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Radiation Characteristics of a Source in a Thin Substrate Mounted Over a
Dielectric Medium

Abstract
The radiation pattern of a line source is calculated for the case where the source is lying on the top or the
bottom surface of a lossless dielectric substrate that is mounted on the top of a semi-infinite dielectric
medium. It is found that in both cases the pattern along interfaces has a null; that the pattern in the upper
semi-infinite medium has a single lobe; and that the pattern in the lower semi-infinite medium has many lobes,
the number of which varies with the substrate thickness. It is shown that in both cases the power radiated into
the lower medium is more than that radiated into the upper medium. Applications of this calculation in
remote sensing, microstrip antenna technology, and antenna arrays are discussed.
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Radiation Characteristics of a Source in a Thin 
Substrate Mounted Over a Dielectric Medium 

Abstract-The radiation pattern of a line source is calculated for the 
case where the source is lying on the top or the bottom surface of a 
lossless dielectric substrate that is mounted on the top of a semi-infinite 
dielectric medium. It is found that in both cases the pattern along 
interfaces has a null; that the pattern in the upper semi-infinite medium 
has a single lobe; and that the pattern in the lower semi-infinite medium 
has many lobes, the number of which varies with the substrate thickness. 
It is shown that in both cases the power radiated into the lower medium is 
more than that radiated into the upper medium. Applications of this 
calculation in remote sensing, microstrip antenna technology, and 
antenna arrays are discussed. 

1. INTRODUCTION 

MONG the problems of remote sensing, the interface A problems are the ones that mostly attract the attention of 
physicists and engineers who work in electrodynamics. One of 
these problems is the problem of reflection and refraction of 
the electromagnetic wave illuminating a rough ground surface 
covered with a dielectric layer. The top surface of the layer 
can also be rough. There are different theoretical models that 
can simplify the geometry of the problem and thus can lead to 
finding the reflection and refraction of the wave. One of the 
techttiques that can be useful in solving the problems of the 
scattering from rough surfaces is the equivalent current source 
technique that was used by Marcuse [ 1 J and also by Elachi and 
Yeh [2]. In using this technique, the slightly rough surface is 
replaced by a smooth surface and the equivalent sources 
located on the interface of the smooth surface. We call these 
sources the interfacial sources. Therefore, the original prob- 
lem reduces to the problem of finding the radiation of sources 
that lie on interfaces. In our previous paper [3], we found the 
radiation patterns and emitted power of a line source lying 
along the interface of two lossless dielectric half-spaces. In the 
present paper, we will obtain the radiation patterns of a line 
source lying along the top or the bottom surface of a dielectric 
layer over a smooth surface. 

In microstrip antenna technology, it is often necessary to 
calculate the radiation characteristic of dipoles printed on 
a dielectric substrate. The substrate is usually mounted on a 
conducting ground plane. However, the ground plane can, in 
some special cases, be replaced with a high permittivity 
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substrate (such as in aperture-coupled microstrip antennas 
with two parallel substrates). 

Also, it will be shown that there is a potential application in 
generating grating lobes similar to that of antenna arrays using 
a single dipole sandwiched between two dielectric regions. 
The present paper will discuss the radiation properties of 
radiating sources in these cases. 

Fig. 1 illustrates the geometry of the problem. The substrate 
is a lossless homogeneous dielectric slab whose dielectric 
constant e l  is greater than that of free space, i.e., e l  > eo. The 
lower half-space is also a lossless homogeneous dielectric with 
permittivity €2 greater than e l .  In Section 11, we will consider 
the line source located along the bottom surface of the layer. 
We will find the radiation pattern of the line source in this 
configuration. In Section 111, we will examine the problem for 
the case of the line source lying along the top surface of the 
layer. Section 1V will contain the interpretation of the results 
in terms of ray optics. Finally, in Section V, a brief summary 
and applications of the problem will be given. 

