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Analog Realization of Arbitrary One-Dimensional Maps

Abstract
An increasing number of applications of a one-dimensional (1-D) map as an information processing element
are found in the literature on artificial neural networks, image processing systems, and secure communication
systems. In search of an efficient hardware implementation of a 1-D map, we discovered that the bifurcating
neuron (BN), which was introduced elsewhere as a mathematical model of a biological neuron under the
influence of an external sinusoidal signal, could provide a compact solution. The original work on the BN
indicated that its firing time sequence, when it was subject to a sinusoidal driving signal, was related to the
sine-circle map, suggesting that the BN can compute the sine-circle map. Despite its rich array of dynamical
properties, the mathematical description of the BN is simple enough to lend itself to a compact circuit
implementation. In this paper, we generalize the original work and show that the computational power of the
BN can be extended to compute an arbitrary 1-D map. Also, we describe two possible circuit models of the
BN: the programmable unijunction transistor oscillator neuron, which was introduced in the original work as
a circuit model of the BN, and the integrated-circuit relaxation oscillator neuron (IRON), which was
developed for more precise modeling of the BN. To demonstrate the computational power of the BN, we use
the IRON to generate the bifurcation diagrams of the sine-circle map, the logistic map, as well as the tent map,
and then compare them with exact numerical versions. The programming of the BN to compute an arbitrary
map can be done simply by changing the waveform of the driving signal, which is given to the BN externally;
this feature makes the circuit models of the BN especially useful in the circuit implementation of a network of
1-D maps.
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Analog Realization of Arbitrary
One-Dimensional Maps

Emilio Del Moral Hernandez, Member, IEEE, Geehyuk Lee, and Nabil H. Farhat, Life Fellow, IEEE

Abstract—An increasing number of applications of a one-
dimensional (1-D) map as an information processing element
are found in the literature on artificial neural networks, image
processing systems, and secure communication systems. In search
of an efficient hardware implementation of a 1-D map, we
discovered that thebifurcating neuron(BN), which was introduced
elsewhere as a mathematical model of a biological neuron under
the influence of an external sinusoidal signal, could provide a
compact solution. The original work on the BN indicated that its
firing time sequence, when it was subject to a sinusoidal driving
signal, was related to the sine-circle map, suggesting that the
BN can compute the sine-circle map. Despite its rich array of
dynamical properties, the mathematical description of the BN is
simple enough to lend itself to a compact circuit implementation.
In this paper, we generalize the original work and show that the
computational power of the BN can be extended to compute an
arbitrary 1-D map. Also, we describe two possible circuit models
of the BN: the programmable unijunction transistor oscillator
neuron, which was introduced in the original work as a circuit
model of the BN, and the integrated-circuit relaxation oscillator
neuron (IRON), which was developed for more precise modeling
of the BN. To demonstrate the computational power of the BN,
we use the IRON to generate the bifurcation diagrams of the
sine-circle map, the logistic map, as well as the tent map, and then
compare them with exact numerical versions. The programming
of the BN to compute an arbitrary map can be done simply by
changing the waveform of the driving signal, which is given to
the BN externally; this feature makes the circuit models of the
BN especially useful in the circuit implementation of a network
of 1-D maps.

Index Terms—Bifurcating neuron (BN) , coupled map lattice,
neural network, one-dimensional (1-D) map, parametrically cou-
pled map lattice (PCML).

I. INTRODUCTION

I T IS OFTEN SEEN that a one-dimensional (1-D) map arises
as a simple model for explaining the dynamics of complex

physical or biological systems, such as an ecological system [1],
periodically driven nonlinear oscillators [2], condensed-matter
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systems [3], [4], chemical reaction systems [5], [6], and laser
systems [7]. 1-D maps occur also in the modeling of a neuron
[8]–[12] or an assembly of neurons [13]–[15]. All of these
suggest the potential of a 1-D map as an information processing
element. Indeed, there are already many successful applications
of a 1-D map in information processing systems. A few examples
are artificial neural networks for combinatorial optimization
[16]–[18], image processing systems for object segmentation
[19], communication systems using a map to generate chaotic
carriers [20]–[22], and communication systems utilizing the
synchronizing behavior of the coupled map lattice [23].

