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Quasiatomic orbitals for ab initio tight-binding analysis

Abstract
Wave functions obtained from plane-wave density-functional theory (DFT) calculations using norm-
conserving pseudopotential, ultrasoft pseudopotential, or projector augmented-wave method are efficiently
and robustly transformed into a set of spatially localized nonorthogonal quasiatomic orbitals (QOs) with
pseudoangular momentum quantum numbers. We demonstrate that these minimal-basis orbitals can exactly
reproduce all the electronic structure information below an energy threshold represented in the form of
environment-dependent tight-binding Hamiltonian and overlap matrices. Band structure, density of states,
and the Fermi surface are calculated from this real-space tight-binding representation for various extended
systems (Si, SiC, Fe, and Mo) and compared with plane-wave DFT results. The Mulliken charge and bond
order analyses are performed under QO basis set, which satisfy sum rules. The present work validates the
general applicability of Slater and Koster's scheme of linear combinations of atomic orbitals and points to
future ab initio tight-binding parametrizations and linear-scaling DFT development.
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Wave functions obtained from plane-wave density-functional theory �DFT� calculations using norm-
conserving pseudopotential, ultrasoft pseudopotential, or projector augmented-wave method are efficiently and
robustly transformed into a set of spatially localized nonorthogonal quasiatomic orbitals �QOs� with pseudoan-
gular momentum quantum numbers. We demonstrate that these minimal-basis orbitals can exactly reproduce
all the electronic structure information below an energy threshold represented in the form of environment-
dependent tight-binding Hamiltonian and overlap matrices. Band structure, density of states, and the Fermi
surface are calculated from this real-space tight-binding representation for various extended systems �Si, SiC,
Fe, and Mo� and compared with plane-wave DFT results. The Mulliken charge and bond order analyses are
performed under QO basis set, which satisfy sum rules. The present work validates the general applicability of
Slater and Koster’s scheme of linear combinations of atomic orbitals and points to future ab initio tight-binding
parametrizations and linear-scaling DFT development.

DOI: 10.1103/PhysRevB.78.245112 PACS number�s�: 71.15.Ap, 71.18.�y, 71.20.�b

I. INTRODUCTION

Density-functional theory �DFT� �Refs. 1 and 2� has been
extensively developed in the past decades. For condensed-
matter systems, efficient supercell calculations using plane-
wave basis and ultrasoft pseudopotential �USPP� �Refs. 3–6�
or projector augmented wave �PAW� �Ref. 7� are now the
mainstream. Plane-wave basis is easy to implement. Its qual-
ity is continuously tunable and spatially homogeneous. The
drawback is that this “rich basis” can sometimes mask the
physical ingredients of a problem, making their detection and
distillation difficult. This becomes particularly clear when
one wants to develop a parametrized tight-binding �TB�
potential8–10 or classical empirical potential11 based on
plane-wave DFT results, often a crucial step in multiscale
modeling.12 For developing TB potentials, one usually fits to
the DFT total energy, forces, and quasiparticle energies ��n�
�band diagram�. However the plane-wave electronic-
structure information is still vastly underutilized in this TB
potential development process.

Modern TB approach assumes the existence of a minimal
basis of dimension qN, where N is the number of atoms and
q is a small prefactor �four for Si�, without explicitly stating
what these basis orbitals are. Under this minimal basis, the
electronic Hamiltonian is represented by a small matrix
HqN�qN

TB , which is parametrized13 and then explicitly diago-
nalized at runtime to get ��n

TB�. In contrast, under plane-wave
basis the basis-space dimension is pN, where p is a large
number, usually 102–103. The Kohn-Sham �KS� Hamil-
tonian represented under the plane-wave basis, HpN�pN

KS , is
often so large that it cannot be stored in computer memory.
So instead of direct diagonalization which yields the entire
eigenspectrum, matrix-free algorithms that only call upon
matrix-vector products are employed to find just a small por-
tion of the eigenspectrum ��n� at the low-energy end.14 This

is wise because the ground-state total energy and a great
majority of the system’s physical properties depend only on a
small portion of the electronic eigenstates with �n below or
near the Fermi energy �F.

Unlike many ab initio approaches that adopt explicit spa-
tially localized basis sets such as Slater-type orbitals �STOs�
and Gaussian-type orbitals �GTOs�,15 the defining character-
istic of the empirical TB approach is the unavailability of the
minimal-basis orbitals, which are declared to exist but never
shown explicitly. This leads to the following conundrum. In
constructing material-specific TB potentials,8–10 the HqN�qN

TB

matrix is parametrized but the qN�qN+1� /2 matrix elements
are not targets of fitting themselves because one does not
have access to their values since one never knows the
minimal-basis orbitals to start with. Instead, the fitting targets
are the eigenvalues of HqN�qN

TB and ��n
TB�, which are de-

manded to match the occupied eigenvalues ��n�occ of HpN�pN
KS

from plane-wave DFT calculation and perhaps a few unoc-
cupied ��n� as well. A transferable TB potential should have
the correct physical ingredients; but a great difficulty arises
here because ��n� in fact contain much less information than
the HqN�qN

TB matrix elements. From HqN�qN
TB matrix we can

get ��n
TB� but not vice versa. As fitting targets, not only are

the ��n
TB� much fewer in number than the matrix elements

�qN versus qN�qN+1� /2� but they are also much less physi-
cally transparent. The TB matrix elements must convey clear
spatial �both position and orientation� information, as is evi-
dent from the pp�, pd�, dd�, etc. analytic angular functions
in the original Slater-Koster linear combination of atomic
orbitals �LCAO� �Ref. 16� scheme. Physichemical effects
such as charge transfer, saturation, and screening8–10 should
manifest more directly in the matrix elements; but such in-
formation gets scrambled after diagonalization. For example,
if the fifth eigenvalue �n=5

TB at k= �111�� /3a in �-SiC crystal
is lower than that of plane-wave DFT by 0.2 eV, should one

PHYSICAL REVIEW B 78, 245112 �2008�

1098-0121/2008/78�24�/245112�22� ©2008 The American Physical Society245112-1

http://dx.doi.org/10.1103/PhysRevB.78.245112


increase the screening term8–10 in the TB model to get a
better fit or not? The answer will not be at all obvious since
�a� the k-space result masks the real-space physics and �b�
the eigenvalue reflects nothing about the spatial features of
the eigenfunction �	nk�. The information necessary for an-
swering the question is hidden in the wave functions �	n�
�now expanded in plane waves� and the electronic Hamil-
tonian HpN�pN

KS �now a huge matrix�. But the clues are simply
not sufficiently embedded in ��n�, which do not contain any
spatial information.17 Thus, the present empirical TB ap-
proach is similar to “shooting in the dark.”

It is thus desirable to come up with a systematic and nu-
merically robust method to distill information from plane-
wave DFT calculation into a TB representation. Philosophi-
cally this is the same as the “downfolding” procedure of
Andersen and Saha-Dasgupta.18 Namely, can we construct
the minimal-basis functions from �	n� explicitly? Can we get
HqN�qN

TB from HpN�pN
KS ? This HpN�pN

KS →HqN�qN
TB mapping

would work similar to a computer file compression because
HpN�pN

KS is a huge matrix and HqN�qN
TB is small. Can then the

compression be lossless? That is, can we retain exactly the
occupied eigenspectrum ��n�occ of HpN�pN

KS and perhaps a few
unoccupied ��n� as well? For modeling the total energy of
the system, only the occupied bands are important. But if one
is interested in transport properties,19 the low-energy portion
of the unoccupied bands will be important as well.

In this paper we present an explicit ab initio TB matrix
construction scheme based on plane-wave DFT calculations.
The present scheme is significantly improved over our pre-
vious developments20–24 in efficiency and stability and now
extended to work with USPP/PAW formalisms and popular
DFT programs such as VASP �Refs. 6 and 25� and DACAPO.26

The improved scheme no longer requires the computation
and storage of the wave functions of hundreds of unoccupied
DFT bands, reducing disk, memory, and CPU time require-
ments by orders of magnitude. But one also obtains con-
verged quasiatomic orbitals �QOs� of the previous
scheme20–24 as if infinite number of unoccupied bands were
taken—the “infiniband” limit that eliminates the so-called
unoccupied bands truncation error �UBTE�. The source code
of our method and input conditions for all examples in this
paper are put on the web.27 We will demonstrate through a
large number of examples that an “atomic orbital �AO�-like”
minimal basis can generally be constructed and are suffi-
ciently localized for both insulators and metals. These
examples27 demonstrate the physical soundness underlying
the environment-dependent TB approach.8 While we stop
short of giving material-specific parametrizations for the
HqN�qN

TB matrix elements, their physical properties will be
discussed with a view toward explicit parametrizations8–10

later.
Our method follows the general approach of the Wannier

function �WF�,28–40 which combines Bloch eigenstates ob-
tained from periodic cell calculation in k space to achieve
good localization in real space. Other than chemical analysis,
linear-scaling �order-N� methods,41–44 transport,45–47 modern
theory of polarization17 and magnetization,48 LDA+U �Refs.
49–51� and self-interaction correction,52 etc., also rely on
high-quality localized basis set. The WF approach guarantees
exact reproducibility of the occupied subspace and exponen-

tial localization in the case of a single band53 and isolated
bands in insulators.54

There is some indeterminacy �“gauge” freedom55,56� in
the WF approach. One could multiply a smooth phase func-
tion on the Bloch band states, and they would still be smooth
Bloch bands. One could also mix different band branches
and still maintain unitarity of the WF transform. Marzari and
Vanderbilt32 proposed the concept of maximally localized
Wannier functions �MLWFs� for an isolated group of bands
using the quadratic spread localization measure originally
proposed by Foster and Boys57 for molecular systems. Later
Souza et al.34 extended this scheme for entangled bands by
optimizing a subspace from a larger Hilbert space within a
certain energy window. Choosing the MLWF gauge for a
given energy window removes most indeterminacy in the
WF transform. Unfortunately, there is no closed-form solu-
tion for MLWF; so iterative numerical procedures must be
adopted, associated with which is the problem of finding
global minima. Despite the tremendous success of the
MLWF approach,32,34 there are still something to be desired
of in the way of a robust and physically transparent algo-
rithm, resulting in a great deal of recent activities.20–24,35–40

Here we take a different strategy.20–24 While maximal lo-
calization is a worthy goal, if there is no analytical solution
its attainment is sometimes uncertain. The question is, does
one really need maximal localization? May one be satisfied if
a set of WF orbitals can be constructed robustly, and they are
“localized enough”? The quasiatomic minimal-basis orbitals
�QUAMBOs� �Refs. 20–24� are constructed based on the
projection operation where one demands maximal similarity
between the minimal-basis orbitals with preselected atomic
orbitals with angular momentum quantum numbers. Since
“maximal similarity” is a quadratic problem, it has exact
solution and the numerical procedure is noniterative and
relatively straightforward. On the other hand, whether these
maximally similar WF orbitals are localized enough for the
practical purpose of ab initio TB analysis and constructing
ab initio TB potentials needs to be demonstrated, through a
large number of examples. Early results are encouraging. We
note that philosophically these minimal-basis orbitals “maxi-
mally similar” to atomic orbitals are probably closest to the
original idea of Slater and Koster16 of linear combinations of
atomic orbitals since using true atomic orbitals as minimal
basis leads to very poor accuracy compared to present-day
empirical TB potentials.8

This paper is organized as follows. In Sec. II we review
USPP and PAW formalisms required for properly defining
projection. In Sec. III nonorthogonal QOs within USPP and
PAW formalisms are derived for extended systems. In Sec.
IV ab initio tight-binding Hamiltonian and overlap matrices
are derived under the QO basis set. The Mulliken charge and
bond order �BO� analyses are also formulated for QO. To
demonstrate the efficiency and robustness of this method, in
Sec. V band structure, total density of states �DOS�, QO-
projected band structure, QO-projected density of states
�PDOS�, and the Fermi surface are calculated and compared
with plane-wave DFT results for various extended systems
�Si, �-SiC, Fe, and Mo�. In Sec. VI we discuss the similarity
and difference between QO and other localized orbitals. In
Sec. VII we summarize our work and discuss some future
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applications of quasiatomic orbitals. Finally, in the Appendix
we mathematically prove that QO is equivalent to the infinite
band limit of the quasiatomic minimal-basis orbital by Lu
and co-workers.20–24