11. THE LINE SOURCE IS ON THE BOTTOM SURFACE OF THE 

SUBSTRATE 
A .  Formulation of the Problem 

To formulate the problem mathematically, we introduce a 
Cartesian coordinate system x, y ,  z wherein the z axis lies 
along the axis of the line source, and the plane of the interface 
of the layer, whose index of refraction is nl = =and the 
lower medium, whose index of refraction is n2 = && is 
given by the coordinate surface y = 0. The plane interface of 
the layer and the upper medium is denoted by a plane y = D, 
where D is the thickness of the layer. Moreover, to handle the 
far-zone field, which must have the form of a cylindrical 
wave, we also introduce a cylindrical coordinate system p,  d, 
z ,  where p cos 6 = x, p sin 4 = y and - a < C#I < a (Fig. 2). 

We use the MKS system of units and assume that the current 
density of the line source is given by 

J = eZZ6(x)S(y)e-'"' (1) 

where e, is the unit vector along the z axis, 6(x) and 6( y )  are 
Dirac delta functions, and Z is the total current. We take the 
index of refraction to be 1 in the upper medium ( y > D); and 
nl  > 1 in the substrate with thickness D (0 < y < D);  and n2 
> nl in the lower half-space ( y  < 0). Although this means 
that the upper medium is a vacuum, and the substrate and the 
lower medium are dielectric, our analysis will be true for any 
three dielectric regions whose indices of refraction are such 
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(b) 

Fig. I .  (a) Line source is located on bottom surface of lossless dielectric 
slab. (b) Line source is located on top surface of slab. 

Fig. 2 .  Line source lies along t axis. In the upper half-space ( y  > D) the 
index of refraction n is equal to 1,  in slab (0 < y < D) n, is greater than I ,  
and in lower half-space ( y  < 0) n2 is greater than n,. 

that n2 > nl > no. The results will also be valid if the indices 
of refraction are in the ratio of n2 to nl to 1. 

From the symmetry of the configuration, it is evident that all 
the electromagnetic field components are independent of z ,  
and consequently there are only three components E,(p, q5), 
HJp ,  +I), and H&, 6) .  From the Maxwell equations, we can 
write 

1 i a  

i u p  P a+ H = - - - E  ( 2 )  

(3) 

Therefore, since E, is the only component of the electric field 
and since the magnetic field components can be derived from 
E,, our problem can be formulated in terms of E, alone. 

From Maxwell's field equations V x E = iwpH and V x 
H = J - i w E ,  it follows that 

(4) 

where k 2  = w2,uc. We also know that V. (EE)  = 0. Using 
vector identities, we get V6.E + 6V.E = 0. Because here V E  
is perpendicular to E, the term V E - E  disappears, and we have 

V x V x E -  k 2 E =  iupJ, 

V . E=O. ( 5 )  

From ( l ) ,  (4), and (3, E, must satisfy 

V2Ez+ k2Ez= - iwpZ6(x)6(y) (6) 

where p = po everywhere, 

k2=u2poe0=k; for y > D ,  

k2=w2poe,=n:kifor0 < y < D ,  

and 

~ 

3 2 3  

k 2  = w2p0e2 = n ik t  for y < 0. 

po and eo denote the permeability and the dielectric constant of 
free space. We denote E and H in the upper medium by Eo and 
Ho, in the substrate by E ,  and H I  and in the lower semi-infinite 
medium by E2 and HZ, respectively. 

Therefore, we must find the solution of (6) which gives 
outwardly moving cylindrical wave in the far zone and 
satisfies the boundary conditions E,, = E,, and HA = Hxl 
along the plane y = D, and E,, = EZ2 and Hxl  = Hx2 along 
the plane y = 0. 

