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On the Near-Zone Inverse Doppler Effect

Abstract
Attention is invited to the recently discovered inverse Doppler effect which occurs in the near-zone field of an
antenna emitting a continuous wave. On approaching the antenna, the received signal is blue-shifted in the far
zone and then red-shifted in the near zone; and on receding from the antenna, the received signal is blue-
shifted in the near zone and then red-shifted in the far zone. Calculations are presented for the case where the
antenna is a simple dipole. It is shown that this effect gives not only the vector velocity of the moving receiver
but also its range, i.e., its distance from the antenna.
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On the Near-Zone Inverse  Doppler  Effect 

NADER ENGHETA, ALAN R. MICKELSON, MEMBER, IEEE, AND CHARLES H. PAPAS, MEMBER, IEEE 

Abstruoct-Attention is invited to the  recently  discovered  inverse 
Doppler effect which occurs in  the  near-zone  field  of  an  antenna 
emitting a continuous wave. On approaching  the antenna, the re- 
ceived signal is blue-shifted in  the far zone  and  then  red-shifted in the 
near zone; and on receding from the antenna, the  received  signal  is 
blue-shifted in the  near  zone  and  then red-shifted in  the  far  zone. 
Calculations are presented for the case where the antenna  is a simple 
dipole. It is shown  that this effect gives  not only the  vector  velocity of 
the moving receiver but also its range, i.e., its  distance  from  the 
antenna. 

I 
INTRODUCTION 

N FREE SPACE, a  red  shift  indicates 
electromagnetic radiation  is  receding  from 

that a  source of 
an observer,  and, 

~ - - 

conversely, a  blue shift indicates that a  source  is  approaching an 
observer.  This  shift in frequency., which is due  to the  relative 
motion  between  source and observer, is  well'known  as  the  Doppler 
effect [ I ] ,  [ 2 ] .  

However, a red  shift (or blue  shift)  does not necessarily mean 
that  the  source is moving  away  from (or toward) the observer. 
Indeed, it has been demonstrated by Frank [3] and  Lee [4] that in 
certain  dispersive media there  can  occur effects  resembling  the 
inverse  Doppler  effect, wherein  a  receding  source  produces  a  blue 
shift  and an  approaching  source  produces  a  red  shift. In support  of 
the  conjecture that an inverse Doppler  effect  can occur in the near 
zone of any  source in free  space,  we shall show that such an effect 
occurs in  the  near  zone  of  an  oscillating  dipole  in free space  and 
gives  rise  to a blue shift  for a  receding  source  and  a red shift  for an 
approaching  one. 

FIELD OF AN  OSCILLATING  DIPOLE 

We  take  the oscillating dipole  to be located  at  the origin of a 
spherical  coordinate system (r.  8, 4) which is related to the 
Cartesian  system (x, y ,  2) by x = r sin 8 cos 4, y = r sin 8 sin 4, 
z = r cos 0.  Assuming  that  the  dipole is oriented  parallel to the2 
axis,  we  see [5] that in the  dipole's  equatorial  plane, 8 = x / 2 ,  the 
electric  vector  has  only a 8 componenf E ,  and the  magnetic vector 
has  only a 4 component H,.  

That  is, in the equatorial plane  the  components of the field 
emitted by the dipole are given by 

Eo(r, t )= -- (i" --- r l  + ki)eihe-ilOt 
4x0- r 
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Fig. 1. Spherical and Cartesian  coordinate  systems  for  describing space 

surrounding an oscillating  dipole located at their  origin. 

where p is the dipole moment, t is the dielectric  constant of free 
space, k = w/c, and c is the vacuum speed of light.  For  an  observer 
at  rest with  respect to the dipole the frequency of the emitted  field 
is o (see Fig. I ) .  

FIELD  MEASURED BY MOVING  OBSERVER 

Now we suppose that the  observer  is  traveling  at  constant 
velocity v in the equatorial plane of the dipole, along  a  straight line 
passing through  the dipole. More specifically, we suppose that the 
observer is traveling  along  the y axis  from y = --z to y = p with 
velocity v = e,r where e, denotes  a unit vector in the y direction. 
Moreover,  we.take the  speed  of  the observer  to be moderate ( p  = 
r / c  << I ) .  

