
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

December 1971 

Design of the Data Description Language Processor Design of the Data Description Language Processor 

Andrew French 
University of Pennsylvania 

Jesus A. Ramirez 
University of Pennsylvania 

Harold Solow 
University of Pennsylvania 

Noah S. Prywes 
University of Pennsylvania, nsp@seas.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Andrew French, Jesus A. Ramirez, Harold Solow, and Noah S. Prywes, "Design of the Data Description 
Language Processor", . December 1971. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-72-19. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/830 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/830
mailto:repository@pobox.upenn.edu


Design of the Data Description Language Processor Design of the Data Description Language Processor 

Abstract Abstract 
The Data Description Language (DDL) is a language for describing the structure of data, and expressing 
transformations that are to be performed on that data. The DDL Processor is a set of computer programs 
which interprets DDL statements and generates a computer program to perform the specified 
transformations. Together the DDL and its Processor provide a utility which can be used to perform jobs 
such as creating new data bases, reorganizing or extracting data from existing data bases, moving data 
to different storage devices, interfacing files between different programming languages, or between 
different operating systems. 

This report documents the design of the DDL Processor. Special features of the design include the use of 
special purpose internal languages, compiler-compiler techniques, bootstrapping methods, and a 
descriptor tree which aids in the parsing of input data. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-72-19. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/830 

https://repository.upenn.edu/cis_reports/830


Universi ty of Pennsylvania 
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING 

ANNUAL REPORT 

DESIGN OF THE DA'I11. 

DESCRIPTLON LANGUAGE PROCESSOR 

by 
A.  French 
J. Ramirez 
H .  Solow 
N. S.  Prywes 

Project  Supervisor 
Noah S. Prywes 

December 1971 

Prepared f o r  the  
Office of Naval Research 

Information Systems 
Arlington, Va  . 22217 

under 

Contract ~00014-67-A-0216-0007 
Project  No. 049-272 

Reproduction i n  whole o r  i n  p a r t  i s  permitted fo r  
any purpose of the  United S t a t e s  Government. 

Moore School Report No. 72-19 



Secunty C l a s s i f ~ r a t t o n  

DOCUMENT CONTROL DATA - R & D 
( ~ r r ~ r r t y  c lassrfrrat ,on 01 trt le,  body o f  abslroct and rndexrtlg annotation muat be entered when tlle overalrrepoci  is  rlassiJied~ 

1 O R I G I N A T I N G  A C T I V I T Y  (Corpora t eaufhw)  

University of Pennsylvania 
The Moore ~ c h o o l  of E lec t r ica l  Engineering 
Philadelphia, Pa. 19104 

28. R E P O R T  S E C U R I T Y  C L A S S I F I C A T I O N  

UNCIASS IFIED 
2b.  G R O U P  

------ 
1 FIT u o a r  T I  r E 

DESIGN OF THE DATA DESCRIPTION LANGUAGE PROCXSSOR 

-- 
n L>CSSRIPTIIIF NOTES ( T y p e  o f  report and.inclusrve d a l e s )  

Annual Report 
5 AU T v O R t S )  (Firs t  name, m ~ d d l e  ~ n i t i a l ,  lest name)  

Andrew French, Jesus A. Ramirez, Harold Solow 

6 R E P O R T  D A T E  

December, 1971 
8a.  C S N T q E C  T O R  G R A N T  NO. 

~00014-67-A-0216-0007 
b. P R O J E C T  NO 

NR 049-272 
c. 

d .  

7a. T O T A L  N O  O F  P A G E S  I7b. N O .  OF R E F S  

211 9 
9a.  O R I G I N A T O R ' S  R E P O R T  N U M B E R I S 1  

Moore School Report No. 72-19 

sb. OTHER REPORT N O ~ S )  (Any other nun- thet mey be e s s i a e d  
this report) 

I 0  D I S T R I B U T I O N  S T A T E M E N T  

Reproduction i n  whole or  i n  pa r t  i s  permitted f o r  any purpose of the  United 
States  Government. 

1 1  S U P P L E M E N T A R Y  N O T E S  12.  S P O N S O R I N G  M I L I T A R Y  A C T I V I T Y  

Office of Naval Research 
Information Systems 

Arlington, Virginia 22217 
13 A B S T R A C T  

The Data Description Language (DDL) i s  a language f o r  describing the s tmc tu re  
of data, and expressing transformations t h a t  a r e  t o  be performed on t h a t  data. m e  
DDL Processor i s  a s e t  of computer programs which in te rpre t s  DDL statements and 
generates a computer program t o  perform the specified transformations. Together the  
DDL and i t s  Processor provide a u t i l i t y  which can be used t o  perform jobs such a s  
creating new data bases, reorganizing or extract ing data from exis t ing data bases, 
moving data t o  d i f fe ren t  storage devices, interfacing f i l e s  between d i f fe ren t  pro- 
gramming languages, or between d i f fe ren t  operating systems. 

This report documents the design of the DDL Processor. Special features  of: the 
design include the use of special  purpose in te rna l  languages, compiler-compiler 
techniques, bootstrapping methods, and a descriptor t r e e  which a ids  i n  the  parsing 
of input data. 

~ R M  1473.+ (PAGE 1 )  DD I N O Y  6 5  

S / N  01 01 -807-661 1 Security Classification 
A-31404 



Page 

1. Introduction 1 

1.1 Background of Project 

1.2 Summary of Capabilities of the Data Description 
Language Processor 

1.3 Important Features of the Design 

1.4 Selection of Computer and Programming Language 9 

1 .  Selection of a Subset of DDL for Implementation 9 

1.6 Organization of the Report 11 

2. Overall Description of the Design of the DDL Processor 15 

2.1 The DDL Compiler-Generator 16 

2.2 The DDL Compiler 20 

2.3 Tne Data Conversion Processor 

2.4 Summary of Languages Used in the DDL Processor 
System 

3. The DDL Compiler Generator 

3.1 Compiler-Compilers 28 

3.2 The DDL Compiler Generator 29 

3.3 Description of the Meta-Language (EBW) 31 

3.4 The Syntactic Analysis Program Generator (SAPG) 36 

3.5 The Code Generation Program Generator (I-J Translator) 40 

3.6 DDL Compiler Generator Logic Flow 42 

4. The DDL Compiler 44 

4.1 The Syntactic Analysis Program (SAP) 44 

4.2 Code Generation Program (CGP) 49 

4.3 Syntactic arid Semantic Supporting Subroutines 59 

4.4 The J-K Translator 61 

4.5 The K- Interpreter 61 



W3LE OF CONTENTS (continued) 

5. The Data Conversion Processor 

5 .1 Loading Data 

5.2 Thrget Data Space Allocation and Data Movement 

5.3 Data Output 

5.4 Data Conversion Processor - Supporting Subroutines 
6. ~ - ~ a n g  

6.1 Where I-Lang is Used 

6.2 I-~ang Statements 

6.3 EBNF Description of I-Lang 

6.4 I-~ang Sample Program 

6.5 I- J Translator Implementat ion 

7. J-Lang 

7.1 Structure of the Language 

7.2 Example of Coding 

7.3 The J-K Translator 

8. K-Lang 

8.1 The K-Machine 

8.2 Instruction  orm mat 

8.3 Machine Operations 

8.4 Subroutine Linkage 

Bibliography 

Page 

64 

64 

66 

67 

68 

70 

71 

71 

78 

80 

85 

88 

88 

91 

92 

101 

10 1 

102 

105 

108 

111 



TABLE OF CONTENTS (continued) 

Page 

Appendix A: Syntax Description of DDL Described i n  EBNF A - 1  

Appendix B: EBW with Subroutine Cal ls  B - 1  

Appendix C:  Symbol Table C - 1  

Pa r t  I Algorithm t o  Encode and Decode Three 8-  it 
Characters i n  16 B i t s  C-6 

Par t  I1 Search Tree Algorithm c-7 

Par t  I11 I n s e r t  New Entry c-9 

Appendix D: Data Table 

Par t  I Data Table Formats 

Appendix E: The SAPG (syn tac t i c  Analysis Program  ene era tor) 2-1 

Par t  I PASS 1 E-1 

Pa r t  IA LEXEBNF E- 5 

Par t  I1 PASS 2 E-12 

P a r t  I11 PASS 3 E-14 

Appendix F: Implementation Example F-1 

iii 



LIST OF 

Figure 1-1 

Figure 1-2 

Figure 2-1 

Figure 2-2 

Figure 2-3 

Figure 2-4 

Figure 2-5 

Figure 2-6 

Figure 3-1 

Figure 3-2 

Figure 3- 3 

Figure 3-4 

Figure 3-5 

Figure 4-1 

Figure 4-2 

Figure 4-3 

Figure 4-4 

Figure 4-5 

Figure 5 -1  

Figure 7-1 

Figure 8-1 

Comparison of DDL Processor and Compiler-Compiler 
System Designs 

Successive In te rpre ta t ion  of the  Macro Language 
I-Lang 

DDL-Proces sor  System 

Generating a Translator From I-Lang t o  J-Lang 

Generation of the  DDL Compiler 

Compilation of a DDL Program 

B e c u t i o n  of a Data Conversion Program 

Overview of DDL Compiler and Data Conversion 
Processor 

A Compiler- Compiler 

The DDL Compiler Generator 

Creation of the  Syntact ic  Analysis Program 
Generator (SAPG) 

Creation of t h e  I-J Translator 

DDL Compiler-Generator Logic Flow 

The DDL Compiler 

Phase 1 of t he  DDL Compiler 

Phase 2 of t he  DDL Compiler 

AFCB and ADB's f o r  Create Statement 

Overview of AFCB's and ADB's f o r  Create Statement 

The Data Conversion Processor 

K-Lang Operand Address Generation 

Machine Ins t ruc t ion  F o m t  



1. INTRODUC'ITON 

1.1 Background of Project  

This repor t  documents the  design of a Data Description Language 

(DDL) Processor. It has been prepared with support by the  Office of Naval 

Research, Information Systems Program, under Contract ~00014-67-A-0216-0007. 

This repor t  concludes Phase 1 of a two phase p ro jec t .  Phase 2 of t h i s  

p ro jec t  w i l l  cons i s t  of the  implementation of the  DDL Processor i n  accor- 

dance with the  design i n  t h i s  repor t .  

The need f o r  an e f f i c i e n t  method of converting data  f o r  use with 

d i f fe ren t  programs or d i f f e r en t  computers has been long recognized by 

t he  Navy a s  wel l  a s  the  l a rge r  community of EDP users .  Presently,  a 

use r  can organize data  by e i t h e r  wr i t ing  h i s  own spec ia l  software or 

by using the  data descr ip t ion f a c i l i t i e s  contained i n  t he  programming 

languages, operating systems and data management systems ava i lab le  f o r  a 

pa r t i cu l a r  computer. Data organized i n  t h i s  way of ten  cannot be d i r e c t l y  

used on a d i f fe ren t  computer i n s t a l l a t i o n  due t o  incompat ibi l i t ies  of 

software and hardware. I n  many cases, the organization of t h i s  data 

cannot be communicated e f fec t ive ly  t o  another use r  because t he  data  

organizations a r e  impl ic i t  i n  the  programs or  software used. I n  some 

cases, the  only way t o  interchange data i s  t o  wr i t e  a spec ia l  conversion 

program. This can require considerable e f f o r t ,  due t o  such problems 

a s  d i f fe ren t  word and character  organization and machine word s izes .  