B. Solutions of the Equations 
TO solve (6), we write E, as a Fourier integral, i.e., 

EAx,  Y )  = V ( y ,  h)elhx dh. (7) 
- m  

By substituting (7) into (6) and by recalling that 

1 -  
6(x)=-  1 eihx dh, 

2a -- 
we get the differential equation for V ( y ,  h ) ,  i.e., 

d2  - iWPOZ6(Y) 
dY 2a 
- V + ( k 2 - h 2 ) V =  (9) 

where for y < 0 we have k 2  = niki  and denote V by V,, and 
for 0 < y < D we have k Z  = n f k ;  and denote V by VI; and 

(10) 
d2 
- dY V+(k t -hZ)V=O,  fo ry>D 

where we denote V by VO for y > D. 
The solution to (9) and (10) must also satisfy the radiation 

condition. Therefore, the appropriate solutions of (9) and ( I O )  
have the form 

Vo(y ,  h )  = a. exp (-may) ( 1  la) 

V l ( y ,  h )  = a l  exp ( - m y )  + 6 ,  exp ( m y )  

(1 Ib) 

To determine ao, a, ,  b , ,  and a2 we use the boundary 
conditions for E,. Accordingly, we must have 

Vo = VI at y = D 

VI = V2 at y=O. 

( 1 2 4  

( 1  2b) 

To find the other relations among ao, a , ,  bl, and a2, we 
integrate (9) with respect to y from - A y  to +Ay ,  and also 



324 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. 36. NO. 3 .  MARCH 1988 

integrate (10) with respect to y from D - A y  to D + A y .  A y  
is vanishingly small quantity and Vis a continuous function of 
y throughout the range of integration. Therefore, we get 

integrals of (14) and ( 1 9 ,  we replace x, y by p cos 4 and p sin 
4, respectively. Thus we obtain 

Ezo(P7 4)=  im - m  Ao(h) 
- iwpO 

I (134 =- 

exp (ihp cos 4 - m ~  sin 4) dh (16) 

Considering the relations (1 la)-(1 IC), (12a), (12b), and 
(13a), (13b), we obtain a,, a2. From (7), (lla), ( l lc)  and a 

. exp (ihp cos 4 + m p  sin 4) dh (17) 

knowledge of a. and a2, we find 

(exp (-01 

+exp ( -  . m 0)) 

where Ao(h) and A2(h) are shorthands for parts of integrands 
in (14) and (15). 

In the integral representation of E&, d), we divide the 
range of integration into three subranges, i.e., 

EzO= d h +  S i k 0 f ( h )  d h +  Smf(h)  dh (18) 
- m  - k 0  k0 

wheref(h) is a shorthand for the integrand. For kop + 00, it 
can be seen that the integrals for the subranges - < h < 
- ko and ko < h < + 00 are negligibly small compared to the 
integral for the middle subrange ( - ko  < h < +ko) V I .  
Therefore, by introducing the variable a,  which is defined by 
sin a = h/ko, we obtain 

EZo= - */2 &(a) exp [ik,p sin (a++)]  da, 

(14) 
for k0p-+w (19) 

. ,  
and 0 < 4 < a, where xo(a) is found by substituting h = ko 
sin a in function Ao(h). We apply the method of stationary 
phase, and we get the following expressions for Ea in the far 
zone of the upper medium ( y  > D): 

WPOI  E,, = I sin 4Jnf - cos2 4 

(20) exp [ iko(p - D sin 4)  - ia/4] 

for kop + 03, and 0 < 4 < a. 

representation of Ez2(p, 4) into subranges. Thus we write 
Similarly, we divide the range of integration of the integral 

* (exp ( v ' X G $ i j ~ )  + exp ( - =,D))I 1 - I 

Ez2(P, 4)  
exp ( i h x + m y )  dh. (15) 

= i-nzko U(h) d h +  i - n l k o  U ( h )  dh 
- n2ko 

To find the radiation patterns in the upper medium ( y > D) - m  

and the lower half-space ( y < 0), we resort to an asymptotic 
evaluation of the integrals. 

