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Ionic Aggregates in Zn- and Na-neutralized Poly(ethylene-ran-methacrylic
acid)

Abstract
The morphology of ionic aggregates in semi-crystalline Zn- and Na-neutralized poly(ethylene-ran-methacrylic
acid) (EMAA) ionomer blown films has been explored with scanning transmission electron microscopy
(STEM) and small angle x-ray scattering (SAXS). The ionic aggregates of Zn-EMAA are spherical,
monodisperse and uniformly-distributed in as-extruded pellets and blown films prepared at low and high
blow-up ratio. Thus, although the biaxial stresses of film blowing are sufficient to alter the PE superstructure,
the ionic aggregates in Zn-EMAA are unaffected. In contrast, the morphology of Na-EMAA as detected by
STEM changes from featureless in the as-extruded pellets to a heterogeneous distribution of Na-rich
aggregates in the blown films. This transformation in Na-EMAA morphology is consistent with our earlier
study of quiescent annealing suggesting that the morphological change is the result of thermal processing
rather than the biaxial stresses of film blowing.
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Ionic Aggregates in Zn- and Na-neutralized Poly(ethylene-ran-methacrylic acid) 

Blown Films 

Nicholas M. Benetatos and Karen I. Winey* 

Department of Materials Science and Engineering, University of Pennsylvania, 

Philadelphia, Pennsylvania 19104-6272 

Abstract 

The morphology of ionic aggregates in semi-crystalline Zn- and Na-neutralized 

poly(ethylene-ran-methacrylic acid) (EMAA) ionomer blown films has been explored 

with scanning transmission electron microscopy (STEM) and small angle x-ray scattering 

(SAXS).  The ionic aggregates of Zn-EMAA are spherical, monodisperse and uniformly-

distributed in as-extruded pellets and blown films prepared at low and high blow-up ratio.  

Thus, although the biaxial stresses of film blowing are sufficient to alter the PE 

superstructure, the ionic aggregates in Zn-EMAA are unaffected.  In contrast, the 

morphology of Na-EMAA as detected by STEM changes from featureless in the as-

extruded pellets to a heterogeneous distribution of Na-rich aggregates in the blown films.  

This transformation in Na-EMAA morphology is consistent with our earlier study of 

quiescent annealing suggesting that the morphological change is the result of thermal 

processing rather than the biaxial stresses of film blowing. 
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Introduction  

 Polyethylene based ionomers have found application in a wide variety of areas 

due to their extraordinary impact toughness along with marked chemical and abrasion 

resistance.  Central to the understanding of these properties is the presence, and 

morphology of ion-rich aggregates which self assemble on nanometer length scales due 

to electrostatic interactions between ionic functional groups and acid neutralizing 

counterions.  Research in the area of processing-structure-property relationships in 

ionomers has received considerable attention in the polymer community however  despite 

the numerous studies, a comprehensive description of ionomer behavior has remained 

elusive. 

Poly(ethylene-ran-methacrylic acid) (EMAA) copolymers and cation neutralized 

ionomers are commonly processed into films via film blowing methods.  In this process, 

the molten polymer is extruded through an annular die at high temperature and pressure.  

The internal air pressure exerts bi-axial stress and stretches the material to create a thin 

tubular bubble.  This bubble is drawn upward and undergoes rapid solidification as it  

passes a cooling ring.  Following crystallization, the bubble is collapsed and rolled into 

sheets of thin film.  Figure 1 shows a small section of blown film and illustrates the 

machine direction along the z axis.  The y direction, perpendicular to the MD, is 

commonly known as the transverse direction (TD).  The x direction represents the film 

thickness.  

The structure of PE blown films has been extensively studied using many 

experimental techniques.1-10 Keller and Machin determined that crystallization under bi-

axial stress gives rise to a row-nucleated “shish-kebab” superstructure along the MD in 
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PE blown films.2 They established that under low stress conditions, the lamellae grow 

radially outward from the shish-kebab stem and twist around the crystallographic b axis 

of the unit cell, which  is oriented along the TD of the film.  Under high stress conditions, 

there is no pronounced lamellar twisting, but the shish-kebabs and the c axis of the unit 

cell remain oriented along the MD.  The amount of stress placed on the film is 

determined in part by the ratio of the bubble diameter to the die diameter, that is, the 

blow-up ratio (BUR).  Recent work by Lee, Register et al. has shown that in ionomer 

blown films prepared at low BUR, the expected Keller-Machin superstructure associated 

with high stress crystallization in PE blown films is obtained.1 At high BUR, this 

structure is rotated 90° with the b axis of the unit cell now oriented along the MD and the 

“shish-kebab” morphology along the TD.  This morphological change correlates with a 

change in the preferred direction of tear propagation of these materials. 