There a r e  two main approaches t o  the  solut ion of t he  Data 

Conversion problem. One consis ts  of building t he  capab i l i ty  of converting 



da t a  from ex te rna l  sources and formats i n t o  spec i f i c  data management 

systems o r  programming languages. This capab i l i ty  i s  then l imi ted t o  the  

spec i f i c  computer system and data management system or  programming 

language where it has been incorporated. The other  approach which i s  

considered f ea s ib l e  i s  t o  develop a new "Ut i l i t y "  which w i l l  convert 

data  between programs and/or computer systems. I t s  power, then, w i l l  

be general  and not l imi ted  t o  a spec i f i c  programming o r  computer system. 

Our design i s  based on t h i s  second approach. 

The Data Def ini t ion Language Processor reported here i s  a separate 

and d i s t i n c t  development from the  Data Management System. While it can 

communicate and prepare information f o r  t he  l a t t e r ,  it performs such 

functions a s  a separate processor. The existence of a Data Description 

Language Processor i n  respective computer systems w i l l  f a c i l i t a t e  

communications and exchange of data between computer systems and computer 

programs, and across  computer language ba r r i e r s .  

The f irst  s t ep  i n  the  development of DDL was t o  consider how it 

would be used and what f a c i l i t i e s  should be included i n  it. The research 

toward t h i s  end s t a r t e d  under the  current  contract  e a r l y  i n  1970 and 

culminated i n  two repor ts .  The f i r s t  - "A Manual with Examples f o r  the  

Data Description Language" by Diane P. Smith, Apr i l  1971 [~Mll spec i f i e s  

and describes the  usage of DDL. The second repor t ,  a l s o  by Diane P. 

Smith - "Ar? Approach t o  Data Description and Conversion," November 1971 

[S@] presents  extensive research t h a t  const i tu ted the  ba s i s  f o r  the  DDL 

described i n  the  Apr i l  1971 repor t .  These two repor t s  present  and J u s t i f y  

a highly comprehensive language i n t o  which a r e  incorporated a l l  the usefu l  

c apab i l i t i e s  discovered by our research t o  da te .  



The next s t ep  was t o  implement a processor f o r  DDL. The recognit ion 

of the  need f o r  such a processor was made a t  approximately t he  same 

time i n  a Tentative Specif ic  Operational Requirement 31-47 issued by t he  

Navy. A proposal f o r  a two-phase design and implementation p ro jec t  

was submitted t o  the  Office of Naval Research on March 31, 1971 and 

work on Phase 1 s t a r t e d  i n  Ju ly  1, 1971. 'This repor t  represents  the  

culmination of Phase 1. 

The design of the  DDL processor a s  reported here, and the  subsequent 

implementation, have research and experimental aspects .  They employ 

s t a t e  of t he  a r t  techniques and several  new approaches t o  achieve machine 

and operating system independence and t o  provide f o r  the  adap tab i l i ty  

of the  Data Description Language Processor t o  new user  environments. 

1 . 2  Summary of Capabi l i t ies  of the  Data Description Language Processor 

The DDL processor is  designed t o  s a t i s f y  two requirements of data 

interchange : (1) data  (organization) de f i n i t i on  and (2) data  t r an s l a t i on .  

The f i r s t  s t ep  toward simplifying data  interchange is  t o  make data  and 

i t s  organization e x p l i c i t  and independent of machines and t h e i r  processors. 

This can be done by using a language f o r  describing data (separate  from 

the  language used t o  process t h a t  data)  . The second s t ep  cons i s t s  of 

developing a processor f o r  in te rp re t ing  t he  descr ip t ion and t r an s l a t i ng  

t he  data t o  a format appropriate f o r  the  executing machine. The DDL 

Language [ s M ~ ,  SM21 provides t he  descr ip t ive  language. The DDL pro- 

cessor described i n  t h i s  repor t  i s  a s e t  of computer programs which 

w i l l  perform the  i n t e rp r e t a t i on  and t rans la t ion .  It i n t e r p r e t s  data  

de f in i t ions  and data  t r an s l a t i on  commands, produces a computer program 



t o  perform the  required data conversion and then executes t h i s  program, 

thereby doing t he  data  conversion speci f ied .  

The capab i l i t i e s  of DDL a r e  summarized below. 

1 . 2 . 1  In te r fac ing  F i l e s  with Different  Programs and Programming Languages 

Frequently f i l e s  created by one program cannot be processed by 

another program o r  by another program i n  a d i f f e r en t  programming language. 
v 

With the  DDL processor, the  f i l e s  can be converted i n t o  a s t ruc tu re  

which can be processed by the  other program. I n  t h i s  manner f i l e s  can 

be in terfaced across programming languages. 

* 
1.2 .2  In te r fac ing  F i l e s  with Different  Operating Systems and Different  

Data Management Systems 

F i l e s  created under one operating system o r  data  management system 

cannot, i n  general ,  be processed under a d i f f e r en t  operating system o r  

data  management system. With DDL, t he  conversion of f i l e s  f o r  processing 

by other  operating systems o r  data management systems can be achieved. 

* 
1 .2 .3  In te r fac ing  F i l e s  with New Computers 

Increased requirements and new technology require t he  phasing out 

of o ld  computers and t h e i r  replacement by new computers. DDL would 

enable f i l e s  t o  be prepared f o r  t r a n s f e r  from t h e  o ld  computer t o  t he  

new. 

1 .2  4 In tegrat ion of F i l e s  

Fragmentation of information i n  numerous f i l e s  f requent ly  causes 

great  d i f f i c u l t i e s  i n  use and considerable ineff ic iency i n  processing. 

A DDL w i l l  provide the  capabi l i ty  t o  in tegra te  many f i l e s  i n t o  one. 

* 
These f a c i l i t i e s  a r e  not p a r t  of the  subset being implemented now. 
See m b l e  1-1 f o r  d e t a i l s .  



1 .2 .5  Extraction of Data From F i l e s  

I f  only a small amount of data i n  a f i l e  i s  used by a program, 

it i s  o f ten  f a r  more e f f i c i e n t  t o  c rea te  a smaller f i l e  consis t ing only 

of the  use fu l  data .  DDL descr ip t ions  allow the  c rea t ion  of many f i l e s  

from one f i l e  

1 . 2 . 6  Creation of dew Data Bases 

The combination of t he  above two capab i l i t i e s  allows t he  t rans-  

l a t i n g  of one s e t  of f i l e s  i n t o  another s e t  of f i l e s .  

;y. 
1 .2 .7  In te r fac ing  F i l e s  t o  Use New Devices 

Advances of technology introduce new input/output devices which 

enhance t he  t o t a l  cos t  ef fect iveness  of the  e n t i r e  computer system. The 

change of such input/output devices can be f a c i l i t a t e d  by the  DDL process- 

ing of the  f i l e s  from the  old devices t o  t he  new ones. 

1 . 2  8% Improving U t i l i z a t i on  of Computers o r  Storage . 
A fu r t he r  appl ica t ion i s  i n  t he  design and operation of data 

and data management systems. For example, a  DDL can be used t o  c rea te  

new data s t ruc tu res  which can then improve computer o r  storage u t i l i z a t i o n .  

l . 2 . g  A Language f o r  Communication Between Humans About Data 

One important appl ica t ion of a DDL i s  a s  means of communication 

between humans. For example, using a DDL a designer of a data  base can 

describe precise ly  t o  an appl ica t ions  programmer the  exact s t ruc tu re  of 

t he  data the  programmer wants t o  use.  J u s t  a s  BNF lNA11 i s  now used t o  

describe the  syntax of a language so can a DDL be used t o  describe data 

s t ruc tu res .  



1 . 3  Important Features of t he  Design 

The DDL Processor system cons i s t s  of th ree  major pa r t s .  The 

f i r s t  p a r t  uses syntax and semantic de f in i t ions  t o  generate t he  second 

p a r t  - the  DDL Compiler. The DDL Compiler formats and t r a n s l a t e s  DDL 

Data Def ini t ion Statements and produces a computer program which w i l l  

do the  data base convergion. The t h i r d  pa r t  of t he  processor ac tua l ly  

processes the  source data base and produces a s  an output the  t a rge t  

da ta  base. This th ree  pa r t  s t r uc tu r e  i s  i l l u s t r a t e d  i n  Fig .  l - l a .  

Changes i n  the  de f i n i t i on  of DDL w i l l  occur only infrequently 

a f t e r  an  i n i t i a l  language development phase and t h e  compiler generator 

f a c i l i t y  i s  primari ly intended f o r  DDL language development (although 

it i s  very l ielpful  i n  t r an s f e r r i ng  t he  DDL system t o  a new computer). 

Because one of the  DDL Processor Implementation design goals i s  maximum 

ea r ly  feedback about design decisions,  a subset of the  language was 

selected,  and the  remaining components w i l l  cons t i tu te  l a t e r  addi t ions  t o  

DDL. These w i l l  cause addi t ions  t o  syntax and s t r uc tu r e  t ab l e s .  

Changes i n  t he  def in i t ion  of a pa r t i cu l a r  data  base t o  which t he  data 

conversion processor i s  applied w i l l  occur more f requent ly .  For 

instance,  one may wish t o  change def in i t ions  t h a t  a r e  used i n  the  conver- 

s ion of data between data management systems, o r  between computer systems. 

In  t h i s  case only the  sequence of DDL statements would be changed and the  

DDL Compiler would be used t o  create  a new Data Conversion Processor. 

If the  descr ip t ion of the  data  t o  be converted does not  change 

the  DDL Compiler need not be used, tile previously created Data Conversion 

Processor may be used again.  





There a r e  two fea tu res  i n  the  Design which a r e  of spec ia l  

i n t e r e s t .  

(1) The app l ica t ion  of t he  Concept of a Compiler-Compiler t o  the  

DDL Processor. 

This i s  i l l u s t r a t e d  i n  Fig .  1-1 where the  design of the  DDL Processor 

i s  shown on t he  l e f t  ( ~ i g .  l - l a )  a s  compared t o  a design of a Compiler 

Compiler system as shown on the  r i g h t  ( ~ i g .  l - l b ) .  

Note t h a t  the  input i s  shown a s  hor izonta l  l i n e s  and output i s  

shown a s  v e r t i c a l  l i ne s ,  thus the  output of the  DDL Compiler-Generator 

is  not t he  input t o  the  DDL Compiler; it is, ra the r ,  t h e  DDL Compiler 

i t s e l f .  

The Data Def ini t ion ( i n  DDL) of a Data Base i s  considered analogous 

t o  the  users  source statements which a r e  input t o  t he  compiler. The Data 

Conversion Processor i s  the  analogue of t he  u se r s '  object  program, output 

from t h e  compiler. 

