
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1971

Design of the Data Description Language Processor Design of the Data Description Language Processor

Andrew French
University of Pennsylvania

Jesus A. Ramirez
University of Pennsylvania

Harold Solow
University of Pennsylvania

Noah S. Prywes
University of Pennsylvania, nsp@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Andrew French, Jesus A. Ramirez, Harold Solow, and Noah S. Prywes, "Design of the Data Description
Language Processor", . December 1971.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-72-19.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/830
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/830
mailto:repository@pobox.upenn.edu

Design of the Data Description Language Processor Design of the Data Description Language Processor

Abstract Abstract
The Data Description Language (DDL) is a language for describing the structure of data, and expressing
transformations that are to be performed on that data. The DDL Processor is a set of computer programs
which interprets DDL statements and generates a computer program to perform the specified
transformations. Together the DDL and its Processor provide a utility which can be used to perform jobs
such as creating new data bases, reorganizing or extracting data from existing data bases, moving data
to different storage devices, interfacing files between different programming languages, or between
different operating systems.

This report documents the design of the DDL Processor. Special features of the design include the use of
special purpose internal languages, compiler-compiler techniques, bootstrapping methods, and a
descriptor tree which aids in the parsing of input data.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-72-19.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/830

https://repository.upenn.edu/cis_reports/830

Universi ty of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

ANNUAL REPORT

DESIGN OF THE DA'I11.

DESCRIPTLON LANGUAGE PROCESSOR

by
A. French
J. Ramirez
H . Solow
N. S. Prywes

Project Supervisor
Noah S. Prywes

December 1971

Prepared f o r the
Office of Naval Research

Information Systems
Arlington, Va . 22217

under

Contract ~00014-67-A-0216-0007
Project No. 049-272

Reproduction i n whole o r i n p a r t i s permitted fo r
any purpose of the United S t a t e s Government.

Moore School Report No. 72-19

Secunty C l a s s i f ~ r a t t o n

DOCUMENT CONTROL DATA - R & D
(~ r r ~ r r t y c lassrfrrat ,on 01 trt le, body o f abslroct and rndexrtlg annotation muat be entered when tlle overalrrepoci is rlassiJied~

1 O R I G I N A T I N G A C T I V I T Y (Corpora t eaufhw)

University of Pennsylvania
The Moore ~ c h o o l of E lec t r ica l Engineering
Philadelphia, Pa. 19104

28. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCIASS IFIED
2b. G R O U P

1 FIT u o a r T I r E

DESIGN OF THE DATA DESCRIPTION LANGUAGE PROCXSSOR

--
n L>CSSRIPTIIIF NOTES (T y p e o f report and.inclusrve d a l e s)

Annual Report
5 AU T v O R t S) (Firs t name, m ~ d d l e ~ n i t i a l , lest name)

Andrew French, Jesus A. Ramirez, Harold Solow

6 R E P O R T D A T E

December, 1971
8a. C S N T q E C T O R G R A N T NO.

~00014-67-A-0216-0007
b. P R O J E C T NO

NR 049-272
c.

d .

7a. T O T A L N O O F P A G E S I7b. N O . OF R E F S

211 9
9a. O R I G I N A T O R ' S R E P O R T N U M B E R I S 1

Moore School Report No. 72-19

sb. OTHER REPORT N O ~ S) (Any other nun- thet mey be e s s i a e d
this report)

I 0 D I S T R I B U T I O N S T A T E M E N T

Reproduction i n whole or i n pa r t i s permitted f o r any purpose of the United
States Government.

1 1 S U P P L E M E N T A R Y N O T E S 12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Office of Naval Research
Information Systems

Arlington, Virginia 22217
13 A B S T R A C T

The Data Description Language (DDL) i s a language f o r describing the s tmc tu re
of data, and expressing transformations t h a t a r e t o be performed on t h a t data. m e
DDL Processor i s a s e t of computer programs which in te rpre t s DDL statements and
generates a computer program t o perform the specified transformations. Together the
DDL and i t s Processor provide a u t i l i t y which can be used t o perform jobs such a s
creating new data bases, reorganizing or extract ing data from exis t ing data bases,
moving data t o d i f fe ren t storage devices, interfacing f i l e s between d i f fe ren t pro-
gramming languages, or between d i f fe ren t operating systems.

This report documents the design of the DDL Processor. Special features of: the
design include the use of special purpose in te rna l languages, compiler-compiler
techniques, bootstrapping methods, and a descriptor t r e e which a ids i n the parsing
of input data.