C. Radiation Patterns 

- k 0  

+ U(h) dh + j k o  U(h) dh + U(h) dh 
- kn k 0  1 - n l k g  

+ in2" U(h) dh + Sm U(h) dh (21) 
To determine the radiation patterns, it is convenient to use 

the cylindrical coordinates ( p ,  4). Accordingly, in the n l k 0  "2kO 
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where U(h)  is a shorthand for the integrand. The first and 
seventh integrals are negligibly small for all values of 4 in the 
lower half-space ( - a < 4 < 0) [4]. Defining the variable 
a by sin a = h/(n2ko),  we can invoke the method of 
stationary phase. To have a leading term of order l / d G f o r  
n2kop -+ 00, the stationary point must be in the interval of 
integration. Therefore, if 4 lies in the intervals - ?r < 4 < 
- T + < 4 < 0, where cos dcl = nl /n2 ,  the 
contribution to the far-zone field will come from the second 
and sixth integrals, respectively. However, if 4 lies in the 
intervals -a + $cl < 4 < -a + 4c2 and -&2 < 4 < 
- &I,  where cos dc2 = 1 / n 2 ,  the leading term for the far-zone 
field will come from the third and fifth integrals, respectively. 
Finally, if 4 lies in the sector - a + 4c2 < 4 < - &2, the 
leading term will result from the fourth integral. Therefore, 

and - 

for the dihedral region (n2kop -+ 00, and - a + 4 c 2  < 
- c $ ~ ~ ,  we have 

* cos (koDJn:-nt cos2 4)1)-1 

. exp (in2kop - ia/4). 

Forthetwosectors -a + 
< 4 < - 4 c 1 ,  we get 

< 4 < -a + &2and 

+ 

and for the other two sectors (-a < 4 < -a + and 

< 4 < 0), we obtain 

- iopoI 
E -  n2 sin + [ J n i  cos2 4 - n :  z2-G 

cosh (koDdni cos2 4 - n: )  + dni cos2 4 - 1 

. sinh (koDdni cos2 4 - n f ) ] { J n ;  cos2 4- 1 

[ J n :  cos2 4-nf cosh (koDdni cos2 4 - n : )  

* sinh (koDJni  cos2 4 - n: + in2 sin 4 

cosh (koDdn; cos2 4 - n ; ) ] } - l  

* exp (in2kop - ia/4). (24) 

In the far-zone region, the magnetic and electric fields have 
the following relations: 

r 

in the upper medium ( y  > D); and 

H + 2 =  -n2 * E z 2  (26) 

in the lower semi-infinite medium (y  < 0). 

1/2 Re (E x H*), one can get 
By recalling that the time-averaged Poynting vector S = 

in the upper medium, and 

in the lower half-space. Equations (20) and (22)-(24) present 
E,, and Ez2. 

The radiation patterns of this source are plotted using (27) 
and (28) (see Figs. 3-6 for radiation patterns plotted for 
different values of D&). We see that at the interface the 
radiation patterns disappear, and that in the upper medium, the 
radiation pattern consists of a single lobe whose maximum lies 
along the line 4 = a/2 and has the value 

WO12 
4TP 

(SpO)max=- n:[nf(1 + n 2 ) 2  cos2 (nlkoD) 

+ ( r ~ ~ + n : ) ~  sin2 (n lkoD)] - l .  (29) 

The value of the Poynting vector in the lower semi-infinite 
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- -  
:.-I 

D I  
A. - 8 

Fig. 3 .  Radiation patterns (linear scale) for the case where the line source is 
located on bottom surface of the slab. Here, n, = 2, n2 = 4, D/&, = 1,  COS Fig. 6 .  Radiation Patterns (linear scale) for the case where the line source i s  

located on bottom surface of the slab. Here, n ,  = 2, n2 = 4, D / X ,  = 1/8, 
cos = 1/2, and cos @c2 = 1/4. 

= 1/2, and cos @c2 = 1/4. 

medium at C$ = -a/2 is 

t sin2 (n1koD)]/{n:(n2+ 

. COS' (ni koD) + (n: + n2)2 

. sin2 ( n l k o D ) } .  (30) 

Now, we can examine the limiting cases. When the substrate 
on top of the source disappears, D equals zero. Therefore, one 
can have the following expressions for (29) and (30) for D -+ 

0, i.e., 

wpoP n ;  for D-0. (32) 
(S,2>,= ~ a/2+- ~ 4ap (1 +n2)2 

Fig. 4. Radiation patterns (linear scale) for the case where the line source is 
located on bottom surface of the slab. Here, n ,  = 2, nL = 4, D / X ,  = 1/2, 
cos @Icl = 112, and cos @Ic2 = 1/4. 