( 2 )  Machine Independence Through t h e  Use of a Macro Language Design 

Machine independence i s  achieved by implementing much of t he  DDL 

Processor i n  a macro language J-Lang and t he  t r an s l a t i on  of J-Lang t o  

a machine language-like processor - K-Lang. Only the  in te rpre ta t ion  

from the  machine l i k e  processor, K-Lang, t o  the  spec i f i c  machine ( i n  

our case P L / ~  and the  360 system) a r e  machine dependent. Thereby, the  

dependence on the  spec i f i c  programming language and computer a r e  

d r a s t i c a l l y  reduced. The macro s t ruc tu re  successively being in te rpre ted  

i s  i l l u s t r a t e d  i n  Figure 1-2, showing the  sequence of i n t e rp r e t a t i on  from 

the  highest l e v e l  J-Lang macro language t o  t he  eventual execution on t he  

IBM 360. F i r s t ,  the  J-Lang i s  t r an s l a t ed  i n t o  a K-Lang program. The 

K-Lang i s  ea s i e s t  and simplest then t o  i n t e rp r e t  and t h i s  is where 



dependence on a spec i f i c  language and spec i f i c  computer system i s  made; 

K-Lang i s  in te rpre ted  using a P L / ~  program (which has been t r an s l a t ed  

i n t o  assembly language code) and thus the K-Lang machine i s  simulated 

on t he  IBM 360. 

1 . 4  Select ion of Computer and Programming Language 

7 3 0  computer systems avai lable  a t  the  Universi ty of Pennsylvania 

t h a t  could s a t i s f y  requirements were evaluated, the  RCA Spectra 70146 

Time Sharing System, and the  IBM 360175 operating under O S / ~ ~ O .  The 

RCA system includes support f o r  ALGOL, COBOL, FOR!I!RAN, SNOBOL, and 

Assembler languages. The IBM system supports these and a l s o  P L / ~ ,  

APL, LISP, GPSS and GASP. Since both systems meet t he  hardware and 

operating system requirements, t he  programming language was the  determinant. 

Assembly language programming was unsat is factory  because of programming 

costs ,  lack of mchine  independence, and poor readab i l i ty .  P L / ~  was 

considered,by f a r ,  t h e  bes t ,  e spec ia l ly  i n  t he  area  of memory a l loca t ion ,  

and data management commands. The IBM 360 computer system was se lected 

because of PL/1 a v a i l a b i l i t y .  

1 . 5  Select ion of a Subset of DDL f o r  Implementation 

The repor t s  by Diane P. Smith [ s M ~ , ~ I  showed t h a t  a  model f o r  

data  descr ip t ion can be divided i n t o  th ree  l a rge ly  independent l eve l s ,  

namely : 

1) the  record, 

2) f i l e  and 

3) storage l eve l s .  
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Using these  statements it w i l l  be possible t o  

(a)  Accurately describe t he  s t ruc tu re  of da ta .  (This i s  

valuable during system design, and implementation, 

a s  wel l  a s  f o r  l a t e r  documentation.) 

(b) In te r face  f i l e s  with d i f f e r en t  programs and programing 

languages. (using t he  DDL t o  reformat f i l e s  before 

program execution. ) 

(c)  In tegra te  and ex t r ac t  data  i n  ex i s t i ng  f i l e s ,  producing 

new f i l e s .  (The "ex i s t ing  f i l e "  might be j u s t  a deck of 

cards, o r  unformatted tape records.) 

The subset se lected f o r  t h i s  implementation w i l l  support the  

record and par t  of the  f i l e  l e v e l  de f in i t ions .  It w i l l  not  include 

t he  storage s t ruc tu re  descr ip t ion f a c i l i t i e s .  Ins tead the  standard 

data access methods of the  implementation operating system w i l l  be 

used t o  s t o r e  data  on devices. The statements which a r e  supported by 

t he  f i r s t  implementation and those statements which w i l l  be implemented 

l a t e r ,  a r e  shown i n  Table 1-1. 

1.6 Organization of the  Report 

This sect ion (Section 1) has responded t o  a number of questions 

t h a t  were l e f t  open, and resolved during the  design phase. These 

consisted of se lec t ion  of a computer system f o r  the  i n i t i a l  implementation - 

t h e  IBM 360 Mod 75 (soon t o  be exchanged f o r  IBM 370 Mod 165) a t  the  

Universi ty of Pennsylvania Computer Center was selected;  se lec t ion  of 

a programming language f o r  implementation of t h e  DDL Processor - P L / ~  
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was selected; and f i n a l l y  select ion of a subset of the commands 

described i n  the  DDL manual (April 1971) [~Mll, t h a t  w i l l  be implemented 

i n  the i n i t i a l  versions of the system. In  the select ions  made and a s  

well  as  i n  the design, the experimental nature of the project  a s  well 

a s  the  need t o  provide a system a s  independent as  possible of a specif ic  

environment were stressed.  

Section 2 provides an overview of the  design of the  processor. 

Section 3 describes the Compiler-Generator. Section 4 describes the  

DDL compiler. Section 5 describes the Data Conversion Processor. m e  

remainder of the  report  (sections 6, 7, 8) a r e  a specif icat ion of the 

three in te rna l  languages used i n  the system ( I -~ang ,  J-Lang, and K - ~ a n g ) .  

A l i s t  of references and appendices conclude t h i s  report .  



2 .  OVERALL DESCRIPTION OF TEE DESIGN OF 'ME DDL PROCESSOR 

The "DDL Processor System" i s  ac tua l l y  th ree  processors ( i . e .  

s e t s  of computer programs) . .The f i r s t  i s  the  DDL Compiler Generator, 

the  second i s  t he  DDL Compiler, and t he  t h i r d  i s  the  Data Conversion 

Processor (see  F ig .  1-1).  When the  term DDL Processor i s  used, it 

. r e f e r s  t o  the  l a t t e r  two processors - the  DDL Compiler and t he  Data 

Conversion Processor. 

An analogy with ex i s t ing  computer programming systems was made 

i n  Fig .  1-1; the Data Conversion Processor corresponds t o  an executable 

user  program, t he  DDL compiler corresponds t o  a Cobol, For t ran o r  P L / ~  

compiler, and the  DDL Compiler Generator corresponds t o  a Compiler- 

Compiler which i s  used t o  produce t he  Cobol, Fortran o r  P L / ~  compiler. 

The re la t ionsh ips  between and the  use of t he  th ree  processors i n  t he  DDL 

systems i s  read i ly  seen from the  analogy. The Data Conversion Processor 

i s  t h e  program which reads data from ex i s t i ng  f i l e s  and produces new 

f i l e s .  Like most data processing programs, each Data Conversion Processor 

i s  designed f o r  a spec i f i c  function,  (e .g .  conversion of f i l e s  i n  format 

A t o  f i l e s  i n  format B ) .  To a i d  i n  t he  generation of Data Conversion 

Processors, t he r e  i s  the  DDL Compiler. 

To produce a Data Conversion Processor one wr i t es  a Data Def ini t ion 

(a s e r i e s  of statements i n  t he  DDL language) f o r  each of t he  source and 

t a r g e t  f i l e s .  These statements a r e  read by t he  DDL Compiler, which 

produces a new Data Conversion processor. It i s  important t o  note t ha t ,  

j u s t  a s  it i s  not necessary t o  compile a Cobol program each time it i s  



used, it i s  not necessary t o  c rea te  a new Data Conversion Processor 

each time it i s  used. Only when t he  functions of the  processor change 

i s  t h a t  required.  

The DDL Compiler, and the  Data Conversion Processors produced by 

it, a r e  t h e  components of the  DDL Processor System t h a t  most users  w i l l  

need, The other  component, the  DDL Compiler Generator, i s  t he  s e t  of 

programs used t o  c rea te  the  DDL Compiler. The "Generator" i s  a very 

valuable t o o l  i n  the  development of the  DDL Compiler, and i s  equally 

valuable i n  enhancing and modifying t he  Compiler. But jus t  a s  the  average 

user  does not  o f ten  modify h i s  Cobol compiler, he would not often modify 

h i s  DDL Compiler. 

An overview of the  DDL Processor System i s  shown i n  Figure 2-1. 

Each processor i s  surrounded by a broken l i n e .  Programs a r e  shown i n  

rectangles,  input/output a r e  shown i n  trapezoids.  When t h e  output i s  a 

program double l i n e s  a r e  used t o  show the  des t ina t ion  of t he  output. 

The following paragraphs describe each of t he  th ree  components of the  DDL 

Processor System. 

2 .1  The DDL Compiler-Generator 

The DDL Compiler-Generator i s  composed of th ree  p a r t s  - the  Syntactic 

Analysis Program Generator, t he  I-J Translator (see  Fig .  2-2), and the  

J-K Translator.  The re la t ionsh ip  of these th ree  i s  shown i n  Figure 2-3. 

The f i rs t  par t  of t he  Compiler Generator i s  the  Syntact ic  Analysis 

Program Generator. The input t o  the  Syntactic Analysis Program Generator 

i s  a syntax descr ip t ion coded i n  Extended Backus-Naur Form (EBNF). 
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(EBNF nota t ion w i l l  be described i n  Section 3.2.) The Syntactic Analysis 

Program Generator produces a program which i s  t he  Syntax Analysis phase 

of the  DDL Compiler. The second p a r t  of the  Compiler Generator i s  the  

I-J Translator.  Its input i s  the  Code Generation logic ,  wr i t t en  i n  I-Lang. 

The I-J Translator then produces a program which contains t he  bas ic  code 

generation log ic  used i n  t he  DDL Compiler. 

The output of the Syntactic Analysis Program Generator and t he  I-J 

Translator a r e  J-Lang programs. The t h i r d  major component of the  DDL 

Compiler Generator, the  J - K  Translator,  i s  used t o  t r a n s l a t e  these  J-Lang 

programs t o  K-Lang programs, which a r e  then su i t ab le  f o r  in te rp re t ive  

execution. 

2 . 2  The DDL Compiler 

An overview of the  DDL Compiler i s  shown i n  Figure 2-4. The DDL 

Compiler contains f i v e  major pa r t s :  (1) a Syntactic Analysis Program (SAP), 

(2)  a Code Generation Program (CGP), (3) a s e r i e s  of supporting subrou- 

t i ne s ,  (4) an i n t e rp r e t e r ,  (5 )  a J - K  Translator.  

The function of t he  SAP i s  t o  perform the  syntax ana lys i s  on t he  

DDL statements. The function of CGP i s  t o  generate t he  Data Conversion 

Program ( i n   an an^). Since both SAP and CGP a r e  i n  K-Lang, t he  K-Inter- 

p r e t e r  i s  used t o  execute them ( t he  K-Interpreter  l og i ca l l y  converts t he  

IBM 360 machine i n t o  t he  K-machine). The J - K  Translator accepts a s  

input the  J-Lang code produced by CGP and produces t he  Data Conversion 

Program i n  K-Lang. 





The supporting subroutines a r e  a s e t  of functions used during 

Syntax Analysis and i n  Code Generation; these subroutines, a s  well  a s  

the  K-Interpteter ,  and t h e  J - K  Translator a r e  wr i t t en  i n  P L / ~ .  