Here, we investigate the effect of crystallization under bi-axial stress on the 

morphology of ionic aggregates in semi-crystalline Zn- and Na-neutralized EMAA 

ionomer blown films.  The specimens studied are the same as those investigated by Lee 

and Register.  While that study focused on the spatial orientation of the PE 

superstructure, we employ the techniques of scanning transmission electron microscopy 

(STEM) and small angle x-ray scattering (SAXS) to explore the effect of film blowing on 

the nanoscale morphology.  The advantages of STEM imaging lie in the ability to assess 

the size, shape, and spatial distribution of the ionic aggregates directly without the use of 

morphological models. 
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Experimental Section 

 E.I. Dupont de Nemours provided as-extruded pellets of unneutralized 
poly(ethylene-ran-methacrylic acid) copolymer containing 4.3 mol% acid (EMAA), 46% 

Zn melt neutralized EMAA with 4.3 mol% acid (Zn-EMAA), and 37% Na melt 

neutralized EMAA with 4 mol% acid (Na-EMAA).  Each of these materials was 

processed via film blowing using a 3.8 cm extruder operated at 35 rpm, with an extrusion 

rate of 4.2 kg/h.  Extrusion through a 5 cm die was performed at melt temperatures 

between 205 - 210°C.  Blow-up ratio (BUR) ranged from 1.5 to 3.5 and the frost line 

height was approximately 15 cm.  For convenience, these blown films will be designated 

by the material label followed by the BUR: EMAA 1.5, EMAA 3.5, Zn-EMAA 1.5, Zn-

EMAA 3.5, Na-EMAA 1.5, Na-EMAA 3.4. 

Upon receipt, the thermal properties of all blown films were characterized by 

dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC).  DMA 

was performed with a Rheometrics Solids Analyzer (RSAII) at a frequency of 1 rad/s and 

a strain amplitude of 4%.  A static load of 5 gmf was applied to prevent sample buckling.  

Temperature was increased stepwise in 5° intervals and held for 5 min prior to each 

measurement.  DSC experiments were performed using a Perkin Elmer DSC operated at a 

heating rate of 5° C /min. 

Two thermal transitions were observed via DMA between -50 C and 100 C for all 

the blown films studied regardless of neutralization, BUR, or choice of counterion.  For 

both EMAA 1.5 and EMAA 3.5 blown films, a factor of 10 decrease in the dynamic 

storage modulus was observed at ~5 °C.  In addition, a melting transition was observed at 

~ 60 °C.  Zn- and Na-EMAA blown films processed at both low and high BUR show an 
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order of magnitude decrease in E′ at ~40 °C and a melting transition at ~70 °C.  As 

expected, partial neutralization with either Zn or Na counterions, increases the first onset 

thermal transition by ~35°C, while the melting transition is comparable to the 

unneutralized EMAA films.  The thermal transitions evident in the temperature 

dependence of E′ are also observed via DSC.  In addition, the crystallinity for EMAA 1.5,  

EMAA 3.5, Na-EMAA 1.5 and Na-EMAA 3.4 is ~ 35% while the Zn-EMAA 1.5 and 

Zn-EMAA 3.5 blown films are somewhat less crystalline at  ~25%.   

STEM experiments were performed on a JEOL 2010F field emission electron 

microscope operated at 197kV with a 70µm condenser aperture.  Specimen with nominal 

section thickness of ~50 nm were prepared by cryo-ultramicrotomy at -120°C using a dry 

diamond knife.  STEM images were collected with both high angle annular dark field 

(HAADF) and bright field (BF) scintillating detectors.  Image analysis was performed 

with Adobe Photoshop 5.0 along with the standard techniques of image enhancement 

including gray level adjustment and brightness/contrast enhancement.  The diameter of a 

single feature was determined by measuring the number of pixels in line segments at 0°,
45°, 90°, and 135° relative to the horizontal, and computing the mean.  The average 

diameter of many features was calculated as the mean of the diameters for the individual 

aggregates.  Measurements were performed on multiple images at magnification ranging 

between 500,000x and 800,000x. 