In spite of the increasing application possibilities of a 1-D
map, relatively little effort has been made in search for an effi-
cient hardware design to compute a 1-D map. One may argue
that there is no point in designing any dedicated hardware since
a digital computer can compute a 1-D map efficiently due to the
map’s mathematical simplicity. In fact, this is true only in part:
there are many good reasons why we need a dedicated hard-
ware design to compute a 1-D map. First, there are occasions
whereparallel or collective processingin multiple 1-D maps
needs to be considered. An obvious example is networks of 1-D
maps [16], [17], [19], [24], [25]. Although collective computa-
tions carried out by such networks can be simulated on a dig-
ital computer, this approach may often be too slow for certain
applications. Second, some applications require a compact and
low-power solution to compute 1-D maps. A typical example is
a secure communication system utilizing the chaotic signal of a
1-D map.

Our search for a hardware design to compute 1-D maps was
started in an effort to implement a neural network consisting of
1-D maps [26]–[29]. This body of work involved a simple model
of a biological neuron driven by an external sinusoidal signal
which we calledbifurcating neuron(BN) [8]–[11], [30], [48]. It
was so named because the original work on the BN revealed that
it could, when driven by an external sinusoidal signal, exhibit
complex bifurcating behavior that is reminiscent of the exper-
imental observations in real biological neurons [31]–[33]. De-
spite its rich dynamical properties, its mathematical definition
is simple enough to lend itself to a compact circuit implemen-
tation. As an example of a possible circuit model of the BN,
the original work described the programmable unijunction tran-
sistor oscillator neuron (PUTON) [8]–[11], [30], [48], which is
a simple circuit built around a programmable unijunction tran-
sistor (PUT) [34]–[36]. Notably, it was shown that the firing
time of the BN with respect to the phase of the external si-
nusoidal signal is precisely determined by the sine-circle map
[see (4)]. Conversely, this means that the BN iscomputingthe
sine-circle map.

1057-7122/03$17.00 © 2003 IEEE
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If the BN could compute only the sine-circle map, although
useful, its practical value would be limited. The obvious ques-
tion then is how to generalize it so that it can be used to com-
pute an arbitrary 1-D map, such as the logistic map or the tent
map. The answer is given by our observation that the behavior of
the BN changes drastically when the waveform of the external
driving signal is switched to a periodic signal other than sinu-
soidal [25], [37]. Actually, this could have been predicted from
the differential equation that describes the dynamics of the BN.
Starting with the differential equation, we could derive a simple
rule to prescribe the waveform of the external driving signal for
the BN to compute an arbitrary 1-D map.

The BN as a computer of a 1-D map has many significant
merits. First of all, it is an analog circuit solution. It is not sub-
ject to the limitations of the digital computer, as we pointed out
above. Second, it is simple and efficient in terms of circuit com-
plexity and power consumption. Lastly, but most importantly, it
offersprogrammability: the same circuit can be used for com-
puting all different kinds of 1-D maps. The switching among
different maps can be accomplished simply by changing the ex-
ternal driving signal. The bifurcation parameter of a map, too,
is controlled by the external driving signal. This feature is par-
ticularly beneficial when we need many identical maps to com-
pose a network. Imagine that a network of the logistic maps can
be converted to a network of sine-circle maps almost instantly
simply by switching the common driving signal.

We will start Section II with the mathematical definition of
the BN and a review of deriving the relationship between the BN
and the sine-circle map as preamble to our arbitrary map syn-
thesis. In Section III, we will derive the rule for prescribing the
driving signal waveform for the BN needed to compute a partic-
ular desired 1-D map. In Section IV, we will introduce the two
original and alternative circuit designs for the BN: the PUTON,
which was introduced in the original work as a circuit model of
the BN, and the integrated-circuit relaxation oscillator neuron
(IRON), which was developed for more precise modeling of the
BN. This section also provides observations that might be of use
to the device designer for improving the solid-state design of ex-
isting, off-the-shelf PUTs of the kind used by us to make them
more ideally suited for arbitrary map generation. In Section V,
we will use the IRON to generate the bifurcation diagrams of
three different 1-D maps: the sine-circle map, the logistic map,
and the tent map. Section VI will summarize the current work
and suggest potential future applications of the BN as an analog
computer of 1-D maps.