Phase 1 of the  compilation process i s  the  execution of the  Syntactic 

Analysis Program, with i t s  supporting subroutines. Phase 1A includes most 

of t h e  Semantic In te rpre ta t ion  logic;  it completes the  i n t e rna l  t ab l e s  

which w i l l  be used i n  Phase 2 (Code  ene era ti on). Phase 3 of compilation 

i s  the  execution of t he  J-K Translator; t h i s  produces t h e  machine-level 

language (K-~ang )  hhich i s  t he  output of the  DDL compiler - namely, t h e  

Data Conversion Processor. 

2 .3  The Data Conversion Processor 

The Data Conversion Processor i s  a s e t  of K-Lang programs and 

data which was produced by t he  code generation log ic  of the  DDL compiler. 

It i s  composed of 

(a)  a Data Conversion Program 

(b) a Data Structure  t o  perform t h e  data conversion, 

(c )  an in te rpre te r ,  and 

(d) a s e t  of Run Time Supporting Subroutines. 

The Data Structure  i s  a network of threaded lists.  The nodes a r e  

data descr iptor  en t r i es ;  they a r e  used by t he  Data Conversion Program t o  

a i d  i n  parsing t h e  source data,  and t o  format t he  output data .  Because 

the  Data Conversion Program i s  encoded i n  K-Lang, it must be in te rpre t ive ly  

executed by a K-Interpteter .  The other  components of t he  Data Conversion 

Processor, t he  Run Time Supporting Subroutines, perform functions such 

a s  record l e v e l  input-output, main memory a l locat ion,  character  s e t  con- 

version, extension or  t runcat ion of f i e ld s ,  and data type conversion. 

An overview of the  Data Conversion Processor i s  shown i n  Figure 2-5. 
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Figure 2-6 shows a simplified view of the flow in the DDL 

compiler and Data Conversion Processor. The K-Interpreter and supporting 

subroutines have been omitted to allow the logical flow of control and 

data to be seen more easily. Note that the Code Generation Program of 

the DDL Compiler produces both a network of data descriptors and a Data 

Movement Program. These two become the Data Conversion Processor. During 

the execution of the Data Conversion Processor the data descriptor network 

is used to parse the input data and act as a framework which the Data 

Movement Program uses to construct the output data files. 





2.4 Summary of Languages Used i n  the  DDL Processor System 

The DDL processor system r e l i e s  heavily on t h e  I, J, K and EBNF 

languages; therefore  the  t r an s l a to r s  and i n t e rp r e t e r s  f o r  these  w i l l  

be used t o  i l l u s t r a t e  t he  design techniques used i n  DDL Processor. 

2.4.1 The Syntactic Analysis Program Generator 

This program i s  used i n  two places i n  the  system: (1)  t o  generate 

the  syntact ic  analys is  phase of the  DDL Compiler and (2) t o  generate 

t he  main procedures of the  I-J Translator.  Its implementation cost  is 

thus divided between two subcomponents. The Syntactic Analysis Pragram 

Generator i s  valuable during i n i t i a l  implementation a s  it allows the  syntax 

of DDL, and of I-Lang t o  change without requiring manual rewrit ing of the 

syntax analys is  programs (only the  EBNF descr ip t ions  must be changed). 

I n  addit iob,  the  EBNF source statements provide excel lent  documenta- 

t i o n  of the ru l e s  of grammar f o r  the  language and of t h e  l og i c  of the  

syntact ic  ana lys i s  program. The Syntactic Analysis Program Generator 

a l s o  cen t ra l i zes  the  generation of syntax-checking programs. 

2.4.2 The I-J Translator 

This program is  used ( i n  conjunction with the  J - K  Translator)  

t o  generate the  Semantic ~ n a l ~ s i s / ~ o d e  Generation phase of the  DDL 

Compiler. Most of i t s  logic  i s  generated using t h e  Syntactic Analysis 

Program Generator, thereby keeping implementation cost  low. Other 

benef i ts  of t he  I-J Translator l i e  i n  t he  f a c t  t h a t  it provides a method 

f o r  t r an s l a t i ng  t he  self-documenting, human readable I-Lang i n t o  t he  

encoded J-Lang form used i n t e rna l l y  by the  DDL processor. Thus encoded, 

t he  log ic  can be t r an s l a t ed  by the  same program which i s  used i n  the  DDL 

compiler ( t he  J - K  Transla tor) .  



2.4.3 The J - K  Translator 

It i s  used i n  th ree  places i n  the  system: (1) it forms the  

t h i r d  phase of t he  DDL Compiler, (2) it i s  used a t  the  end of the  

Compiler Generator program which produces t he  Semantic ~ n a l ~ s i s / ~ o d e  

Generation log ic ,  (3) it i s  used a t  the end of t he  Compiler Generator 

program which produces t he  Syntactic Analysis Program. Although it i s  

not  a simple program, i t s  cost  i s  d i s t r i bu t ed  over th ree  important a reas  

of DDL implementation. The J - K  Translator performs - a l l  t he  K-Lang 

generation done by the  DDL Processor. Any extensions t o  the  K-Lang a f fec t  

only it and t he  K-Interpreter .  Together with the  K-Interpteter ,  it provides 

t he  ba s i s  f o r  t he  machine independence of t he  DDL Processor. 

2.4.4 The K-Interpteter  

This program simulates t h e  K-machine. It i s  used t o  "execute" 

t he  DDL compiler, and the  program which t he  compiler produces - the  

Data Conversion Processor. It decodes machine-level ins t ruc t ions  and 

performs t he  elementary commands indicated by them. It is t he  primary 

method used t o  achieve machine independence. Because it operates 

i n t e rp r e t a t i ve ly  it provides an  excel lent  place i n  which t o  place debugging 

too l s ,  program performance monitors, and use r  data  v a l i d i t y  t e s t s .  



3. THE DDL COMPILER GENERATOR 

3.1 Compiler-Compilers 

One of the  main problems i n  using computers i s  t h a t  of effective 

programming. An important advance was made with the introduction of 

mechanical t rans la tors  a s  an a i d  i n  preparing programs. An easy t o  

use a r t i f i c i a l  language was developed and a t rans la tor  wri t ten t o  trans- 

l a t e  t h a t  language in to  a machine language. I n i t i a l l y  these t rans la tors  

were handwritten i n  an "ad-hoc" manner f o r  a par t icu la r  machine and 

language. But using the  theory of automata and formal l i ngu i s t i c s  

a s  too ls  compiler wri ters  were able t o  develop be t t e r  techniques f o r  

t rans la tor  construction. An important s tep was the development of a 

formal language i n  which t o  describe the syntax of a programing language. 

The def in i t ion  of the ALGOL syntax L N A ~ ]  was an ear ly  and success- 

f u l  attempt t o  describe programming languages i n  a formal way. The 

automatic construction of compilers i s  based on such a formalization. 

The following excerpt from a paper by J. A. Feldman on FSL (Formal 

Semantic I,anguage) [ ~ e  11 out l ines  the  basic method and should serve 

a s  an adequate introduction t o  our discussion of compiler-compilers. 

When a compiler f o r  some language, C f  , i s  required, 

the  following s teps  a r e  taken. F i r s t  the  formal syntax 
P 

of x ,  expressed i n  a syntactic metalanguage, is fed 

in to  the syntax loader. This program builds tab les  which 

w i l l  control  the  recognition and parsing of programs i n  

-4 the  language . Then the semantics of , writ ten i n  a 

semantic metalanguage, i s  fed i n t o  the semantic loader. This 

program builds another table ,  t h i s  one containing a descrip- 

t i o n  of the meaning of statements i n  2 . Finally,  everything 

- 28 - 



t o  the l e f t  of the double l i n e  [in Fig. 3-11 i s  

discarded leaving a compiler f o r  2 .  
The resul t ing compiler i s  a table-driven t rans la tor .  The 

compiler kernel includes Input-Output, code generation routines and 

other f a c i l i t i e s  used by a l l  t rans la tors .  Examples of t h i s  type may 

be found i n  the work of P. Ingerman CIN 11; W.  M. McKeeman, J. J .  Horning, 

D. B. Wortman [MC 11; Feldman [ ~ e  11; Brooker and Morris [ ~ r  11. 

3.2 The DDL Compiler Generator 

The correspondence between the compiler-compiler described by 

Feldman [ ~ e  11 and the  DDL Compiler Generator i s  given i n  the  following 

sentences: 

a)  The metalanguage used t o  express the formal syntax (of DDL) 

i s  EBW (see Section 3.3) . 
b) The Syntax Loader i s  the (SAPG) Syntactic Analysis Program 

Generator, i.e., the EBNF of DDL i s  fed in to  the  SAPG. 

This program produces the  SAP (syntact ic  Analysis program) 

which w i l l  control  the recognition and parsing of programs 

i n  the  language DDL. 

c) The semantic* metalanguage i s  the I-Lang (see Section 6 ) .  

d) The Semantic Loader corresponds t o  the (CGPG) Code Generation 

Program Generator (or  I-J Translator) .  The Code Generation 

logic  ( i n  I -~ang)  i s  fed in to  the CGPG. This t rans la tor  

produces the  CGP (code Generation program) which w i l l  control  

code generation. 
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e)  The compiler kernel  corresponds t o  the  s e t  of Syntactic and 

Semantic supporting subroutines. 

The corresponding diagram f o r  t he  DDL Compiler Generator i s  shown 

i n  Figure 3-2. Everytlling t o  t he  l e f t  of t he  double l i n e  i n  Figure 3-2 

i s  discarded leaving a compiler f o r  DDL. 

I n  t he  next sect ion a descr ip t ion of the  ~~ metalanguage i s  

presented. In  the  following ones the  descr ip t ion of each of t he  com- 

ponents of the  DDL Compiler Generator i s  presented. 

3.3 Description of the  Metalanguage (EBNF) 

The formal syntax of the  DDL language w i l l  be described with the  

a i d  of a metal inguis t ic  formulae Extended BNF (EBNF) .+ The i n t e rp r e t a t i on  

of t h e  bas ic  EBNF i s  be s t  explained by an example. 

1 < CRITERION STPIT > : : = C R I E R I O N  (< CRITERION MP NAME >" ; 

< RPLVAL STMT >" ) 

1 < IUDN > "OF c REF NAME >" 

t A complete descr ip t ion of the  Syntax of DDL i s  presented i n  
Appendix A. 



Machine $, 
Figure 3-2 

The DDL Compiler Generator 



Sequences of characters enclosed i n  the  bracket < > represent 

BNF metalinguist ic var iables  whose values a r e  sequences of symbols. The 

marks : := and 1 ( the  l a t t e r  meaning OR) a r e  BW metalinguist ic symbols. 

The extension of BNF (EBIVF) i s  through use of double quotes " and * a s  

a l s o  metalinguist ic symbols. Double quotes a r e  used t o  indicate  t h a t  the  

item enclosed by these  symbols may appear zero o r  one times i n  t he  

"object" formulae. If the  close quotes a r e  followed by *, t h e  symbols 

may appear zero o r  more times.t Any mark i n  a formula, which is  not a 

var iable  or a connective, denotes i t s e l f  (o r  the  c l a s s  of marks which 

a r e  similar t o  i t ) .  Juxtaposit ion of marks and/or var iables  i n  a formula 

s i gn i f i e s  juxtaposit ion of the  sequences denoted. 