X-ray scattering data over a q range between ~1 and 15 nm-1 were acquired in our 

multiple angle x-ray scattering (MAXS) facility, which consists of a Nonius FR591 

rotating anode x-ray generator operated at 40kV, 85 mA and a Bruker HiSTAR multiwire 

detector.  The 60 µm-thick films were stacked to a total thickness of ~1mm.  The sample 
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to detector distance was 12 cm and the data were acquired over a 1 hour interval.  Two 

dimensional patterns were integrated azimuthally over 180° to yield intensity vs. q plots. 
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Results and Discussion 

The blown film, Zn-EMAA 1.5, exhibits anisotropic scattering at q ~ 14 nm-1 that 

is representative of a shish-kebab morphology along the MD.  This is consistent with the 

Keller-Machin structure associated with the crystallization of PE blown films under high 

stress.  At higher BUR, Zn-EMAA 3.5, the scattering pattern is rotated by 90° indicating 

that the shish-kebab morphology is now oriented along the TD.  This structural flip was 

also observed in both unneutralized EMAA (EMAA 1.5, EMAA 3.5) and  Na-neutralized 

(Na-EMAA 1.5, Na-EMAA 3.4) blown films.  In contrast, the as-extruded Zn- and Na-

EMAA pellets exhibit isotropic crystalline orientation, as expected.  These findings are 

consistent with those of Register et al.1 An isotropic scattering peak was observed at ~ 3 

nm-1 for all of the ionomer blown films and as-extruded pellets.  This peak, which is 

traditionally assigned to interparticle interference between spherical ionic aggregates 

arranged with liquid-like order, was not observed in unneutralized EMAA.  The ionomer 

peak exhibits constant peak intensity (to within ~ 5 %) at all azimuthal angles suggesting 

an isotropic collection of ionic aggregates in the as-extruded ionomers and the blown 

films independent of the PE crystalline orientation. 

Figure 2 depicts bright field (BF) and high angle annular dark field (HAADF) 

STEM images of the nanoscale morphology of Zn-EMAA 3.5 blown film.  The images of 

the blown film correspond to the xy plane as defined in Figure 1a, the plane perpendicular 

to the MD;  these materials were also imaged in the xz plane.  In BF STEM, in which the 

detector is positioned directly below the specimen, the dark features correspond to 

regions of higher average atomic number (Z) from which the electrons are elastically 

scattered to high angles.  In HAADF STEM, these scattered electrons are detected and 
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the regions of higher average Z from which they were scattered appear bright.  Thus, the 

features depicted in figure two are 2D projections of 3D nanometer scale Zn-rich 

aggregates in the presence of a low atomic number carbon-rich matrix.   

The STEM images in Figure 3a and 3b depict  similar morphologies of Zn-

EMAA ionomers in both the as-extruded pellet and blown thin film with BUR = 3.5.    

Table 1 details the mean diameters of the ionic aggregates in Zn-EMAA ionomer blown 

films as a function of the BUR and imaging plane (xy and xz).  For comparison, the ionic 

aggregates in as-extruded Zn-EMAA pellets have average diameters of 3.9 + 0.7 nm as 

measured by STEM.  In both the pellet and the blown films, the ionic aggregates are 

spherical in shape and distributed randomly throughout the specimen.  In both the xy and 

xz imaging planes, the ionic aggregates in the blown films do not appear distorted in 

shape or size.  The number density of the aggregates is independent of the BUR.  From 

the STEM data, we conclude that the film blowing process does not alter the morphology 

of the ionic aggregates relative to the as-extruded pellets even at high BUR when the 

crystalline morphology flips. 

Figure 3c depicts normalized X-ray intensity vs. q plots for as-extruded Zn-

EMAA pellets, Zn-EMAA blown films, and unneutralized EMAA blown film, in the q 

range from 1 to 8 nm-1. The data show no significant deviation in scattering as a result 

of film blowing or BUR.  This scattering data suggests no change in the size, shape, or 

spatial distribution of the ionic aggregates in Zn-EMAA due to film blowing, as was 

observed directly by STEM.  This result is similar to that observed by Laurer et al., who 

report no significant change in the ionic aggregate morphology of Zn-EMAA (4% acid) 
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ionomers of various neutralization levels between the as-extruded and quiescently 

annealed ionomers.11,12 

As-extruded Na-EMAA pellets were imaged and determined to be featureless to 

within the STEM detection limit of ~ 1 nm.  There were no regions of increased average 

atomic number present in any of these specimens.  The STEM images in Figure 4a and 

4b represent the morphological variety observed in a single Na-EMAA blown film 

imaged in the xz plane.  Figure 4a depicts a featureless region, while  Figure 4b depicts a 

region containing Na-rich regions with sizes ranging between 25-100 nm.  We have also 

observed well defined boundaries between these two vastly distinct morphological 

regions and estimate the size of these regions to be on the order of microns.  This 

heterogeneous morphology is present in all STEM images of Na blown films regardless 

of the imaging plane or BUR.  These results on Na-EMAA ionomers are qualitatively 

similar to those obtained by Taubert et al. who determined that isothermal 

recrystallization also induces a heterogeneous morphology.13 Using STEM, Taubert 

found that the as-extruded Na-EMAA (5% acid, 83% neutralized) material is featureless.  

