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Abstract

A new method for preparing SWNT/epoxy nanocomposites has been developed which

involves high shear mixing of the epoxy resin and SWNT and heat treating the mixture

prior to introducing the hardener. The glass transition temperature of the epoxy resin is

unaffected by the presence of nanotubes. An improvement of 17% in flexural modulus

and 10% in flexural strength has been achieved at 0.05 wt% of nanotubes. These

improvements in flexural modulus and strength are attributed to good dispersion of the

nanotubes and grafting of epoxy resin to SWNT by an esterification reaction.

Keywords: nanocomposites, flexural modulus, flexural strength, SWNT, epoxy
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1. Introduction

Single wall carbon nanotubes (SWNT) possess high aspect ratio, high tensile strength,

low mass density and high thermal and electrical conductivity [1,2]. The combination of

these properties makes them ideal candidates for the fabrication of multifunctional

polymer nanocomposites [3-5]. SWNT reinforced epoxy systems hold the promise of

many potential applications that require lightweight, high strength materials e.g. space

shuttle, aircraft etc. In spite of the ongoing efforts for the last several years to prepare

SWNT/epoxy composites that achieve the theoretical potential of nanotube

reinforcement, there has been little success due to several fundamental difficulties

remain. The first difficulty arises from the poor dispersion of the nanotubes in the epoxy

matrix. Due to the high aspect ratio of the nanotubes (up to 1000), there is strong intrinsic

van der Waals attraction between the nanotubes that produces SWNT ropes and bundles

[6]. Processing difficulties also arise from the significant increase in viscosity as the

amount of nanotube loading increases in the epoxy matrix. Moreover, there is very

limited load transfer from the matrix to the nanotubes due to the lack of interfacial

bonding between the nanotubes and the polymer matrix [7].

A number of researchers have developed techniques to improve the dispersion of the

nanotubes in epoxy including ultrasonication [8,9], addition of surfactants [10] and

functionalization [11-13]. Addition of surfactants and functionalization of the nanotubes

prove to be useful in improving the dispersion of nanotubes in the epoxy matrix.

However in both cases, the glass transition temperature of the epoxy matrix is found to be

affected [10,11]. In other words, the degree of crosslinking has been affected. For

example, Miyagawa et al [11] found that the glass transition temperature of the epoxy

matrix decreased approximately 30 oC with an addition of 0.2 wt% flourinated single wall

carbon nanotubes.

In terms of mechanical properties, SWNT/epoxy nanocomposites have been found to be

either weaker or slightly higher strength than the pure epoxy [13-20]. In most of the

reports, more than 1.0 wt% of nanotubes were added to get any improvement in the

elastic modulus of the epoxy matrix. Recently Zhu et al reported 30% improvement in
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Young’s modulus of epoxy with 1.0 wt% loading of nanotubes when the nanotubes are

functionalized with amino groups [12] or a combination of carboxyl and flouride groups

[13] prior to nanocomposite fabrication.

In this article we report a new method for the preparation of the SWNT/epoxy

nanocomposites with improved dispersion of SWNT, without functionalization of the

nanotubes. This method also provides a route to get improved mechanical properties of

the nanocomposites at a very low loading of SWNT.

2. Experimental

2.1. Materials

SWNT were synthesized by a high-pressure carbon monoxide method (HiPco) at Rice

University [21]. The nanotubes were purified with HCl by the method described by Zhou

et al [22]. The metal residue in the purified nanotubes was less than 4 wt% as determined

by thermogravimetric analysis (TA instruments SDT 2960 at 5o C/min in air) and

assuming that the residue was Fe2O3. Purified SWNT was stored in DMF to avoid

agglomeration.

The epoxy resin used in this study was a DGEBF epoxy (diglycidyl ether of bisphenol F),

EPON resin 862, obtained from Shell Chemicals. Processing can become difficult due to

the increased viscosity during the preparation of SWNT/epoxy composites. Therefore, an

epoxy resin with lower viscosity is ideal for the preparation of epoxy/nanotube

composites. Bisphenol F epoxy resin is physically smaller than the most widely used

bisphenol A epoxy resin, resulting in a lower viscosity (25-45 Poise at 25 oC). It has

increased functionality, which allows higher crosslinking density. Another advantage is

that it requires amine-based curing agents with higher functionality, which also have

lower viscosities. AMICURE® PACM, a cycloaliphatic diamine (chemical name 4,4′-

methylenebiscylohexanamine), obtained from Air Products and Chemicals Inc. was used

as the hardener/curing agent in this study. The typical molecular structures of EPON resin

862 and AMICURE PACM are shown in Fig. 1.
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2.2. Preparation of the nanocomposites

SWNT/epoxy composites were prepared with nanotube loadings of 0.01 wt% and 0.05

wt%. Figure 2 shows a schematic of the method for the preparation of the SWNT/epoxy

nanocomposites. The purified nanotubes were dispersed in dimethylformamide (DMF) by

bath sonication for 24h. The epoxy resin was mixed with the nanotube suspension in

DMF and sonicated for one hour. The DMF was evaporated by heating the SWNT/resin

suspension at 100 oC for 24 hours. Another batch of the SWNT/resin mixture was further

heated at 150 oC for 24 hours under vacuum. The mixture was then subjected to high

shear mixing (100 RPM) for one hour at room temperature in a twin-screw batch mixer

(MicroCompounder®, DACA Instruments). After high shear mixing of the SWNT/resin

mixture, the curing agent (resin:curing agent = 3:1) was added to the homogenous

mixture and was compounded for another 30 minutes. The resulting mixture was then

taken into a Teflon® pan, degassed for 4 hours and was cured at 80 oC under vacuum for

2 hours followed by another 2 hours curing at 150 oC to complete the crosslinking

reaction.