Therefore the  above formulae (1 through 8) gives a ru l e  f o r  t h e  

formation of: 

< CRITERION SlMT >, i n  l i n e  1. It indicates  t h a t  t he  < C R I ~ R I O N  S'IMT > 

begins with t he  keyword CRITERION, followed by "(",  followed by some value 

of t he  var iable  < CRITERION MP NAME >, and t h a t  ;< RPLVAL S?MT > may 

appear zero o r  one times, f i n a l l y  " ) "  must appear. 

< C R I E R I O N  MP  NAME >, i n  l i n e  2. It ind ica tes  t h a t  the  variable 

< CRITERION EXP NAME > w i l l  take some value of the  variable < TJUDN >. 

< RPLVAL S'PMT >, i n  l i n e  3. It indicates  t h a t  t he  < RPLVAL S9MT > 

begins with t h e  keyword RPLVAL, followed by "(",  followed by some value 

of < DAm NAME: >, followed by the  separator "," followed by some value 

of the  variable < REP VAL >, followed by " ) " .  

< DAm NAME >, i n  l i n e  4. It indicates  t h a t  < DA'B NAME > w i l l  

take  some value of t h e  var iable  < REF NAME >. 

f To allow nested quotes, the  following conventions f o r  preparation 
of source input cards were adopted: 

punch a i n  the  column preceding an open quote; 
punch a [:g{ i n  the  column following a close quote. 



< REP VAL >, i n  l i n e  5 .  It ind ica tes  t h a t  < REP VAL > w i l l  

e i t h e r  be (1) some value of t he  var iable  < REF NAME > o r  (2) some 

value of the  var iable  < CONSTRNT S'IMT >. 

< REF NAME >, i n  l i n e  6. It ind ica tes  t h a t  < REF NAME > w i l l  

e i t h e r  be (1) some value of the  var iable  < UUDN >, and that the  keyword 

OF followed by some value of t h e  var iable  < REF NAME > (note here the  

r i g h t  recursion of t he  production) may occur zero o r  one times, o r  (2) 

some value of the  var iable  < IUND >, and t h a t  the  keyword OF followed 

by some value of the  var iable  < REF NAME > may occur zero o r  more times. 

< UUDN >, i n  l i n e  7. It ind ica tes  t h a t  < W D N  > w i l l  take some 

value of the  var iable  < ALPHA CHAR > followed by the  occurrence of zero 

o r  more times of the  value of the  var iable  < SINGLE STRING >. ( ~ o t e  

t h e  use of t he  meta l inguis t ic  symbol * t o  achieve r i g h t  repe t i t ion . )  

< SINGLE STRING > i n  l i n e  8. It ind ica tes  t h a t  < SINGLE STRING > 

w i l l  e i t h e r  be (1) some value of the  va r iab le  <ALPHA CHAR > o r  (2) some 

value of t he  va r iab le  c DECIMAL DIGIT >. 

The above descr ip t ion of EBNF i s  su f f i c i en t  f o r  t h e  syntax 

descr ip t ion of DDL (see  Appendix A ) ,  but t o  allow the  subroutine c a l l  

speci f ica t ion permitted by t he  SAPG, EBNF must be f u r t h e r  extended. This 

i s  described i n  t he  next paragraph. 

3.3.1 Extended BNF with Subroutine Cal ls  
e 

The extensions t o  EBNF allow semantics t o  be added t o  the  syntact ic  

descr ip t ion.  They permit the  spec i f i ca t ion  of subroutines which w i l l  be 

executed during syn tac t i c  analys is ,  and thus simplify t h e  machine- 

a s s i s t e d  program generation of t he  SAP. The programmer provides a non- 

procedural descr ip t ion of t he  language as input and then receives procedural 

l og i c  (a  ~ rogram)  which w i l l  perform syntax-checking of t h e  language he 



described. The program (SAP) w i l l  a l s o  contain c a l l s  t o  t he  subroutines 

* 
which produce t he  Symbol Table and Data Bibles. The SAP i s  produced 

i n  J-Lang by t he  SAPG. 

An example of an  EBNF statement with subroutine c a l l s  is :  

< item 1 > : : = < name > /   SUB^/ : (< p a r t  1 >//" ,/.SEW/ < p a r t  2 >//I!*) 

This statement means : 

To t e s t  f o r  (recognize) a syntact ic  u n i t  ( o r  token) ca l l ed  "item l", 

f i r s t  see if the  current  pointer  i n  t he  input s t r i n g  po in t s  t o  the  start 

of a s t r i n g  which s a t i s f i e s  the  syntact ic  de f i n i t i on  of "name". (DO t h i s  

by ca l l i ng  a recognizer routine.)  I f  t h e  recognizer e x i t s  f a l s e  go t o  

a system rout ine  ca l l ed  .FAIL (see  Section 4.3.3 f o r  a discussion of t h i s  

rou t ine ) .  I f  < name > was recognized, then c a l l  .SUBl. Upon re tu rn  from 

t h i s  rout ine  check t h a t  the  next token i n  the  input is  a ":". If not,  

c a l l  .FAIL. Similar ly  check the  next two tokens i n  the  input s t r ing ,  

i . e . ,  fo rH("and  < p a r t  1>. I f  they a r e  recognized then c a l l  .VCALL 

( t h i s  i s  indicated by //) , .VCALL pops the  "subroutine vector stack" 

( see  Sect. 4.3.2 f o r  the discussion of t h i s  rout ine)  and gives control  t o  

the  rout ine  whose address was on top  of t he  stack.  Af te r  re turning from 

t h a t  subroutine t he  syn tac t i c  analyzer t e s t s  f o r  t he  next token, but 

f a i l u r e  t o  f i n d  a match does not cause a c a l l  t o  .FAIL, because the  token 

i s  the  f i r s t  element i n  an opt ional  group a s  indicated by the  " symbol. 

( ~ o t e  t h a t  quotes surround the  opt ional  group.) I n  t h i s  case f a i l u r e  

causes the  scan t o  skip  t o  the  f i r s t  token a f t e r  the  " o r  "* ind ica t ing  

end of opt ional  group. This token i s  " )"  i n  t h i s  case? If t h e  "," 

* 
See Section 4. and 4. f o r  a desc r ip t ion  of t he  Symbol Table 
and Data Tkble respectively.  

3 When references a r e  made t o  punctuation marks i n  t he  t e x t  they w i l l  
be enclosed i n  double quotes. 



was found a c a l l  i s  made t o  .SETP2, then a t e s t  i s  made f o r  t he  token 

< pa r t  2 >. I f  t h i s  f a i l s ,  then .FAIL i s  cal led .  ( ~ o t e  t h a t  only i f  the  

f i r s t  item of a n  opt ional  group i s  present  then a l l  o ther  items i n  the  

group must be present . )  Af te r  successfully recognizing < p a r t  2 >, a 

c a l l  i s  made t o  the  vector subroutine .VCALL. Af te r  re turn ,  the  syntax 

analyzer repeats  the  check f o r  the  "," before /. SETPP/. This loop of 

t e s t i n g  f o r  t he  opt ional  p a r t  i s  s ign i f i ed  by t h e  * following the  If  

(c lose  quotes) .  I f  no * was present the  scan would have proceeded t o  

t h e  next token, ") " . Eventually the  loop w i l l  terminate when a , " i s  

not found. 

There a r e  three  other  points  which should be mentioned with respect  

t o  EBNF syntax. 

(1)  subroutine c a l l s  may appear anywhere except between 

< and >. 

(2) an EBNF statement l i n e  may be nothing more than subroutine 

c a l l s .  

(3)  opt ional  pa r t s  may be nested without l i m i t .  

3.4 The Syntactic Analysis Program Generator (SAPG) 

The SAPG w i l l  be hand coded i n  P L / ~ ;  it cons i s t s  of three  phases 

o r  passes. An overview of the  creat ion of t he  SAPG i s  shown i n  Figure 

3-30 

3.4.1 Pass 1 (The alg;rithm i s  given i n  Appendix E, Par t  I .)  

Pass 1 of the  SAPG reads t he  EBNF source statements ( ~ r o d u c t i o n s )  

and encodes them i n t o  a t ab l e  ca l l ed  the  Encoded Table. 
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Creation of the Syntactic Analysis Program Generator 
( SAPG) 

Lexical un i t s  of each production a re  encoded i n  the  Encoded Table 

which i s  organized by production. The un i t s  a r e  typed as: (a)  terminal 

symbols, (b) subroutine c a l l s  or  (c)  non-terminal symbols. The en t r i e s  

f o r  each l ex i ca l  un i t  a r e  ac tua l ly  pointers t o  tab les  containing the 

types l i s t e d  above, one t ab l e  f o r  each type. The non-terminal symbols 

a r e  fur ther  divided in to  two tables .  Non-terminals appearing on the l e f t  

side of a production a re  kept i n  the Symbol Table. Non-terminals appear- 

ing on the r i gh t  side of a production a re  placed i n  a work t ab l e  f o r  

use i n  Pass 2. A l l  the symbols within a t ab l e  a r e  unique. (This i s  

done t o  conserve storage i n  the Encoded Table, since the  same entry i n  

tab les  may be referred by d i f fe ren t  en t r i e s  i n  the  Encoded Table.) Each 

production thus far found acceptable i s  saved i n  the Encoded Table f o r  

processing by Pass 2 of the W G .  

The symbol table,consists of a l l  non-terminal symbols appearing 

a s  the  l e f t  pa r t  of a production, i . e . ,  appearing t o  the l e f t  of the meta- 

l i ngu i s t i c  symbol "::=". These symbols a r e  the  syntactic un i t s  of the 

language being defined. A subroutine (.ENTSYM) searches the symbol 



t a b l e  f o r  t he  current  symbol. I f  it already appears i n  t he  t ab le ,  an 

ambiguity i s  present i n  t he  language, and t he  e n t i r e  production i s  

flagged and r e j e c t e d .  I f  an entry  i s  not found, a new en t ry  i s  created 

f o r  t he  symbol. (~ i e j ec t ed  productions a r e  noted, but not analyzed 

during t he  second pass of the  SAPG.) 

The production is  a l s o  checked t o  see i f  it i s  "singular".  A 

s ingular  production i s  a production of the  form < item 1 > ::= < item 2 >. 

This type of production e f f ec t i ve ly  equates < item 1 > and < item 2 >. 

< item 2 > may be subs t i tu ted  f o r  < item 1 > i n  any production which con- 

t a i n s  < item 1 >. Doing so el iminates unnecessary intermediate l eve l s  

of the  language spec i f i ca t ion .  (This subs t i tu t ion  w i l l  be done i n t e rna l l y  

by t h e  SAPG. The l i s t i n g  of t he  source statements produced by t h e  SAPG 

w i l l  be an  exact copy of t he  source statements, along with diagnostic 

information.) Singular productions a r e  flagged f o r  Pass 2 of the  SAPG, 

so t h a t  a l l  poss ible  intermediate l eve l s  may be el iminated.  