II. PROJECTION OPERATION IN USPP/PAW

The computational cost of plane-wave DFT calculations is
strongly dependent on the selected type of pseudopotentials.
Compared to more traditional norm-conserving pseudopoten-
tials �NCPPs�, Vanderbilt’s USPP,3–5 and Blöchl’s PAW
method7 achieve dramatic savings for 2p and 3d elements
with minimal loss of accuracy. In this paper we implement
QO method with NCPP, USPP, and PAW method, which are
used in popular DFT codes such as VASP,6,25 DACAPO,26

PWSCF,58 CPMD,59 CP-PAW,60 and ABINIT.61 Currently we have
implemented interfaces to VASP and DACAPO.27 The formal-
isms of USPP/PAW method were reviewed in Ref. 19. Here
we just highlight the part important to quasiatomic orbitals,

which is the metric operator Ŝ.
The key idea behind USPP and PAW method is a mapping

of the true valence electron wave function 	̃�x� to a pseudo

wave function 	�x� : 	̃↔	, just as in any pseudopotential
scheme. However, by discarding the requirement that 	�x�
must be norm conserved �		 �	�=1� while matching 	̃�x�
outside the pseudopotential cutoff, a greater smoothness of
	�x� in the core region can be achieved; and therefore less
plane waves are required to represent 	�x�. In order for the
physics to still work, in USPP and PAW schemes one must
define augmentation charges in the core region and solve a
generalized eigenvalue problem,

Ĥ�	n� = �nŜ�	n� , �1�

where Ŝ is a Hermitian and positive definite operator. Ŝ de-
fines the fundamental metric of the linear Hilbert space of
pseudo wave functions. Since in USPP and PAW methods the
pseudo wave functions do not satisfy the norm-conserving
property, the inner product �	 ,	�� between two pseudo wave

functions is always 		�Ŝ�	�� instead of 		 �	��. The Ŝ opera-
tor is given by

Ŝ = 1 + 

i,j,I

qij
I ��i

I�	� j
I� , �2�

where i��
lm�� and I labels the ions. 
 and lm are the
orbital radial and angular quantum numbers.4 � is the spin.
In this paper, all “orbitals” are meant to be spin orbitals
although in the case of spin-unpolarized calculations, there is
a degeneracy of 2 in the orbital wave function and eigenen-
ergy. In above, the projector wave function �i

I�x��	x� ��i
I�

of atom I’s channel i is

�i
I�x� = �i�x − XI� , �3�

where XI is the ion position, and �i�x� vanishes outside the
pseudopotential cutoff.

Just like Ĥ, Ŝ contains contributions from all ions. Con-
sider a parallelepiped computational supercell of volume �,

with N ions inside. One usually performs L1�L2�L3 k sam-
pling in the supercell’s first Brillouin zone. For the sake of
clarity, let us define a Born–von Kármán �Bv� universe,
which is an L1�L2�L3 replica of the computational super-
cell, periodically wrapped around. So the Bv universe has
finite volume L1L2L3�, with a total of L1L2L3N ions. Using
Bloch’s theorem, it is easy to show that all the eigenstates in
the Bv universe can be labeled by L1L2L3 k’s of the
Monkhorst-Pack k mesh.62 The basic metric of function
length and inner product should be defined in the Bv uni-
verse,

�	,	�� � 		�Ŝ�	�� = �����
Bv

d3x	��x��Ŝ�	����x� . �4�

Ŝ above contains contributions from all L1L2L3N ions. With
the inner product defined in Eq. �4�, the projection of any
state ��� on �	� is straightforward;

P̂	��� �
�	,��
�	,	�

�	� =
		�Ŝ���

		�Ŝ�	�
�	� . �5�

Note that all functions discussed in this paper must be nomi-
nally periodic in the Bv universe. ��� could be AO-like. Even
though real AOs are represented in infinite space, this is not
a problem numerically so long as the AO extent is much
smaller than the size of the Bv universe. �The AO extent
does not need to be smaller than the computational supercell
�.�

It is easy to show that if

	�x − a� = 	�x�e−ik·a, 	��x − a� = 	��x�e−ik�·a, �6�

where k ,k��L1�L2�L3 k mesh and a= l1a1+ l2a2+ l3a3 is
an arbitrary integer combination of supercell edge vectors a1,
a2, and a3, then 	 and 	� will be orthogonal in the sense of
Eq. �4� unless k=k�. Consequently we can label 	 by k, e.g.,
	k�x� and 	k�

� �x�. 	k�x� can be expressed as the product of a
phase modulation eik·x and a periodic function uk�x� within
�. It is always advantageous to “think” in the Bv universe;
but employing Bloch’s theorem we often only need to “com-
pute” in the � supercell.

III. QUASIATOMIC ORBITAL CONSTRUCTION

From a plane-wave calculation using USPP or PAW
method, we obtain Bloch eigenstates labeled by supercell k
and band index n �occupied� or n̄ �unoccupied; we use index
with bar on top to label unoccupied states�. n labels both the
wave function and spin of the eigenstates although there is
often an energy degeneracy of 2. These supercell Bloch
states �	nk�, �	n̄k� are often delocalized making them hard to
visualize and interpret. An alternative representation of elec-
tronic wave function and bonding is often needed in the fla-
vor of the LCAO �Ref. 16� or tight-binding8–10 approach.
Ideally, this representation should have features such as
exponential localization of the basis orbitals,53 should be
“AO-like,” and should retain all the information of the origi-
nal Bloch eigenstates expressed in plane waves, at least of all
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the occupied Bloch states �	nk� so they can be losslessly
reconstructed.

QO is a projection-based noniterative approach. It
was first implemented by Lu and co-workers,20–24 called
QUAMBO, after the work of Ruedenberg et al.63 on molecu-
lar systems. The basic idea is illustrated in Fig. 1. The ob-
jective is to seek an optimized subspace Q containing the
occupied �	nk� in its entirety plus a limited set of combined
unoccupied �cmk� wave functions to be determined, such that
the atomic orbitals have maximal sum of their projection
squares onto this subspace. The dimension of this “optimized
Bloch subspace” is constrained to be that of the minimal
�tight-binding� basis, and �	nk� and �cmk� form an orthonor-
mal basis for it. But the “shadows” of the AOs projected onto
this subspace, which are the QOs, can represent the subspace
equally well, forming a nonorthogonal but also complete ba-
sis for the subspace. Furthermore, since the QOs are maxi-
mally similar to the AOs �under the constraint that they con-
tain �	nk� exactly�, their localization properties should be
“good.”

It is important to realize that here we are doing dimension
reduction, and the optimized subspace is but a small part of
the entire function space, which is infinite dimensional.
Since each AO makes one shadow and we use all shadows
collected on the plane as nonorthogonal complete basis for
the subspace, the total dimension of the subspace has to be
qL1L2L3N, where q is the average number of AOs per atom.
With the minimal-basis scheme, q should be eight for Si and
C, and the AOs are �s↑ , px↑ , py↑ , pz↑ ;s↓ , px↓ , py↓ , pz↓�. If
we take the smallest supercell admissible for diamond cubic
Si, for instance, then N=2 and the dimension of the opti-
mized subspace has to be 16L1L2L3, which is equal to the

total number of AOs in the Bv universe. Since we have
L1L2L3 k points, this comes down to 16 	nk ,cmk’s per k.
Because there are eight occupied 	nk’s at each k point �dou-
bly degenerate in wave function and energy though�, we
need to choose eight complementary cmk’s per k. These eight
cmk’s will be chosen from the unoccupied �	n̄k� subspace,
which is infinite dimensional. The whole process can be vi-
sualized as rotating the plane around the 	nk axis in Fig. 1
and seeking the orientation where the longest shadows fall
onto the plane �subspace Q�.

Two remarks are in order. First, the label occupied can be
replaced by “desired” Bloch wave functions in Fig. 1. While
many problems such as fitting TB potentials are mainly con-
cerned with reproducing the occupied bands and the total
energy using a minimal basis, problems such as excited-state
calculations require more bands to be reproduced. Then, one
just needs to generalize the meaning of band index n in Fig.
1 from occupied to desired bands. To be able to do this and
still retain AO-like characters, the size of the subspace may
necessarily be expanded, for example, from �3s ,3p� �q=8�
to �3s ,3p ,4s ,3d� �q=20� for Si, and then the “minimal ba-
sis” is taken to mean the minimal set of AO-like orbitals to
reproduce the desired bands, whatever they may be, instead
of just the occupied bands. Indeed, a utility of the present
QO scheme is to quantitatively guide the user in deciding �a�
when to expand, �b� how to expand, and �c� the effectiveness
of representing the desired part of the electronic structure in
AO-like orbitals with pseudoangular momentum quantum
numbers. Formally, denote the subspace we want to repro-
duce at each k by R�k���	nk�. Then, the wave functions we
do not desire to reproduce at each k form a complementary
subspace R�k���	n̄k�, which is infinite dimensional. We
note that 	dim R�k��=rN, but dim R�k� or R�k� generally
may not be a continuous function of k. For instance in met-
als, the Fermi energy �F cuts across continuous bands, and
the set of occupied bands is not a continuous function of k.
We shall call any mathematical or numerical feature caused
by a discontinuity in the to-be-reproduced R�k� as being
caused by “type-I” discontinuity.

Second, note that the subspace Q we seek in Fig. 1 in the
Bv universe can be decomposed into smaller subspaces la-
beled by the Bloch k’s that are mutually orthogonal;

Q = Q�k1� � Q�k2� � ¯ � Q�kL1L2L3
� . �7�

Therefore, the length squared of an AO’s shadow in Q is
exactly the sum of the projected length squared onto every
smaller plane Q�k�. If without any other considerations, the
choice of the best rotation can be made independently for
each k;

Q�k� = R�k� � C�k�, C�k� � R�k� , �8�

with

dim Q�k� = qN ,

dim C�k� = qN − dim R�k� ,

n� k mc k

1AO

2AO

1QO
2QO

optimized combinations
of unoccupied Bloch

wavefunctions CC

occupied Bloch
wavefunctions RR

optimized subspace QQ

FIG. 1. �Color online� Illustration of QO construction. We seek
a reduced optimized subspace Q spanned by the desired Bloch
wave functions �	nk� plus a limited number of �cmk� wave functions
to be determined, such that the AOs have maximal sum of their
projection squares onto the subspace Q. Once this optimized sub-
space is determined, the QOs, which are the shadows �projections�
of the AOs onto the subspace, form a nonorthogonal but complete
basis for subspace Q. The QOs can then be used to reconstruct all
the desired Bloch wave functions �	nk� without loss. This means
that in a variational calculation using the QO basis for this particu-
lar configuration would achieve the same total energy minimum as
the full plane-wave basis. Furthermore since the QOs are maximally
similar to the AOs, they inherit most of the AO characters.
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	dim R�k�� = rN .

Note that all Q�k� planes are of equal dimension qN. For
each AO, one picks up a distinct shadow �QO�k��
= P̂Q�k��AO� on each Q�k� plane, then simply adds these
�QO�k��’s together to get the corresponding QO.

C�k���cmk� is the choice of 	n̄k combinations,

cmk = 

n̄

Cmn̄�k�	n̄k. �9�

Here, C�k���Cmn̄�k�� is theoretically a dim C�k�� ma-
trix. We note that in Eq. �8�, only the total function content
belonging to subspace C�k� is important so any unitary trans-
formation UC�k� is equivalent to the original choice C�k�,
where U is dim C�k��dim C�k� matrix and U†U=I. Also,
even if R�k� and R�k� are continuous, C�k� does not have to
be continuous in k, in the same way that the minimum ei-
genvalue of a continuous matrix function A�k� may not be
continuous in k due to eigenvalue crossings. We call such
discontinuity in function content of Q�k� �not its dimension�,
which is not caused by discontinuity in R�k�, “type-II” dis-
continuity. Both type-I and type-II discontinuities could
negatively influence the localization properties of QOs, in
the same way that the Fourier transform of a step function or
functions containing higher-order discontinuities causes al-
gebraic tails in the transformed function.53 Algebraic decay,
however, is not necessarily a show stopper.