2.3. Sample Characterization

Nanotube dispersion in the epoxy matrix was studied using transmission optical

microscopy (Olympus, BH-2). A few drops of the SWNT/resin/hardener mixture was

placed on a microscope slide after the mixture was subjected to high shear mixing, heated

at 80 oC for 2 hours, and then heated at 150 oC for 2 hours. Thermal analysis was carried

out using a DuPont 2920 differential scanning calorimeter (DSC) at a heating rate of 10
oC/min. The instrument was calibrated for temperature and energy with indium and tin

reference samples. DSC traces were recorded with 7-10 mg of sample, in a nitrogen

atmosphere. Scanning electron microscopy (SEM) (JEOL 6300FV) was used to

investigate nanotube dispersion by imaging composites fractured at room temperature. To

reduce charging the fracture surface was coated with a thin sputtered layer of Au/Pd

(60:40) and imaged at 15kV. FTIR spectroscopic measurements were performed at

ambient conditions using a Perkin Elmer Series 2000 Fourier Transform Infrared (FTIR)

spectrometer. Samples for FTIR were prepared with KBr to form transparent pellets.

Three-point bending experiments were conducted on an Electromechanical Material
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Testing System (Instron Series 5564). The crosshead speed was 0.5 mm/min and typical

dimensions of the sample beams were 20 mm x 2.1 mm x 2.1 mm.

3. Results and Discussions

3.1. Morphology of the composites

After the ultrasonication of the SWNT/resin suspension in DMF followed by evaporation

of the solvent at 100 oC for 24 hours, agglomeration of nanotubes is visible in this

mixture even with the naked eye, Figure 3a. This is consistent with previous studies,

reporting that ultrasonication of the resin and nanotubes in the solvent produces poor

dispersion of the nanotubes in the final composite [8,9]. Following our new procedure,

the SWNT/resin mixtures were compounded in a MicroCompounder, compounded with

the hardener and then cured to produce composites with uniform dispersion of nanotubes

in the epoxy matrix. Figure 3(b) shows the optical micrograph of the nanocomposite with

0.01 wt% of nanotube loading. Figure 3(c) shows the scanning electron microscopy

(SEM) image of the fracture surface of the same composite. The absence of any

agglomerates in Fig. 3(b) and (c) indicates a uniform dispersion of SWNT in the epoxy

matrix at the micron and submicron level, respectively. The composite with 0.05 wt% of

nanotube loading shows similarly uniform dispersion of nanotubes. Therefore, high shear

mixing of the nanotubes and epoxy resin for a period of time and subsequent high shear

mixing of the hardener with the former mixture results in a composite with uniform

dispersion of nanotubes. It should be mentioned that when the SWNT/resin mixture is

heated for prolonged time (with or without compounding), an increase in viscosity has

been observed which limits the amount of nanotube loading in the composites.

3.2. Thermal Analysis

Lau et al. [23] reported that when DMF is used for the dispersion of nanotubes, the

residual solvent has detrimental effect on the mechanical properties of the

nanotube/epoxy composites. To evaluate the amount of residual solvent, the SWNT/ resin

mixture was subjected to thermogravimetric analysis after the solvent evaporation at 100
oC for 24 hours. The TGA shows <2 wt% weight loss (due to the release of adsorbed

water) between 80 and 220 oC indicating complete removal of the DMF. In addition,
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3PLL

2WT2σ = (1)

isothermal TGA (at 150 oC) was performed on epoxy resin for 24 hrs in air and found no

significant decomposition of the epoxy resin. DSC analysis shows that the glass transition

temperatures of the cured epoxies with and without SWNT are ~129 oC. This indicates

that the removal of DMF prior to curing and the improved SWNT dispersion of our

SWNT/epoxy composites allow for comparable crosslinking in both epoxy and the

nanocomposites.

3.3. Mechanical Properties of the Composites

Figure 4 shows representative stress-strain curves from three point bending tests of the

epoxy and its nanocomposites from which the flexural moduli were determined (from the

slopes). Figure 5 shows the flexural moduli of the epoxy and SWNT/epoxy composites

where the flexural modulus increases with the nanotube loading. The flexural strength σ

is calculated based on the following equation [24]:

where PL is the peak load of the load-extension curve, L is the support span and W and T

are the width and thickness of the sample beam.

