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Rectifying junctions of tin oxide and poly(3-hexylthiophene) nanofibers
fabricated via electrospinning

Abstract

Abstract: A fast, simple, and inexpensive method to fabricate in air, p-n diodes using electrospun tin oxide
nanoribbons and regioregular poly(3-hexylthiophene) nanofibers is described. In addition to being a rectifier
under ambient illumination or in the dark, the advantage of our design is the complete exposure of the
rectifying nanojunction to the surrounding environment, making them attractive candidates in the potential
fabrication of low power consumption diodes and sensors. The diode characteristics were analyzed using the
standard diode equation and its use as a UV light sensor was examined.
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Rectifying junctions of tin oxide and poly(3-hexylthiophene) nanofibers
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A fast, simple, and inexpensive method to fabricate in air, p-n diodes using electrospun tin oxide
nanoribbons and regioregular poly(3-hexylthiophene) nanofibers is described. In addition to being a
rectifier under ambient illumination or in the dark, the advantage of our design is the complete
exposure of the rectifying nanojunction to the surrounding environment, making them attractive
candidates in the potential fabrication of low power consumption diodes and sensors. The diode
characteristics were analyzed using the standard diode equation and its use as a UV light sensor was
examined. © 2009 American Institute of Physics. [DOI: 10.1063/1.3089878]

Most solid state devices incorporate at least one interface
between a p- and an n-type semiconductor, hence the p-n
junction is the focus of much research. The discovery of
organic conducting conjugated polymers1 made it possible to
fabricate reliable devices and sensors in ordinary laboratory
conditions. Metal oxides are also desirable materials for use
in devices.” Of particular interest is tin oxide (SnO,) (Refs. 3
and 4) as it is stable in air, optically transparent, and semi-
conducting, with a band gap of ~3.4 eV. The simplest and
easiest hybrid device to fabricate is a diode in which a junc-
tion of an organic conducting polymer with an n-doped in-
organic semiconductor is formed. Such architectures have
been typically realized via spin coating5 or electrochemical
polymerization.6’7 Earlier, we reported on the fabrication of
hybrid Schottky nanodiodes via electrospinning.8 Herein, we
report on the same method to fabricate in air and within
seconds, p-n diodes, by simply crossing n-doped SnO, and
p-doped poly(3-hexylthiophene-2-5-diyl) (P3HT) nanofi-
bers. The devices operate well under ambient illumination or
in the dark, with on/off ratios of ~25. Although several stud-
ies have been done on SnO,/P3HT composites,g_11 primarily
for use as sensors, this is the first study on p-n diodes fabri-
cated using nanofibers of pure P3HT and nanoribbons of
SnO,. The advantage of our design is its quasi-one-
dimensional feature and the complete exposure of the nano-
junction to the surrounding environment making them attrac-
tive candidates in the potential fabrication of low power,
supersensitive, and rapid response sensors and rectifiers.

The p-n diodes were fabricated from SnO, nanoribbons
and P3HT nanofibers prepared via electrospinning. The sols
used in the electrospinning process were prepared as follows:
2 ml of commercially available tin(IV) isopropoxide, 10%
w/v in isopropanol/toluene (Alfa-Aesar) was thoroughly
mixed with a 0.5 ml of a 0.7 wt % polyethylene oxide (MW
2000,000) (PEO) in CHCl;. In a separate vial, 26 mg of
regioregular P3HT (Aldrich) and 1 mg of PEO were dis-
solved in 3.0 g of CHCIs. First, the tin precursor was elec-
trospun in air at 10 kV and doped Si** (0.01-0.05 Q-cm)
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wafers with a 200 nm oxide layer were used to capture long
(several mm) ribbons of the precursor. 8 The substrates were
then heated in air at 700 °C for two hours to yield SnO,
nanoribbons that were seen to firmly adhere to the substrate.
The P3HT sol was then electrospun in air at 5 kV and indi-
vidual P3HT nanofibers were captured on the same sub-
strates as before. Several P3HT nanofibers were seen to in-
tersect the SnO, ribbons, each intersection resulting in a p-n
diode. For electrical characterization, one such junction was
identified and electrical contact pads evaporated using an ap-
propriate transmission electron microscope (TEM) grid as a
shadow mask. Figure 1(a) shows an optical microscope im-
age of the P3HT nanofiber intersecting a SnO, nanoribbon,
together with portions of the gold contacts. Using an atomic
force microscope, the ribbon and the fiber height were mea-
sured to be around 100 nm. The P3HT nanofiber was about
2 wpm and the SnO, ribbon was about 30 wm wide. External
electrical contacts were then made and the device current-
voltage (I-V) characteristics were measured via a Keithley
6517A electrometer in a vacuum of ~2X 1072 Torr. The
inset in Fig. 1(a) shows a schematic of the device and the
external electrical circuit. Diodes were also fabricated by
simply placing a P3HT/CHCI; drop over the SnO, nanorib-
bon as seen in Fig. 1(b) and electrically characterized.
Figure 2 shows the I-V characteristic curves at 296 K of
the device shown in Fig. 1(a) tested in air and in vacuum.
Several diodes were tested and, in general, the /-V character-

