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Abstract
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image to another. The method proceeds by constructing a global convex approximation to the match function
which can be optimized using interior point methods. The paper also describes how one can exploit the
structure of the resulting optimization problem to develop efficient and effective matching algorithms. Results
obtained by applying the proposed scheme to a variety of images are presented.
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Solving Image Registration Problems Using

Interior Point Methods

Camillo Jose Taylor and Arvind Bhusnurmath

GRASP Laboratory, University of Pennsylvania

Abstract. This paper describes a novel approach to recovering a para-
metric deformation that optimally registers one image to another. The
method proceeds by constructing a global convex approximation to
the match function which can be optimized using interior point meth-
ods. The paper also describes how one can exploit the structure of the
resulting optimization problem to develop efficient and effective match-
ing algorithms. Results obtained by applying the proposed scheme to a
variety of images are presented.

1 Introduction

Image registration is a key problem in computer vision that shows up in a wide
variety of applications such as image mosaicing, medical image analysis, face
tracking, handwriting recognition, stereo matching and motion analysis. This
paper considers the problem of recovering the parameters of a deformation that
maps one image onto another. The main contribution is a novel approach to
this problem wherein the image matching problem is reformulated as a Linear
Program (LP) which can be solved using interior point methods. The paper
also describes how one can exploit the special structure of the resulting LP to
derive efficient implementations which can effectively solve problems involving
hundreds of thousands of pixels and constraints.

One of the principal differences between the proposed approach and other ap-
proaches that have been developed [1,2,3] is that the scheme seeks to construct a
global convex approximation to the matching function associated with the
registration problem as opposed to constructing a local convex model around the
current parameter estimate. The approach is intended for situations where the dis-
placements between frames are large enough that local matches at the pixel level
are likely to be ambiguous. For example, in the experiments we consider images
that are 320 pixels on side where individual pixels may be displaced by up to 40
pixels along each dimension. The approximation procedure is designed to capture
the uncertainties inherent in matching a given pixel to a wide swath of possible
correspondents.

One common approach to solving image matching problems proceeds by ex-
tracting feature points in the two images, establishing correspondences between
the frames, and then using a robust estimation procedure to recover the pa-
rameters of the transformation. This approach is exemplified by the work of
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Mikolajczyk and Schmid [4] who proposed a very effective scheme for detecting
and matching interest points under severe affine deformations. This approach
works best when the interframe motion is close to affine since more complicated
deformation models can distort the feature points beyond recognition. Further,
it becomes increasingly difficult to apply robust estimation methods as the com-
plexity of the deformation model increases since an ever increasing number of
reliable point matches are required.

Belongie and Malik [5] proposed an elegant approach to matching shapes
based on information derived from an analysis of contour features. This approach
is similar to [4] in that it revolves around feature extraction and pointwise cor-
respondence. The method described in this work is very different from these in
that it avoids the notion of features altogether, instead it proceeds by construct-
ing a matching function based on low level correlation volumes and allows every
pixel in the image to constrain the match to the extent that it can.

Shekhovstov Kovtun and Hlavac [6] have developed a novel method for image
registration that uses Sequential Tree-Reweighted Message passing to solve a lin-
ear program that approximates a discrete Markov Random Field optimization
problem. Their work also seeks to construct a globally convex approximation
to the underlying image matching problem but the approach taken to formulat-
ing and solving the optimization problem differ substantially from the method
discussed in this paper.

Linear programming has been previously applied to motion estimation [7,8].
The work by Jiang et al.. [7] on matching feature points is similar to ours in that
the data term associated with each feature is approximated by a convex com-
bination of points on the lower convex hull of the match cost surface. However,
their approach is formulated as an optimization over the interpolating coeffi-
cients associated with these convex hull points which is quite different from the
approach described in this paper. Also their method uses the simplex method
for solving the LP while the approach described in this paper employs an inte-
rior point solver which allows us to exploit the structure of the problem more
effectively.

2 Image Registration Algorithm

The objective of the algorithm is to recover the deformation that maps a base
image onto a target image. This deformation is modeled in the usual manner
by introducing two scalar functions Dx(x, y,px) and Dy(x, y,py) which capture
the displacement of a pixel at location (x, y) along the horizontal and vertical
directions respectively [9,5,10]. Here px and py represent vectors of parameters
that are used to model the deformation. Consider for example an affine deforma-
tion where the horizontal displacements are given by Dx(x, y) = c1 + c2x + c2y,
then px = [c1, c2, c3] would capture the parameters of this transformation. In
the sequel we will restrict our consideration to models where the displacements
can be written as a linear function of the parameters. That is, if we let Dx and
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Dy represent vectors obtained by concatenating the displacements at all of the
pixels then Dx = Cpx and Dy = Cpy for some matrix C. Here the columns of
the matrix C constitute the basis vectors of the displacement field [9].