These are exactly the time-averaged Poynting vectors that 
would be radiated by the line source if it lay between two semi- 
infinite dielectric half-spaces. This was shown in [3]. Another 
limiting case is where nl = n2 = I .  One gets the following 
relations for (29) and (30) when n, = n2 -+ 1 

* 7 D I  
T. = 4 

for n l  = n2-+ 1 (33) 
f - W O 1 2  

( $ d n a x  + ~ 

W O I '  
( S p 2 ) , =  - a / 2 + -  

167rp 

(34) 
167rp 

which is the time-averaged Poynting vector that would be 
radiated by the line source if it were in free space. As was 
shown, the radiation patterns of such a source approach that of 
the limiting cases already studied. 

We see that the number of lobes in the radiation pattern in 
the lower half-space varies with the thickness D .  As D 
increases, the number of lobes being in the sectors - a + 
< @ < - 7r f &2 and - &2 < 6 < - increases. This is 
due to the multiple reflection inside the slab. The effect is 

Fig. 5. Radiation patterns (linear scale) for the case where the line source is 
located on bottom surface of the slab. Here, n, = 2, n2 = 4, D/&, = 1/4, 
cos &, = 112, and cos @c2 = 1/4. 
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similar to the interference effect. When D increases, the 
difference between path lengths of rays reflected inside the 
slab varies more rapidly with the angle. Therefore, a small 
change in the angle can cause a significant difference among 
path lengths inside the slab, resulting in a significant change in 
the radiation pattern. This effect is well observed in the sectors 
- a  + < 4 < - a  + dc2 and -4c2 < 4 < -del and is 
not significant in other angular regions. This is because in the 
downward central part the difference among path lengths is not 
so sensitive to angular variation. In the other angular regions, 
the total internal reflections would also affect this behavior. 
The ray optical description explained in Section IV will be 
useful in interpreting some of these results. 

The radiation in the bottom central lobe can have a drastic 
change as D varies from &/4 to &/8 (compare Figs. 5 and 6). 
This can be explained as follows: in Fig. 5, D/& = 1/4, and 
nl = 2 which means D/hl = nlD/& = 1/2. However, in 

for n2kop --t 03 and - a  + &Z < 4 < - & 2 ;  

. cos (koDdn: - ni cos2 4)  - Jn: - n: cos2 4 

Fig. 6,  D / b  = 1/8 which leads to D/hl = 1/4. For Fig. 5, a 
round trip path of a ray in the substrate is equivalent to one 
wavelength in the substrate, and thus adds constructively to the 

for n2kop --* 03, and - a + dCl < 4 < - a + 4c2 and - 4c2 ‘ ‘ - “ I ’  and 

other rays. However, in Fig. 6 a round-trip path is half of the 
wavelength in the substrate, and therefore adds destructively. 
That is why one gets a drastic change in the bottom central 
lobe changing D from &/4 to &/8. The plots of radiation 
pattern reveal the fact that the power radiated into the lower 
half space is more than that radiated into the upper medium. 
The larger the value of n2 is, the less power is radiated into 
the upper medium for the same value of I [3], [ 5 ] .  Therefore, 

S P ~  =- w p ~ r 2  ni  sin2 +(n: cos2 4 - n:)  
4aP 

* {(n:  cos2 4 - n:)[.ini cos2 4 - n: 

* sinh (koDdn: cos2 4 - n:) + dni cos2 4 - 1 

cosh (koDJni  cos2 4-n:)I2 
(SpO)max+O for n2+00. 