The flexural strength of the pure epoxy as well as of the composites is listed in

Table 1. From Figure 5 and Table 1, the composite with 0.05 wt% SWNT shows a 15%

improvement in flexural modulus and a 8% improvement in flexural strength when the

SWNT/ resin mixture is heated at 100 oC for 24 hours. Further heating of the mixture

(150 oC for 24 hours) only slightly improves the flexural modulus and strength of the

composite (17% increase in modulus and 10% increase in strength for 0.05 wt% of

SWNT composite). Considering the very low concentration of the nanotube loading,

these improvements in flexural modulus and strength are noteworthy as the largest

improvements in flexural modulus and strength reported to date at this low loading of

SWNT.

Multiple factors can contribute to the improvements in flexural moduli and strengths in

these SWNT/epoxy composites. One obvious factor is the improved dispersion of the
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nanotubes in the epoxy matrix (as evidenced from the optical microscopy images)

achieved through the fabrication method developed in this study. Another factor might be

an interfacial bonding between the SWNT and epoxy matrix that facilitates load transfer.

To explore this possibility, FT-IR spectra of the samples were collected.

FT-IR can monitor small changes in functional groups due to a chemical reaction. Our

fabrication method involves a long drying step that could produce some chemical

changes. Four samples were studied by FTIR: (i) purified SWNT, (ii) epoxy resin, (iii)

SWNT recovered by washing away the epoxy resin prior the heat treatment (control

sample), and (iv) SWNT recovered by washing away the free epoxy resin after the heat

treatment, Figure 6. The FT-IR spectra of pure SWNT and the control sample are found

to be identical (compare Fig. 6(a) and 6(c)) indicating that the washing step effectively

removes all the epoxy resin from the nanotubes. However, the heat-treated sample shows

several epoxy specific bands in the FT-IR spectrum, Figure 6(d). In addition to the bands

characteristic to SWNT and epoxy resin, this FT-IR spectrum shows a band at 1730 cm-1 

characteristic of an ester group. It is well known that acid treatments during the

purification of SWNT produce defects in the nanotubes with the addition of few

carboxylic acid groups (-COOH) at the defect sites [25-28]. In Fig. 6(a) and (c), we do

not see the peak for the C=O stretching of the acid groups, in part because the SWNT are

not heavily functionalized during our purification procedure. Furthermore, literature

indicates that even when SWNT are heavily functionalized with acid groups by extended

refluxing with acid, the C=O band of the acid is very weak and somewhat broad when

attached to SWNT [26], whereas the ester C=O band is comparatively strong and sharp

and more intense [13]. The band at 1730 cm-1 in the heat-treated sample indicates the

formation of ester groups by the reaction of carboxylic acid functional groups on the

nanotubes with the epoxy rings, Scheme 1. In other words, prolonged heating in the

drying step grafts the epoxy resin on the SWNT. The reaction proceeds via the acid

catalyzed ring opening of the epoxy [29].

Scheme 1

SWNT C

O

OH H2C CH CH2

O
X SWNT C

O

O CH2 CH CH2 X

OH

+
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Zhu et al [13] obtained similar ester C=O stretching in the FT-IR spectrum of the

SWNT/epoxy composite when they deliberately functionalized SWNT with carboxylic

acid groups and prepared SWNT/epoxy composites. Our preparation method does not

require SWNT functionalization, but rather a simple heating step. The formation of

covalent bonds between the SWNT and epoxy resin facilitates load transfer between the

SWNT and epoxy matrix and contributes to the improvement in the mechanical

properties of the composites.

Conclusions

A new method has been developed to prepare SWNT/epoxy composites. Improved

dispersion of SWNT in epoxy matrix has been achieved by high shear mixing of the

nanotubes with the epoxy resin. Preheating the SWNT/resin mixture prior to introducing

the hardener produces covalent bonds between the nanotubes and the epoxy resin. After

curing, the covalent bonds between SWNT and epoxy facilitate load transfer between the

nanotubes and the epoxy matrix. Significant improvements in flexural modulus (17%)

and flexural strength (10%) have been achieved at 0.05 wt% nanotubes. These

improvements in flexural modulus and strength are attributed to both the improved

dispersion of the nanotubes and grafting of epoxy resin to SWNT by an esterification

reaction. However, preheating the SWNT/epoxy resin mixture to remove solvent

increases the viscosity and prohibits processing at higher SWNT loading. Therefore,

future study will be aimed at developing methods to reduce the viscosity of the mixture

(e.g. using modifier) so that more nanotubes can be incorporated into the epoxy matrix.
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Table 1. Flexural strength of epoxy and SWNT/epoxy nanocomposites prepared with

either a one-step or two-step drying process. Standard deviations of these measurements

are less than ± 2 MPa.

Flexural Strength (MPa)SWNT Wt %

100 oC (24h) 100 oC (24h) & 150 oC (24h)

0 158 158

0.01 164 167

0.05 170 173
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Fig. 3.
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Fig. 4.
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Fig. 5.

SWNT loading (wt%)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

F
le

xu
ra

lm
od

ul
us

(M
P

a)

1050

1100

1150

1200

1250

1300

1350

100oC (24 h)
100oC (24 h) & 150oC (24 h)



19

Fig. 6.
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