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Self-branching in GaN Nanowires Induced by a Novel Vapor-Liquid-Solid
Mechanism

Abstract
Nanowires have great potential as building blocks for nanoscale electrical and optoelectronic devices. The
difficulty in achieving functional and hierarchical nanowire structures poses an obstacle to realization of
practical applications. While post-growth techniques such as fluidic alignment might be one solution, self-
assembled structures during growth such as branches are promising for functional nanowire junction
formation. In this study, we report vapor-liquid-solid (VLS) self-branching of GaN nanowires during AuPd-
catalyzed chemical vapor deposition (CVD). This is distinct from branches grown by sequential catalyst
seeding or vapor-solid (VS) mode. We present evidence for a VLS growth mechanism of GaN nanowires
different from the well-established VLS growth of elemental wires. Here, Ga solubility in AuPd catalyst is
limitless as suggested by a hypothetical pseudo-binary phase diagram, and the direct reaction between NH3
vapor and Ga in the liquid catalyst induce the nucleation and growth. The self-branching can be explained in
the context of the proposed VLS scheme and migration of Ga-enriched AuPd liquid on Ga-stabilized polar
surface of mother nanowires. This work is supported by DOE Grant No. DE-FG02-98ER45701.
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Gallium alloys, Dissolution, Electric wire, Gallium nitride, Liquids, Nanowires, Semiconducting gallium,
Vapors, AuPd alloy, GaN nanowires, Growth modes, Growth morphology, Nucleation and growth, Polar
surfaces, Spontaneous reactions, Vapor-liquid-solid mechanism, VLS growth
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Self-branching in GaN Nanowires Induced by a Novel Vapor-Liquid-Solid Mechanism 
 
Chang-Yong Nam1, Douglas Tham2, and John E. Fischer3 
1Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973-
5000 
2Department of Materials Science, California Institute of Technology, Pasadena, CA, 91125 
3Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, 
PA, 19104 

 
ABSTRACT 

Investigations of the growth morphology of AuPd-catalyzed GaN nanowires lead us to 
propose a vapor-liquid-solid (VLS) mechanism distinct from the well-established VLS growth of 
elemental wires. Here, nucleation and growth of GaN nanowires proceeds by direct spontaneous 
reaction between NH3 vapor and Ga dissolved in liquid AuPd alloy, rather than by solubility-
limited supersaturation. A frequently observed self-branching growth mode can be explained by 
the proposed VLS scheme and the migration of Ga-enriched AuPd liquid on Ga-stabilized polar 
surfaces of mother nanowires. 
 

 
 
Figure 1. (a) SEM image showing as-grown VLS GaN NWs on a growth substrate. (b) Bright 
field TEM image of individual GaN NW showing metal catalyst at the tip. 
 
INTRODUCTION 

GaN nanowires (NWs) are of interest for nanoscale optoelectronic device applications [1-4]. 
Synthesis can be achieved by several methods involving vapor-liquid-solid (VLS) growth, such 
as thermal chemical vapor deposition (CVD) [5-7], hydride vapor phase epitaxy (HVPE) [8], 
molecular beam epitaxy (MBE) [9], and metalorganic CVD (MOCVD) [10]. The low N 
solubility in transition metals implies that nucleation of GaN from supersaturated catalyst 
droplets is unlikely, in contrast to elemental structures such as Si whiskers and NWs [11]. Here 
we study GaN NWs grown by thermal CVD using Ga2O3, NH3 and AuPd catalyst. The observed 
morphologies suggest a VLS mechanism distinct from the nucleation and growth of elemental 
nanostructures from supersaturated liquid. We consider a hypothetical pseudo-binary phase 
diagram and thermodynamics of GaN formation reaction to propose that NW nucleation and 
growth occur via direct reaction of dissolved Ga with NH3 vapor. We also observe spontaneous 
�self-branching� of large-diameter NWs into smaller diameter progeny. This is explained by the 
proposed VLS scheme and the high mobility of Ga-rich liquid catalyst on polar NW surfaces. 