111. THE LINE SOURCE IS ON THE TOP SURFACE OF THE 

SUBSTRATE 

(35) 

cosh ( koDJn i  cos2 c#-n:+dni cos2 4-  1 

Using the same Cartesian and cylindrical coordinate sys- 
tems and applying a similar approach for the problem shown in 
Fig. l(b), we get the expressions of S ,  and S,, in the far zone, 
i.e., 

. [(n:-cos2 4) cos2 (koDdn:-cos* 4) 

(4,: - cos2 4 + sin 4)2 + sin2 (koDv‘n: - cos’ 4) 

* [(n: - ni cos2 4) cos2 (k,Ddn: - ni  cos2 4)  

. sinh (koDdn: cos2 4 - n : ) l 2 }  - I  

(39) 

forn2kop + 03, - T  < 4 < - a  + and - & I  < 4 GO. 
From (36)-(39), we can sketch the radiation patterns of the 

line source in this configuration (see Figs. 7-10 for radiation 
patterns plotted for different values of D/&). We see that the 
radiation pattern at the interface disappears. We also notice 
that in the upper medium the radiation pattern is a lobe whose 
maximum does not always lie along the line 4 = a/2. In the 
lower medium, it can be seen that the number of lobes also 
varies with the thickness D. As D increases, the number of 
lobes increases. The power radiated into the lower half-space 
is greater than that radiated into the upper medium. In fact, S,, 
- + O a s n 2 +  03. 

For this configuration, we can also examine the limiting 
cases. As the substrate thickness approaches zero, i.e., D --t 
0, one can obtain the following expressions for (36), 

up012 (sin2 4 - sin 4 Jn:  - cos2 $12 s,, = - (40) 4XP ( n i  - 

which is the time-averaged power flux density that would be 
radiated by the line source if it lay between two semi-infinite 
dielectric half spaces. Similarly, one can obtain the corres- 
ponding expressions for S,, and examine the limiting cases for 
S,, [3]. When n2 = n l ,  (36) turns out to be (40), indicating a 
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Fig. 7.  Radiation patterns (linear scale) for the case where the line source is Fig. 10. Radiation patterns (linear scale) for the case where the line source is 
located on top surface of the slab. Here, n, = 2, n2 = 4, D/A,, = 118, cos located on top surface of the slab. Here, n, = 2, nz = 4, D/X,  = 1 ,  cos 

= 1/2, and cos +e2 = 1/4. = 1/2, and cos +<> = 1/4. 

similar behavior. When the source is on top of the substrate, 
the radiation in the bottom central part is mostly confined to 
the edges, unlike the previous case where the radiation is 
usually more confined to the center. 

Generally, the radiation patterns in both cases reveal the fact 
that one can get many lobes in the lower medium by having a 
dielectric substrate over a medium with a different permittiv- 
ity. In fact, the lobes of radiation patterns resemble the grating 
lobes of an interferometer, even though there is only one 
radiating source here. This could be a potential application of 
the foregoing analysis. One can use a single receiving antenna, 
mounted on top of a hemispherical lens with an index of 
refraction n2, and put a substrate with thickness D and 
permittivity nl < n2 on top of the antenna. The thickness D 
can control the number of lobes. Since radiation (or receiving) 

potentially be used as a receiving array. This could reduce the 
cost and complication of making an array using many dipoles 
mounted on a hemispherical lens. 

Fig. 8.  Radiation patterns (linear scale) for the case where the line source is pattern is much stronger in the lower medium, this can 
located on top surface of the slab. Here, n ,  = 2, n~ = 4, D/X, = 112, cos 
+cl = 1/2, and cos q5c2 = 1/4. 

A IV. RAY OPTICAL DESCRIPTION 
We can construct a suitable ray optical description to obtain 

the foregoing results. To find the results when the line source 
is on the bottom surface of the layer, we must take the source 
to be a little below the bottom surface, where the index of 
refraction, is n2. The far-zone field in the upper medium ( y > 
D) is the ray transmitted through the layer; and the far-zone 
field in the lower half-space is the sum of two rays: the direct 
ray from the source and the ray reflected by the interface (Fig. 
11). 