~ R M 1473.+ (PAGE 1) DD I N O Y 6 5

S / N 01 01 -807-661 1 Security Classification
A-31404

Page

1. Introduction 1

1.1 Background of Project

1.2 Summary of Capabilities of the Data Description
Language Processor

1.3 Important Features of the Design

1.4 Selection of Computer and Programming Language 9

1 . Selection of a Subset of DDL for Implementation 9

1.6 Organization of the Report 11

2. Overall Description of the Design of the DDL Processor 15

2.1 The DDL Compiler-Generator 16

2.2 The DDL Compiler 20

2.3 Tne Data Conversion Processor

2.4 Summary of Languages Used in the DDL Processor
System

3. The DDL Compiler Generator

3.1 Compiler-Compilers 28

3.2 The DDL Compiler Generator 29

3.3 Description of the Meta-Language (EBW) 31

3.4 The Syntactic Analysis Program Generator (SAPG) 36

3.5 The Code Generation Program Generator (I-J Translator) 40

3.6 DDL Compiler Generator Logic Flow 42

4. The DDL Compiler 44

4.1 The Syntactic Analysis Program (SAP) 44

4.2 Code Generation Program (CGP) 49

4.3 Syntactic arid Semantic Supporting Subroutines 59

4.4 The J-K Translator 61

4.5 The K- Interpreter 61

W3LE OF CONTENTS (continued)

5. The Data Conversion Processor

5 .1 Loading Data

5.2 Thrget Data Space Allocation and Data Movement

5.3 Data Output

5.4 Data Conversion Processor - Supporting Subroutines
6. ~ - ~ a n g

6.1 Where I-Lang is Used

6.2 I-~ang Statements

6.3 EBNF Description of I-Lang

6.4 I-~ang Sample Program

6.5 I- J Translator Implementat ion

7. J-Lang

7.1 Structure of the Language

7.2 Example of Coding

7.3 The J-K Translator

8. K-Lang

8.1 The K-Machine

8.2 Instruction orm mat

8.3 Machine Operations

8.4 Subroutine Linkage

Bibliography

Page

64

64

66

67

68

70

71

71

78

80

85

88

88

91

92

101

10 1

102

105

108

111

TABLE OF CONTENTS (continued)

Page

Appendix A: Syntax Description of DDL Described i n EBNF A - 1

Appendix B: EBW with Subroutine Cal ls B - 1

Appendix C: Symbol Table C - 1

Pa r t I Algorithm t o Encode and Decode Three 8- it
Characters i n 16 B i t s C-6

Par t I1 Search Tree Algorithm c-7

Par t I11 I n s e r t New Entry c-9

Appendix D: Data Table

Par t I Data Table Formats

Appendix E: The SAPG (syn tac t i c Analysis Program ene era tor) 2-1

Par t I PASS 1 E-1

Pa r t IA LEXEBNF E- 5

Par t I1 PASS 2 E-12

P a r t I11 PASS 3 E-14

Appendix F: Implementation Example F-1

iii

LIST OF

Figure 1-1

Figure 1-2

Figure 2-1

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Figure 3-1

Figure 3-2

Figure 3- 3

Figure 3-4

Figure 3-5

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 5 -1

Figure 7-1

Figure 8-1

Comparison of DDL Processor and Compiler-Compiler
System Designs

Successive In te rpre ta t ion of the Macro Language
I-Lang

DDL-Proces sor System

Generating a Translator From I-Lang t o J-Lang

Generation of the DDL Compiler

Compilation of a DDL Program

B e c u t i o n of a Data Conversion Program

Overview of DDL Compiler and Data Conversion
Processor

A Compiler- Compiler

The DDL Compiler Generator

Creation of the Syntact ic Analysis Program
Generator (SAPG)

Creation of t h e I-J Translator

DDL Compiler-Generator Logic Flow

The DDL Compiler

Phase 1 of t he DDL Compiler

Phase 2 of t he DDL Compiler

AFCB and ADB's f o r Create Statement

Overview of AFCB's and ADB's f o r Create Statement

The Data Conversion Processor

K-Lang Operand Address Generation

Machine Ins t ruc t ion F o m t

1. INTRODUC'ITON

1.1 Background of Project

This repor t documents the design of a Data Description Language

(DDL) Processor. It has been prepared with support by the Office of Naval

Research, Information Systems Program, under Contract ~00014-67-A-0216-0007.

This repor t concludes Phase 1 of a two phase p ro jec t . Phase 2 of t h i s

p ro jec t w i l l cons i s t of the implementation of the DDL Processor i n accor-

dance with the design i n t h i s repor t .