P3HT j
film
Ag cont

FIG. 1. (Color online) (a) Optical microscope image of a SnO, ribbon
crossed with a P3HT nanofiber. The inset is a schematic of the external
electrical connections. (b) Optical microscope image of a SnO, ribbon
crossed with a P3HT cast film. The ribbon width was ~60 um and the
silver contacts are made directly to the active materials.

© 2009 American Institute of Physics
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FIG. 2. Current-voltage (I-V) characteristics for the device shown in Fig.
1(a) measured in air (@-filled symbols) and in vacuum (O-empty symbols)
when a positive bias was applied to the P3HT arm with the negative bias on
the SnO, arm and when the bias terminals were reversed ([J). The inset
above shows the /-V characteristic curves for a device fabricated from a
SnO, ribbon crossed with a P3HT cast film shown in Fig. 1(b). The inset
below shows the energy band diagram for the p-n diode.

istic curves were asymmetrical with a turn-on voltage in the
range of 0.2-0.4 V and a much reduced reverse bias current.
These devices exhibited rectifying behavior and the ratio of
the forward to reverse current at a bias voltage of =1 V for
this device was calculated to be ~25. The upper inset to Fig.
2 shows the -V curve for a diode fabricated with a drop cast
film of P3HT (instead of the nanofiber) over a SnO, ribbon.
The measured currents are larger due to the increased film
thickness and hence lower resistance of the film compared to
the nanofiber. This diode also shows rectification with a
turn-on voltage of ~0.35 V and a rectification ratio of 70.
Prolonged device exposure to air (several days) reduces the
rectification ratio.

In order to verify the n- and the p-type doping of SnO,
and P3HT, respectively, electrospun ribbons and nanofibers
of each were captured separately on doped Si/SiO, sub-
strates and connected in a field effect transistor (FET) con-
figuration. Figure 3 shows the device drain-source current
(Ips) as a function of drain-source voltage (Vpg) for different
back gate biases (Vig). The increase in Ipg for increasing
positive Vg for SnO, and the increase in Ipg for increasing
negative Vg for P3HT confirm the nature of the doping for
each semiconductor. These observations further strengthen
our claim that the fabricated SnO,/P3HT crossed diodes are
p-n rather than the Schottky type. In the linear regime of
the Ipg-Vpg curve, the device transconductance is g,
:(z?IDS/(?VGS)VDS=c0nst and the carrier mobility is then deter-
mined from u=g,L/ZC;Vps, where L and Z are the channel
length and width, respectively. C; is the capacitance per unit
area of the 200 nm thick SiO, layer (=17.5 nF/cm?). From
Fig. 3, we estimate the charge mobility for the SnO, FET
(L=110 um, Z=5 um) to be 3X 107> cm?/V s and for the
P3HT FET (L=10 um, Z=2 éum) to be 2X 1073 cm?/V s,
lower than reported values.™'*" Since the electrospinning
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FIG. 3. (a) Drain source current (Ipg) vs drain source voltage (Vpg) curves
for a single electrospun SnO, ribbon (open symbols-first quadrant axes)
when placed in a FET configuration for different gate bias voltages (=35, 0,
and 5 V). (b) Drain source current (Ipg) vs drain source voltage (Vpg) curves
for a single electrospun P3HT nanofiber (filled symbols-third quadrant axes)
when placed in a FET configuration for different gate bias voltages (—35, 0,
and 5 V).

technique likely produces ribbons and fibers that are amor-
phous due to the rapid evaporation of the solvent, it is not
surprising that charge mobility in these devices is small.
Treating the SiO, with a monolayer of octyltrichlorosilane is
expected to increase charge mobility.