II. BN AND SINE-CIRCLE MAP

The mathematical definition of the BN was introduced in
1991 [8]. Its ramifications are elaborated upon and studied
further in [9], [10], [27]–[30], [37], [48]. The BN concept was
influenced by the seminal work of van der Pol and coworkers
acknowledged and elaborated upon by Chua [38]. Here, we
present a brief review of BN theory and how it relates to the
sine-circle map to facilitate the subsequent formulation of
the arbitrary map generator. We start with the equation of an
integrate-and-fire neuron without leakage, defined as follows:

(1)

Fig. 1. Waveforms of the internal potential�(t), the relaxation level�(t), and
the outputy(t) of the BN in three (represented byt ; t ; andt ) in three
different dynamic modes. (a) Period-1. (b) Period-2 . (c) Chaotic mode.

where is the internal potential of the BN andis a positive
constant that represents the constant buildup rate of the internal
potential. It is implied that the BN relaxes to the relaxation level

when it reaches the threshold level. When both the threshold
level and the relaxation level are held constant, the time evo-
lution of the BN is quite straightforward; it simply repeats a
limit cycle of slow charging and instantaneous discharging in-
definitely. A simple but significant remedy to this monotonicity
is to introduce a sinusoidal oscillation in the relaxation level

(2)

where is the amplitude and is the frequency of the sinu-
soidal oscillation. Because the sinusoidal signal will be provided
by an external source and because it is the only signal that comes
from outside the BN which is otherwise autonomous, we will
refer to it as theexternal driving signal, or simply, thedriving
signal in the following discussion. Also, because the threshold
level will be taken to be constant in the following discussion,
we assume that , without loss of generality, as a way
to avoid unnecessary complication. Fig. 1 sketches the BN bi-
furcating among different dynamical modes in response to the
change of the driving signal amplitude. In the figure, the fre-
quency of the free running BN is assumed to be the same as
that of the driving signal, i.e., . When the amplitude is
small, the relaxation oscillation of the BN is phase-locked to the
driving signal, as shown in Fig. 1(a). As the modulation ampli-
tude is increased above a certain threshold, the relaxation oscil-
lation appears to lose periodicity. However, a closer observation
reveals that the relaxation oscillation is still maintaining period-
icity, though the period is doubled. As the modulation amplitude
is further increased, the relaxation oscillation completely loses
any periodicity and enters a chaotic mode. Such a state transi-
tion leading eventually to chaos is called a cascade of bifurca-
tions and is one of the most typical routes to chaos commonly
observed in many 1-D maps, such as the sine-circle map and the
logistic map (see, for example, [39]).

It can be shown that the successive relaxation timesand
of the BN are related by the sine-circle map by a simple

graphical argument, which is illustrated in Fig. 2. Notice that
the slope of the buildup of the internal potential of the BN
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Fig. 2. Time evolution of the BN when it is subjected to a sinusoidal driving
signal. The relation betweent andt can be derived by considering the ratio
of the two perpendicular sides of the shaded triangle.

is the ratio between the two perpendicular sides of the shaded
triangle shown in the figure. This observation leads to the fol-
lowing recursion:

(3)

In terms of the normalized phase (mod 1), whose re-
lationship with the relaxation time is also illustrated in Fig. 2,
the recursion is expressed as follows:

mod (4)

where and . Notice that this is exactly
in the form of the sine-circle map [2], [39]. The parameteris
the rotation frequency of the normalized phasein the absence
of the nonlinear term, and can be controlled by the ratio between
the frequency of the driving signal and the buildup rateof
the internal potential. The parameterdetermines the strength
of the nonlinear term and can be controlled by the amplitude of
the driving signal after is fixed. In conclusion, the BN
can compute the sine-circle map for any combination of the two
parameters and .

III. COMPUTATION OF AN ARBITRARY 1-D MAP

Starting with the mathematical definition of the BN, we now
derive a simple rule to prescribe the waveform of the external
driving signal for the BN to compute an arbitrary 1-D map. The
detailed rigorous derivation was obtained by one of the authors
in [25]. For the sake of brevity, we will start here with the result
and focus on its proof.

Fig. 3 shows the time evolution of the BN when it is sub-
jected to a periodic driving signal of an arbitrary waveform. The
driving signal is periodic but is piecewise continuous, i.e., it has
periodic jumps, or discontinuities in mathematical terms, during
every cycle. The following equation defines the driving signal:

otherwise
(5)

where is the period of the modulation signal and the func-
tion is a real function defined on the unit interval,

. The first case in (5) defines the driving signal
for a single period, while the second case completes the defini-
tion by making it periodic with period .