Detailed scanning of the  EBW source statements i s  accomplished 

by a l e x i c a l  rout ine  (.LEXEBTJF). See Appendix E, Par t  u s  rout ine  

re tu rns  t o  t he  SAPG the  next l e x i c a l  u n i t  i n  t he  input stream a s  wel l  

a s  an indicat ion of t h e  beginning of a new production. (A l e x i c a l  u n i t  

i s  a meta l inguis t ic  symbol, a non-terminal symbol ( i . e . ,  a s t r i n g  of 

characters beginning with It<" and ending with ">"), a separator ( i . e . ,  a 

character  such a s  ",", : ( I t ,  
'I)", It;"), o r  a terminal  symbol ( i . e . ,  any 

s t r i n g  of characters which does not  include a meta l inguis t ic  symbol, 

a non-terminal symbol, a separator,  o r  embedded blanks) . )  The l e x i c a l  

rout ine  inputs source records a s  necessary t o  f u l f i l l  the  requests  of t he  

SAPG f o r  a new l e x i c a l  u n i t .  



3.4.2 Pass 2 ÿ he algorithm i s  given i n  Appendix E, Par t  11 .) 

Pass 2 of the  SAPG scans the  outputs of the  f i r s t  pass t o  resolve 

a l l  symbolic references.  A s  many a s  possible intermediate l eve l s  of 

s ingular  productions a r e  removed so t h a t  there  w i l l  be no s ingular  pro- 

duction references remaining. Each singular  production i s  resolved 

e i t h e r  t he  f i r s t  time it i s  referenced by another production o r  a s  it 

i s  encountered during t he  course of scanning t he  output from the  f i rs t  pass, 

whichever occurs f i r s t .  The resolut ion of s ingular  productions need be 

performed only once. If any non-terminal symbol on t he  r i g h t  s ide  of a 

production i s  not  found i n  t he  symbol t ab le ,  the  production i s  flagged. 

If there  a r e  no flagged productions, the  output from Pass 2 i s  saved f o r  

Pass 3. Otherwise, the  generation of SAP i s  discontinued. 

3.4.3 Pass 3 (The algorithm appears i n  Appendix E, Par t  I11 .) 

Pass 3 of the  SAPG outputs the  J-Lang SAP. The SAP depends heavily 

on the PROCEDURE- and DO-group and IF-?HEN-ELSE-clause fea tu res  of the 

J-Lang. Each production i s  encoded a s  a PROCEDURE which w i l l  r e tu rn  a 

t r u e  o r  f a l s e  value depending upon whether o r  not the  syn tac t i c  u n i t  i s  

recognized. The scan f o r  syntact ic  u n i t s  i s  accomplished by nexted 

IF-THEN-ELSE clauses using DO groups. (G-ptionally r epe t i t i ve  items a l s o  

use t he  GOT0 statement t o  cause scanning f o r  another syntact ic  u n i t  of 

t he  same type previously sought f o r . )  This type of construction a l s o  

el iminates the  n e c e s s i t ~  of look-ahead scanning of the  EBNF source 

statements. The exclusive nature of the  EBNF descr ip t ions  i s  accomplished 

by t he  exclusive nature of t he  ETEN and ELSE clauses.  



Pass 3 of t h e  SAPG operates i n  an  e r ro r  f r e e  environment s ince  

it i s  not  ca l l ed  by Pass 2 unless  no e r r o r s  have been detected.  Thus 

no code w i l l  be generated f o r  detectable  erroneous language spec i f i ca t ions .  

3.5 The Code Gene r a t  ion Program Generator (I- J Translator)  

The I-J Translator i s  composed of t he  SAP f o r  I-Lang and a s e t  of 

syn tac t i c  and semantic supporting rout ines .  The SAP f o r  I-Lang i s  produced 

using the  SAPG described above ( sec t ion  3 .4) .  The syntax desc r ip t ion  of 

I-Lang expressed i n  EBNF i s  f ed  t o  the  SAPG; the  r e s u l t  i s  the  SAP f o r  

I-Lang. The I-Lang SAP performs syntax-checking of t h e  I-Lang and, 

because of t he  subroutine c a l l s  embedded i n  it, w i l l  produce the  i n t e rna l  

symbol and data t ab l e s .  The syntact ic  and semantic supporting subroutines 

a r e  a l s o  used t o  help perform the  syntax ana lys i s  and t o  transform t h e  

I-Lang statements t o  J-Lang statements. For a descr ip t ion of the  I-Lang 

see Sect ion 6 and f o r  J-Lang see Section 7. 

Because t h e  output of the  SAPG ( the  SAP f o r  I - ~ a n g )  i s  i n  J-Lang, 

it must be t r an s l a t ed  from J-Lang i n t o  K-Lang ( f o r  a desc r ip t ion  of K-Lang 

see Section 8) .  To perform t h i s  t r an s l a t i on  t he  J - K  Translator w i l l  be 

used ( t he  descr ip t ion of t h e  J-K t r an s l a t i on  i s  given i n  Section 4 .4 ) .  

The J-K t r a n s l a t o r  w i l l  not perform any syn tac t i c  ana lys i s  here since 

J-Lang was produced by t h e  SAPG and it need not  be checked. An overview 

of the  creat ion of the  I-J Translator i s  shown i n  Figure 3-4. 

Because the  J-Lang i s  i n  a one-to-one correspondence wi&h the  I-Lang, 

l i t t l e  semantic and code generation i s  required and t he  majori ty of t h e  

log ic  i n  t he  I-J Translator i s  f o r  J-Lang syntax checking. 





This completes t he  descr ipt ion of the  SAPG and t he  I-J Translator. 

I n  the  sect ion t ha t  follows a l l  t h e  components of the  DDL Compiler Generator 

a r e  joined and t he  descr ipt ion of t he  overa l l  log ic  of the  DDL Compiler 

Generator i s  given. 

3.6 DDL compiler-enerator  Logic  low 

An overa l l  descr ipt ion of t he  components of the  DDL Compiler-Generator 

i s  given i n  Figure 3-5. The DDL Compiler Generator accepts a s  input t h e  

EBNF descr ipt ion of DDL and t he  Code Generation log ic  i n  I-Lang and 

produces the  DDL-SAP and t he  DDL-CGP respectively.  

3.6.1 Creation of the  SAP f o r  DDL 

To produce t he  SAP f o r  DDL a syntax specif icat ion of DDL described 

i n  EBNF i s  fed  t o  t he  SPG, t he  output i s  the  SAP f o r  DDL i n  J-Lang. 

This output is  then fed t o  the  J - K  Translator and t he  r e s u l t  i s  the  SAP 

f o r  DDL i n  K-Lang. The flow is  shown i n  the  l e f t  pa r t  of Figure 3-5. 

3.6.2 Creation of t he  CGP f o r  DDL 

The Code Generation Program f o r  DDL w i l l  be produced i n  t he  follow- 

ing way: The Code Generation log ic  coded i n  I-Lang i s  f e d  t o  t he  I-J 

Translator, which w i l l  output the  CGP f o r  DDL i n  J-Lang. Because t he  

SAP ( a  component of the  I-J Translator) i s  i n  K-Lang t h e  program w i l l  be 

in te rpre t ive ly  executed using the  K-Interpreter. (For a descr ipt ion of 

t h e  K-Interpreter  see Section 4.5.)  After  t he  CGP i n  J-Lang has been 

produced it w i l l  be f ed  t o  the  J b K  Translator, which t r ans l a t e s  t h e  CGP 

i n t o  K-Lang. The flow i s  shown i n  the  r i gh t  pa r t  of Figure 3-5. 
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4.  THE DDL COMPILER 

The DDL Compiler i s  generated using t he  DDL Compiler Generator. 

It i s  used t o  t r a n s l a t e  DDL source statements i n t o  a Data Conversion 

Program i n  K-Lang ( t he  object  language of the  K - ~ a c h i n e ) .  It does 

t he  t r an s l a t i on  us ing the  Syntactic Analysis Program and the  Code 

Generation Program. Since both the  SAP and CGP a r e  i n  K-Lang, we 

need a K-Interpreter  t o  execute them. And since the  code produced 

by CGP i s  i n  J-Lang we need t o  t r a n s l a t e  it t o  K-Lang. Therefore, the  

DDL compiler a s  a whole w i l l  consis t  of: 

( a )  The Syntactic Analysis Program (SAP) 

(b) The Code Generation Program (CGP) 

(c )  A s e t  of Syntactic and Semantic supporting subroutines 

(d)  The J - K  Translator 

(e)  The K-Interpreter  

An overview of the  DDL Compiler i s  shown i n  Figure 4-1. 

4 . 1  The Syntact ic  Analysis Program (SAP) 

The Syntact ic  Analysis Program i s  created using t he  SAPG and 

J-K Translators.  The main funct ion of t h i s  program i s  t o  perform syntax 

ana lys i s  of the  DDL-source statements, and the  c rea t ion  of the  symbol 

and Data Ilables. See Figure 4-2. 

The Syntax Analysis, Phase 1 of the  DDL Compiler, i s  controlled 

by t he  SAP. A statement w i l l  be scanned, using t he  subroutine LEX, 

which re tu rns  t he  next syntact ic  u n i t  present  i n  t he  source statement; 

each syntact ic  u n i t  i s  then examined according t o  t he  log ic  i n  t he  SAP. 
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During t h i s  process syntact ic  supporting rout ines  w i l l  be cal led t o  

capture syntact ic  information, and t o  produce e r ro r  diagnostics ( i f  

necessary). I f  a correct  syntact ic  un i t  i s  recognized, a c a l l  t o  

semantic supporting subroutines i s  made, resu l t ing  i n  one o r  more e n t r i e s  

being made i n  the  Symbol Table (see Appendix C) and/or Data Wble (see 

Appendix D ) .  Analysis of C R I W  statements w i l l  cause t h e  output of 

encoded s t r i ngs  which a r e  used i n  Phase 2 (code  ene era ti on). Discovery 

of a syntax e r r o r  w i l l  cause control  t o  be returned t o  ca l l i ng  subroutines 

with a code describing the  e r ro r  and a pointer  t o  the  l a s t  Symbol Table 

en t ry  used ( these  items w i l l  be used i n  producing e r ro r  messages). 

Section 4.1.1 and 4.1.2 describe t he  two main data  s t ruc tures  which 

a r e  created by the  syntact ic  supporting subroutines during Phase 1 of 

compilation. 

4.1.1 Symbol 'Pable 

The Symbol m b l e  i s  created during t he  f i r s t  phase of compilation. 

The symbol t ab l e  i s  a doubly-chained balanced t r e e  with f i l i a l  s e t  s i ze  

ranging between 3 and 6 (see Appendix c ) .  Memory i s  a l located a s  it i s  

required. Each node i s  composed of th ree  pointers:  

1 )  a pointer  t o  the  key ( t he  keys a r e  i n  separate storage area) ;  

2) a pointer  t o  the  f i r s t  member of t he  f i l i a l  s e t  of which t h i s  

node i s  a parent; 

3) a pointer  t o  the  next member of the  f i l i a l  s e t  of which t h i s  

node i s  a member. 
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4.1.2 Data Table 

The Data Table contains information which describes the  "data" 

associated with each symbol i n  the  Symbol Table. This "data" may be 

pa r t  of the source or t a rge t  f i l e s ,  may describe one of the f i l e s ,  or  

may be a procedure which uses the  f i l e  data t o  enhance the f i l e  descrip- 

t ions  (e.g., a linkage c r i t e r ion  statement). 