2.1 Formulating Image Matching as an LP

The problem of recovering the deformation that maps a given base image onto a
given target image can be phrased as an optimization problem. For every pixel
in the target image one can construct an objective function, exy, which captures
how similar the target pixel is to its correspondent in the base image as a function
of the displacement applied at that pixel.

Figure 1(a) shows an example of one such function for a particular pixel in one
of the test images. This particular profile was constructed by computing the �2 dif-
ference between the RGB value of the target pixel and the RGB values of the pixels
in the base image for various displacements up to ±10 pixels in each direction.

Our goal then is to minimize an objective function E(px,py) which models
how the discrepancy between the target and base images varies as a function of
the deformation parameters, px and py.

E(px,py) =
∑

x

∑

y

exy(Dx(x,y,px),Dy(x,y,py)) (1)

In general, since the component exy functions can have arbitrary form the land-
scape of the objective function E(px,py) may contain multiple local minima

(a) (b)

Fig. 1. (a) Error surface associated with particular pixel in the target image that
encodes how compatible that pixel is with various x, y displacements (b) Piecewise
planar convex approximation of the error surface
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which can confound most standard optimization methods that proceed by con-
structing local approximations of the energy function.

The crux of the proposed approach is to introduce a convex approximation for
the individual objective functions e′xy. This leads directly to an approximation
of the global objective function E′(px,py) which is convex in the deformation
parameters. Once this has been done, one can recover estimates for the deforma-
tion parameters and, hence, the deformation by solving a convex optimization
problem which is guaranteed to have a unique minimum.

The core of the approximation step is shown in Figure 1(b), here the original
objective function is replaced by a convex lower bound which is constructed
by considering the convex hull of the points that define the error surface. This
convex lower hull is bounded below by a set of planar facets.

In order to capture this convex approximation in the objective function we
introduce one auxiliary variable z(x, y) for every pixel in the target image. There
are a set of linear constraints associated with each of these variables which reflect
the constraint that this value must lie above all of the planar facets that define
the convex lower bound.

z(x, y) ≥ ai
x(x, y)Dx(x, y, px) + ai

y(x, y)Dy(x, y, py) − bi(x, y) ∀i (2)

Here the terms ai
x, ai

y and bi denote the coefficients associated with each of the
facets in the approximation.

The problem of minimizing the objective function E′(px,py) can now be
rephrased as a linear program as follows:

minpx,py,z

∑
x

∑
y z(x, y) (3)

st z(x, y) ≥ ai
x(x, y)Dx(x, y, px) + ai

yDy(x, y, py) − bi(x, y) ∀x, y, i (4)

This can be written more compactly in matrix form as follows:

minpx,py,z 1Tz (5)
st AxDx + AyDy − Izz ≤ b

Dx = Cpx

Dy = Cpy

where Ax and Ay are Iz are sparse matrices obtained by concatenating the con-
straints associated with all of the planar facets and z and b are vectors obtained
by collecting the z(x, y) and bi(x, y) variables respectively.

Note that the Ax, Ay and Iz matrices all have the same fill pattern and are
structured as shown in equation 6, the non zero entries in the Iz matrix are all
1. In this equation M denotes the total number of pixels in the image and Si

refers to the number of planar facets associated with pixel i.
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A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 · · · · · · 0
a21 0 · · · · · · 0
... 0 · · · · · · 0

aS11 0 · · · · · · 0
0 a12 0 · · · 0
0 a22 0 · · · 0

0
... 0 · · · 0

0 aS22 0 · · · 0

0 0
. . . . . . 0

0 · · · · · · 0 a1M

0 · · · · · · 0
...