Given the driving signal and the buildup rateof the in-
ternal potential, the relation between successive relaxation times
can be derived as follows. Let be the time of -th relaxation

of the BN. The shaded triangle in Fig. 3 defines the buildup rate
in terms of and

(6)

If we solve (6) for , we have

(7)

The relation between the normalized phase
and the relaxation time is given by , where

is an integer. In terms of the normalized phase, we can
rewrite (7) as follows:

(8)

Using (5) and requiring that , we can reduce (8) to

(9)

Since both and are constrained in the interval [0,1),
it follows that

(10)

and, because and are integers, the above inequality
implies that

(11)

By (9) and (11), we arrive at the final conclusion

(12)

(13)

Notice that (12) is in the form of a 1-D map. This means
that the successive values of the normalized phaseand
follow the 1-D map defined by the real function . In other
words, the BN can beprogrammedto compute an arbitrary 1-D
map1 by way of a proper choice of the driving signal . Equa-
tion (13) states that relaxation will occur once every cycle of
the driving signal. In other words, the BN computes a single it-
eration of a 1-D map at every cycle of the driving signal. This
is particularly important when we need to have many identical
maps working together. In a network of 1-D maps, the common
external driving signal will act as a central clock that coordi-
nates the synchronous stepping of all the maps.

As an example, suppose we want to program the BN to com-
pute the logistic map. The recursion of the logistic map is given
by

(14)

A comparison with (12) produces the expression for

(15)

1Because the functionf(x) is defined on the unit interval, the 1-D maps that
the BN can compute will be restricted to those defined on the unit interval. How-
ever, this does not result in a serious limitation of the BN since many 1-D maps
are actually defined on the unit interval, while most others can be transformed
to one on the unit interval by a suitable scaling of a variable.
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Fig. 3. Time evolution of the BN when it is subjected to a periodic driving signal of an arbitrary waveform. The relation betweent andt can be derived by
considering the ratio of the two perpendicular sides of the shaded triangle.

According to (5), the required waveform of the driving signal in
order to program the BN is given by

otherwise.
(16)

The experimental result using the given waveform will be pre-
sented in Section V.

IV. CIRCUIT MODELS OFBN

The original circuit design of the BN, which is called
PUTON, is a simple relaxation oscillator built around a PUT,
as the name implies. It had been used successfully to obtain the
bifurcation diagrams of the sine-circle map [11]. However, its
dynamic capability turned out to be limited in both amplitude
and frequency. It started to deviate from the mathematical
definition of the BN when the amplitude and/or the frequency
of the driving signal exceeded a certain limit. The problem
seemed to be originating from the limited device characteristics
of the commercially available PUT. In fact, the PUTs that are
available off the shelf are not designed with high-frequency or
wide-dynamic range applications in mind, probably, because
one of the most typical applications of the PUT these days
is the thyristor-trigger used in high-current controllers [34],
[35]. We believe there is no technological problem that forbids
designing a PUT that can serve our purposes better. Until
such a PUT becomes available, we are obliged to depend on a
different circuit design that does not suffer from the limitation
of the PUT. The IRON, which was developed in such an
effort, consists of an analog comparator and a monostable
multivibrator and proves to conform better to the mathematical
definition of the BN. Although it is not as simple as the original
circuit design, it is still simple enough to be implemented in a
compact integrated circuit. The circuit variables in this section
are related to the mathematical variables in the mathematical
definition of the BN by a constant dimensional scaling factor:

V , V , V , and V/s .
The comparative discussion of the PUTON and the IRON

given in Sections IV-A and B, may be of use to device physicists
and designers for producing versions of the PUTON that are es-
pecially optimized for use in nonlinear information processing
including arbitrary map synthesis.

A. PUTON

The skeletal circuit diagram of the PUTON and a typical I–V
curve of the PUT are both shown in Fig. 4. This circuit is a typ-
ical way of building a relaxation oscillator using the PUT, and

Fig. 4. (a) Skeletal circuit diagram of the PUTON. (b) Typical I–V curve of
PUT.

a circuit similar to this has been widely used in many electronic
devices to provide a saw-tooth waveform and a time-base. The
I–V curve shows the relationship between the voltage between
the anodeAand the cathodeK and the current out of the cathode.
A brief description of the operation principle of the PUTON is
given below.