Accordingly, the far-zone field in the lower medium is 
given by 

7 + 

f y ? D  , n 

E,, = $!F $ [ I  + R(e)]e+oP (41) 
n2 XP 

Fig. 9. Radiation patterns (linear scale) for the case where the line source is 
located on top surface of the slab. Here, n, = 2, nz = 4, D/X,  = 114, cos 
&, = 1/2, and cos Qc2 = 1/4. 

where Po denotes power radiated by the line in a homogeneous 
dielectric, 8 is the angle of incidence, and R(0)  is the reflection 
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r ~ ~ ‘  

Fig. 1 1 .  Ray diagram for the case of source a little below bottom surface of 
slab. 

coefficient for the layer, where the incident wave is in the 
lower medium whose index of refraction is n2.  

The far-zone field in the upper medium is given by 

where y is the angle of refraction and T ( y )  is the transmission 
coefficient for the layer. A0, Ay, A L ,  and A L ‘  are illustrated 
in Fig. 11. 

Using Snell’s law and Fig. 11, we see that 
A L ‘  A0 n2 cos2 y 

A L  Ay n:-sin2 y . (43) - 

Now, we write R(8) and T ( y )  for the layer [ 5 ] ;  that is, 

r2 + rl e+ 2ib 

1 + r l r 2 e + 2 i 6 2  

t ,  t2e4 
1 + r l r 2 e + 2 i * 2  

R =  (44) 

(45) T= 

where rl and tl are the reflection and transmission coefficients 
for the boundary between the layer and the upper medium 
when the incident wave is considered to be in the layer, r2 and 
t 2  are the reflection and transmission coefficients for the 
boundary between the lower half-space and the layer when the 
incident wave is in the lower half-space, and 62 is given by 

62=k0Ddn:-n: sin2 0=koDJn:-sin2 y .  (46) 

We can find r lr  r2, t l ,  and t2 by using the Fresnel formulas and 
Snell’s law. Therefore, we get 

Jn :  - n; sin2 e - J1- n: sin2 0 

dn:--n: sin2 0 +  J1 -n:  sin* 0 

dn: - sin2 y -cos y 

dn: - sin2 y + cos y 

rl = 

(47) - - 

n2 cos 0-dn:-n;  sin2 0 
r2 = 

n2 cos 0 +.in: - n i  sin2 8 

dn: - sin2 y - Jn:  - sin2 y 

dn:-sin2 y+Jn:-sin2 y 
(48) - - 

24111: - sin2 y 
(49) 

* 2 = ~ + c o s  y 

2 Jn :  - sin2 y 

Jn:  - sin2 y + Jn :  - sin2 y 
t 2  = (50) 

In the foregoing relations, whenever we have negative 
values under the r ,  we write + i  in front of the r and 
make the values positive. By substituting (46)-(50) into (44) 
and (45), then substituting (43)-(45) into (41) and (42), and 
knowing that 4 = a / 2  - y and 4 = 6 - ~ 1 2 ,  we find Ezo and 
EZ2. Except for the ignorable constant phase difference, using 
ray optical approach, we obtain Ea and Ez2 identical to the 
ones that we get from a field theoretic approach. We can 
follow a similar approach to find Ea and Ez2 for the case 
where the line source is on the top surface of the substrate. 

Using ray optical description, one can again see the effect of 
slab thickness in generating numerous lobes in the lower 
medium due to the multiple reflection inside the slab. 

V. CONCLUSION 

Starting from the Maxwell equations, we have calculated 
the radiation patterns of a line source lying on the top or the 
bottom surface of a lossless dielectric substrate which is 
mounted over a dielectric medium. From our calculation, we 
can conclude that in both cases the radiation pattern in the 
upper medium has a single lobe; and that the pattern in the 
lower medium can have numerous lobes. The number of lobes 
depends on the thickness of the slab. As the thickness of the 
slab increases, the number of lobes in the pattern in the lower 
medium increases. It can be easily seen that more power is 
radiated into the lower half-space than into the upper half- 
space. 

Due to the stronger radiation and number of sharp lobes in 
the lower medium, this structure can potentially be used as a 
receiving array. Thus one can build a receiving array, using a 
single dipole sandwiched between a dielectric hemispherical 
lens with a reflection index n2 (lower medium) and a substrate 
with thickness D and an index of refraction nl < n2 (slab). 
The number of lobes can be controlled by the thickness D. 
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