Many Data Table en t r i e s  point t o  other en t r i e s  t o  which they a r e  

re la ted .  Some rela t ionships  a r e  "subordinate member of a group", and 

"supporting descriptionf ' .  These re la t ionships  play a very important 

ro l e  i n  determining which of several  items with iden t ica l  simple names 

i s  the  correct  reference. 

4.1.3 Phase 1A - Data 'Pdble Completion 

When the  supporting subroutines of phase 1 create the  Data 

Table en t r i e s  (and the encoded t e x t  of the  CRIEX statement), a l l  

symbolic names a r e  converted t o  symbol tab le  entry numbers. One function 

of phase 1A i s  t o  change the  symbol tab le  entry numbers i n t o  data t ab l e  

entry  numbers. A second function i s  t o  i n se r t  the  "father" pointers in to  

f i e l d  and group en t r i e s .  A t h i r d  function i s  va l id i ty  checking on the 

references - fo r  example checking t o  see t ha t  a l l  members of a group 

a r e  groups or  f i e l d s .  These three functions a r e  done concurrently. A t  

the  end of phase lA the  symbol t ab l e  (with i t s  two index s t ructures)  

i s  no longer needed and the space it occupies i s  made available f o r  use 

i n  phase 2. The processing of phase 1A i s  described i n  more d e t a i l  

below. 



4.1.3.1 Processing Logic 

Using the Data Table entry index, the data tab le  en t r i e s  a r e  pro- 

cessed sequentially. F i r s t  the  type of entry i s  determined (see Appendix 

D l  f o r  the  description of the encoding used). Using logic  specific t o  

the  entry type, each pointer parameter i s  located and, using the Symbol 

Table (inverted) index, the  symbol table  data pointer entry i s  obtained. 

The Data Table entry number contained i n  t h i s  entry  replaces the  symbol 

tab le  entry  number a s  the  pointer parameter. I f  the  entry i s  a Field  or  

a Group the "most recent fa ther"  entry  i s  moved from the  Symbol Thble 

entry f o r  t h i s  Field  or  Group, t o  the "sup" (superior) pointer of the entry. 

m e  reason f o r  the delay i n  f i l l i n g  t h i s  f i e l d  i s  that there may be 

more than one Group t o  which t h i s  F ie ld  or  Group belongs. I f  t h i s  i s  

the  case and i f  then there is  the poss ib i l i ty  tha t  one or more groups, 

which declare t h i s  Field  t o  be a member of them, may be discovered a f t e r  

the  Field  i s  defined. The best  s t ra tegy i s  t o  wait u n t i l  a l l  groups 

a r e  known before f i l l i n g  i n  t he  "most recent fa ther"  pointer. 

After the pointer parameters a r e  changed they a r e  used t o  access 

the associated data tab le  entry  and the "type" f i e l d  of t h a t  entry i s  

t es ted  f o r  acceptabi l i ty  a s  a parameter. For example, the pointer found 

a s  a c r i t e r ion  name i n  a Record entry must point t o  a data tab le  entry 

which describes a c r i t e r ion  statement. I f  the pointer parameter i s  now 

pointing a t  a function description it i s  assumed t h a t  the  function w i l l  

re turn an integer,  and a t e s t  i s  made t o  see if an integer i s  permitted. 

(some typ ica l  functions a r e  LENG'M and CNT.) 

4.2 Code Generation Program (CGP) 

The second phase (see Figure 4-3) of the DDL compiler has three 

important functions: 
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(1) it c rea tes  the  Active F i l e  Control Blocks (AFcB) and 

the  Auxil iary Descriptor Blocks (ADB) required f o r  execu- 

t i o n  of the  CREATE statement. (phase 2A) 

(2) using t h e  data  s t ruc tu re  created i n  (1) it generates J-Lang 

code t o  load data  i n t o  main memory and execute the  CREATE 

statement. (phase 2 ~ )  

(3) it generates J-Lang code f o r  the  procedural statements 

of DDL (cRITEX, RPVAL) . (phase 2 ~ )  

The next sect ions  describe the  implementation of these  th ree  

functions.  

4.2.1 The Active F i l e  Control Block (AFCB) 

The format of the  AFCB i s  shown i n  Figure 4-4. There i s  one 

AFCB f o r  each f i l e  which w i l l  be used i n  t h e  execution of a CREATE 

statement. The primary funct ion of the  AFCB i s  t o  point  t o  records from 

the  f i l e  which a r e  current ly  i n  core. The number of these  records i s  

qu i t e  small - usual ly  j u s t  t h e  number of d i f fe ren t  record occurrences 

concurrently required i n  the  evaluation of t he  c r i t e r i o n  statements f o r  

the  l inkage speci f ied  f o r  t he  f i l e .  The following paragraphs describe 

the  f i e l d s  of the  AFCB. 

The "pointer  t o  Data Table Entry f o r  the  STORFILE descript ion" i s  

t he  data  t a b l e  en t ry  number of t he  en t ry  which contains the descr ip t ion 

of t h e  f i l e  s t r uc tu r e .  The f i r s t  "pointer  t o  t h e  Data Table Entry f o r  

Linkage descript ion" contains the  data  t a b l e  en t ry  number f o r  t he  SEQUEN 

statement which governs t he  physical  order of t he  records i n  t h i s  f i l e .  

Through the  pointers  i n  these  l inkage statements one f i n d s  the  c r i t e r i o n  

expressions t h a t  a r e  used i n  the  creat ion of t h e  l inkage.  
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The " re la t ive  address of next linkage description" i s  the address 

of the next "pointer t o  data table  entry f o r  linkage description". The 

address i s  r e l a t i ve  t o  the s t a r t  of the  AFCB. It i s  necessary because 

the ADB pointers which follow (and w i l l  be explained next) a r e  variable 

i n  number. The ADB pointers point t o  the  ADB's associated with the core 

resident records, symbolically cal led S (source), T ( ta rge t ) ,  X 1 ,  X2 ,  

e t c .  These symbolic names a r e  those used i n  the  CRI'IZM statements. They 

r e fe r  t o  d i f fe ren t  record occurrences a t  d i f fe ren t  times during processing. 

The next group of f i e l d s  of the AFCB i s  a repe t i t ion  of the  format 

jus t  described. These f i e l d s  point t o  the DIREC o r  EMBED statements 

specified by the STORFILE statement. The ADB pointers f o r  the  S, T, 

X ,  e tc .  records a r e  f o r  use i n  processing the CRITEX statements associated 

with these linkages. 

4.2.2 The Auxiliary Descriptor Block (ADB) 

The ADB1s (see Figure 4-5) a r e  used t o  hold core address of the  

record and the data descriptive information (e.g., length, repe t i t ion  

count, e tc . )  which var ies  with each occurrence of the  record. This 

information cannot be stored i n  the  Data Table entry because there  may 

be two o r  more occurrences of the  record i n  core concurrently, f o r  example, 

source and ta rge t  of records used i n  linkage, or multiple occurrences of 

a repeating group. 

The "data t ab l e  entry pointer" i s  used t o  f i n d  the  symbolic name of 

the  record (or group or  f i e l d )  and the fixed descriptive data (e.g., CONCODE 

statements, c r i t e r ion  statements, and possibly repe t i t ion  number, order, 

e t c . ) .  For in te rna l  use, the  data tab le  entry number i s  the  "name" of a 

record, group or f i e l d .  Therefore when searches a r e  being made f o r  names 





( f o r  example, i n  t he  c rea t ion  of the  assoc ia te  l i n k s  described below) 

t h e  "name" i s  present  i n  t he  ADB. 

m e  "Rel. address of Assoc. items" i s  the  ADB r e l a t i v e  address 

of the  s t a r t  of t he  "TYPEt1 bytes.  This i s  necessary because the  number 

of data  descr ip tors  i s  var iable .  m e  "address of data" i s  the  core 

address of the  s t a r t  of t he  data described by t he  ADB. ( ~ o t e  - t h i s  i s  

not  f i l l e d  i n  u n t i l  execution time.) The data  desc r ip to rs  a r e  t h e  items 

which would be i n  t he  data t ab l e  en t ry  except t h a t  they vary with each 

occurrence of t he  record. I n  these  cases t he  data  t ab l e  en t ry  contains 

a pointer  t o  t he  procedure which obtains the  value t o  be placed i n  t h e  

da ta  descr ip tor .  After  code-generation f o r  the  data loading code t he  

da ta  t a b l e  w i l l  contain the  number of t he  descr ip tor  i n  t he  ADE where 

t he  value w i l l  be s tored.  

Each "TYPE" f i e l d  describes the  sequent ia l ly  corresponding "pointer  

t o  ADB of associa ted item". The meaning of type i s  shown i n  the  following 

t a b l e  : 

m e  Meaning 
- - -- - --- " " 

1 

Pointer  t o  "fa ther"  ( t he  group which contains ' 
i t h i s  item) 1 i I 

i ! I ' 2 i 1 Pointer  t o  "son" (subdivision of t h i s  group) 

1 3  Pointer  t o  next core res iden t  member of t h i s  
repeating group ( o r  f i e l d )  

! 

; 4 Association l i n k  
1 

4 

I- -. - - -+ 
!The pointers  a r e  t o  ADB ' s. 



The associa t ion l i n k  corresponds t o  the  assoc ia te  p a i r s  i n  t he  

ASSOCIATE statement speci f ied  by t he  Cmm statement. Using these  l i n k s  

t he  code generation log ic  ( t o  be described i n  4.3.3) w i l l  c rea te  a 

procedure which w i l l  construct  t he  t a rge t  record from the  source records 

( see  Figure 4-5) . 
4.2.2.1 The ADB Hierarchy 

This paragraph describes i n  more d e t a i l  t h e  procedure f o r  deter-  

mining the  h ie ra rch ica l  s t ruc tu re  of the  ADB's .  It expla ins  when an 

ADB i s  created and how it r e l a t e s  t o  other ADB's .  

The hierarchy i s  bas ica l ly  a rep l i ca  of the  s t ruc tu re  of t h e  

da ta  t a b l e  s t ruc tu re  ( t h a t  is, records, groups, and f i e l d s ,  i n  descending 

order of scope) . Beyond t he  bas ic  s t ruc tu re  a r e  (1) ADB s f o r  t h e  

"pseudo-variables" (data  f i e l d s  which r e s u l t  from the  statements LEN, 

CNT and MIST), and (2)  ADB' s f o r  repeating occurrences of a group o r  

f i e l d .  

The pseudo-variables a r e  constructed by t h e  code generation logic ;  

they a c t  as normal user  data  f i e l d s  except t h a t  the  data  is inse r ted  by 

the  data loading procedure (see  Sections 4.2.3 and 5 ) .  The ADB's f o r  

pseudo-variables a r e  l inked only as a r e s u l t  of an  assoc ia te  statement. 