The gateG of the PUT is held fixed at a constant voltage level
. The cathode of the PUT is subject to the periodic driving

signal , which oscillates around the ground level but never
exceeds the gate voltage level. Suppose initially that the ca-
pacitor is charged to the same level as , so that the
voltage between the anode and the cathode of the PUT is zero.
At this moment, the PUT is in a nonconducting state, as the I–V
curve of the PUT suggests. As time goes by, the currentfrom
the current source flows into the capacitor and raises the capac-
itor voltage level until it reaches the threshold level, which
is 0.5 to 1 V higher than the voltage . As soon as the
capacitor voltage level exceeds the threshold, the PUT will sud-
denly undergo a transition from the nonconducting state to the
conducting state; the state of the PUT will jump from point
to point in the I–V curve plot shown in Fig. 4(b). The point,
however, lies far above the load line determined by the constant
current ; the PUT state quickly moves from pointto point
and then, since pointis still above the load line, it jumps again
to point , i.e., the PUT returns back to the nonconducting state.
This completes a limit cycle around the loop
which is apparently that of the BN: a slow buildup followed by
a sudden relaxation.

The output of the PUTON can be derived from the cathode of
the PUT. While the PUTON undergoes a transition from point

to point , the capacitor discharges rapidly. This results in a
rapid impulsive current through the PUT. Since any real
voltage source has a finite impedance, the current induces a
voltage spike at the node joining the PUT cathode and the
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Fig. 5. Two oscilloscope snapshots from our experiment with the PUTON:
the solid lines represent the capacitor voltage levelV while the dotted lines
represent the sinusoidal driving signalV : (a) without driving signal, i.e.,V =

0; (b) with 10-kHz driving signal.

voltage source , which is analogous to a neuronal spike,
and hence the name PUTON.

The most important advantage of the PUTON is its simplicity.
In principle, the PUTON has only a single active component,
the PUT. Moreover, the only active component is operating in
a switching mode, meaning with minimal power consumption.
Undoubtedly, the PUTON is an ideal implementation of the BN
when the circuit size and the power efficiency are important. On
the other hand, the PUTON is limited in dynamic range and fre-
quency response, as mentioned earlier. For the PUTON to be a
good analog computer of a 1-D map, it should conform to the
mathematical definition of the BN as closely as possible. This
is especially important when the map that the PUTON is com-
puting is operating in a chaotic mode. However, the PUTON
could not comply with such a requirement because it depends
on the device physics and characteristics of the PUT. First, there
is a finite voltage offset between the desired threshold level
set by the gate voltage level and the actual threshold level,
as shown in Fig. 4(b). The voltage offsetis not constant, but a
function of circuit parameters and operating temperature and is
subject to the manufacturing spread of the device. Second, the
minimal voltage drop across the anode and the cathode, i.e., the
extinction voltage shown in Fig. 4(b), is not zero, and also de-
pends on other circuit parameters, especially on the impedance
of the voltage source at the gate [11]. The voltage drop is also
a function of operating temperature and is subject to the manu-
facturing spread of the device, as well. Third, the PUT cannot
recover from the conducting state instantaneously. Therecovery
time, which is the time required for the PUT to shut off the con-
duction, is in the order of micro-seconds, as shown in Fig. 5(a),
which shows two oscilloscope snapshots from our experiments
with the PUTON. This can be a severe source of error when the
BN is operating in a high-speed neural network.

The last problem was the most critical factor that forced us to
look for other implementation possibilities. If only the recovery
time were constant, the problem could be handled easily; we
could lower the threshold level slightly to reduce the length of
the buildup phase by the amount that can offset the error due
to the recovery time. The recovery time, however, varies appre-
ciately with the worst case occurring when the driving signal
is falling rapidly: the PUT simply cannot be turned off. This
phenomenon, that we callsliding of the PUTON, is exempli-
fied in Fig. 5(b). A closer examination of the circuit revealed
that the sliding of the PUTON is due to the current supplied by

Fig. 6. Skeletal circuit diagram of the IRON.

Fig. 7. Time evolution of the IRON when it is subjected to a sinusoidal driving
signal. The recursion of the IRON can be shown to be the same as that of the
BN as long as the recovery time� is kept constant.

the capacitor when the PUT is conducting and the cathode
voltage level is falling. Effectively, the current shifts up the load
line shown in Fig. 4(b), past pointand allows the PUT to stay
in a conducting state.

These shortcomings of the PUTON led us to consider other
circuit designs free of such limitations. The IRON that we intro-
duce in the next subsection is one of them. However, it should be
remembered that the PUTON is irresistibly simple, and would
be the choice when a high precision is not required, but quali-
tative bifurcation behavior is all that is needed. In fact, such an
occasion arises often when we study a network of 1-D maps. In
many cases, the collective behavior of the network depends not
on the precise form of the maps, but on the bifurcating property
of the maps, which is exemplified in Fig. 1. In the current work,
however, we aimed at demonstrating the computational power
of the BN which deems it is necessary to have a better BN cir-
cuit than the PUTON.