0 · · · · · · 0 aSMM

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The linear program shown in Equation 5 can be augmented to include constraints
on the displacement entries, Dx, Dy and the z values as shown in Equation 7.
Here the vectors blb and bub capture the concatenated lower and upper bound
constraints respectively. It would also be a simple matter to include bounding
constraints on the parameter values at this stage. Alternatively one could easily
add a convex regularization term to reflect a desire to minimize the bending
energy associated with the deformation.

minpx,py,z 1Tz (7)
⎡

⎣
Ax Ay −Iz

−I
I

⎤

⎦

⎛

⎝
C 0 0
0 C 0
0 0 I

⎞

⎠

⎛

⎝
px

py

z

⎞

⎠ ≤
⎛

⎝
b
blb

bub

⎞

⎠

Note that the proposed approximation procedure increases the ambiguity asso-
ciated with matching any individual pixel since the convex approximation is a
lower bound which may significantly under estimate the cost associated with
assigning a particular displacement to a pixel. What each pixel ends up con-
tributing is a set of convex terms to the global objective function. The linear
program effectively integrates the convex constraints from tens of thousands of
pixels, constraints which are individually ambiguous but which collectively iden-
tify the optimal parameters. In this scheme each pixel contributes to constraining
the deformation parameters to the extent that it is able. Pixels in homogenous
regions may contribute very little to the global objective while well defined fea-
tures may provide more stringent guidance. There is no need to explicitly identify
distinguished features since local matching ambiguities are handled through the
approximation process.

2.2 Solving the Matching LP

Once the image registration problem has been reformulated as the linear program
given in equation 7 the barrier method [11] can be employed to solve the problem.
In this method, a convex optimization problem of the following form
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min f0(x)
st fi(x) ≤ 0, i = 1, . . . , m (8)

is solved by minimizing φ(x, t) = tf0(x) −
m∑

i=1

log(−fi(x)) for increasing values

of t until convergence. At each value of t a local step direction, the Newton step,
needs to be computed. This involves the solution of a system of linear equations
involving the Hessian and the gradient of φ(x, t). The Hessian can be computed
from the following expression H = [AT diag(s−2)A] where s = b − Ax and s−2

denotes the vector formed by inverting and squaring the elements of s. Similarly
the gradient of the φ(x, t) can be computed from the following expression:

g = −tw − AT s−1 (9)

Then the Newton step is computed by solving

[AT diag(s−2)A]δx = g (10)

For our matching problem, it can be shown that this Newton step system can
be written in the following form:

[
Hp HT

z

Hz D6

] (
δp
δz

)
=

(
gp

gz

)
(11)

where

Hp =
[
(CT D1C) (CT D2C)
(CT D2C) (CT D3C)

]

Hz =
[
(D4C) (D5C)

]
(12)

δp and δz denote proposed changes in the deformation parameters and the z
variables respectively and D1, D2, D3, D4, D5, D6 are all diagonal matrices.

At this point we observe that since the matrix D6 is diagonal we can simplify
the linear system in Equation 11 via the Schur complement. More specifically
we can readily solve for δz in terms of δp as follows: δz = D−1

6 (gz − Hzδp).
Substituting this expression back into the system yields the following expression
where all of the auxiliary z variables have been elided.

(Hp − HT
z D−1

6 Hz)δp = (gp − HT
z D−1

6 gz) (13)

This can be written more concisely as follows:

H ′
pδp = g′p (14)

In short, computing the Newton Step boils down to solving the linear system in
Equation 14. Note that the size of this system depends only on the dimension of
the parameter vector, p. For example if one were interested in fitting an affine
model which involves 6 parameters, 3 for px and 3 for py, one would only end
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up solving a linear system with six degrees of freedom. Note that the compu-
tational complexity of this key step does not depend on the number of pixels
being considered or on the number of constraints that were used to construct the
convex approximation. This is extremely useful since typical matching problems
will involve hundreds of thousands of pixels and a similar number of constraint
equations. Even state of the art LP solvers like MOSEK and TOMLAB would
have difficulty solving problems of this size.

2.3 Deformation Models

Experiments were carried out with two classes of deformation models. In the first
class the displacements at each pixel are computed as a polynomial function of
the image coordinates. For example for a second order model:

Dx(x, y) = c1 + c2x + c3y + c4xy + c5x
2 + c6y

2 (15)

These deformations are parameterized by the coefficients of the polynomials. The
complexity of the model can be adjusted by varying the degree of the polynomial.
A number of interesting deformation models can be represented in this manner
include affine, bilinear, quadratic and bicubic.