The need f o r an e f f i c i e n t method of converting data f o r use with

d i f fe ren t programs or d i f f e r en t computers has been long recognized by

t he Navy a s wel l a s the l a rge r community of EDP users . Presently, a

use r can organize data by e i t h e r wr i t ing h i s own spec ia l software or

by using the data descr ip t ion f a c i l i t i e s contained i n t he programming

languages, operating systems and data management systems ava i lab le f o r a

pa r t i cu l a r computer. Data organized i n t h i s way of ten cannot be d i r e c t l y

used on a d i f fe ren t computer i n s t a l l a t i o n due t o incompat ibi l i t ies of

software and hardware. I n many cases, the organization of t h i s data

cannot be communicated e f fec t ive ly t o another use r because t he data

organizations a r e impl ic i t i n the programs or software used. I n some

cases, the only way t o interchange data i s t o wr i t e a spec ia l conversion

program. This can require considerable e f f o r t , due t o such problems

a s d i f fe ren t word and character organization and machine word s izes .

There a r e two main approaches t o the solut ion of t he Data

Conversion problem. One consis ts of building t he capab i l i ty of converting

da t a from ex te rna l sources and formats i n t o spec i f i c data management

systems o r programming languages. This capab i l i ty i s then l imi ted t o the

spec i f i c computer system and data management system or programming

language where it has been incorporated. The other approach which i s

considered f ea s ib l e i s t o develop a new "Ut i l i t y " which w i l l convert

data between programs and/or computer systems. I t s power, then, w i l l

be general and not l imi ted t o a spec i f i c programming o r computer system.

Our design i s based on t h i s second approach.

The Data Def ini t ion Language Processor reported here i s a separate

and d i s t i n c t development from the Data Management System. While it can

communicate and prepare information f o r t he l a t t e r , it performs such

functions a s a separate processor. The existence of a Data Description

Language Processor i n respective computer systems w i l l f a c i l i t a t e

communications and exchange of data between computer systems and computer

programs, and across computer language ba r r i e r s .

The f irst s t ep i n the development of DDL was t o consider how it

would be used and what f a c i l i t i e s should be included i n it. The research

toward t h i s end s t a r t e d under the current contract e a r l y i n 1970 and

culminated i n two repor ts . The f i r s t - "A Manual with Examples f o r the

Data Description Language" by Diane P. Smith, Apr i l 1971 [~Mll spec i f i e s

and describes the usage of DDL. The second repor t , a l s o by Diane P.

Smith - "Ar? Approach t o Data Description and Conversion," November 1971

[S@] presents extensive research t h a t const i tu ted the ba s i s f o r the DDL

described i n the Apr i l 1971 repor t . These two repor t s present and J u s t i f y

a highly comprehensive language i n t o which a r e incorporated a l l the usefu l

c apab i l i t i e s discovered by our research t o da te .

The next s t ep was t o implement a processor f o r DDL. The recognit ion

of the need f o r such a processor was made a t approximately t he same

time i n a Tentative Specif ic Operational Requirement 31-47 issued by t he

Navy. A proposal f o r a two-phase design and implementation p ro jec t

was submitted t o the Office of Naval Research on March 31, 1971 and

work on Phase 1 s t a r t e d i n Ju ly 1, 1971. 'This repor t represents the

culmination of Phase 1.

The design of the DDL processor a s reported here, and the subsequent

implementation, have research and experimental aspects . They employ

s t a t e of t he a r t techniques and several new approaches t o achieve machine

and operating system independence and t o provide f o r the adap tab i l i ty

of the Data Description Language Processor t o new user environments.

1 . 2 Summary of Capabi l i t ies of the Data Description Language Processor

The DDL processor is designed t o s a t i s f y two requirements of data

interchange : (1) data (organization) de f i n i t i on and (2) data t r an s l a t i on .

The f i r s t s t ep toward simplifying data interchange is t o make data and

i t s organization e x p l i c i t and independent of machines and t h e i r processors.

This can be done by using a language f o r describing data (separate from

the language used t o process t h a t data) . The second s t ep cons i s t s of

developing a processor f o r in te rp re t ing t he descr ip t ion and t r an s l a t i ng

t he data t o a format appropriate f o r the executing machine. The DDL

Language [s M ~ , SM21 provides t he descr ip t ive language. The DDL pro-

cessor described i n t h i s repor t i s a s e t of computer programs which

w i l l perform the i n t e rp r e t a t i on and t rans la t ion . It i n t e r p r e t s data

de f in i t ions and data t r an s l a t i on commands, produces a computer program

t o perform the required data conversion and then executes t h i s program,

thereby doing t he data conversion speci f ied .