In our previous development,20–24 the “rotation” in Fig. 1
was formulated as a matrix problem with explicit �	n̄k� wave
functions as the basis. While formally exact, in practice it
requires the computation and storage of a large number of
	n̄k’s, which are then loaded into the postprocessing program
to be taken in the inner product with the AOs. The disk space
required to store the 	n̄k’s can run up to tens of gigabytes.
Still, one has finite UBTE, which can severely impact the
stability of the program. For instance, it was found that when
�s , p ,d� AOs �q=18� are used for each Mo atom in bcc Mo,
the condition number of the constructed QO overlap matrix
is so bad that the numerically calculated TB bands turn sin-
gular at some k points unless exorbitant numbers of unoccu-
pied bands are kept. The bad condition number problem can
be somewhat alleviated if �s ,d� AOs �q=12� are used instead
of �s , p ,d�.24 But such solutions are fundamentally unsatis-
factory because it is the user’s prerogative to decide what is
the proper “minimal” basis for the physics one wants to rep-
resent and be able to use a richer QO basis if one desires.

It was found recently that a great majority of the bad
condition number problems of the previous scheme20–24 were
associated with UBTE. In this work, by resorting to the
resolution-of-identity property of the unoccupied subspace
R�k�, we avoid Eq. �9� representation all together. This not
only eliminates the requirement to save a large number of
	n̄k’s, reducing disk, memory, and memory time require-
ments by orders of magnitude but also eliminates UBTE as a
source of bad condition number. This allows one to construct
arbitrarily rich QO basis for bcc Mo such as �s ,d� and
�s , p ,d� within reasonable computational cost without suffer-
ing the UBTE problem �shown in Sec. V D�.

Before we move onto the algorithmic details, it is instruc-
tive to define qualitatively what we expect at the end. Let us
use

	x��AIi� = AIi�x� = Ai�x − XI� �10�

to denote the AOs, where I labels the ion and i��
lm� is the
radial and angular quantum numbers. The AO themselves
�e.g., s, px, py, and pz� are highly distinct from each other.
Indeed, if there were just one isolated atom in a big super-
cell, AOs of different angular momentum are orthogonal to
each other. When there are multiple atoms in the supercell

and the metric Ŝ contains projectors from all ion centers, this
orthogonality between AO pseudo wave functions on the
same site is no longer rigorously true since two orbitals both
centered at XI could still overlap in regions covered by other
projectors ��i

I�	� j
I�. �The AO pseudo wave functions are

spherical harmonics representing full rotation group, whereas

Ŝ has crystal group symmetry.� Nonetheless, AOs of different
angular momentum should be nearly orthogonal and should
be highly distinguishable from each other. The same can be
said for two AOs, Ai�x−XI� and Aj�x−XJ�, centered on two
different ions. While this is obviously not true if �XJ−XI�
→0, in most systems XI and XJ are well separated by 1 Å or
more between nonhydrogen elements.64 The full rankness of
the AO basis in Bv universe guarantees the well behaving
�not the same as accuracy� of the numerical LCAO energy
bands in the entire Brillouin zone. If this is not the case, in
particular if the AO overlap matrix is rank deficient when
projected onto some k point, then the band eigenvalues can-
not be obtained in a well-posed manner, and it would mani-
fest as numerical singularities at the k point in the LCAO
energy-band diagram due to bad condition number.

Corresponding to each AO, there is a shadow in the opti-
mized subspace, the QO,

	x��QIi� = QIi�x� . �11�

Even though QIi�x� is no longer rigorously spherical har-
monic, in the spirit of LCAO �QIi� should inherit the main
characters of �AIi�, and therefore should also be highly dis-
tinct. In other words, when presented with three-dimensional
�3D� rendering of the QO orbitals, one should be able to
recognize instantly that this is a “px-like” QO on atom I, that
this is a “dx2−y2-like” QO on atom J, etc. If this is impossible,
the results would not be considered satisfactory even if these
orbitals are localized. Also, since the AOs have identical or
similar lengths, their shadows on Q should do too. It is not
good news if one shadow is too short, as in the extreme limit
of a zero-length shadow if one of the AOs is perpendicular to
Q in Fig. 1. In fact, this needs to hold true for each subplane
Q�k�: if for whatever reason, a particular AO is nearly per-
pendicular to Q�k�, it inevitably spells numerical trouble
around that k.

Mathematically the above translates to the following. If
�	nk ,cmk� are individually normalized �they are orthogonal
by construction�, then the linear transformation matrix �k
connecting �QIi,k� to �	nk ,cmk� must have a reasonable con-
dition number �, defined here as the ratio of the maximal to
minimal eigenvalues of �k

†�k. The following pathology
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can be identified by a large �, which is that one QO�k�
orbital can be expressed as or well approximated by a linear
combination of other QO�k� orbitals. The QO�k�’s are sup-
posedly highly distinct from each other and linearly indepen-
dent and have reasonable norms �the AO�k�’s are, otherwise
there will not be well posed, let alone accurate, LCAO
bands16 near that k if the AOs are literally inserted into real-
space DFT codes such as FIREBALL �Ref. 65� or SIESTA �Ref.
43��. A large condition number would mean this is close to
becoming false. This pathology happened in reality, for ex-
ample, when we attempted to use �s , p ,d� AOs for each Mo
atom �q=18� in extracting QOs for bcc Mo with the previous
scheme.24 The bad condition number �due to UBTE� corre-
sponds to nearly linearly dependent QO orbitals when pro-
jected onto some k point, which means that some of the
QO�k�’s have lost their distinct character or have become
very small.

This good condition number criterion provides a quanti-
tative measure of what constitutes a good minimal basis for
solid-state systems. While it has not been proved that AO-
like minimal basis can be found for all molecular63 and solid-
state systems, experiences with QO show that for the vast
majority of systems, a very satisfactory minimal basis can be
found �good condition number and good localization�. In-
deed, by changing the AOs “as little as possible” while main-
taining the �	nk� band structure, we believe QO fulfills the
true spirit of LCAO.16

A. Optimized combination subspace

From a plane-wave calculation we obtain the occupied or
the to-be-reproduced Bloch eigenstates,

Ĥ�	nk� = �nkŜ�	nk�, n = 1,2, . . . ,Rk, �12�

as well as some other Bloch eigenstates that belong to the
infinite-dimensional subspace R�k�;

Ĥ�	n̄k� = �n̄kŜ�	n̄k� . �13�

When averaged over the Brillouin zone, we have 	Rk�=Nr,
but Rk can vary with k. Different Bloch states are orthogonal
to each other. Let us choose normalization

	nk2 � �	nk,	nk� = 		nk�Ŝ�	nk� = 1, �14�

	n̄k2 � �	n̄k,	n̄k� = 		n̄k�Ŝ�	n̄k� = 1. �15�

We seek an optimized combination subspace C�k��R�k�,
consisting of mutually orthonormal states �cmk�, m
=1,2 , . . . ,Ck, to maximize the “sum-over-square” similarity
measure L or the total sum of AO projection squares onto the
subspace defined by �	nk� and �cmk�,

max L � max 

Ii
��


nk
P̂	nk

+ 

mk

P̂cmk��AIi��2
. �16�

The cmk themselves are linear combinations of 	n̄k. Ck=qN
−Rk. One may raise two questions. First, why shall we
choose �cmk� to be orthonormal? Actually one could choose a
set of nonorthonormal states �c̄mk� as long as they span the

same subspace as �cmk�. Correspondingly, the projection op-

erator, P̂�cmk��
mkP̂cmk
, for orthonormal states �cmk� in Eq.

�16� should be replaced by the generalized projection opera-
tor for nonorthonormal states �c̄mk�, which is defined as

P̂�c̄mk� � 

ll�,k

�c̄lk��Ok
−1�ll�	c̄lk� , �17�

where Ok is the overlap matrix between c̄lk’s. Here,

�Ok�ll� = 	c̄lk�Ŝ�c̄l�k� . �18�

However, one could easily show that the projection operators
for both cases are exactly equivalent to each other,

P̂�cmk� = P̂�c̄mk�. �19�

This is because both length and direction of the projection of
any vector onto a hyperplane �or a subspace� do not depend
on how we choose the relative angle and length of basis
vectors to represent this hyperplane. Therefore, purely for
later convenience we would like to choose a set of orthonor-
mal states �cmk�. The second question is: why shall we sepa-

rate 
nkP̂	nk
from 
mkP̂cmk

? That is because our main goal is
to preserve the subspace �	nk� and then choose �cmk� to
maximize the sum-over-square projection. From the discus-
sion on the first question we can see that once the occupied
Bloch subspace �	nk� is chosen, the total sum-over-square

projection, 
Ii
nkP̂	nk
�AIi�2, of all the AOs onto the occu-

pied Bloch subspace defined in Eq. �16� is fixed. One then
only needs to focus on how to choose the hyperplane �or
subspace� defined by �cmk� from the unoccupied Bloch sub-
space R�k� to maximize the total sum of projection squares
of AOs on this hyperplane.

The QUAMBO construction of Lu and co-workers20–24

obtains �cmk� by explicitly rotating a number of 	n̄k’s. This
scheme often suffers from bad condition number problem
numerically due to UBTE. It is often worse in metals and
confined systems, where the AO’s corresponding antibonding
Bloch states, especially at � point, exist at very high ener-
gies. Therefore the original QUAMBO construction often re-
quires obtaining hundreds of 	n̄k’s at each k point to include
the antibonding states and be able to form the bonding-
antibonding closure;37 otherwise bad condition number
would result. A simple example is to consider a hydrogen
molecule far away from a metallic substrate with no physical
interaction between them. The bonding state �s1�+ �s2� be-
longs to the 	nk’s. The antibonding state �s1�− �s2� belongs to
the 	n̄k’s, but it could be higher in energy than many metallic
	n̄k states and may not be selected as basis for rotation. �s1�
is AO1 and �s2� is AO2. We can see from Fig. 1 that if �s1�
− �s2� is not included in the explicit 	n̄k basis in which the
plane could rotate in, then both AO1 and AO2 will always
have the same “shadow” ��s1�+ �s2�� on the plane no matter
how the plane rotates. This then results in bad condition
number. UBTE-caused closure failure can also happen in
MLWF construction. However, in the case of MLWF, one
may get bond-centered instead of atom-centered MLWFs af-
ter localization extremization. But QUAMBO similarity
maximization would just fail numerically.
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A closer inspection of Fig. 1 reveals that a better method
may be found. First, we note that the combination subspace
C�k� we seek is a subspace of R�k�. R�k� itself is infinite
dimensional, but much of R�k� has no overlap with the des-
ignated AOs since there is only a finite number of these AOs.
Those parts of R�k� with no overlap to the AOs would not
improve similarity with the designated AOs even if included.
And thus they can be excluded from the basis for rotation. In
other words, R�k� can be further decomposed as

R�k� = A�k� � N�k� , �20�

where A�k� has overlap with the AOs but N�k� has none.
The assertion here is that choosing C�k��A�k��R�k� will
just give identical result �same similarity measure and
shadow wave functions� as C�k��R�k�. Because A�k� is
supposedly finite dimensional �in fact dim A�k�=qN�, one
just needs to find basis functions for A�k� and perform rota-
tion in this finite subspace rather than finding the infinite
�	n̄k� basis functions for R�k� and rotating in R�k�.