Another class of models can be represented as a combination of an affine
deformation and a radial basis function. That is

Dx(x, y) = c1 + c2x + c3y +
∑

i

kiφ(‖(x, y) − (xi, yi)‖) (16)

Once again the deformation model is parameterized by the coefficients c1, c2,
c3, ki and the function φ represents the interpolating kernel. Two different vari-
ants of this kernel were considered in the experiments, a Gaussian kernel, φ(r) =
exp(−(r/σ)2) and a thin plate spline kernel φ(r) = r2 log r. In the sequel we will
refer to the former as the Gaussian deformation model and the latter as the Thin
Plate Spline model.

In the experiments the coordinates of the kernel centers,(xi, yi) were evenly
distributed in a grid over the the image. The complexity of the model can be
varied by varying the number of kernel centers employed. All of the experiments
that used this model employed 16 kernel centers arranged evenly over the image
in a four by four grid.

2.4 Coarse to Fine

It is often advantageous to employ image registration algorithms in a coarse
to fine manner [1]. In this mode of operation the base and target images are
downsampled to a lower resolution and then matched. The deformation recovered
from this stage is used to constrain the search for matches at finer scales. With
this scheme, gross deformations are captured at the coarser scales while the
finer scales fill in the details. It also serves to limit the computational effort
required since one can effectively constrain the range of displacements that must
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be considered at the finer scales which limits the size of the correlation volumes
that must be constructed.

In the experiments described in section 3.1 the images are first downsampled
by a factor of 4 and then matched. The deformations computed at this scale in-
form the search for correspondences at the next finer scale which is downsampled
from the originals by a factor of 2.

Note that as the approach proceeds to finer scales, the convex approximation
is effectively being constructed over a smaller range of disparities which means
that it increasingly approaches the actual error surface.

3 Experimental Results

Two different experiments were carried out to gauge the performance of the
registration scheme quantitatively. In the first experiment each of the images in
our data set was warped by a random deformation and the proposed scheme was
employed to recover the parameters of this warp. The recovered deformation was
compared to the known ground truth deformation to evaluate the accuracy of
the method.

In the second set of experiments the registration scheme was applied to por-
tions of the Middlebury stereo data set. The disparity results returned by the
method were then compared to the ground truth disparities that are provided
for these image pairs.

3.1 Synthetic Deformations

In these experiments the proposed scheme was applied to a number of different
images. In each case, a random deformation was constructed using a particular
motion model. The base image was warped by the deformation to produce the
target image and the registration algorithm was employed to recover this defor-
mation. In these experiments each of the base images was at most 320 pixels on
side. The deformations that were applied were allowed to displace the pixels in
the base image by up to ±12.5% of the image size. Hence for an image 320 pixels
on side each pixel in the image can be displaced by ±40 pixels along each dimen-
sion. The random deformations were specifically constructed to fully exercise the
range of displacements so the maximum allowed displacement values are achieved
in the applied warps. In order to recover such large deformations, the registration
scheme is applied in a coarse to fine manner as described in Section 2.4.

The underlying matching functions associated with each of the pixels in the
target image, exy, are constructed by simply comparing the pixel intensity in
the target image to the pixels in a corresponding range in the base image. This
is equivalent to conducting sum of squared difference (SSD) matching for each
pixel using a 1 × 1 matching window.

In order to provide a quantitative evaluation of the scheme, the recovered
deformation field, (Dx(x, y), Dy(x, y)) was compared to the known ground truth
deformation field (Dt

x(x, y), Dt
y(x, y)) and the mean, median and maximum dis-

crepancy between these two functions over the entire image was computed. The
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Table 1. This table details the deformation applied to each of the images in the data
set and reports the discrepancy between the deformation field returned by the method
and the ground truth displacement field

error in pixels
Image Deformation Model no. of parameter mean median max

Football Gaussian 38 0.1524 0.1306 0.5737
Hurricane Gaussian 38 0.1573 0.1262 0.7404

Spine Affine 6 0.1468 0.1314 0.4736
Peppers Gaussian 38 0.1090 0.0882 0.7964

Cells Thin Plate Spine 38 0.1257 0.1119 0.8500
Brain Gaussian 38 0.1190 0.0920 0.8210
Kanji third degree polynomial 20 0.1714 0.0950 2.5799
Aerial bilinear 8 0.0693 0.0620 0.2000
Face1 Gaussian 38 0.1077 0.0788 0.6004
Face2 Gaussian 38 0.5487 0.3095 4.6354

results are tabulated in Table 1. This table also indicates what type of defor-
mation model was applied to each of the images along with the total number of
parameters required by that model.