B. IRON

The most serious problem with the PUTON was the variation
in the recovery time of the PUT. This resulted in the variable
length of the relaxation phase, which should be zero according
to the mathematical definition of the BN. Certainly, it is impos-
sible to design a circuit that has a zero-length relaxation phase.
Our goal at this point is to design a circuit that exhibits a con-
stant-length relaxation phase. As long as the length of the re-
laxation phase is kept constant, it can be compensated by other
circuit parameters.

Fig. 6 shows a simplified circuit diagram of the IRON.
When the switchS is open, the current from the current
source charges the capacitor until the voltage level reaches the
threshold voltage . As soon as the capacitor voltage exceeds
the threshold voltage , the output of the comparator jumps
and triggers the monostable multivibrator. The output of the
monostable multivibrator then turns on the switch and causes
the capacitor to discharge until its level reaches the modulation
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Fig. 8. Actual circuit diagram of the IRON. The waveforms at the four probe points are shown in Fig. 9.

voltage level . Apparently, we now have a constant
recovery time as long as the pulse width of the monostable
multivibrator is constant. One may argue that the recovery
time still cannot be constant in a strict sense because it will
be now dependent on the characteristics of the monostable
multivibrator. This is true, but now the problem of constant
recovery time is separated from the threshold dynamics and in
a much more manageable form. A well-designed monostable
multivibrator can keep the variability of the pulse width within
1%, if it is operating in a reasonable condition [40].

Fig. 7 illustrates how the constant nonzero recovery time can
be compensated by shifting other circuit parameters. By the
same argument that led us to (12), we can express the constant
buildup rate , analogous to in (6) as follows:

(17)

The recursion that relates the successive relaxation times of the
IRON is found then to be

(18)

The constant offset can be absorbed in the time variable if we
insert a pause of the same amountbefore every cycle of the
driving signal, i.e., by substituting for in (18), we
have

(19)

This is now in the same general format of (7). The additive term
in the parameter of the function can be canceled out

if we insert a constant pause of amountbefore every cycle of
the driving signal since, as we have shown in Section III, firing
occurs exactly once every cycle of the driving signal.

Fig. 8 shows the actual circuit diagram of the IRON. The
two bold faced amplifier symbols represent voltage followers.
Around the capacitor C1 there is a current source using a bipolar
transistor, a JFET switch controlling the path from the input
buffer to the capacitor, and an analog comparator (LM311).
The resister R9 can be trimmed to control the constant current
flowing into the capacitor. The two transistors near the switch
are added simply to shift the voltage level of the control signal

Fig. 9. SPICE simulation result of the IRON: the four curves show the
waveforms at the four probe points marked in Fig. 8.

VC, which is derived from the collectors of Q4 and Q5, to a
level suitable to control the JFET switch. The part after the com-
parator corresponds to the monostable multivibrator in Fig. 6.
The two symmetrically located transistors Q4 and Q5 form a
NAND gate, and the third transistor Q6 is acting as an inverter.
The output of the inverter is fed back to theNAND gate via a ca-
pacitor coupling. The net result is that we have a pulse of a con-
stant width whenever the output of the comparator goes high.
Fig. 9 shows a SPICE [41] simulation result of the circuit. The
four curves show the waveforms at the four probe points marked
in Fig. 8. Note that the pulse width, which corresponds to the re-
covery time, is now constant.

Another advantage of the IRON over the PUTON is that it is
providing well-formed output pulses as shown in Fig. 9. In the
PUTON, output pulses can be derived from the cathode of the
PUT. However, they are not uniform in amplitude and, more-
over, are superimposed on the driving signal. Separating them
from the driving signal and reshaping them will require extra cir-
cuit complexity. In addition, the PUTON will eventually require
the voltage followers, like the IRON does, to isolate it from the
external circuitry. Taking all these factors into account, we can
say that the circuit complexity of the IRON does not greatly ex-
ceed that of the PUTON. Considering the number of transistors
needed for the comparator, the complexity of the IRON is about
half that of the classic timer chip 555 [42], the classic timer chip,
which has long been used in a compact integrated circuit.
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V. EXPERIMENTAL RESULTS