The band gaps in P3HT and SnO, are approximately 2.2
and 3.4 eV, respectively, and when used in a FET configura-
tion, show that they make Ohmic contacts with Au (5.1 eV)
electrodes. The essential features of the asymmetric nonlin-
ear I-V curves in Fig. 2 can thus be understood qualitatively
based on the energy band diagram for a planar structure in
bulk p-n junctions.14 Diffusion of charge carriers (polarons
in P3HT and electrons in SnO,) across the junction sets up
an electric field of opposite polarity that prevents further dif-
fusion and creates a space charge region depleted of all mo-
bile charge across the interface. Band bending through the
space charge region helps establish a constant Fermi level in
thermal equilibrium resulting in a built-in potential barrier to
the flow of electrons from the conduction band of SnO, mov-
ing into the lowest unoccupied molecular orbital level of
P3HT, as shown in the lower inset to Fig. 2. Applying a
positive potential to the n-region with respect to the p-region
lowers the Fermi energy in the n-region increasing the bar-
rier height, preventing charge diffusion, and hence limiting
current flow (reverse bias). Applying a positive potential to
the p-region with respect to the n-region lowers the Fermi
energy in the p-region, decreasing the barrier height in the
p-region and allowing for charge diffusion across the junc-
tion, which constitutes a current (forward bias) that increases
exponentially under bias voltage as governed by the Fermi—
Dirac occupancy function. Under such conditions, in an ideal
diode, the current-voltage curve can be described by the
equation'® I=1[exp(eV/nkzT)—1], where Ig is the reverse
bias saturation current, e is the electronic charge, and n rep-
resents the ideality factor; kg and T represent the Boltzmann
factor and temperature, respectively. Figure 4 shows the di-
ode characteristics near the turn-on region and the inset
shows the semilogarithmic plot of the diode current versus
applied voltage under forward bias conditions. Extrapolating
the linear portion of the semilog plot to zero bias yields a
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FIG. 4. Expanded plot at low bias voltage of the -V curve shown in Fig. 2.
Inset: semilog plot of the forward bias current as a function of forward bias
voltage.

reverse bias saturation current of 0.022 pA and the diode
ideality factor was calculated to be n=2.2.

Being transparent, SnO, is insensitive to visible light,
but its conductivity is enhanced in the presence of UV light
(A=365 nm). This is most likely due to the removal of ad-
sorbed oxygen species releasing the surface bound electrons
that contribute to the observed current and due to photoexci-
tation of electrons from the valence to the conduction
band,z”4 which motivated us to test the diode as a light sen-
sor. Figure 5 shows these results in an as prepared device
measured in vacuum, before, during, and after exposure to
UV light. The on state current increases in the presence of

400

FIG. 5. Current-voltage (I-V) characteristic curves for the p-n diode when
used as a UV light sensor: ([J) in the absence of UV, (O) in the presence of
(UV), and (A) after the UV light source was switched off. Inset: I-V char-
acteristic curves for the device fabricated from a SnO, ribbon crossed with
a P3HT drop cast film: ((J) in the absence of UV and (O) in the presence of
uv.

Appl. Phys. Lett. 94, 083504 (2009)

UV and the device returns to its original state after UV ex-
posure. The inset in Fig. 5 shows the same measurements on
a diode made from a thin P3HT film cast over the SnO,
ribbon. While the response is similar, the relative changes are
larger in the “nanofiber” diode due to the increased surface to
volume ratio of the fiber over the film and confirms the su-
perior nature of such diodes when used as sensors.

In summary, we present a facile and inexpensive method
of fabricating p-n diodes in air and within seconds using the
electrospinning technique. The diodes show clear evidence
of rectification in air or in vacuum, under ambient illumina-
tion or in the dark, with a rectification ratio of ~25. The
device was analyzed using the diode equation and yielded an
ideality parameter of ~2.2 and a turn-on voltage in the range
of 0.2-0.4 V. These low turn-on voltages are beneficial for
polymer based electronics that currently operate under high
biases. Device parameters could be improved by using crys-
talline materials at the expense however of compromising
the simple fabrication technique outlined here. UV light ex-
posure increases the diode on state current, while light re-
moval resets the device. Diodes were also fabricated by drop
casting films of P3HT over individual SnO, ribbons, but
were relatively less sensitive to UV light. The high surface to
volume ratio of the nanofiber, low turn-on voltages, and re-
sponse to UV light, make this device attractive for use as low
power consumption diodes and reusable sensors.

This work was supported in part by NSF under Grant
Nos. RUI-0703544 and PREM-0353730 and by the DoD un-
der Grant No. WO11NF-06-1-0519. R.A. acknowledges sup-
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