Note that in every case the deformed result returned by the procedure is al-
most indistinguishable from the given target. More importantly, the deformation
fields returned by the procedure are consistently within a fraction of a pixel of
the ground truth values. The unoptimized Matlab implementation of the match-
ing procedure takes approximately 5 minutes to proceed through all three scales
and produce the final deformation field for a given image pair.

3.2 Stereo Data Set

The image registration scheme was applied to regions of the image pairs taken
from the Middlebury stereo data set. This data set was chosen because it included
ground truth data which allows us to quantitatively evaluate the deformation
results returned by the registration scheme. Here the vertical displacement be-
tween the two images is zero and the horizontal displacement field Dx(x, y) is
modeled as an affine function.

The correlation volume was computed using sum of squared difference match-
ing with a five by five correlation window. For the teddy image, the correlation
volume was constructed by considering displacements between 12 and 53 pixels
while for the venus image the displacement range was 3 to 20 pixels. In this
case, the convex lower bound approximations to the individual score functions
degenerates to a piecewise linear profile along the horizontal dimension.

In each of the images two rectangular regions were delineated manually and
an affine displacement model was fit to the pixels within those regions using the
proposed method.
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Base Image Target Image Result

(a) Football

(b) Hurricane

(c) Spine

(d) Peppers

(e) Cells

Fig. 2. Results obtained by applying the proposed method to actual image pairs. The
first two columns correspond to the input base and target images respectively while
the last column corresponds to the result produced by the registration scheme.

The first column of Figure 4 shows the left image in the pair, the second
column shows what would be obtained if one used the raw SSD stereo results
and the final column shows the ground truth disparities.
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Base Image Target Image Result

(f) Brain

(g) Kanji

(h) Aerial

(i) Face1

(j) Face2

Fig. 3. More Registration Results
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Left Image SSD Disparity Solution Ground Truth Disparity

(a) Teddy

(b) Venus

Fig. 4. The proposed image registration scheme was applied to the delineated regions
in the Middlebury Stereo Data Set. The first column shows the left image, the second
column the raw results of the SSD correlation matching and the last column the ground
truth disparity.

Table 2. This table reports the discrepancy between the affine deformation field re-
turned by the method and the ground truth disparities within each region

error in pixels
Image Region mean median

teddy bird house roof 0.2558 0.2245
teddy foreground 0.9273 0.8059
venus left region 0.0317 0.0313
venus right region 0.0344 0.0317

The selected rectangles are overlaid on each of the images. These regions
were specifically chosen in areas where there was significant ambiguity in the
raw correlation scores to demonstrate that the method was capable of correctly
integrating ambiguous data. Table 2 summarizes the results of the fitting proce-
dure. The reconstructed disparity fields within the regions were compared to the
ground truth disparities and the mean and median discrepancy between these
two fields is computed over all of the pixels within the region.

4 Conclusion

This paper has presented a novel approach to tackling the image registration
problem wherein the original image matching objective function is approximated
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by a linear program which can be solved using the interior point method. The
paper also describes how one can exploit the special structure of the resulting
linear program to develop efficient algorithms. In fact the key step in the resulting
resulting procedure only involves inverting a symmetric matrix whose dimension
reflects the complexity of the model being recovered.

While the convex approximation procedure typically increases the amount of
ambiguity associated with any individual pixels, the optimization procedure ef-
fectively aggregates information from hundreds of thousands of pixels so the net
result is a convex function that constrains the actual global solution. In a cer-
tain sense, the proposed approach is dual to traditional non-linear optimization
schemes which seek to construct a local convex approximation to the objective
function. The method described in this work proceeds by constructing a global
convex approximation over the specified range of displacements.

A significant advantage of the approach is that once the deformation model
and displacement bounds have been selected, the method is insensitive to ini-
tialization since the convex optimization procedure will converge to the same
solution regardless of the start point. This means that the method can be di-
rectly applied to situations where there is a significant deformation.

The method does not require any special feature detection or contour extrac-
tion procedure. In fact all of the correlation volumes used in the experiments
were computed using nothing more than pointwise pixel comparisons. Since the
method does not hinge on the details of the scoring function more sophisticated
variants could be employed as warranted. The results indicate the method pro-
duces accurate results on a wide range of image types and can recover fairly
large deformations.
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