According  to  the Lorentz  transformation of fields, the  electric 
field in the  rest frame K' of the observer is given,  to first order in 
P ,  by 

E = E + p x H  

where p is the permeability  of free space  and  where E and H are 
the  fields in the  rest frame K of the dipole. Since r / c  << I .  the 
Lorentz transformation  of  coordinates  reduces to 

y=vt'  t= t '  (4) 

where t' denotes  time in K ' .  Accordingly, when t' < 0 the  observer 
is approaching the dipole, when t' = 0 the observer is  at  the dipole, 
and when t' > 0 the  observer is receding from the  dipole (see Fig. 
2) .  

From ( I  t ( 4 )  it  follows that the 2 component of the  electric  field 
measured by the moving observer is  given by 

ei(ku - w)r' E, '=p  ~ [--- ik 1 
4 X € U t '  Et'  ( U t ' ) 2  

for t' > 0, that is. for the observer moving  away  from the dipole. 

0018-926X/80/0700-0519$00.75 0 1980 IEEE 
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t ‘  t z ‘  

Fig. 2. Coordinate  system x ,  y, z for rest frame K of dipole and 
coordinate system x ’ ,  y’, z‘ for rest  frame K‘ of observer with V 
denoting relative  velocity of K’ with respect to K. 

Fig. 3. Function $(X) as  measured by an observer moving at velocity c 
with  respect to dipole  oscillating  at  frequency w = kc in K, where X = 
krr‘ = kct  and p = 1/100. 

Similarly, we obtain 
The  frequency o’ of the observed  field is defined by [6] 

e - i (ku  + o)r’ 
E,‘ = p d -- a. 

dt’ 

for t‘ < 0, that  is,  for the  observer  moving toward the  dipole 

THE PHASE OF THE MEASURED FIELD 

The measured electric field  can be expressed  as 

From ( 13) and ( 14) we find that 

Introducing  the  parameter 9 we can write (15) as 

and 

E,’ = ~ ~ i @ ~  - i k d e  - iwr’ , t’<O (8) where 

1 d* q = l + -  -, t’>O. 
kv  dt’ 

where  the  amplitude A and the phase $ are real functions of t’ 
From (5) and (7) we obtain 

When 9 > 0 we have  a red  shift,  and when q < 0 we have  a  blue 
shift. 

Similarly, as the observer is  approaching  the  dipole ( f ‘  < 0), we 
see  from (8) that the total  phase  measured by the  observer is 

kut‘( 1 - j) 
(kVt‘)’( 1 - /?) - 1 

tan $= , t’>O 

and from (6) and (8) 

- k d (  1 + B) 
tan $= 

(kvt’)’( 1 + B) - 1 ’ t’ < 0. 
Then.  according  to (14), we have 

These  equations  determine J, as a  multibranched  function of krt‘. 
Choosing  the  branch of J, that lies within the bounds 0 5 $ 5 ?r. 
we  see  that J, = when t’ = 0 and then  approaches  zero as t’ - 
+(see Fig. 3). 

The  phase J, in the  rest frame K of the dipole is given by 
That  is, 

o’=m-kvq ,   t ’<O 

where now we define 9 by 

tan $=- -ky y t o .  
(ky)’ - 1 ’ 

Clearly,  from (9) and ( I  1) and from ( I O )  and (12) we see  that, with 
respect  to the  transformation from K to K‘, J, is an invariant in the 
far  zone of the  dipole (krt’  >> 1 ,  ky >> I ;  kt t ’  << - I .  ky << - 1 )  
but  not in its near  zone ( Ikrt ’ l  << I ,  l k y l  << I ) .  Thus for the 
near-zone field there is no  phase  invariance. 