The capab i l i t i e s of DDL a r e summarized below.

1 . 2 . 1 In te r fac ing F i l e s with Different Programs and Programming Languages

Frequently f i l e s created by one program cannot be processed by

another program o r by another program i n a d i f f e r en t programming language.
v

With the DDL processor, the f i l e s can be converted i n t o a s t ruc tu re

which can be processed by the other program. I n t h i s manner f i l e s can

be in terfaced across programming languages.

*
1.2 .2 In te r fac ing F i l e s with Different Operating Systems and Different

Data Management Systems

F i l e s created under one operating system o r data management system

cannot, i n general , be processed under a d i f f e r en t operating system o r

data management system. With DDL, t he conversion of f i l e s f o r processing

by other operating systems o r data management systems can be achieved.

*
1 .2 .3 In te r fac ing F i l e s with New Computers

Increased requirements and new technology require t he phasing out

of o ld computers and t h e i r replacement by new computers. DDL would

enable f i l e s t o be prepared f o r t r a n s f e r from t h e o ld computer t o t he

new.

1 .2 4 In tegrat ion of F i l e s

Fragmentation of information i n numerous f i l e s f requent ly causes

great d i f f i c u l t i e s i n use and considerable ineff ic iency i n processing.

A DDL w i l l provide the capabi l i ty t o in tegra te many f i l e s i n t o one.

*
These f a c i l i t i e s a r e not p a r t of the subset being implemented now.
See m b l e 1-1 f o r d e t a i l s .

1 .2 .5 Extraction of Data From F i l e s

I f only a small amount of data i n a f i l e i s used by a program,

it i s o f ten f a r more e f f i c i e n t t o c rea te a smaller f i l e consis t ing only

of the use fu l data . DDL descr ip t ions allow the c rea t ion of many f i l e s

from one f i l e

1 . 2 . 6 Creation of dew Data Bases

The combination of t he above two capab i l i t i e s allows t he t rans-

l a t i n g of one s e t of f i l e s i n t o another s e t of f i l e s .

;y.
1 .2 .7 In te r fac ing F i l e s t o Use New Devices

Advances of technology introduce new input/output devices which

enhance t he t o t a l cos t ef fect iveness of the e n t i r e computer system. The

change of such input/output devices can be f a c i l i t a t e d by the DDL process-

ing of the f i l e s from the old devices t o t he new ones.

1 . 2 8% Improving U t i l i z a t i on of Computers o r Storage .
A fu r t he r appl ica t ion i s i n t he design and operation of data

and data management systems. For example, a DDL can be used t o c rea te

new data s t ruc tu res which can then improve computer o r storage u t i l i z a t i o n .

l . 2 . g A Language f o r Communication Between Humans About Data

One important appl ica t ion of a DDL i s a s means of communication

between humans. For example, using a DDL a designer of a data base can

describe precise ly t o an appl ica t ions programmer the exact s t ruc tu re of

t he data the programmer wants t o use. J u s t a s BNF lNA11 i s now used t o

describe the syntax of a language so can a DDL be used t o describe data

s t ruc tu res .

1 . 3 Important Features of t he Design

The DDL Processor system cons i s t s of th ree major pa r t s . The

f i r s t p a r t uses syntax and semantic de f in i t ions t o generate t he second

p a r t - the DDL Compiler. The DDL Compiler formats and t r a n s l a t e s DDL

Data Def ini t ion Statements and produces a computer program which w i l l

do the data base convergion. The t h i r d pa r t of t he processor ac tua l ly

processes the source data base and produces a s an output the t a rge t

da ta base. This th ree pa r t s t r uc tu r e i s i l l u s t r a t e d i n Fig . l - l a .

Changes i n the de f i n i t i on of DDL w i l l occur only infrequently

a f t e r an i n i t i a l language development phase and t h e compiler generator

f a c i l i t y i s primari ly intended f o r DDL language development (although

it i s very l ielpful i n t r an s f e r r i ng t he DDL system t o a new computer).

Because one of the DDL Processor Implementation design goals i s maximum

ea r ly feedback about design decisions, a subset of the language was

selected, and the remaining components w i l l cons t i tu te l a t e r addi t ions t o

DDL. These w i l l cause addi t ions t o syntax and s t r uc tu r e t ab l e s .

Changes i n t he def in i t ion of a pa r t i cu l a r data base t o which t he data

conversion processor i s applied w i l l occur more f requent ly . For

instance, one may wish t o change def in i t ions t h a t a r e used i n the conver-

s ion of data between data management systems, o r between computer systems.