To test the theory and the circuit design developed so far, we
used the IRON to obtain the bifurcation diagrams of three 1-D
maps: the sine-circle map, the logistic map and the tent map.
The definitions of the maps and the required driving signals ac-
cording to (5) are summarized as

The sine-circle map

mod (20)

otherwise
(21)

where and are positive parameters.
The logistic map

(22)

otherwise
(23)

where the bifurcation parameterranges from 0 to 4.
The tent map

(24)

otherwise
(25)

where the bifurcation parameterranges from 0 to 1.
The driving signals given by (21), (23), and (25) are plotted

in Fig. 10. Each plot in the figure contains three waveforms for
three different values of the bifurcation parameters. The exper-
imental setup to measure the output of the IRON is shown in
Fig. 11. An arbitrary waveform generator (SG100A) provides
the driving signal to the IRON and a Frequency and Interval
Analyzer (HP5376A) is used to measure the time of the spikes
out of IRON. The HP5376A was programmed to measure the
time interval between two pulses arriving at channels A and B,
respectively. An illustration of time intervals mea-
sured by the HP5376A is given in Fig. 11. To gather all data to
compose a bifurcation diagram, measurements of 100 time in-
tervals were repeated for 500 different values of the bifurcation
parameter. This made it necessary to use a personal computer
(PC) to control the whole experimental procedure.

Figs. 12–14 show the bifurcation diagrams of the three pre-
viously mentioned 1-D maps. In each figure, an exact bifur-
cation diagram generated numerically for identical parameters
is shown together to be compared with the one generated by
the IRON. The two versions of the bifurcation diagrams are
in reasonably good agreement, except for some distortion due
to the circuit noise of the IRON. The noisy distortion is most
pronounced near the period-doubling points as exemplified in
Fig. 13. This can be easily understood if we consider the sta-
bility of the 1-D map; the system is marginally stable near the
period-doubling points and will accumulate the circuit noise

Fig. 10. Driving signal waveforms for (a) sine-circle map; (b) logistic map;
(c) tent map for several values of the map parameter.

Fig. 11. Experimental setup used to generate the bifurcation diagrams.

Fig. 12. Bifurcation diagrams of the sine-circle map: (a) by an actual
measurement of the output of the IRON; (b) by a numerical computation.
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Fig. 13. Bifurcation diagrams of the logistic map: (a) by an actual
measurement of the output of the IRON; (b) by a numerical computation.

Fig. 14. Bifurcation diagrams of the tent map: (a) by an actual measurement
of the output of the IRON; (b) by a numerical computation.

rather than dissipate it.2 The noisy distortion is also outstanding
when the state variable is near zero, as exemplified in Fig. 14.
This is because the state variablebeing near zero means that
the IRON is undergoing relaxation while the driving signal is
making an almost discontinuous transition (in its “pause” pe-
riod of the length ).

The overall effect of the circuit noise is reflected in the broad-
ening of the lines in the bifurcation diagrams. Aside from the ac
line noise, which was difficult to avoid due to the single-ended
nature of the input and output ports of the measurement equip-
ments, the most outstanding source of noise was found in the
arbitrary waveform generator. We are not sure whether the noise
is the quantization noise of the digital-to-analog converter or is
originating from the coupling between the analog and the dig-
ital parts of the waveform generator. The effect of the noise from
the arbitrary waveform generator can be well appreciated if we
compare the bifurcation diagram in Fig. 12(a) with other two
diagrams in Figs. (13a) and (14a). Because the driving signal
required to compute the sine-circle map is simply a sinusoidal
wave, we could use a function generator (HP3325B) in place of
an arbitrary waveform generator in the experiment to compute
the bifurcation diagram Fig. 12(a). Apparently, the bifurcation
diagram in Fig. 12(a) looks much cleaner than the other two
diagrams.

To evaluate the IRON in the absence of such noise sources
we used PSPICE [41] to simulate the IRON and generate the
bifurcation diagrams. This showed that the resulting bifurcation
diagrams were as clean as the numerical versions. Although one

2When the logistic map is near the period-doubling bifurcation points, it can
be shown thatj(dx )=(dx )j = 1, wherek = 1 for the first bifurcation,
k = 2 for the second bifurcation, and so on. This means the logistic map is
marginally stable near the period-doubling bifurcation points.

cannot expect complete freedom from noise sources in a real
circuit, we expect that we can reduce the effect of noise to a
negligible degree when such noise sources are properly coped
with, and especially when the IRON is transported onto a printed
circuit board, or eventually to a VLSI chip.