To proceed, let us first define

AIi,k�x� � 

L=1

L1L2L3

AIi�x − XL�eik·XL, �21�

which is a linear superposition of translated AOs in the Bv
universe with Bloch phase factors. XL= l1a1+ l2a2+ l3a3 is an
integer combination of supercell edge vectors. AIi,k�x� is
clearly a Bloch state,

AIi,k�x − a� = AIi,k�x�e−ik·a, �22�

and is just the projection �un-normalized� of �AIi� onto Bloch
subspace B�k��R�k��R�k�. Because of this, �AIi,k� can be
further decomposed into a component that belongs to R�k�
and a component that belongs to R�k�;

�AIi,k� = �AIi,k
 � + �AIi,k

� � , �23�

where

�AIi,k
 � � 


n

P̂	nk
�AIi,k� � R�k� , �24�

and

�AIi,k
� � = �AIi,k� − 


n

P̂	nk
�AIi,k� � R�k� . �25�

�AIi,k
 � and �AIi,k

� � can be calculated straightforwardly in plane-
wave basis according to Eqs. �21�, �24�, and �25� without
knowing the �	n̄k�’s explicitly. Similarly we can decompose
QOs which are the projections of AOs into parallel and per-
pendicular part,

�QIi,k� = �QIi,k
 � + �QIi,k

� � , �26�

�QIi,k
 � = 


n

P̂	nk
�AIi,k� , �27�

�QIi,k
� � = 


m

P̂cmk
�AIi,k� . �28�

It is clearly �QIi,k
 �= �AIi,k

 �. Therefore, the sum-over-square
similarity measure L which we want to maximize in Eq. �16�
can be simply rewritten as

L = 

Ii
��


k
�QIi,k

 ��2
+ �


k
�QIi,k

� ��2� . �29�

This can be seen clearly in Fig. 1 from geometrical view,
where the L measure is the sum of AO projection squares or
the sum of length squares of QOs on the subspace Q formed
by occupied Bloch subspace R and the combination sub-
space C. QOs as the shadow of AOs have different lengths
and directions if different C is chosen. Therefore, one is try-
ing to “hold” �preserve� subspace R and “rotate” �search� C
in unoccupied Bloch subspace R to maximize the sum of
QO length squares.

Furthermore, any Bloch state �bk��B�k� orthogonal to
�AIi,k

 � and �AIi,k
� � must be orthogonal to �AIi,k� and vice versa.

Including such �bk� in the basis for Q�k� optimization in Fig.
1 will not improve similarity with this AO and thus can be
excluded. So we only need to optimize Q�k� within �AIi,k

 �
and �AIi,k

� �. Because �AIi,k
 ��R�k� and R�k� will anyhow be

included in Q�k�=R�k��C�k�, it is thus only necessary to
optimize C�k� within the subspace �AIi,k

� �, which we identify
to be A�k�. Clearly, dim A�k�=qN. All we need to do then is
to find a Ck=qN−Rk dimensional optimized combination
subspace Ck�A�k�.

The QO approach proposed here is similar to the pro-
jected atomic orbitals �PAO� approach of Sæbø and
Pulay66–68 for molecular systems. By combining Eqs.
�23�–�25� and �29� we have

max L = 

Ii

�

k

�QIi,k
 ��2

+ max 

Ii
�


mk
P̂cmk

�AIi,k��2

= 

Ii

�

k

�QIi,k
 ��2

+ max 

Ii
�


mk
P̂cmk

�AIi,k
� ��2

.

�30�

In the above equation we have used the fact that P̂cmk
�AIi,k

 �
=0 due to the orthogonality between 	nk and cmk. Moreover,
as we have argued above, optimized combination subspace
Ck formed by �cmk� is a subset of A�k� formed by �AIi,k

� �.
This means that we are seeking a transformation matrix Vk
such that

�cmk� = 

Ii

�Vk�Ii,m�AIi,k
� � . �31�

As we have mentioned earlier, due to Eq. �19� we can force
ourselves to search a set of orthonormal states for the sake of
convenience. Thus combined with Eq. �31�, it immediately
leads to

	cmk�Ŝ�cm�k� = 

Ii,Jj

�Vk�Ii,m
� �Vk�Jj,m�	AIi,k

� �Ŝ�AJj,k
� � = �mm�.

�32�
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We denote the overlap matrix between �AIi,k
� � as Wk,

�Wk�Ii,Jj � �AIi,k
� ,AJj,k

� � = 	AIi,k
� �Ŝ�AJj,k

� � . �33�

Then the orthonormal condition of �cmk� in Eq. �32� basically
states that

Vk
†WkVk = ICk�Ck

. �34�

We notice that the overlap matrix Wk is a Gramian matrix
which is positive semidefinite as we show in the Appendix.
Meanwhile, it can be diagonalized by a unitary matrix Vk
such that Wk=VkYkVk

†, where VkVk
† =IqN�qN, and the diag-

onal matrix Yk contains all the non-negative real eigenval-
ues. Therefore, Eq. �32� suggests Vk

†VkYkVk
†Vk=ICk�Ck

.
The solution for Vk is

�Vk�Ii,m = �Vk�Ii,m�Yk�mm
−1/2, �35�

where Ii=1,2 , . . . ,qN. Obviously any Ck positive eigenval-
ues �Yk�mm of Wk matrix �as we have mentioned above, all
the eigenvalues of Wk matrix are non-negative real values�
and their corresponding eigenvectors �Vk�Ii,m will give a
proper Vk matrix which satisfies the orthonormal condition
for �cmk� in Eq. �32�. We then come back to the problem of
maximizing the sum of projection squares L by choosing the
“best” set of �Yk�mm and their eigenvectors. From Eq. �30�
we only need to maximize the sum of projection squares on
the subspace �cmk� since the sum of projection squares on
�	nk� is fixed. Therefore, using Eqs. �30�–�33� and �35� we
have

max 

Ii
�


mk
P̂cmk

�AIi,k
� ��2

= max 

Ii



mk

	AIi,k
� �Ŝ�cmk�	cmk�Ŝ�AIi,k

� �

= max 

Ii,mk



Jj,J�j�

�Wk�Ii,Jj�Vk�Jj,m�Vk�J�j�,m
† �Wk�J�j�,Ii

= max 

k

Tr�WkVkVk
†Wk� , �36�

where “Tr” means the trace. Thus, Eq. �16� for maximizing
the total sum of projection squares is rewritten in the follow-
ing simple form:

max L = 

Ii

�

k

�QIi,k
 ��2

+ max 

k

Tr�WkVkVk
†Wk�

�37�

=

Ii

�

k

�QIi,k
 ��2

+ max 

mk

�Yk�mm, �38�

where 
m�Yk�mm basically sums all the Ck eigenvalues arbi-
trarily chosen from the total qN non-negative real eigenval-
ues of Wk matrix. Therefore, the equation above suggests
that by choosing the largest Ck eigenvalues and their corre-
sponding eigenvectors we will maximize the total sum of
projection squares L. Consequently �cmk� are obtained from
Eqs. �31� and �35�.

To use �	nk� and �cmk� in band-structure and Fermi-
surface calculations we have to construct Hamiltonian matrix

�k between any two functions in �	nk ,cmk�. Since �	nk� are
eigenfunctions of the Kohn-Sham Hamiltonian,

��k�n,n� � 		nk�Ĥ�	n�k� = �nk�nn�, �39�

with n ,n�=1,2 , . . . ,Rk. It is also obvious that the matrix

element of Ĥ between 	nk and cmk is always zero since they
are from two different Bloch eigensubspaces,

��k�n,m+Rk
� 		nk�Ĥ�cmk� = 0,

��k�m+Rk,n � 	cmk�Ĥ�	nk� = 0, �40�

where n=1,2 , . . . ,Rk and m=1,2 , . . . ,Ck. Although �cmk�
comes from diagonalization of Wk, it is not an eigenfunction
of the Kohn-Sham Hamiltonian. Thus the matrix elements of
�k between two different cmk’s at the same k may not be zero

and we have to use the Kohn-Sham Hamiltonian Ĥ to calcu-
late this part of �k explicitly,

��k�m+Rk,m�+Rk
� 	cmk�Ĥ�cm�k� , �41�

with m ,m�=1,2 , . . . ,Ck. In the end, the matrix �k consists of
a diagonal submatrix for the occupied Bloch subspace R�k�,
a nondiagonal square submatrix for the optimized combina-
tion subspace C�k�, and two rectangular zero matrices be-
tween R�k� and C�k�.

We can now merge the basis functions for R�k� and C�k�,

��nk� = �	nk� � �cmk� , �42�

where ��nk� then constitutes a qN-dimensional basis for
Q�k�, which is orthonormal,

	�nk�Ŝ��n�k� = �nn�, n,n� = 1, . . . ,qN , �43�

in the sense of the Bv universe �Eq. �4��. According to Fig. 1,
the QO is just

�QIi� = 

nk

P̂�nk
�AIi� = 


nk
��k�n,Ii��nk� , �44�

where n=1, . . . ,qN, k runs over 1 , . . . ,L1L2L3 Monkhorst-
Pack grid, and

��k�n,Ii � 	�nk�Ŝ�AIi� �45�

is a qN�qN matrix. Actually one could further rescale �QIi�
by a constant such that QIi satisfies the normalization condi-

tion, 	QIi�Ŝ�QIi�=1, while this simple rescaling procedure
will not affect the Mulliken charge and bond order analysis.
Furthermore, one could perform Löwdin transformation to
obtain a set of orthonormal QOs. Both transformations will
not affect the band-structure calculations.

QO procedures �21�–�45� maximize the overall similarity
measure �Eq. �16�� and in fact give identical results as the
original QUAMBO scheme20–24 in the infinite band limit.
The proof is given in the Appendix.

B. Choosing reproduced subspace R(k)

QO procedures �21�–�45� rely on a preselection of to-be-
reproduced Bloch subspace R�k�. It is necessary to give the
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user this freedom because it is up to the user to define which
parts of the electronic structure are important and need to be
preserved. For properties related to ground-state total ener-
gies, obviously the occupied bands are important. Therefore
a quasiparticle energy-based selection criterion can be
adopted, where all eigenstates whose energies are below a
threshold energy �th several eV above the Fermi energy �F

are included in R�k�. On the other hand, a particular energy
window of the unoccupied bands may be important for opti-
cal absorption at certain frequency or electronic transport at a
certain bias voltage,19,45–47 and they may need to be included
in R�k�. One may even choose to include in R�k� a certain
continuous band at all k points irrespective of its eigenener-
gies if that band is deemed important for transport or chemi-
cal properties.

In the present QO scheme, say with an energy-based se-
lection criterion, the distinction between selected and unse-
lected is “sharp.” That is, a Bloch eigenfunction is either
chosen �1� or not chosen �0� to be in R�k�. There is no
grayscale in between, and depending on 1 or 0 the eigenfunc-
tion will be treated differently in the algorithm. A certain 	nk
may be in R�k�, but with just infinitesimal change in k and
wave function character, and could be excluded in R�k
+dk�. Such sharp type-I discontinuities in the Brillouin zone
always lead to “long-ranged” interactions in real space
�meaning algebraic instead of exponential decay with
distance53�. For example, in metals sharp type-I discontinui-
ties in the occupation number at low temperature give rise to
physical effects such as the Kohn anomaly �long-ranged in-
teratomic force constants leading to weak singularities in the
phonon-dispersion relation�69 that can be measured by neu-
tron scattering.70

Therefore type-I discontinuity is not just a numerical
and/or algorithmic problem specific to QO but is also a
physical and quite inherent issue in metals. Numerical tech-
niques such as Fermi-Dirac smearing or Methfessel-Paxton
smearing71 with artificially chosen smearing widths have
been used to regularize type-I discontinuity in total-energy
calculations. In fact, without such artificial smearing it is
quite challenging to obtain well-behaving �smooth� total en-
ergy and forces numerically in traditional DFT calculations.
One thus wonders whether a similar approach can be applied
to R�k� selection. We think this can be done by assigning
weighting function f��nk� to Eqs. �24� and �25� projections
that smoothly varies from 1 to 0 around �th. In such case,
�AIi,k

 � and �AIi,k
� � will no longer be rigorously orthogonal,

and a weighted joint 2qN�2qN overlap matrix will be set up
and diagonalized. This “grayscale QO” method can be
shown to be identical to the present “sharp QO” method in
the limit when f��nk� is a sharp step function but remove
type-I discontinuities when f��nk� is not sharp. We will post-
pone full evaluation of this grayscale QO method to a later
paper.

C. Choosing atomic orbitals

Another freedom the user has is choosing the atomic or-
bitals AIi�x�. While it is operationally straightforward to just

use the pseudoatomic orbitals AIi�x� of an isolated atom that
come with the pseudopotential, we find that the pseudo-
atomic orbitals of some elements have very long tails, ex-
tending to 10 Å away from the ion. Then to use these long-
tailed orbitals as similarity objects in Fig. 1 is not very good
for localization. Also, it is not fundamentally obvious that the
eigenorbitals of isolated atoms with unfilled electronic shells
maximally reflect the electronic structure of bonded systems
with filled shells. Although Slater and Koster16 named their
method linear combinations of atomic orbitals, which gave
rise to the empirical tight-binding method, the term “atomic
orbitals” may be taken with a grain of salt. The Slater-Koster
paper16 tabulated the angular interactions, implying that the
atomic orbitals have Ylm angular dependencies, but the radial
functions were not specified.