In t h i s case only the sequence of DDL statements would be changed and the

DDL Compiler would be used t o create a new Data Conversion Processor.

If the descr ip t ion of the data t o be converted does not change

the DDL Compiler need not be used, tile previously created Data Conversion

Processor may be used again.

There a r e two fea tu res i n the Design which a r e of spec ia l

i n t e r e s t .

(1) The app l ica t ion of t he Concept of a Compiler-Compiler t o the

DDL Processor.

This i s i l l u s t r a t e d i n Fig . 1-1 where the design of the DDL Processor

i s shown on t he l e f t (~ i g . l - l a) a s compared t o a design of a Compiler

Compiler system as shown on the r i g h t (~ i g . l - l b) .

Note t h a t the input i s shown a s hor izonta l l i n e s and output i s

shown a s v e r t i c a l l i ne s , thus the output of the DDL Compiler-Generator

is not t he input t o the DDL Compiler; it is, ra the r , t h e DDL Compiler

i t s e l f .

The Data Def ini t ion (i n DDL) of a Data Base i s considered analogous

t o the users source statements which a r e input t o t he compiler. The Data

Conversion Processor i s the analogue of t he u se r s ' object program, output

from t h e compiler.

(2) Machine Independence Through t h e Use of a Macro Language Design

Machine independence i s achieved by implementing much of t he DDL

Processor i n a macro language J-Lang and t he t r an s l a t i on of J-Lang t o

a machine language-like processor - K-Lang. Only the in te rpre ta t ion

from the machine l i k e processor, K-Lang, t o the spec i f i c machine (i n

our case P L / ~ and the 360 system) a r e machine dependent. Thereby, the

dependence on the spec i f i c programming language and computer a r e

d r a s t i c a l l y reduced. The macro s t ruc tu re successively being in te rpre ted

i s i l l u s t r a t e d i n Figure 1-2, showing the sequence of i n t e rp r e t a t i on from

the highest l e v e l J-Lang macro language t o t he eventual execution on t he

IBM 360. F i r s t , the J-Lang i s t r an s l a t ed i n t o a K-Lang program. The

K-Lang i s ea s i e s t and simplest then t o i n t e rp r e t and t h i s is where

dependence on a spec i f i c language and spec i f i c computer system i s made;

K-Lang i s in te rpre ted using a P L / ~ program (which has been t r an s l a t ed

i n t o assembly language code) and thus the K-Lang machine i s simulated

on t he IBM 360.

1 . 4 Select ion of Computer and Programming Language

7 3 0 computer systems avai lable a t the Universi ty of Pennsylvania

t h a t could s a t i s f y requirements were evaluated, the RCA Spectra 70146

Time Sharing System, and the IBM 360175 operating under O S / ~ ~ O . The

RCA system includes support f o r ALGOL, COBOL, FOR!I!RAN, SNOBOL, and

Assembler languages. The IBM system supports these and a l s o P L / ~ ,

APL, LISP, GPSS and GASP. Since both systems meet t he hardware and

operating system requirements, t he programming language was the determinant.

Assembly language programming was unsat is factory because of programming

costs , lack of mchine independence, and poor readab i l i ty . P L / ~ was

considered,by f a r , t h e bes t , e spec ia l ly i n t he area of memory a l loca t ion ,

and data management commands. The IBM 360 computer system was se lected

because of PL/1 a v a i l a b i l i t y .

1 . 5 Select ion of a Subset of DDL f o r Implementation

The repor t s by Diane P. Smith [s M ~ , ~ I showed t h a t a model f o r

data descr ip t ion can be divided i n t o th ree l a rge ly independent l eve l s ,

namely :

1) the record,

2) f i l e and

3) storage l eve l s .

Figure 1-2

SUCCESSIVE INTERPRETATION OF THE
MACRO LANGUAGE I -LAN6

4

1

360175 Machine Code Long
&

i

360 Assembly Long

&

I

P L 11

*

+
K- Long Machine

J -Long

0

J

Using these statements it w i l l be possible t o

(a) Accurately describe t he s t ruc tu re of da ta . (This i s

valuable during system design, and implementation,

a s wel l a s f o r l a t e r documentation.)

(b) In te r face f i l e s with d i f f e r en t programs and programing

languages. (using t he DDL t o reformat f i l e s before

program execution.)

(c) In tegra te and ex t r ac t data i n ex i s t i ng f i l e s , producing

new f i l e s . (The "ex i s t ing f i l e " might be j u s t a deck of

cards, o r unformatted tape records.)