(b) 
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EXPERIMENTAL DETAILS 

Ga2O3 powder (Alfa Aesar, 99.999%) in an alumina boat is placed at the center of a quartz 
tube in a horizontal furnace. SiOx/Si substrates with sputter-coated AuPd (60:40 wt.%, thickness 
<1-2 nm) are placed downstream from the boat. Ga2O3 is then reacted with flowing NH3 (20-175 
sccm) at 1150℃ for 0.5-2.0 hr. NH3 flow was maintained during furnace cooling to room 
temperature as details are available elsewhere [12-14]. 

The scanning electron microscopy (SEM) image in Fig. 1a shows NWs with 30-200 nm 
diameter, length up to 50 µm, and spherical metal particles at the tips. Transmission electron 
microscopy (TEM) confirms the wurtzite structure and identifies the tip particles as AuPd with a 
small amount of Ga [15,16]. The growth orientations are perpendicular to the c-axis (e.g. ]0211[ ), 
resulting in isosceles triangular cross-sections with three polar capping surfaces, e.g. (0001), 

)2112( , and )2112(  [15,17]. 
 
DISCUSSION 
Growth reaction chemistry 

In our G2O3-sourced growth, with or without catalyst Ga2O3 first converts to Ga2O(g) [18]:  
 

 Ga2O3(s) � Ga2O(g) + O2(g) (1) 
 
In the absence of metal catalyst, Ga2O(g) then reacts with NH3 to form GaN in the vapor or on 
the surface of growing GaN by [12,14]: 
 
 Ga2O(g) + 2NH3(g) � 2GaN(s) + H2O(g) + 2H2(g) (2) 
 
Direct reaction of Ga and NH3 can also result in GaN because Ga2O(g) can back-react with H2 to 
form Ga [14,18]: 
 
 Ga2O(g) + H2 � 2Ga(l) + H2O(g) (3) 
 2Ga(l) + 2NH3(g) � 2GaN(s) + 3H2(g) (4) 
 

In our AuPd-catalyzed growth, dissolution of Ga2O and/or NH3 in the metal needs to be 
considered along with the above direct reactions to account for the appearance of spherical metal 
particles at the tips. Since N is virtually insoluble in Au or Pd at our growth temperature [19], we 
expect that only Ga2O can dissolve via the following reaction: 
 
 Ga2O(g) + H2(g) + (AuPd)alloy � H2O(g) + (GaAuPd)alloy (5) 
 
where H2 is provided by (2) and (4). The dissolution of Ga2O in AuPd may be possible without 
being reduced by H2, given the finite solubility of O in Pd at high temperature [20]. 

The solid GaAuPd alloy in (5) then melts above a critical Ga concentration and persists as a 
liquid as more Ga dissolves because Ga has no solubility limit at sufficiently high temperature by 
analogy to Ga-Au and Ga-Pd cases [19]. This suggests a novel GaN NW growth mechanism 
based on a hypothetical pseudobinary Ga-AuPd diagram.  
 



Proposed growth mechanism 
First notice that Tmelt for Au and Pd are 1064℃ and 1555℃ respectively, while Tmelt of AuPd 

(60:40 wt.%) is only ~100℃ below that of Pd [19]. The Ga-AuPd phase diagram is then 
expected to resemble that of Ga-Pd with an overall 100℃ decrease in temperature as shown in 
Fig. 2(a). The y-axis on the right shows pure solid AuPd up to 1460℃. Moving to the left, 
increasing Ga to ~6 wt% at our 1000℃ substrate temperature signals the onset of a liquid 
component (X) and pure GaAuPd liquid at ~14% (Y). As more Ga dissolves by reaction (5), the 
liquid becomes more Ga-rich, and at some point NH3 vapor starts reacting directly with Ga by 
reaction (4) to nucleate a GaN crystal (Fig. 2b).  