THE DOPPLER  FREQUENCY FOR THE TRANSVERSE 
ELECTRIC  FIELD 

As the  observer is ‘receding from the  dipole ( t ’  > 0) we see from 

SO that,  again, q > 0 yields a red shift  and q < 0 yields  a  blue  shift. 
From (9) and (17) we find that 

[(kvt)’( 1 - /?) - 11’ - ( 1  - p)  
tl= [(kvt’)’(l - B ) - l ] ’ + [ k ~ t ‘ ( I  -/l)]’ ’ 

t ‘>O  (22)  

and  from ( I O )  and (2 1 ) we find that 

(7) that the total  phase @ measured by the  observer is [(kut’)2(1 +& 1]2-(1+#3) 

(1 3) [(kvt’)’(l +B) -  I]’+  [kvt‘(l +/?)I’ ’ 
q =  - t ’ e O .  (23) 

@=t,b+kvt‘-wt’. 
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Fig. 4. Function q(X) for  transverse  electric field as  measured by an 
observer moving at velocity c with respect to dipole  oscillating at 
frequency w = kc in K, where X = kef’ = kcr and p = 1/100. 

The  behavior  of q as a  function of krt’ is shown in Fig. 4. The 
function q(kvt’) has three zeros,  one at krt’ = - x , ,  another at krt’ = 
x ? .  and  the third at krt’ = x3, where 

x3=[ 1 - p  ] 1 + ( 1  - B)”2 l/’ 
-Jz. 

From this we note that, as the observer travels from y = - x  (krt’ = 
- x )  to p = 2 (kcr‘ = p),  there is  a  blue  shift for --p 5 kct‘ 5 

- x l ,  then a  red  shift for  -xI 5 krt’ 5 X?, then a  blue  shift forx, 5 
kcr’ I x3,  and finally  a  red  shift for x j  5 krr‘ 5 x .  Thus we see 
that,  for the  transverse electric  field,  there is an inverse  Doppler 
effect in  the  vicinity of the  dipole. 

THE DOPPLER  FREQUENCY FOR THE TRANSVERSE 
MAGNETIC FIELD 

The  magnetic field H‘ in K’ is  related to the  fields  E and H in K 
by the  Lorentz transformation 

H’=H-€v X E (27) 
where E is the  dielectric constant  of free  space.  Since, in the 
equatorial  plane of the  dipole, H has only a 4 component, E has 
only a 8 component,  and v = e, ,c,  the  observed  transverse 
magnetic  field  is given by 

H,’ = H ,  -EVE@, t ‘>O (28)  

H,’ = H ,  +EVE& t’ < 0. (29) 

From a knowledge of E ,  and H,,  as given by (1) and (2 ) ,  we find 
from (28) and (29) that 

H,’=p 7 [ icu  ( i k - f ) + v  ($ eikor’ 

4nvt 

H,’=p 4.rrvr‘ [--io ( i k + ; )  
e - ikot’ 

’Ill 

Fig. 5 .  Function q ( X )  for transverse  magnetic field as measured by an 
observer moving at velocity c with  respect  to  dipole  oscillating at 
frequency w = kc in K, where X = kct’ = kcr and p = 1/100. In 
general, q(0) = Up.  

In  terms of the  amplitude A and phase $, (30) can be written as 

H r - Aei$eikvl’e - i o i ’  
$ -  

, t > o  (32) 

where 

(kvt’X1- 6) 
tan IC/= 

(kvt‘)2(1 - p )  + p ’ t’ > 0. 

Similarly, (31) can be written as 

H f - A e i $ e  - ikvUe - iot’ 
4 -  , r ‘<O 

where  now 

(33)  

(34)  

As in the case of  the  transverse electric  field, the  observed 
frequency of of the  transverse magnetic  field  can be written as 

w’= o - kvq (36) 

for  all t ’ ,  where  now 

and 

C(kvt’)’(l + B ) - P I ’ - P ( 1  + B )  I]= - 
[(kVt’)’(l +P) -PI2+[kv t ‘ (1  +B)]’ ’ 

t‘<O. (38)  

This q function is shown in Fig. 5 .  Accordingly, as the observer 
travels  from p = -x (krt’ = -2) top = x(krt’  = x )  and  measures 
the  frequency of  the  transverse  magnetic field, there is a blue shift 
for - x  5 krt’ 5 -xo and a red shifi for - x o  5 krt’ 5 x, where 

(39) 

Clearly,  we  see that also  for the  transverse  magnetic  field  there  is 
an  inverse  Doppler  effect in the  vicinity  of  the  dipole. We note  that 

(30) at  the  origin the  value  of q is I/p. 