The subset se lected f o r t h i s implementation w i l l support the

record and par t of the f i l e l e v e l de f in i t ions . It w i l l not include

t he storage s t ruc tu re descr ip t ion f a c i l i t i e s . Ins tead the standard

data access methods of the implementation operating system w i l l be

used t o s t o r e data on devices. The statements which a r e supported by

t he f i r s t implementation and those statements which w i l l be implemented

l a t e r , a r e shown i n Table 1-1.

1.6 Organization of the Report

This sect ion (Section 1) has responded t o a number of questions

t h a t were l e f t open, and resolved during the design phase. These

consisted of se lec t ion of a computer system f o r the i n i t i a l implementation -

t h e IBM 360 Mod 75 (soon t o be exchanged f o r IBM 370 Mod 165) a t the

Universi ty of Pennsylvania Computer Center was selected; se lec t ion of

a programming language f o r implementation of t h e DDL Processor - P L / ~

Table 1-1
DDL Statements For I n i t i a l and Later Implementation

----- - - - - - - -

TYPE NITIAL IMP~NTATION S'IYITEMENT
---_---__...s-.-._ I ._- _.. "-_- I IArnR -.-

DESCRIBE RECORD CHAR CRI'IMESSAGE

FIELD LOGRCD

i

I
GROUP C ONC ODE

I REC ORD

i
I

f SET b

1 CRI'IIEX I

I C R I 'IIERION
1 S TORRCD
i

I
i

I RPLVAL
d
I I CONSTANT

1 I BBLOCX !fJlPEWT

i ONC CODE (DELIM and FILLER options 1 only)

1 I CARDIN DISKIN

i DEVICE

I CARDOUT : DISKOUT

----- - ---. -- -- .-
BLOCK TAPEIN

~ P E I N (NO a ssoc ia t ion l i s t rrYIN

I option, no header o r t r a i l e r
1

and only "SPEC" order)
i TTYOUT

i , ?Awmd LENGTH
1 1 ! 1

! j CNT
i i
i I

EXIST i
--I----- .- . -....--- ' .--.-.... ,....,...*- L -.-.--.--

Table 1-1 (continued)

T- -.
-- - ---. --- '- - .. .

/ I N I T I A L IMPLZDENTATION S'IY1TEMENT LATER ' ""-. "- .- - c - - - . . - - - - - - . . _--. . -.-_-.._- -,..-.--I**. "..--L-Y ----. ---..+
! i
I t

/DESCRIBE FILE I LINK (only sequent ia l lirks) OCC
i
' SEQUEN

I i A L L N C

I i ST0RFIL;E S@EOCC

1 ! LINK
L
$ 1 INVLINK

I I i EMBED
! 1 t
I i I DIREC

-----------A

i LOGFILE
r------- --

ASSOCIATE a PROGDATA i
I
1

COMBINE INTERFACE ,

CREAW PARAMPROG
I

D I S J O I N I M'I!FCND
_)

_ I

was selected; and f i n a l l y select ion of a subset of the commands

described i n the DDL manual (April 1971) [~Mll, t h a t w i l l be implemented

i n the i n i t i a l versions of the system. In the select ions made and a s

well as i n the design, the experimental nature of the project a s well

a s the need t o provide a system a s independent as possible of a specif ic

environment were stressed.

Section 2 provides an overview of the design of the processor.

Section 3 describes the Compiler-Generator. Section 4 describes the

DDL compiler. Section 5 describes the Data Conversion Processor. m e

remainder of the report (sections 6, 7, 8) a r e a specif icat ion of the

three in te rna l languages used i n the system (I -~ang , J-Lang, and K - ~ a n g) .

A l i s t of references and appendices conclude t h i s report .

2 . OVERALL DESCRIPTION OF TEE DESIGN OF 'ME DDL PROCESSOR

The "DDL Processor System" i s ac tua l l y th ree processors (i . e .

s e t s of computer programs) . .The f i r s t i s the DDL Compiler Generator,

the second i s t he DDL Compiler, and t he t h i r d i s the Data Conversion

Processor (see F ig . 1-1). When the term DDL Processor i s used, it

. r e f e r s t o the l a t t e r two processors - the DDL Compiler and t he Data

Conversion Processor.

An analogy with ex i s t ing computer programming systems was made

i n Fig . 1-1; the Data Conversion Processor corresponds t o an executable

user program, t he DDL compiler corresponds t o a Cobol, For t ran o r P L / ~

compiler, and the DDL Compiler Generator corresponds t o a Compiler-

Compiler which i s used t o produce t he Cobol, Fortran o r P L / ~ compiler.