Indeed, Slater64 himself later defined the so-called em-
pirial atomic radius R for many elements by regressing to an
experimental database of 1200 bond lengths in crystals and
molecules and demanding that the bond length �A−B�
�R�A�+R�B� between elements A and B. He found that
these 1200 bond lengths can be regressed to an average error
of 0.12 Å using empirial atomic radii. So the concept of
Slater64 of atomic radius and atomic orbital may be tied more
to natural bonding environments than isolated atoms. It is
also known that if one insists on using pseudoatomic orbitals
AIi�x� as the literal minimal basis in a local-basis DFT
calculation,43,65 one gets accuracy far worse than what em-
pirical tight-binding methods can do nowadays without ex-
plicit statement of the radial functions.

The considerations above suggest a heuristic approach for
choosing the radial part of the AOs. One simple strategy is to
rescale the pseudoatomic radial function by multiplying an
exponentially decaying function,

AIi�x� = �iAIi�x�e−�i�x�, �46�

where �i is a positive real number and �i is the normalization

factor to make 	AIi�Ŝ�AIi�=1. The rationale behind Eq. �46�
squeezing could be a screening effect8 since the pseudo-
atomic orbitals now need to penetrate neighboring electron
clouds, and a more localized AO may be a better descriptor
of the electronic structure and chemistry.

We find that Eq. �46� indeed improves localization of QOs
and subsequently that of the TB Hamiltonian. While �i needs
to be empirially chosen or even optimized systematically, we
believe that this is not work in vain but is actually phys-
ichemically illuminating. In fact, it may eventually lead to
generalization of the empirial atomic radius concept of
Slater64 to construction of empirial atomic orbitals. We envi-
sion a database of thousands of bonded molecules and solids,
and one is constrained to choose just one �i value for each
element that will give the best overall QO description �local-
ization and similarity� for a multitude of bonding environ-
ments. The hypothesis is that empirical atomic orbitals in-
deed exist for each element that robustly describe electronic
structure in a wide range of molecular and solid bonding
environments via the QO approach.
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IV. AB INITIO TIGHT-BINDING ANALYSIS

Ab initio tight-binding approach differs from empirial
tight-binding approach in explicitly specifying the minimal-
basis functions used. Once the QOs are obtained via Eqs.
�21�–�45�, we can evaluate—and later parametrize—the
tight-binding Hamiltonian H and overlap matrix O, which
are small matrices with real-space indices in contrast to the
Kohn-Sham Hamiltonian in plane-wave basis that nonethe-
less reproduce all electronic structure information in R�k�.
In fact, if R�k� includes the occupied bands, the QOs can be
used as literal basis to perform total-energy calculation in
real-space DFT codes such as FIREBALL �Ref. 65� or
SIESTA,43 which will yield the same total-energy variational
minimum as using full plane-wave basis.

Once the TB H and O matrices are constructed, they can
be easily applied to calculate band structure, density of
states, QO-projected band structure and density of states, the
high-resolution Fermi surface, and Mulliken charge and bond
order that satisfy exact sum rules. These calculations are
much more efficient than direct plane-wave DFT calculations
due to the small size of TB matrices and furthermore will
carry valuable real-space information.

A. Tight-binding representation

Under QO basis, TB Hamiltonian HIi,Jj�XL� between QIi
0

and QJj
L in two supercells is defined as

HIi,Jj�XL� � 	QIi
0 �Ĥ�QJj

L � ,

where XL= l1a1+ l2a2+ l3a3 is an integer combination of su-
percell edge vectors. However we do not need to evaluate the
above matrix element explicitly since we can obtain the
Hamiltonian submatrices �Eqs. �39�–�41�� between opti-
mized Bloch states ��mk� and transformation matrix �k from
QO to ��mk�. From Eq. �44�, we have the expression of QO
of atom J in supercell XL,

QJj
L �x� = QJj�x − XL�

= 

mk

��k�m,Jj�mk�x − XL�

= 

mk

��k�m,Jje
−ik·XL�mk�x� ,

then the above real-space TB Hamiltonian HIi,Jj�XL� is

HIi,Jj�XL� = 

m,m�,k

e−ik·XL��k�m,Ii
� ��k�mm���k�m�,Jj .

Following the same procedure we can easily calculate the
real-space TB overlap matrix OIi,Jj�XL�,

OIi,Jj�XL� = 	QIi
0 �Ŝ�QJj

L � = 

mk

e−ik·XL��k�m,Ii
� ��k�m,Jj .

Clearly HIi,Jj�XL� and OIi,Jj�XL� should decay to zero as XL
→ and have similar localization property as the QOs. Us-
ing them, we can efficiently compute the eigenvalues at an
arbitrary k point �not necessarily one of the L1L2L3 k points�
by forming

HIi,Jj�k� = 

�XL��Rcut

eik·XLHIi,Jj�XL� ,

OIi,Jj�k� = 

�XL��Rcut

eik·XLOIi,Jj�XL� , �47�

where XL runs over shells of neighboring supercells with
significant HIi,Jj�XL� and OIi,Jj�XL�. Typically we determine a
radial cutoff distance Rcut and sum only those L’s with �XL�
�Rcut in Eq. �47�. Then, by solving the generalized eigen-
value matrix problem

H�k���k� = O�k���k�E�k� , �48�

we obtain total m=1, . . . ,qN eigenenergies emk from the di-
agonal matrix E�k� at each k point, with qN=Rk+Ck. It is
expected that all the Rk energies lower than �th are the same
as the eigenenergies from DFT calculation: enk=�nk, with n
=1, . . . ,Rk. The remaining Ck eigenenergies belong to the
optimized combination Bloch states �cmk�. The physical in-
terpretation of emk, m=1, . . . ,qN is that it is the variational
minimum of Rayleigh quotient,

emk = min
�mk

	�mk�Ĥ��mk�

	�mk�Ŝ��mk�
, �49�

subject to the constraint that ��mk�� �Rk�Ck��B�k� and is
furthermore orthonormal to ��m�k�’s with m��m;

	�mk�Ŝ��m�k� = �mm�. �50�

It is clear that ��mk� is a linear combination of �QIi� through
the above transformation matrix ��k� at k point;

��mk� = 

Ii

�Ii,mk�QIi,k� , �51�

where �QIi,k� is defined as the Bloch sum of �QIi�,

QIi,k�x� � 

L

eik·XLQIi�x − XL� = L1L2L3

m

�mk�x���k�m,Ii.

�52�

By replacing ��mk� in the normalization condition shown in
Eq. �50� with its expression in Eq. �52�, we immediately
obtain the following normalization condition for �Ii,mk:



Ii,Jj

�Ii,mk
� OIi,Jj�k��Jj,m�k =

�mm�

L1L2L3
, �53�

or in the matrix form

�†�k�O�k���k� =
I

L1L2L3
, �54�

where I is a qN�qN identity matrix.

B. Mulliken charge and bond order

The Mulliken charge72 is one popular definition of elec-
tronic charge associated with each atom. Here we give a
derivation of the Mulliken charge analysis using the density-
matrix formalism. We know that the trace of density operator
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�̂ defined under the basis of orthonormal Bloch states ��mk�
is equal to the total number of valence electrons since �nk
=�nk�	nk for n=1, . . . ,Rk. In addition, ��mk� can be ex-
pressed as linear combinations of QOs �QIi,k� as shown in
Eq. �51�. Thus the trace of density matrix can be represented
in QO basis if the basis set is complete for the occupied
Bloch subspace. If R�k� contains the occupied Bloch sub-
space and since R�k��Q�k�, this requirement is fulfilled.
Therefore, by simply representing �̂ in QO basis, we obtain
atom-specific charge decomposition that satisfies the exact
sum rule. Taking PAW formulation as an example, the den-
sity operator is defined as

�̂ � 

mk

fmk��̃mk�	�̃mk� , �55�

where fmk is electron occupation number in the correspond-
ing Bloch state ��̃mk� that is either 1 or 0 when m includes
both band and spin index. In the PAW formalism,7 true Bloch
wave function ��̃mk� and pseudo-Bloch wave function ��mk�
are related through transformation operator T̂,

��̃mk� = T̂��mk� ,

while Ŝ and T̂ are related by Ŝ= T̂†T̂. Then

�̂ = 

mk

fmkT̂��mk�	�mk�T̂†. �56�

Clearly,

Tr��̂� = L1L2L3Ne, �57�

where Ne=rN is the number of valence electrons within one
supercell. There is also an idempotent property,

�̂2 = �̂ . �58�

To split charge onto different orbitals on each atom, we rep-
resent the density operator �̂ in Eq. �56� in terms of QO using
Eq. �51�,

�̂ = 

mk

fmk

Jj,Ii

�Jj,mk�Ii,mk
� T̂�QJj,k�	QIi,k�T̂†. �59�

Then

Tr��̂� = 

�
� d3x	x��̂�x�

= 

mk

fmk

Jj,Ii

�Jj,mk�Ii,mk
� 	QIi,k�T̂†T̂�QJj,k�

= 

Jj,Ii



mk

fmk�Jj,mk�Ii,mk
� � 


L,L�

eik·�XL−XL��	QIi
L��Ŝ�QJj

L �

= 

Jj,Ii



mk

fmk�Jj,mk�Ii,mk
� � L1L2L3


L

eik·XL	QIi
0 �Ŝ�QJj

L �

= L1L2L3

k



Jj,Ii

DJj,Ii�k�OIi,Jj�k� , �60�

where D�k� and O�k� matrices are defined as the following:

DJj,Ii�k� � 

m

fmk�Jj,mk�Ii,mk
� , �61�

OIi,Jj�k� � 

L

eik·XL	QIi
0 �Ŝ�QJj

L � . �62�

Clearly DJj,Ii�k� represents the element of density matrix
D�k� between �QIi,k� and �QJj,k�, while OIi,Jj�k� represents
the element of overlap matrix O�k� between two QOs at the
same k point. Both D�k� and O�k� are the Hermitian matri-
ces.

Thus we can straightforwardly define the Mulliken charge
on a particular QO as

�Ii � 

k



I�i�

DIi,I�i��k�OI�i�,Ii�k� , �63�

and the Mulliken charge on atom I as

�I � 

i

�Ii, �64�

resulting in a simple sum rule from Eqs. �57� and �60�;



I

�I = Ne. �65�

Similarly, bond order between any two atoms can be derived
using �̂2. We note from Eqs. �59� and �61� that

�̂ = 

k,Jj,Ii

DJj,Ii�k��Q̃Jj,k�	Q̃Ii,k� , �66�

where �Q̃Ii,k�� T̂�QIi,k� so

�̂2 = 
k,Jj,Ii,I�i�,J�j�
DJj,Ii�k�DI�i�,J�j��k��Q̃Jj,k�	Q̃Ii,k�Q̃I�i�,k�

�	Q̃J�j�,k� ,

and

Tr��̂2� = 
k,Jj,Ii,I�i�,J�j�
DJj,Ii�k�DI�i�,J�j��k�	Q̃Ii,k�Q̃I�i�,k�

�	Q̃J�j�,k�Q̃Jj,k� .

We note from Eq. �62� that

	Q̃Ii,k�Q̃I�i�,k� = L1L2L3OIi,I�i��k� . �67�

So we get

Tr��̂2� = �L1L2L3�2

k

Tr�D�k�O�k�D�k�O�k�� , �68�

where Tr� � is the matrix trace. Indeed the derivations above
can be easily generalized into

Tr��̂n� = �L1L2L3�n

k

Tr��D�k�O�k��n�, n = 1, . . . , .