THE DOPPLER  FREQUENCY FOR THE RADIAL  ELECTRIC 
FIELD 

The  above  calculations  refer  to the fields in the  equatorial plane 
of the  dipole.  Since the  radial  component E ,  of the  electric  field is 

( 3 1 )  identically  zero on the equatorial plane,  to learn about the  Doppler 

ik 1 , t ’ <O.  
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Fig. 6. Function q ( X )  for radial  electric  field as measured by an 

observer moving a velocity c with respect to dipole  oscillating  at 
frequency OJ = kc in K, where X krr’ = k c t .  

frequency  for E , ,  let us examine the Doppler  frequency for an 
observer moving  along  the z axis  where E ,  is most pronounced (and 
E ,  and H, are identically zero). 

Following  the procedure used for the  transverse  fields. we can 
show that the  observed frequency w‘ is again given by 

w‘= w - k c q ,  (40) 
where 1‘ is the  constant  speed  at which the  observer  travels  from 
: = - x  to : = and  where now the 9 function is given by 

(kt.t‘)2 ‘ =(kvt’)2 + 1 ’ 
t’>O 

and 

- (kvt’)’ 
= (kvt’)2 + 1 ’ 

t’ < 0. 

Thus as r’ increases from - x  to x .  9 goes smoothly  from - 1 to 1 
and is zero when t’ = 0 (see  Fig. 6).  There is  no inverse  Doppler 
effect  for E , .  

PRACTICAL SUMMARY 

To  summarize  our results  qualitatively let us consider  a  situation 
where an aircraft is  flying toward a  known  primary  source such as  a 
transmitting  antenna or toward  a  known  secondary  source  such as a 
scatterer.  The  aircraft  antenna will first  sense  a  blue-shifted  signal 
from which  the  velocity of the aircraft can be determined. Then.  as 
the  aircraft  enters  the near  zone  of  the  antenna or scatterer, the 
aircraft  antenna will  detect not one but three  different  signals.  one 
for  each component of the  field. From these  three  signals  the 
distance of the aircraft from  the  source  can be determined.  Thus 
from  the  ordinary  Doppler  effect  (far  zone) one  can  obtain velocity 
information. and from the  inverse  Doppler effect  (near zone)  one 
can  obtain. in addition, range  information.  The  inverse  effect 
becomes most practical at low frequencies where the  near-zone 
field  has a  relatively  large  spatial extent. It is independent of the 
power level of the transmitter or scatterer. 

CONCLUSION 

The  Doppler  effect has been calculated for an observer  traveling 
at constant velocity along a  straight  line  passing through an 
oscillating  dipole.  The calculations  show that as long as the 
observer is in the  dipole’s  far-zone  field  the  Doppler  effect is quite 
normal.  viz., the Doppler shift  is the  same  for all field  com- 
ponents, is  independent of distance  from the dipole, and is blue  on 
approaching  the  dipole and red on receding  from it. However. 
when the  observer is in the dipole’s  near-zone  field  the Doppler 

effect is anomalous,  for then 

a)  there  are  several  Doppler  shifts,  one  for each  field  com- 
ponent ; 

b) the Doppler  shifts  are functions of distance from the  dipole; 
and 

c)  the  Doppler  shifts  for the transverse field  components are 
inverse,  i.e., blue  on  receding from the  dipole and red on 
approaching  it. 

The near-zone Doppler  effect is  more  informative than the  far-zone 
Doppler effect: it gives  range, polarization,  and  velocity. 
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