After melting (130 °C for 90 minutes), recrystallizing (60 °C for 270 minutes) and 

quenching, STEM revealed 3 distinct coexisting morphologies: featureless, small (2-15 

nm) spherical aggregates, and large (20-160 nm) spherical aggregates.  Thus as-extruded 

Na-EMAA pellets have been observed by STEM to transform from a featureless state, 

within the limits of STEM detection, to a state of heterogeneous Na distribution during 

quiescent thermal processing or film blowing. This heterogeneity may be a result of non-

uniform mixing during melt neutralization or due to excess Na-containing neutralizing 

agent.   
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Figure 4c presents the x-ray scattering data for the Na-neutralized EMAA 

ionomers.  Despite the drastically different morphologies detected by STEM, the SAXS 

patterns are identical for the as-extruded pellet and the blown films of Na-EMAA.  The 

data does not indicate any change in the breadth or position of the isotropic peak present 

at ~ 3 nm-1 as a function of processing.  Evidently, further investigation into the 

relationship between STEM and SAXS data from ionomers is necessary to resolve these 

discrepancies such that these techniques may be used in a complementary manner to 

explore the nanoscale morphology of ionomers. 
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Conclusion 

The crystalline morphology of EMAA ionomers changes with processing, while 

the percent crystallinity is constant.  Specifically, melt extrusion of pellets produces 

isotropic crystallinity, film blowing at low BUR produces shish kebabs along the 

machine direction, and film blowing at high BUR produces shish kebabs along the 

transverse direction.  These processing methods and the corresponding changes in 

crystalline morphology do not alter the morphology of the ionic aggregates in the Zn-

EMAA ionomer.  As imaged by STEM, the spherical Zn-rich aggregates exhibit the same 

shape, size and number density for all three processing routes.  In contrast, the Na-

EMAA ionomer transforms from a featureless morphology (corresponding to the 

apparent absence of ionic aggregates) produced by melt extrusion to a state of 

heterogeneous aggregation produced by film blowing according to STEM.  As published 

earlier in a quiescent annealing study, the micron-scale heterogeneity in Na-EMAA 

ionomers suggests an inhomogeneous Na distribution within the material that is not 

evident using SAXS, but is inescapable using STEM.   
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Table 

Table 1: Mean diameters, D, and standard deviations of ionic aggregates in Zn-EMAA 

(12% acid, 46% neutralized)  ionomers as a function of the BUR as measured by STEM.  

Plane coordinates (xy and xz) correspond to imaging directions parallel and 

perpendicular to the machine direction, respectively. 

 
D (nm) 

xy plane 

D (nm) 

xz plane 

D (nm) 

xy and xz plane 

Zn-EMAA  1.5 3.9 + 0.7 3.5 + 0.5 3.7 + 0.6 

Zn-EMAA  3.5 3.9 + 0.7 3.8 + 0.7 3.9 + 0.7 
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Figure Captions 

Figure 1:  Schematic defining a coordinate system in blown films with respect to the 

machine direction (MD).  Note the y direction is the transverse direction (TD) and the 

film thickness x is significantly thinner than  y and z.

Figure 2: BF and HAADF STEM images of Zn-EMAA 3.5 blown film in the plane 

perpendicular to the MD.  Contrast reversal between BF (top) and HAADF (bottom) 

images confirms the presence of Zn-rich (higher Z) aggregates amidst a C-rich matrix 

(lower Z). 

 

Figure 3:  Bright field STEM images of Zn-EMAA (12% acid, 46% neutralized) illustrate 

the similarity between the ionic aggregate morphology of (A) the as-extruded pellets and 

(B) the blown film as images in the xy plane.  (C) X-ray scattering data for as-extruded 

Zn-EMAA pellets and three blown films.  The normalized scattering data has been 

shifted vertically by 100 arbitrary units.   

 

Figure 4:  BF STEM images of a Na-EMAA (11% acid, 37% neutralized) ionomer blown 

film imaged in the xz plane show two distinct morphologies: (A) featureless and (B) Na-

rich aggregates.  (C) X-ray scattering data for as-extruded Na-EMAA pellets and three 

blown films. 
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Figure 2 
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Figure 4 
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