There i s  no h i e r a r c h i c a l l i n k i n g .  Of course, the re  may be any number of 

references t o  t he  ADB, through t he  data t ab l e ,  f o r  use i n  CRITEX expression 

evaluation.  

When a f i e l d  o r  group may repeat  ADB's a r e  created f o r  t he  number of 

occurrences which w i l l  be res ident  i n  main memory concurrently. I f  t he  

maximum number of occurrences i s  f ixed,  the  ADBrs a r e  generated (and 

l inked sequential ly)  a t  code generation time. I f  t he  number i s  var iable ,  

the  ADBrs a r e  s e t  up dynamically by log ic  i:1 the data loading procedure. 



4.2.2.2 Phase 2A Completion Logic 

Af te r  t he  AFCB's and ADB's have been created, and t h e  associa t ion 

l i n k s  from the  ASSOCIATE statement have been made, the  phase 2 log ic  

searches down the  " t ree"  of A D B t s  f o r  the  t a rge t  f i l e ,  t o  f i nd  t he  f i e l d s  

which have no assoc ia t ion  l i nks .  These e x i s t  because some groups a r e  

associa ted with other  groups, and t he  f i r s t  pass of assoc ia te  linkage 

doesn ' t  en te r  the  subordinate f i e l d  associa t ion.  Once the  t r e e  has been 

completed, code generation can start. 

4.2.3 Phase 2B - Code Generation f o r  CRFA'CE Statement 

Code generation cons i s t s  of creat ing an  ordered l i s t  of bas ic  

J-Lang operations and subroutine c a l l s  which w i l l  load data i n t o  main 

memory, move each of t he  source f i e l d s  t o  t he  associa ted t a r g e t  f i e l d ,  

and then l i n k  t he  newly created record i n t o  the  f i l e  which i s  being created.  

Code generation s t a r t s  by creat ing a data loading procedure f o r  

each f i l e  t o  be used. Data Loading i s  t he  process of l ink ing  an input 

record t o  t he  ADB and AFCB, and then executing whatever functions a r e  

necessary t o  complete the ADB descr ip tors .  The generation of t h i s  code 

requires  ge t t i ng  the  pointers  t o  funct ions  which a r e  parameters i n  the  

Data Table Entry and generating code t o  c a l l  these  funct ions  and place t he  

returned values i n  t he  ADB. Now t h e  ADB descr ip tor  o f f s e t  replaces the  

funct ion pointer  f o r  the  r e s t  of code generation. In  cases of var iable  

length,  o r  repeating groups, t he  information i n  the  CONCODE statements 

i s  used t o  generate code t o  recognize the  end of data  f i e l d s .  The Data 

Loading procedure i s  fu r t he r  described i n  Section 5.  



The code generation logic  then walks the t r e e  of ADB's  of the  

ta rge t  f i l e ,  generating code t o  move each f i e l d  from the source t o  

the t a rge t .  (To f ind  the source it uses the association l inks . )  The 

operand addresses used i n  the  generated code a re  ind i rec t  through the 

ADB, not the  d i rec t  data addresses, which a re  assigned a t  execution time. 

The data descriptions i n  the Data tab le  en t r i e s  indicate where t o  generate 

code conversion ca l l s ,  length truncations, e tc .  I n  cases where the 

data tab le  indicates t h a t  information w i l l  be i n  the ADB, the  code 

generation logic  generates code t o  obtain the values from the ADB descrip- 

t o r s  a t  execution time. I n  some cases, code t o  move data w i l l  not be 

necessary because the source data i s  i n  the  proper form f o r  inclusion 

i n  the  ta rge t  record; a l l  t h a t  i s  necessary i s  t o  s e t  the  core address 

pointer of the  ta rge t  f i e l d  ADB. 

4.2.4 Phase 2C - Code Generation f o r  CRITEX 

CRITEX statements w i l l  be t ransla ted using the technique of 

stacking operators and operands on two d i f fe ren t  stacks, and generating 

code when newly input operator has a precedence lower than the operator 

on the operator stack. To generate code the required number of operands 

a r e  taken off the  top of the  operand stack and the operator i s  taken 

off the  operator stack. The r e su l t s  of the operator a r e  assigned a 

symbolic location and the symbol used i s  placed on the operand stack 

i n  place of the operands removed. Whenever code has been generated, the  

new top of the  operator stack i s  tes ted  against  the  recent input which 

caused the code generation t o  begin. I f  the  operator precedence of the  

stack is  lower than the input the  code generation process i s  repeated. 

If not the  input operator i s  stacked. Whenever the  top of the  operator 



s tack  contains " ) "  immediately followed by " (" ,  both of these  a r e  

dele ted.  The operator precedence is,  from highest  t o  lowest: 

Operator Comment 
- - -.--- --- 7- -- -- -- - - A - -  - - - ---I-"'-------- ---- -- - 

( / when it i s  the  newly input operator o r  it i s  1 
on t he  s tack and being t e s t e d  agains t  " ) "  I 

1 

NOT 

OR AND 
f ( i when on the  s tack and not  being compared with " ) "  ; 
I -.--. 1 ... - .... .. . . - .. .. . . .. . . . ..--- ---. .A 

4.3 Syntactic and Semantic Supporting Subroutines 

A s  was s t a t ed  before, Syntactic Analysis of Phase 1 of the  

compiler is  bas ica l ly  t he  in te rpre t ive  execution of t he  code generated 

by the  SAPG ( t he  SAP). This code requires  many supporting subroutines. 

The most important ones a r e  discussed below: 

a )  Lexical  Subroutine 

b) The System Vector Subroutine 

c) The Syntax Recognition Fa i lu re  Subroutine 

d) The Semantic Supporting Routines 

4 .3 .1  Lexical  Subroutine 

This subroutine reads DDL source statements and buffers  them. 

It re tu rns  s ingle  tokens, when ca l l ed .  Tokens a r e  of 4 types:  

1. names ( s t r i n g s  of characters within s ing le  quotes) 

2. keywords ( s t r i n g s  of characters  not surrounded by quotes) 

3. punctuation marks 

4. iiumbers ( s t r i n g s  of decimal d i g i t s )  



Each c a l l  t o  .LEX returns a pointer t o  the next token, and the  token type. 

The l ex i ca l  processing routine c a l l s  a .PRINT routine t o  p r in t  

the source l i ne ,  i f  t h i s  option has been specified. ( ~ r r o r  messages 

a r e  produced by the various syntactic processing "fai lure"  routines. 

These routines c a l l  .PRINT di rec t ly .  ) 

4.3.2 The System Vector Subroutine 

There a r e  many places i n ' t h e  logic  of syntactic analysis  where 

one routine needs t o  have control over the succeeding sequence of routines.  

I n  par t icu la r ,  t h i s  occurs when the  succeeding routines w i l l  process a 

l i s t  of parameters, which must occur i n  f ixed order. The subroutines 

described below help provide t h i s  sequencing f a c i l i t y .  

A "subroutine vector stack" ( a  stack of subroutine addresses) i s  

used. By ca l l ing  .SEW, addresses a re  pushed on the stack. (The 

parameters of the  .SEW c a l l  a r e  the  addresses, i n  the  order i n  which 

the  subroutines a r e  t o  execute.) Each c a l l  t o  .VCALL causes control  t o  

be given t o  a subroutine whose s t a r t i ng  address i s  popped off the  vector 

stack. It i s  a CALL .VCALL which i s  generated by the SAPG when it detects  

// i n  the  EBNF source statements. 

4.3.3 The Syntax Recognition Fai lure  Subroutine 

The logic  f o r  syntax recognizer "fai lure"  e x i t s  a l s o  requires the 

type of sequence control  described i n  the  preceding paragraph. The stack 

used here i s  called the " f a i l  vector stack". It i s  s e t  by a c a l l  t o  

.SEW, the  parameters, a s  before, a re  the  addresses t o  be stacked; the 

order i s  the order i n  which they a re  t o  be executed. When .FAIL i s  

called,  it gives control t o  a subroutine whose address i s  popped off 



the  f a i l  vector stack.  To pop the stack without executing any subroutine, 

.Porn i s  called.  The SAPG automatically generates c a l l s  t o  .POPF; 

they a re  executed a f t e r  each syntactic item i s  correct ly  recognized. 

The execution of the  .POPF a f t e r  each syntactic item means t h a t  when a 

l i s t  of f a i l u r e  ex i t s  i s  s e t  up, it specif ies  an address f o r  each syntactic 
L 

item including terminal symbols l i k e  ",", ")I1, e tc .  For example f o r  

the s t r i n g  

< name >: (< pa r t  1 >) 

there  would be 5 f a i l u r e  e x i t s  specified. 

4.3.4 The Semantic Supporting Routines 

The Semantic supporting routines a re  called by CGP and a r e  used 

t o  create the AFCB1s, ADB1s which help i n  the  code generation phase. 

4.4 The J - K  Translator 

As mentioned i n  the introduction of Section 4, the  Code Generation 

Program (CGP) produces J-Lang statements; t o  t r ans l a t e  the  J-Lang in to  

K-Lang ( the object  language of the  K-Machine), a J-K Translator i s  needed. 

A complete description of it i s  given i n  Section 8, a f t e r  the  descriptions 

of the J- and K-Languages. The overview of the J - K  Translator i s  shown 

i n  the f igure  below. 

\? 
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4.5 The K- Interpreter  

A machine language in te rpre te r  i s  a computer program t h a t  performs 

the  inst ruct ions  of another program, where the other program i s  wri t ten 

i n  some machine-like language. A machine-like langdage i s  a method of 

representing inst ruct ions  using operation codes, address, e t c .  



Machine language in te rpre te rs  a r e  used chief ly  f o r  the  following 
/ 

purposes: 

1 )  t o  allow the representation of a f a i r l y  complicated sequence 

of decisions and actions i n  a compact, e f f i c i en t  manner 

without the need t o  construct the physical machine (hardware) 

which executes these inst ruct ions .  

2 )  t o  communicate between passes of a multiple pass program 

( i . e . ,  i n  a multipass program, the e a r l i e r  passes mst 

transmit information t o  the  l a t t e r  passes). This informa- 

t i o n  i s  often transmitted most e f f i c i en t ly  i n  a machine-like 

language, a s  a s e t  of ins t ruct ions  f o r  the  l a t e r  pass. 

This philosophy of multipass operation may be characterized 

a s  " te l l ing"  the l a t e r  pass what t o  do, ra ther  than simply 

presenting it with f a c t s  and asking it t o  "figure out" what 

t o  do. 

The interpret ive technique has the  fur ther  advantage of being 

r e l a t i ve ly  machine-independent - only the in te rpre te r  must be rewrit ten 

when changing machines. Furthermore, helpful debugging a ids  can readi ly  

be b u i l t  i n t o  an interpret ive system. Finally,  an in te rpre te r  can 

usually be wri t ten so t h a t  the amount of time spent i n  interpreta t ion 

of the code i t s e l f  and branching t o  the appropriate routine i s  negligible.  

I n  t h i s  case the machine-like language is  the  K-Lang, and the K- 

Interpreter  i s  a computer program wri t ten i n  P L / ~ ,  and then t ranslated 

(using the P L / ~  compiler) in to  360 machine code. An overview of the 
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