The re la t ionsh ips between and the use of t he th ree processors i n t he DDL

systems i s read i ly seen from the analogy. The Data Conversion Processor

i s t h e program which reads data from ex i s t i ng f i l e s and produces new

f i l e s . Like most data processing programs, each Data Conversion Processor

i s designed f o r a spec i f i c function, (e .g . conversion of f i l e s i n format

A t o f i l e s i n format B) . To a i d i n t he generation of Data Conversion

Processors, t he r e i s the DDL Compiler.

To produce a Data Conversion Processor one wr i t es a Data Def ini t ion

(a s e r i e s of statements i n t he DDL language) f o r each of t he source and

t a r g e t f i l e s . These statements a r e read by t he DDL Compiler, which

produces a new Data Conversion processor. It i s important t o note t ha t ,

j u s t a s it i s not necessary t o compile a Cobol program each time it i s

used, it i s not necessary t o c rea te a new Data Conversion Processor

each time it i s used. Only when t he functions of the processor change

i s t h a t required.

The DDL Compiler, and the Data Conversion Processors produced by

it, a r e t h e components of the DDL Processor System t h a t most users w i l l

need, The other component, the DDL Compiler Generator, i s t he s e t of

programs used t o c rea te the DDL Compiler. The "Generator" i s a very

valuable t o o l i n the development of the DDL Compiler, and i s equally

valuable i n enhancing and modifying t he Compiler. But jus t a s the average

user does not o f ten modify h i s Cobol compiler, he would not often modify

h i s DDL Compiler.

An overview of the DDL Processor System i s shown i n Figure 2-1.

Each processor i s surrounded by a broken l i n e . Programs a r e shown i n

rectangles, input/output a r e shown i n trapezoids. When t h e output i s a

program double l i n e s a r e used t o show the des t ina t ion of t he output.

The following paragraphs describe each of t he th ree components of the DDL

Processor System.

2 .1 The DDL Compiler-Generator

The DDL Compiler-Generator i s composed of th ree p a r t s - the Syntactic

Analysis Program Generator, t he I-J Translator (see Fig . 2-2), and the

J-K Translator. The re la t ionsh ip of these th ree i s shown i n Figure 2-3.

The f i rs t par t of t he Compiler Generator i s the Syntact ic Analysis

Program Generator. The input t o the Syntactic Analysis Program Generator

i s a syntax descr ip t ion coded i n Extended Backus-Naur Form (EBNF).

SYNTAX S P E C I F I C A T I O N
o f the I - L a n g

(E B N F)

S Y N T A C T I C ANALYSIS
PROGRAM GENERATOR

f - L a n g SY N T A C T l C
A N A L Y S I S PROGRAM

(J- L a n g)

T R A N S L A T O R

t
I - L o n g S Y N T A C T I C

A N A L Y S I S PROGRAM
(K - L a n g)

I
I
I
I
I
I
I
I
I

' I
I

I - J T R A N S L A T O R

I
I

G E N E R A T O R

I
I

ANALYSIS PROGRAM PROGRAM

-- - - _ . - -

Figure 2-3
Generation of the DDL Compiler

-

SYNTAX SPEC IFlCATl ON
o f DDL
(E B N F)

r - -
I

-- - -
7' v v

I
I

SYNTACTIC ANALYSIS
PROGRAM GENERATOR

(PL 11)

I
1

K- INTERPRETER

I - J TRANSLATOR

I I
1 DDL SYNTACTIC

I- Long
SYNTACTIC

S N TACTIC
8

/- -.

ANALYSIS PROGRAM

(K-Long)

I

SEMANTIC
** SUPPORTING

SUBROUTINES
(P L / I) I

(P L I I)

I (J -Long) T

DDL CODE GENERA
I

I
PROGRAM

I
I (J - Long) 1
I I'

I v 1
J-K TRANSLATOR

1
I I
I
I

I
D D L COMPILER GENERATOR

I
L - - - - - - - - - - - - - - - - - J

I
I

(EBNF nota t ion w i l l be described i n Section 3.2.) The Syntactic Analysis

Program Generator produces a program which i s t he Syntax Analysis phase

of the DDL Compiler. The second p a r t of the Compiler Generator i s the

I-J Translator. Its input i s the Code Generation logic , wr i t t en i n I-Lang.

The I-J Translator then produces a program which contains t he bas ic code

generation log ic used i n t he DDL Compiler.

The output of the Syntactic Analysis Program Generator and t he I-J

Translator a r e J-Lang programs. The t h i r d major component of the DDL

Compiler Generator, the J - K Translator, i s used t o t r a n s l a t e these J-Lang

programs t o K-Lang programs, which a r e then su i t ab le f o r in te rp re t ive

execution.