Let us define P�k��D�k�O�k�, with

PIi,Jj�k� � 

I�i�

DIi,I�i��k�OI�i�,Jj�k� . �69�

The discrete Fourier transform of PIi,Jj�k� is

PIi,Jj�XL� � 

k

PIi,Jj�k�eik·XL, �70�

and
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PIi,Jj�k� =
1

L1L2L3


L

PIi,Jj�XL�e−ik·XL. �71�

It can then be easily shown that

Tr��̂n� = L1L2L3
X1,X2,..,Xn−1
Tr�P�X1�P�X2� ¯ P�Xn−1�P�

− X1 − X2 − ¯ − Xn−1�� . �72�

Thus the real-space matrix P�XL� in Eq. �70� completely
characterizes bonding in the system.

So we may define a pair-specific quantity between Ii in
supercell 0 and Jj in supercell XL as

BIi,Jj
L � PIi,Jj�XL�PJj,Ii�− XL� �73�

and that between atom I in supercell 0 and atom J in super-
cell XL as

BI,J
L � 


ij

BIi,Jj
L , �74�

which satisfy the sum rule



I,J,L

BI,J
L =

1

L1L2L3
Tr��̂2� = Ne. �75�

According to convention, H–H is a single bond and should
have bond order 1, while C=C is a double bond and should
have bond order 2. Let us calibrate against this convention
for hydrogen molecule. Suppose we have the bonding states
��s1�+ �s2��↑ /�2 and ��s1�+ �s2��↓ /�2, and the antibonding
states ��s1�− �s2��↑ /�2 and ��s1�− �s2��↓ /�2, where for sim-
plicity we assume �s1� and �s2� are orthogonal to each other.
Then the overlap matrix O is a 4�4 identity matrix, and the
density matrix D has two block 2�2 submatrices with all
submatrix elements equal to 0.5. The population matrix P
=DO=D. Then from Eq. �73� we obtain BIi,Jj

0 as having two
2�2 submatrices with all submatrix elements equal to 0.25.
By summing over all matrix elements we have 
Ii,JjBIi,Jj

0

=Ne=2. Thus we have B1,2
0 =B1,2

0 �↑�+B1,2
0 �↓�=0.5, and we

see that the bond order defined in literature is twice as much
as BI,J

0 . We will therefore always use 2BI,J
L or 2
ijBIi,Jj

L for
bond order between two atoms in real systems, as shown in
Table III.

Note that in sum rule �75�, there are contributions from
terms such as

BIi,Ii
0 = �PIi,Ii�XL = 0��2, �76�

as well as

BIi,Ij
0 = PIi,Ij�XL = 0�PIj,Ii�XL = 0� . �77�

According to Eq. �70�,

PIi,Ii�XL = 0� = 

k

PIi,Ii�k� = �Ii. �78�

So the Mulliken charge squared �Ii
2 and same-site-different-

orbital couplings PIi,Ij�XL=0�PIj,Ii�XL=0� appear in sum rule
�75�, which means the sum of different site BI,J

L ’s should be
less than the total number of electrons Ne. This is consistent
with the practice of using 2BI,J

L to denote bond order. Note

also that there can be lone pairs in the system and not all
electrons need to be engaged in bonding. Indeed, as we sepa-
rate H–H to distance infinity, we see that it is not reasonable
to demand the bond order to stay at integer 1.

The definition above assumes all Ne electrons reside in
bonding states. The more general definition of bond order in
chemical literature is bond order
��number of bonding electrons
−number of antibonding electrons� /2. The subtraction oc-
curs when some eigenstates ��mk� are occupied but are
deemed antibonding, for instance with eigenenergies above
an internal gap that varies sensitively with atomic distance.
In such a case, the total density operator needs to be split into
bond and antibonding parts;

�̂bond � 

mk

fmk
bond��̃mk�	�̃mk� , �79�

�̂anti � 

mk

fmk
anti��̃mk�	�̃mk� , �80�

where fmk
bond=1 for occupied bonding states and 0 otherwise

and fmk
anti=1 for occupied antibonding states and 0 otherwise

with fmk
bondfmk

anti=0. The following sum rules hold:

Tr��̂bond� = Nbond, Tr��̂anti� = Nanti, �81�

where Nbond is the total number of bonding electrons and
Nanti is the total number of antibonding electrons. All deriva-
tions of Eqs. �58�–�75� apply to �̂bond and �̂anti individually.
We can therefore compute BI,J

bondL and BI,J
antiL individually and

then subtract

BI,J
L � BI,J

bondL − BI,J
antiL �82�

to get the net bond order. QO analysis would work so long as
R�k� includes both the deemed bonding and antibonding
eigenstates.

C. Projected density of states

Projected density of states �PDOS� is a powerful tool for
analyzing energy- and site-resolved electronic structure. Let
us define the total density of states �DOS� of our ab initio
tight-binding system to be

���� �
1

L1L2L3


mk

��� − emk� , �83�

where emk has the interpretation of constrained variational
Rayleigh quotient �Eq. �49��. ���� clearly satisfies the total
sum rules,

�
−

�F

d����� = Ne = rN , �84�

and

�
−



d����� = qN . �85�

In real numerical calculations, ���−emk� is often replaced by
normalized Gaussian centered around emk.
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Our goal is to decompose ���� into a sum of site, angular
momentum, and spin-specific PDOS functions;

���� = 

Ii

�Ii��� . �86�

Because the QOs are nonorthogonal, the decomposition can-
not be done by a simple projection.73

The solution is very simple. Replacing fmk by ���
−emk� / �L1L2L3� in Eq. �55�, we can define energy-resolved
density operator,

�̂��� �
1

L1L2L3


mk

��� − emk���̃mk�	�̃mk� . �87�

Clearly

Tr��̂���� = ���� . �88�

Thus, if we just replace fmk by ���−emk� / �L1L2L3� every-
where in Eqs. �55�–�65�, the entire decomposition scheme
would work for ����. We will have energy-resolved density
matrix,

DJj,Ii�k,�� � 

m

��� − emk��Jj,mk�Ii,mk
� �89�

and

���� = Tr��̂���� = 

k



Jj,Ii

DJj,Ii�k,��OIi,Jj�k� . �90�

All we need to do is therefore to define the projected density
of states as

�Jj��� � 

k



Ii

DJj,Ii�k,��OIi,Jj�k� , �91�

and the PDOS sum rule �Eq. �86�� would be satisfied for
every �. A rigorous connection between �Ii��� and the QO-
based Mulliken charge,

�
−

�F

d��Ii��� = �Ii, �92�

exists, with �Ii was defined in Eq. �63�. Thus �Ii��� can be
regarded as the energy-resolved Mulliken charge.

Following the same procedure, we can define energy-
resolved bond order 2BIi,Jj

L ��� and its integral,

2BIi,Jj
L ��1,�2� � 2�

�1

�2

d�BIi,Jj
L ��� . �93�

For example, it is valid to say that among the total 1.2 bond
order between atom I in supercell 0 and atom J in supercell
L, energy bands in ��F−5, �F−2� contribute 0.7.

V. QO APPLICATIONS

We have constructed QO for various materials, including
semiconductors, simple metals, ferromagnetic materials,
transition metals and their oxides, high-temperature super-
conductors, and quasi-one-dimensional materials such as car-
bon nanotubes. These QOs are then used for ab initio tight-
binding calculations, including band structure, density of
states, QO-projected band structure and density of states, and
the high-resolution Fermi surface. We have also combined
QO with the Green’s function method to efficiently calculate
electrical conductance of molecular and nanoscale junctions
using the Landauer formalism.74 Currently we have imple-
mented QO interfaces27 to VASP and DACAPO; the source
codes of our method and input conditions for all examples in
this section are put on the web.27

In this paper, the ground-state electronic configurations
are calculated using DACAPO DFT package26,75,76 with
Vanderbilt USPP �Refs. 3–5� and PW91 generalized gradient
approximation �GGA� of the exchange-correlation
functional.77 Parameters for the DFT calculations are in-
cluded in Table I. Due to page limitation, we demonstrate
only four materials in detail: diamond cubic silicon, �-silicon
carbide, bcc ferromagnetic iron, and bcc molybdenum.

TABLE I. Parameters used in plane-wave DFT calculation and QO construction for various systems. �th is the energy threshold for R�k�
selection �the Fermi energy �F is set to 0�. Rcut is the radial cutoff of tight-binding Hamiltonian and overlap matrices in Eq. �47�.

Material No. of atoms Structure
a0 and c0

�Å�
Ecut

�eV�
No. of

k points No. of bands XC
Rcut

�Å�
�th

�eV�

CH4 5 1.1 350 � point 60 PW91 8.0 0

SiH4 5 1.48 350 � point 40 PW91 8.0 0

Si 2 Diamond 5.430 300 7�7�7 60 PW91 12.0 0

�-SiC 2 fcc 4.32 350 7�7�7 40 PW91 12.0 0

Al 1 fcc 4.030 300 9�9�9 60 PW91 8.0 1.0

Fea 1 bcc 2.843 400 9�9�9 40 PW91 10.0 3.0

Mo 1 bcc 3.183 400 13�13�13 20 PW91 10.0 0.0/8.0b

MgB2 3 hcp 3.067, 3.515 300 7�7�7 40 PW91 10.0 3.0

aFerromagnetic.
bWe use �th=0 eV for �s ,d� basis and 8.0 eV for �s , p ,d� basis.
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A. Semiconductor: Diamond cubic Si crystal

The diamond cubic Si crystal has an indirect band gap of
1.17 eV at 0 K. In Fig. 2 we show two of total eight QOs:
s-like and pz-like QOs. Since in this case we use the unpo-
larized spin configuration, we have the same s-like and
p-like QOs for both spins. As shown in the figure these QOs
are slightly deformed due to the interaction with nearest-
neighbor atoms, but the overall shape of s and pz is largely
maintained. Figure 3 compares the band structure between
plane-wave DFT and ab initio TB calculations. It is seen that
among the total eight TB bands, four valence bands below �F
are exactly reproduced with each band doubly occupied.

The indirect band gap from DFT calculation is about 0.7
eV, smaller than 1.17 eV from experiments, which is a com-
mon problem of DFT due to the ground-state nature of DFT
and inaccurate exchange-correlation functional. However
QO-based TB calculation gives a band gap of around 2.0 eV.
In general the conduction bands from ab initio TB calcula-
tion using QO basis set are higher than those from plane-
wave DFT calculation due to the constrained variation inter-
pretation of the TB eigenvalues �Eq. �49��. They are higher
because the optimized combination Bloch states �cmk� are
manually constructed and they are not true unoccupied low-
lying Bloch eigenstates. In other words, these optimized
combination states in C�k� can be represented by a linear
combination of the infinite true unoccupied Bloch states in

R�k�. Therefore the eigenenergies �Rayleigh quotients�
above the energy threshold �th ��th=�F in this case� from
QO-based TB calculation are always higher than the Kohn-
Sham eigenenergies. DOS in Fig. 4 also shows this energy
shift in the conduction bands, while DOS below �F is exactly
reproduced.

B. Covalent compound: �-SiC crystal

Silicon carbide is a typical covalent compound and it has
two well-known polymorphs: �-SiC and �-SiC. The former
is an intrinsic semiconductor in hexagonal structures and the
latter has an indirect band gap of 2.2 eV in zinc-blende-type
structure. From DFT calculation of �-SiC, a band gap of
around 1.0 eV is found, while from our ab initio TB calcu-
lation it is around 3.0 eV. Band structure �Fig. 5� and density
of states �Fig. 6� in conduction bands from TB calculation
change a lot and shift up due to the same reason as in the Si
crystal case. It is seen from Fig. 7 that both s-like and pz-like
QOs of Si atom are relatively more delocalized than those of

FIG. 2. �Color online� QO in Si crystal. �a� s-like and �b�
pz-like. �Absolute isosurface value: 0.03 Å−3/2. Yellow or light gray
for positive values and blue or dark gray for negative values. The
same color scheme is used in all the other isosurface plots of QOs
in this paper. They are plotted with XCRYSDEN �Refs. 78–80�.�

FIG. 3. Band structure of Si crystal. �Circle dot: plane-wave
DFT calculation; solid line: TB calculation based on eight QOs; and
dashed line: Fermi energy.�

FIG. 4. �Color online� Density of states of Si crystal. �Circle-dot
line: plane-wave DFT calculation; solid line: TB calculation; and
dashed line: Fermi energy.�

FIG. 5. Band structure of �-SiC. �Circle dot: plane-wave DFT
calculation; solid line: TB calculation based on eight QOs; and
dashed line: Fermi energy.�
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C atom, which suggests Si has less ability to attract electron
than C in �-SiC crystal. This intuition is confirmed by the
QO-projected density of states plot in Fig. 8 where the total
density of states on C atom below �F is much more than that
on Si atom and it further indicates that more charges are
localized at C atom. The total area of Fig. 8 below �F for
each atom is exactly equal to the total Mulliken charge asso-
ciated with each atom. Note that the sum of QO-projected
density of states �Eq. �91�� is exactly equal to the total den-
sity of states, while this is not true for standard atomic-
orbital-projected density of states widely used in analyzing
plane-wave DFT results.