It is important to note that the GaN formation reaction (4) is expected to be spontaneous at 
our growth temperature as it can be corroborated by calculating standard Gibbs free energy 
(∆Go) and corresponding equilibrium vapor pressures of NH3 and H2 ( eqNHP ,3

 and eqHP ,2
). From 

thermodynamic data [21] and Tsub = 1300K, we find ∆Go = −100.4 kJ/mol with eqNHP ,3
= 0.0095 

atm and eqHP ,2
= 0.9905. Considering the use undiluted NH3 with pressure ~1 atm (no evacuation 

of reactor) in our growth, LeChatelier principle dictates that the reaction (4) must proceed 
forward (i.e. forming GaN) always to consume �extra� NH3 and reach the equilibrium pressure. 

The alloy composition at the NW tip may deviate from the nominal 60:40 ratio during 
growth, thus changing the critical Ga concentration for liquid formation. This however should 
not affect the validity of the proposed mechanism since GaN nucleation [i.e. reaction (4)] will 
occur spontaneously as long as Ga-containing liquid catalyst exists, independent of the critical 
concentration. 

 

 
Figure 2. (a) Ga-poor end of a hypothetical pseudobinary Ga-Au0.6Pd0.4 (wt.%) phase diagram.. 
During growth at 1000℃, solid AuPd first melts at the Ga concentration X (~6 wt.%), becoming 
all liquid at Y (~14 wt.%). (b) Schematic VLS nucleation and growth of a GaN NW from a AuPd 
catalyst particle. 

 
Once nucleated, NW growth continues at the liquid/NW interface, i.e. tip growth. NH3 might 

be able to access the interface readily due to the short diffusion length (i.e. particle diameter). 
We note that the direct nucleation of initial GaN crystal at the surface of catalyst particle is 
possible and can lead a �root growth� of a NW by vapor-solid type mechanism. However, as it is 
discussed next, we observe tip growth of NWs, so the vapor-solid type growth can be ruled out. 
Another possible growth scenario is the dissolution and reprecipitation of GaN crystal into/from 
the metal catalyst. This however is unlikely since N is insoluble in AuPd at our growth 
temperature as would GaN itself be. Accordingly, X-ray energy dispersive spectroscopy (XEDS) 



and electron energy loss spectroscopy (EELS) show that the AuPd NW tip contains a small 
amount of Ga but no detectable N [15,16]. 

Detailed SEM examination of NWs on their growth substrates provides additional support for 
tip growth. Fig. 3a shows that some large diameter wires �crawled� on the SiOx surface (dark 
contrast indicating the absence of charging) and ended up with having tip particles larger in 
diameter than the radius of wires to which they are attached (e.g. A and B). Furthermore, the 
diameters of these wires taper down away from the tip, and the substrate near such wires is 
denuded of spherical particles (Fig. 3b). Both observations suggest tip growth to the right in Fig. 
3a (along the direction labeled X). The NW diameter increases along X direction because the 
attached particle absorbs isolated smaller particles on the substrate. The resulting denuded zones, 
less than a NW diameter, are clearly seen in Fig. 3b. In contrast, the wires marked C and D grew 
out from the substrate plane as indicated by the bright contrast from charging, the absence of 
denuded zones, and the uniform NW diameters.  
 
Spontaneous branch formation 

In the SEM examination, we frequently observe small diameter NWs branched from a 
mother NW. Small NWs marked E and F in Fig. 3a appear to have branched from the stem of a 
larger diameter mother wire labeled G and grew parallel to each other. Branch growth is more 
clearly seen in Fig. 4a,b. The contrast difference between mother wire and progeny in Fig. 4a 
suggests that the branching exists as families of mutually parallel wires from the same mother. 
Fig. 4b shows the opposite extreme in which one mother wire spawns three apparently unrelated 
offspring. The parallel alignment of branches in Fig. 3a and 4a suggests homoepitaxy, which 
must be further confirmed or ruled out by selected area electron diffraction. The branched NWs 
also result from VLS growth, because spherical particles can be found at their tips (Fig. 4b inset).  

