks. In IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Opera
tions and Management, L’Aquila, Ttaly, 1996.

	Chunks in PLAN: Language Support for Programs as Packets
	Recommended Citation

	Chunks in PLAN: Language Support for Programs as Packets
	Abstract
	Comments

	tmp.1162391503.pdf.vjc2P