Compared to Fig. 3 in the Si crystal case, there is a large
splitting between two bottom bands along the X-W line in
Fig. 5 in the SiC crystal. Four higher peaks of DOS, shown
in Fig. 8, are useful for explaining this splitting. Two peaks
around −12.0 eV �C’s s peak in the bottom panel and Si’s p
peak in the top panel� and another two peaks around
−8.0 eV �C’s p peak in the bottom panel and Si’s s peak in

the top panel� lead to two nonsymmetric types of s-p bond-
ing. One is the bond between Si’s s-like QO and C’s p-like
QOs and the other is the bond between C’s s-like QO and
Si’s p-like QOs. In Si crystal the above two types are degen-
erate bonds, which give two degenerate bands at the bottom
of band structure between X and W. This splitting is much
more clearly reflected in QO-projected band structure shown
in Fig. 9, where the bonding between silicon’s s-like QO and
carbon’s three p-like QOs is dominant in the higher-energy
band while the bonding between carbon’s s-like QO and sili-
con’s three p-like QOs is dominant in the lower-energy band.

To further study electron transfer we investigate the Mul-
liken charges in three different compounds shown in Table II,
including methane �CH4�, silane �SiH4�, and �-SiC. It is seen
that the capability of three different elements to attract elec-
trons is in the following order: C�H�Si. Table III shows
bond order between atoms and their first-nearest and second-
nearest neighbors in various systems. It is not surprising that
in covalent systems bond order between the atom and its
second-nearest neighbor is almost zero and it is much less
than the bond order between the atom and its first-nearest
neighbor. However, unlike covalent systems, fcc aluminum,
bcc molybdenum, and bcc iron have smaller bond orders for

FIG. 6. �Color online� Density of states of �-SiC. �Circle-dot
line: plane-wave DFT calculation; solid line: TB calculation; and
dashed line: Fermi energy.�

FIG. 7. �Color online� QO in �-SiC crystal. �a� Si: s-like; �b� Si:
pz-like; �c� C: s-like; and �d� C: pz-like. �Absolute isosurface value:
0.03 Å−3/2.�

FIG. 8. �Color online� QO-projected density of states of �-SiC.
�Top panel: Si; bottom panel: C; and dashed line: Fermi energy.�

FIG. 9. �Color online� QO-projected band structure of SiC crys-
tal with red �dark gray� for Si s and C p and green �light gray� for
C s and Si p.
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both the first-nearest and second-nearest neighbors as shown
in the table, indicating metallic bonding. In the case of MgB2
crystal, it shows strong covalent bonding on the boron plane
and relative large bond order between boron and magnesium
but very small bond order between magnesium atoms. The
latter is due to large distance between magnesium atomic
layers and the ionic nature of magnesium in MgB2 crystal. It
should be emphasized that the QO-based Mulliken charge
and bond order satisfy the sum rules very well, which is not
the case for the traditional charge analysis, widely used for
analyzing plane-wave DFT calculations, by setting a radial
cutoff and integrating electron density within that radius
around each atom.

C. Ferromagnetic bcc Fe crystal

Ferromagnetic bcc iron is investigated, in which we ex-
pect some differences between the QOs with majority spin
and those with minority spin. Here the energy threshold is 3
eV above �F to keep electronic structure near the Fermi en-
ergy to be exact. Pseudoatomic orbitals 3d, 4s, and 4p are
rescaled by e−��x�, with �=1.0 Å−1 and then renormalized.

Figure 10 displays 10 of the total 18 QOs. The QOs with
majority spin and minority spin, on the left and middle col-
umns, respectively, look quite similar. Their differences are
shown in the right column, having the same symmetry as the
corresponding QOs. Figures 11 and 12 present two different
band structures with majority spin and minority spin, respec-
tively. Similar to the above two band structures, DOS plotted

in Fig. 13 displays the dramatic difference of electronic
structure information between majority spin and minority
spin in bcc Fe. As expected, Figs. 11–13 demonstrate that all
the electronic structure below the energy threshold is well
reproduced by QO.

TABLE II. The Mulliken charges for CH4, SiH4, and �-SiC.

Material Mulliken Charge Total charge

CH4 C: 5.160 H: 0.710 8.0

SiH4 Si: 3.300 H: 1.175 8.0

�-SiC Si: 2.729 C: 5.271 8.0

TABLE III. Bond orders for various systems.

Material Bond order �2
ijBIi,Jj
L � Total BO/sum rule

CH4 C–H: 0.882 H–H: 0.012 8.0/8.0

SiH4 Si–H: 0.866 H–H: 0.033 8.0/8.0

�-SiC Si–C: 0.823 Si–Si: 0.009 8.0/8.0

C–C: 0.015

Si-cubic 1st: 0.874a 2nd: 0.009 8.0/8.0

Al-fcc 1st: 0.213 2nd: 0.015 2.898/2.896

Fe-bcc �↑� b 1st: 0.184 2nd: 0.070 4.967/4.967

Fe-bcc �↓� 1st: 0.328 2nd: 0.114 2.842/2.843

Mo-bccc 1st: 0.589 2nd: 0.193 5.876/5.876

MgB2 B–B: 0.698 Mg–B: 0.206 13.868/13.868

Mg–Mg: 0.085

a“1st” and “2nd” stand for the first-nearest and second-nearest
neighbors.
b↑ for majority spin; ↓ for minority spin.
cThe calculation is based on �s , p ,d�-QO basis with �th=8.0 eV.

FIG. 10. �Color online� QO in bcc Fe crystal. From top to bot-
tom they are s-like, pz-like, dz2-like, dyz-like, and dx2−y2-like QOs.
Left column: QO with majority spin �absolute isosurface value:
0.03 Å−3/2�. Middle column: QO with minority spin �absolute iso-
surface value: 0.03 Å−3/2�. Right column: difference between QO
with majority spin and QO with minority spin �absolute isosurface
value: 0.003 Å−3/2�.

FIG. 11. Band structure of bcc Fe with majority spin. �Circle
dot: plane-wave DFT calculation; solid line: TB calculation based
on nine QOs for majority spin; dashed line: Fermi energy; and
dash-dot line: energy threshold with �th=3 eV.�
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Figures 14�a� and 14�b� present two Fermi surfaces in the
first Brillouin zone for the majority spin and minority spin,
respectively. In the majority-spin case, the closed surface
around � point holds electrons while the open surfaces on
the zone faces and another two types of small surfaces
around H enclose holes. These open surfaces are connected
to other surfaces of the same type in the second Brillouin
zone forming open orbits across Brillouin zones. In the case
of minority spin, the large surfaces around H and those
around N near the zone faces form hole pockets, while one
octahedral closed surface around � and six small spheres
inside the Brillouin zone form electron pockets. The compu-
tation of the high-resolution Fermi surface in reciprocal
space requires thousands of Hamiltonian diagonalization on
a very fine grid, which is expensive for plane-wave DFT
calculations even if the symmetry property of the Brillouin
zone is taken into account. However, QO-based TB method
makes the calculation very efficient since we can easily di-
agonalize the small TB Hamiltonian and overlap matrices.
So these high-resolution Fermi surfaces again demonstrate
the utility of QO analysis for solids.

D. Minimal basis for bcc Mo crystal

In a previous paper24 we applied the original QUAMBO
method to one of the transition metals, bcc Mo, and obtained
�s ,d� QUAMBOs as the minimal basis. Most of the
QUAMBO-based tight-binding band structure �Fig. 3 of Ref.
24� agrees very well with the DFT results; however it shows
some deviations around high-symmetry point N. In particu-
lar, the �-N and P-N bands crossing the Fermi energy have
several strong wiggles even below �F. The original explana-
tion of such deviations is related to the coarse k-point sam-
pling which will affect the slope of the band structures near
Fermi energy. However, the Monkhorst-Pack grid of 16
�16�16 used in Ref. 24 is already quite dense. Therefore,
there is more important physical reason responsible for the
large deviations around N point below �F.

To solve the above puzzle, we have constructed two sets
of QO basis, �s ,d� and �s , p ,d� with �th=0 and 8 eV, respec-
tively. Pseudoatomic orbitals s, p, and d are rescaled by
e−��x�, with �=1.0, 1.5, and 0.5 Å−1, respectively, and then

FIG. 13. �Color online� Electronic density of states in bcc Fe.
Top panel: majority spin; bottom: minority spin. �Circle dot line:
plane-wave DFT calculation; solid line: TB calculation; dashed
line: Fermi energy; and dash-dot line: energy threshold with �th

=3 eV.�

FIG. 12. Band structure of bcc Fe with minority spin. �Circle
dot: plane-wave DFT calculation; solid line: TB calculation based
on nine QOs for minority spin; dashed line: Fermi energy; and
dash-dot line: energy threshold with �th=3 eV.�

(a) (b)

FIG. 14. �Color online� The Fermi surface of bcc Fe with �a� majority spin and �b� minority spin. �Plotted using XCRYSDEN �Refs.
78–80�.�
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renormalized. The corresponding tight-binding band struc-
tures are presented in Figs. 15 and 16. Although the band
structure using the �s ,d� QO basis is very smooth as shown
in Fig. 15, we still observe a strong deviation around N be-
low �F. But in Fig. 16 the band structure with �s , p ,d� QO
basis agrees with the DFT result very well, especially for
those problematic bands around point N. This indicates that
the p component may play an important role around N.

We then use VASP to perform AO-projected band-structure
analysis as shown in the color-encoded plot, Fig. 17�a�,

where the specific color is from the linear weight of d, s, and
p components corresponding to red, green, and blue, respec-
tively, as shown in the color triangle of Fig. 17�c�. We can
immediately see that around point N those Kohn-Sham bands
crossing the Fermi energy �F have strong blue and red com-
ponents corresponding to the p and d characters. In contrast
we do not find clear s component in these bands. This is very
crucial since we were expecting the �s ,d� QOs as the
minimal-basis set for bcc Mo; however due to this strong p
component around N the �s ,d� QOs are not enough to pre-

FIG. 15. Band structure of bcc Mo with �s ,d� QO basis. �Circle
dot: plane-wave DFT calculation; solid line: TB calculation based
on six QOs; dashed line: Fermi energy; energy threshold with �th

=0 eV.�

FIG. 16. Band structure of bcc Mo with �s , p ,d� QO basis.
�Circle dot: plane-wave DFT calculation; solid line: TB calculation
based on nine QOs; dashed line: Fermi energy; and dash-dot line:
energy threshold with �th=8 eV.�

(a) (b)

(c)

FIG. 17. �Color online� �a� AO-projected band structure of bcc Mo with �s , p ,d� QO basis; �b� QO-projected tight-binding band structure
of bcc Mo with �s , p ,d� QO basis; �c� color triangle: red for d orbitals, green for s orbital, and blue for p orbitals.
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serve the full DFT band structure below the energy threshold
accurately, thus give rise to the strong deviations in both Fig.
3 of Ref. 24 and Fig. 15. Figure 17�b� shows the color-
encoded QO-projected tight-binding band structure with
�s , p ,d� QO basis set and it preserves the general distribution
of AO components in the band structure. Therefore, the mini-
mal basis for bcc Mo should be the �s , p ,d� QOs.