 

 
 
Figure 3. (a) SEM image of a sparsely covered region of a growth substrate. Isolated particles 
are most likely AuPd or GaAuPd. Thinner NWs E and F appear to have branched from a mother 
NW G. (b) Magnified view of the dashed rectangular region in (a). Plotted in white is the number 
of particles counted along ~ 3 µm of wire length, sampled every 50 nm normal to the wire to 
show the particle-denuded zones along the NWs. 

 
This spontaneous branch formation is distinct from some previous works on III-V and metal 

oxide NWs, where sequential catalyst seeding was applied to the NW �trunk� to intentionally 
nucleate second generation branches [22,23], or rapid crystallization [24] (vapor-solid type 
growth) or self-catalytic growth [25,26] induced spontaneous branching. The different scenario 



we envision is a direct consequence of the Ga-stablized polar surface and the formation of liquid 
phase metal catalyst. As described schematically in Fig. 4c, if Ga2O is incorporated into AuPd 
faster than Ga is consumed by the growing mother wire, the tip particle can become enriched 
with Ga and grow in diameter. This provides the opportunity for Ga-rich liquid to leave the tip 
particle, migrate along the surface of the growing NW, and ultimately nucleate branches. We 
also note that the Ga-rich AuPd liquid may have been originated from the diffusion of un-
nucleated AuPd particles from the substrate as a similar phenomenon was observed in Au-
catalyzed Si NW growth [27]. One may also expect the nucleation of branch NWs by the 
migration of AuPd particles that is not alloyed with Ga. However, in our case it should be 
insignificant considering its much lower mobility than the Ga-alloyed AuPd; AuPd in principle is 
solid at our growth temperature, and even if it is liquid phase by size-related melting point 
depression effect, its migration on the Ga-stabilized GaN surface is expected to be slower than 
that of Ga-alloyed AuPd. The fact that these NWs terminate radially at polar surfaces along the 
entire length, and moreover the polar surfaces are Ga-stabilized [12,14,15,17] also support the 
migration of Ga-rich liquid on the NW surfaces. It is worthy to note that alloy catalysts with 
phase equilibria matched to the NW growth conditions (i.e. catalysts which can form liquid 
phase �easily� at low Ga concentration) are considered to be one of requirements for branch 
formation. For instance, using the identical GaN NW growth procedure, Pt catalyst yields high 
quality wires with no evidence for branching [13], and this is understood by the high Tmelt of Pt 
(1772℃) which results in a critical Ga concentration as high as >50 wt.% for liquid Ga-Pt 
formation at our growth temperature 1000℃.  
 

 
Figure 4. (a),(b) High resolution SEM images of self-branched growth from a stem of thicker 
NW. (a) is taken from an as-grown substrate, and (b) shows a broken piece of a NW with 
branches after dry-transfer to a clean Si substrate. The inset reveals spherical particles at the tip 
of branch A, suggesting VLS-type branch growth. (c) Schematic of the self-branching 
mechanism. See the text for more details. 

 
As a final remark, we also suggest that the proposed mechanism should be applicable to the 

mono-composition catalyst systems such as Au or Pd. In case of Au whose melting temperature 



is lower than AuPd alloy or Pd, the alloying effect will be more significant, and it may have 
higher catalytic activity (or growth rate) than the other systems. However, it is also reminded that 
the presence of Pd in fact might be important in our Ga2O3 sourced growth because the finite 
oxygen solubility of Pd can facilitate dissolution of Ga2O vapor into the liquid catalysts.  

To conclude, we proposed a VLS mechanism in which GaN NW growth was driven by 
spontaneous reaction between vapor NH3 and Ga in the Ga-alloyed AuPd liquid catalyst. We 
observed a spontaneous branch formation, and the migration of Ga-rich catalyst liquid was 
expected to be responsible for it. The proposed VLS scheme would be able to explain other 
nitride NW growths.  
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