VI. CONCLUSION

Starting from the fact that the BN can compute the sine-circle
map when it is subject to a sinusoidal driving signal, we gener-
alized the BN and showed that the computational power of the
BN can be extended to compute an arbitrary 1-D map such as
the logistic map or the tent map. The programming of the BN to
compute an arbitrary map was possible simply by changing the
waveform of the driving signal. We described two circuit models
of the BN: the PUTON and the IRON. We used the IRON to
generate the bifurcation diagrams of the sine-circle map, the lo-
gistic map and the tent map, and could see that they were in
good agreement with those generated numerically.

Among other features in which we are most interested is the
programmabilityof the BN. Fig. 15 shows a typical situation
when many BNs are combined to form a network. A waveform
generator is used to provide a common driving signal to all BNs.
In the absence of the driving signal, the BNs by themselves are
mere relaxation oscillators. Most likely, they will be firing ran-
domly and, at best, they will be able to reach a global synchro-
nization. With the introduction of the driving signal, the network
suddenly becomes a coupled map lattice, e.g., consisting of lo-
gistic maps. It will start to exhibit various patterns of spatio-
temporal chaos depending critically on the amplitude of the
driving signal and the type of coupling between BNs. The next
moment that the driving signal is switched to something else,
the network then turns into a different coupled map lattice, e.g.,
consisting of sine-circle maps. Possibly, it will now be able to
exhibit soliton turbulence [24].

Before concluding, we feel it is necessary to comment on pos-
sible ways to achieve coupling among the BNs. Without doubt,
the practical value of the BN will be heavily dependent on the
availability of an efficient coupling method. A straightforward
way would start with a step to derive an analog voltage propor-
tional to the normalized phase from the output of the BN.
This can be done easily, e.g., by sample-and-holding the voltage
level of a saw-tooth waveform, which can be shared among the
BNs, at the moment a BN fires. Once such a voltage output is
available, it can be used to advance or delay the firing time of
a target BN, e.g., by using it to control the threshold levelor
the slope of the buildup of the internal potential of the target
BN. Although this coupling method requires a substantial cir-
cuit complexity compared with the other methods that we will
mention below, it is flexible enough to realize such a complex
type of coupling, as is required by the parametrically coupled
map lattice (PCML) [26]–[29]. Another way of coupling would
be to establish resistive links among the capacitors of the BNs
and activate the links periodically at the end of every cycle of the
periodic driving signal. This would be the most natural way to
achieve a diffusive coupling as is required by the Coupled Map
Lattice [16], [24]. Yet another way of coupling is pulse-coupling
among the BNs. An impulse from a source BN can be applied to
a target BN directly to affect its threshold levelor the internal
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Fig. 15. Network of the BNs sharing the same driving signal. The dotted lines
represent coupling between the BNs.

potential . Although this type of coupling method is rather re-
strictive in terms of the possible types of coupling it can realize,
we are most interested in it because it is a natural and straightfor-
ward way to take full advantage of the biomorphic nature of the
BN. We are currently investigating actively the associative dy-
namics and chaotic annealing dynamics of a BN network, which
is utilizing a pulse-coupling method.

Finally, a new literature search for relevant papers that may
have appeared in the interim was deemed necessary and carried
out. This, together with reviewers’ comments, brought to our
attention several papers related to this work. These have been
added to the list of references [43]–[47]. Careful examination of
the chronology of this body of work and that in our past work,
[8]–[11], [25], [37], shows that the concept of arbitrary map
synthesis described here was arrived at independently. The first
observations in our work leading to the idea of modifying the
bifurcation diagram of a driven spiking oscillator, by altering
the waveform of the periodic driving signal, were made in 1997
[37] and pursued further in [25]. The concept of arbitrary map
synthesis described here was arrived at therefore independently
and in a distinctly different manner and emphasis than that
described in Saito and coworkers work [43]–[45]. The CMOS
circuit for generating arbitrary maps described in [46] employs
pulse-width modulation rather than alteration of the driving
signal waveform described here. It is worth noting that the
quality of the measured bifurcation diagrams in our work
(Figs. 12–14) surpass those given in [46]. This suggests that the
waveform control method presented here may have advantages
over other techniques especially when a VLSI version of the
circuit in Fig. 8 is realized with proper attention given for
dealing with discontinuities as was outlined earlier.
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