With this �s , p ,d� QO basis set we have calculated the
high-resolution Fermi surface of bcc Mo using a dense 32
�32�32 grid. Here in Fig. 18 we show the Fermi-velocity-
encoded Fermi surface where the magnitude of velocity �vF�
is represented by different colors defined in the color bar.
Fermi velocity is calculated from vF=dE�k� /�dk. It should
be mentioned that Fig. 18 displays the Fermi surface in re-
ciprocal cell, instead of the first Brillouin zone. Thus high-
symmetry points �, H, N, and P are located at the corner, the
center of the cell, the middle of surfaces and edges, and the
center of equilateral triangles on the surfaces, respectively.
From our calculation the minimal and maximal magnitudes
of Fermi velocity of bcc Mo are 3.36 and 15.02 Å / fs. Ob-
viously the magnitude of Fermi velocity is very different on
different sheets of the Fermi surface. The central octahedral
surface around point H encloses holes which have higher
velocity than the electrons or holes on the other sheets. This
is also clearly reflected by the large slope of the Kohn-Sham
bands crossing �F at both P-H and H-N in Fig. 17�b�. In
contrast Fermi electrons in the other bands at �-H, �-N, and
�-P have smaller velocity showing blue color in Fig. 18.

VI. COMPARISON BETWEEN QO AND OTHER
LOCALIZED ORBITALS

A. Comparison between QO and MLWF

MLWF developed by Marzari and Vanderbilt32 is the most
localized orthogonal Wannier function, and it could achieve
even better localization if the orthogonality condition is re-
laxed, which is an advantage compared to QO. In general
both the center and shape of MLWF are unknown before the
construction is fully finished. It could be atomic-orbital- or
bonding-orbital-like, which is determined by the information
included in the selected Bloch subspace. In contrast, the cen-

ter and pseudoangular momentum of QO are known before
the construction. Algorithmically, QO is a noniterative
projection-based scheme, whereas MLWF is based on non-
linear optimization and needs to search for the global mini-
mum iteratively. Due to the nonlinear nature of the MLWF
scheme, the selection of Bloch subspace is of utmost impor-
tance, whereas the present QO scheme represents infinite
band result cheaply, and therefore might be simpler to use.
The maximal similarity and pseudoangular momentum of
QO also allow for easier labeling and interpretation. From
another point of view, QO method may �a� give an upper
bound of the energy of the highest unoccupied Bloch states
one need to include in the MLWF scheme in order to obtain
a set of atomic-orbital-like MLWFs, �b� provide a simple
way to disentangle the Bloch wave functions in solids, and
�c� perform as a good initial guess for MLWFs as well.

B. Comparison between QO and QUAMBO

The original QUAMBO method20–24 selects the optimized
combination subspace C�k� from the large unoccupied Bloch
subspace R�k�. This method is also implemented in our
code.27 In the Appendix we rigorously prove that QO is
equivalent to QUAMBO in the infinite band limit. However,
practically with QUAMBO method one needs to include
enough Kohn-Sham bands to capture all bonding and anti-
bonding Bloch states for construction of the corresponding
quasiatomic orbitals. It is difficult to predict where the cor-
responding highest antibonding Bloch state is. Even if it is
predictable, those antibonding states, unfortunately, are often
pushed to very high energies. There could be hundreds of
Bloch states between the bonding and antibonding Bloch
states, which are irrelevant to the construction of QUAMBO.
In conventional DFT calculations it is very inefficient to cal-
culate and very memory consuming to store a large number
of bands. In the QUAMBO method most of time could be
wasted on calculating atomic projections on these irrelevant
bands. The alternative QO construction is totally independent
of unoccupied Bloch eigenstates since one directly constructs
the optimized combination Bloch states and the only addi-
tional cost is non-self-consistent evaluation of Hamiltonian
matrix elements between them.

The theoretical basis for QO and QUAMBO method is
the idea of Slater and Koster16 of linear combination of
atomic orbitals �LCAO�, thus the localization of QO and
QUAMBO depends on whether the specific material can be
well described by the LCAO idea for the low-energy chem-
istry. As long as the idea of LCAO works for the materials
one is interested in, the low-energy bands should be domi-
nated by quantum numbers of atomic orbitals �antibonding
Bloch states are usually smeared out among the unoccupied
Bloch subspace, but they are not far from Fermi level�.
Meanwhile, by definition QO is maximally similar to AO;
therefore the quasiangular quantum numbers should be still
preserved while the radial part and the detailed local shape of
QO largely depend on the bonding nature of QO with other
orbitals on its neighboring atoms. Practically speaking, the
pseudoatomic orbitals from pseudopotential generators have
already provided us the clue about the relevant angular quan-

FIG. 18. �Color online� The Fermi-velocity-encoded Fermi sur-
face of bcc Mo with �s , p ,d� QO basis in the reciprocal cell. The
velocity is in the unit of Å / fs.
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tum numbers. As long as density-functional theory with these
pseudopotentials can describe the specific material well, we
can always obtain localized QOs which can accurately de-
scribe the electronic structure below a few eV above the
Fermi energy by forming the bonding-antibonding closure.
For higher energy regions, we may have to include additional
radial quantum numbers for s-state, p-states, etc. And cer-
tainly, it would be difficult for QO to describe unbound elec-
tron states.

C. Comparison between QO and PAO

The construction of optimized combination subspace from
atomic-orbital Bloch subspace in QO scheme is similar to the
PAO scheme of Sæbø and Pulay,66–68 which has been widely
used in quantum chemistry. However our QO scheme is ap-
plicable to molecules, surfaces, and solids within one pro-
gram, enabling the construction of transferable local basis
functions and comparison of bonding chemistry from mol-
ecules to surfaces to solids. It can be embedded in or inter-
faced to any DFT package using plane-wave, Gaussian, or
mixed bases. As we have shown in the various applications
above, QO can be constructed not only for insulators and
semiconductors but also for metallic systems. Another differ-
ence is that we use the pseudized atomic orbitals as the simi-
larity objects with less nodes in their wave functions. More-
over without considering the core wave functions we have
much less number of basis orbitals to construct and diago-
nalize in ab initio TB calculations. QO is a true minimal
basis scheme, and consequently we can efficiently perform
TB analysis and parametrizations.

VII. SUMMARY

Quasiatomic orbital is derived and implemented for dif-
ferent types of materials. The accuracy, efficiency, and ro-
bustness of QO for ab initio tight-binding analysis are dem-
onstrated through band structure, density of states, QO-
projected density of states, the Fermi surface, the Mulliken
charge, and bond order analysis. We have shown that QO is
equivalent to the infinite band limit of QUAMBO without
the need to explicitly compute and store a large number of
unoccupied Bloch wave functions. Furthermore, the most
important property of QO is that it retains all electronic
structure information below a certain energy threshold while
possessing both quasiangular momentum quantum number
and reasonably good localization, which fulfills the true spirit
of the LCAO of Slater and Koster.16 Therefore, QO may be
used as a transferable local basis for the calculations of total
energy, electrical conductance, and the development of
linear-scaling DFT. For ease of checking, all source codes
and relevant data used in this paper are put at a permanent
website.27
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APPENDIX: MATRIX ALGEBRA PROOF
OF QO EQUIVALENCE TO QUAMBO

IN THE INFINITE BAND LIMIT

To prove the equivalence between QO and QUAMBO in
the infinite band limit, we first expand matrix element
�Wk�Ii,Jj in Eq. �33� as the following:

�Wk�Ii,Jj = 	AIi��

n̄

P̂	n̄k

† �Ŝ�

m̄

P̂	m̄k��AJj�

= 	AIi�Ŝ�

n̄

P̂	n̄k��AJj�

= 

n̄

	AIi�Ŝ�	n̄k�		n̄k�Ŝ�AJj� . �A1�

We use �Mk�n̄,Jj to represent the matrix element 		n̄k�Ŝ�AJj�.
Then we will have the simple form of Wk for QO,

Wk = Mk
†Mk, �A2�

where the size of Wk and Mk is qN�qN and dim R�k�
�qN �or �qN�, respectively. However, in the original
QUAMBO method of Lu et al.22 in the limit of infinite bands

the overlap matrix W̃k is defined as

W̃k = MkMk
† , �A3�

where the size of W̃k is �. Wk and W̃k are the so-called
Gramian matrix. We then perform singular value decompo-
sition �SVD� of matrix Mk,

Mk = Uk�kVk
† , �A4�

where Uk and Vk are the unitary transformation matrices
with the sizes of � and qN�qN, respectively, and they
satisfy Uk

†Uk=I and Vk
†Vk=I. Matrix �k with the size of

�qN contains the singular values, and it has NM nonzero
values, where NM �min�qN ,�=qN. Thus, Wk

=Vk�k
†�kVk

† and W̃k=Uk�k�k
†Uk

†. Let Yk=�k
†�k and Ỹk

=�k�k
†. Both Yk and Ỹk are the diagonal matrices with the

sizes of qN�qN and �, respectively; however they con-
tain exactly the same NM positive eigenvalues. It immedi-

ately leads to three conclusions: �a� Wk and W̃k have the

same rank as Mk; �b� Wk and W̃k share the same eigenval-
ues; and �c� Vk and Uk contain the corresponding eigenvec-

tors of Wk and W̃k, respectively. We then have

W̃kMkVk = MkWkVk = MkVkYk, �A5�

which means corresponding to the ith positive eigenvalue,

the ith eigenvector �Uk�i of W̃k is the ith vector �MkVk�i
multiplied by a factor ��k�ii,
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�Uk�i = ��k�ii�MkVk�i. �A6�

�k is a diagonal matrix with the size of qN�qN. Since Uk is
a unitary matrix,

IqN�qN = �Uk
†Uk�qN�qN = �k

†�k
†�k�k, �A7�

which leads to ��k�ii= ��k
†�k�ii

−1/2= �Yk�ii
−1/2 and thus �Uk�i

= ��k�ii�MkVk�i corresponding to the ith positive eigenvalue
�Yk�ii. Finally, in the original QUAMBO method22 the Ck
eigenvectors associated with the largest Ck eigenvalues of

W̃k are selected to form the optimized combination subspace
C�k�. Therefore, the optimized combination state �c̃mk� can
be expanded as the following:

�c̃mk� = 

n̄

�Uk�n̄,m�	n̄k�

= 

n̄,Ii

��k�mm�Mk�n̄,Ii�Vk�Ii,m�	n̄k�

= 

n̄,Ii

��k�mm�Vk�Ii,m�	n̄k�		n̄k�Ŝ�AIi�

= 

Ii

��k�mm�Vk�Ii,m�Îk − 

n

P̂	n̄k
��AIi�

= 

Ii

��k�mm�Vk�Ii,m�AIi,k
� � = �cmk� . �A8�

Therefore, in the end we have �c̃mk�= �cmk�. This means that
the selected Ck eigenvectors associated with the largest Ck

eigenvalues of W̃k in the QUAMBO method in the limit of
infinite bands are exactly the same as those associated with
the largest Ck eigenvalues of Wk in the QO method. The

above proof shows that although Wk and W̃k defined for QO
and QUAMBO are different, in the infinite band limit both
matrices have exactly the same positive eigenvalues, leading
to the same optimized combination subspace C�k�. More im-
portantly, by using the definition of identity operator we only
need the finite occupied Bloch subspace R�k� for the con-
struction of QO, while the construction of QUAMBO re-
quires infinite unoccupied Bloch subspace R�k� to reach the
same result as QO. As shown in Eq. �41�, the only additional
but little cost is to evaluate Hamiltonian matrix elements
between any two of the directly constructed finite �cmk�.

In practical implementations “infinite bands” refer to full
occupied and unoccupied Bloch space defined on particular
basis. For example, in plane-wave DFT calculations we use
large but finite plane waves as the basis. Therefore, at each k
point the dimension of full Bloch space or infinite bands is
the total number of plane waves. In practice when using the
original QUAMBO scheme we have to truncate unoccupied
Bloch space due to the limited computational power and
memory, which leads to different eigenvalues and different
optimized combination subspace C�k� compared to the QO
method. The above truncation could give rise to the finite
UBTE problem discussed in the beginning of this work. The
situation will be even worse when we apply the QUAMBO
method in strongly confined systems where particular anti-
bonding Bloch bands will be pushed up to very high energy
and cannot be captured in finite unoccupied Bloch subspace.
Then the rank of Uk will be smaller than qN−Rk, leading to
the incomplete optimized combination subspace �c̃mk� and
consequently the singularity of TB Hamiltonian under the
QUAMBO basis set. The QO method does not suffer from
this UBTE.
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