2 . 2 The DDL Compiler

An overview of the DDL Compiler i s shown i n Figure 2-4. The DDL

Compiler contains f i v e major pa r t s : (1) a Syntactic Analysis Program (SAP),

(2) a Code Generation Program (CGP), (3) a s e r i e s of supporting subrou-

t i ne s , (4) an i n t e rp r e t e r , (5) a J - K Translator.

The function of t he SAP i s t o perform the syntax ana lys i s on t he

DDL statements. The function of CGP i s t o generate t he Data Conversion

Program (i n an an^). Since both SAP and CGP a r e i n K-Lang, t he K-Inter-

p r e t e r i s used t o execute them (t he K-Interpreter l og i ca l l y converts t he

IBM 360 machine i n t o t he K-machine). The J - K Translator accepts a s

input the J-Lang code produced by CGP and produces t he Data Conversion

Program i n K-Lang.

The supporting subroutines a r e a s e t of functions used during

Syntax Analysis and i n Code Generation; these subroutines, a s well a s

the K-Interpteter , and t h e J - K Translator a r e wr i t t en i n P L / ~ .

Phase 1 of the compilation process i s the execution of the Syntactic

Analysis Program, with i t s supporting subroutines. Phase 1A includes most

of t h e Semantic In te rpre ta t ion logic; it completes the i n t e rna l t ab l e s

which w i l l be used i n Phase 2 (Code ene era ti on). Phase 3 of compilation

i s the execution of t he J-K Translator; t h i s produces t h e machine-level

language (K-~ang) hhich i s t he output of the DDL compiler - namely, t h e

Data Conversion Processor.

2 .3 The Data Conversion Processor

The Data Conversion Processor i s a s e t of K-Lang programs and

data which was produced by t he code generation log ic of the DDL compiler.

It i s composed of

(a) a Data Conversion Program

(b) a Data Structure t o perform t h e data conversion,

(c) an in te rpre te r , and

(d) a s e t of Run Time Supporting Subroutines.

The Data Structure i s a network of threaded lists. The nodes a r e

data descr iptor en t r i es ; they a r e used by t he Data Conversion Program t o

a i d i n parsing t h e source data, and t o format t he output data . Because

the Data Conversion Program i s encoded i n K-Lang, it must be in te rpre t ive ly

executed by a K-Interpteter . The other components of t he Data Conversion

Processor, t he Run Time Supporting Subroutines, perform functions such

a s record l e v e l input-output, main memory a l locat ion, character s e t con-

version, extension or t runcat ion of f i e ld s , and data type conversion.

An overview of the Data Conversion Processor i s shown i n Figure 2-5.

PROGRAM

DATA CONVERSION PROCESSOR L - - - - - - - - - -

r - - - ' - - \Jf 1

Figure 2-5

Execution of a Data Conversion Program

I r
D D L DATA CONVER SlON PROGRAM

(K - ~ a n g) . I
-
4

I
I
, I -

I -. -

*

K- INTERPRETER

I
I
I -

(P L / i I I

I b - I
I I
I
I
I I

RUN TIME SUPPORTING
SUBROUTINES

(P L / i)

I
I

Figure 2-6 shows a simplified view of the flow in the DDL

compiler and Data Conversion Processor. The K-Interpreter and supporting

subroutines have been omitted to allow the logical flow of control and

data to be seen more easily. Note that the Code Generation Program of

the DDL Compiler produces both a network of data descriptors and a Data

Movement Program. These two become the Data Conversion Processor. During

the execution of the Data Conversion Processor the data descriptor network

is used to parse the input data and act as a framework which the Data

Movement Program uses to construct the output data files.

2.4 Summary of Languages Used i n the DDL Processor System

The DDL processor system r e l i e s heavily on t h e I, J, K and EBNF

languages; therefore the t r an s l a to r s and i n t e rp r e t e r s f o r these w i l l

be used t o i l l u s t r a t e t he design techniques used i n DDL Processor.

2.4.1 The Syntactic Analysis Program Generator

This program i s used i n two places i n the system: (1) t o generate

the syntact ic analys is phase of the DDL Compiler and (2) t o generate

t he main procedures of the I-J Translator. Its implementation cost is

thus divided between two subcomponents. The Syntactic Analysis Pragram

Generator i s valuable during i n i t i a l implementation a s it allows the syntax

of DDL, and of I-Lang t o change without requiring manual rewrit ing of the

syntax analys is programs (only the EBNF descr ip t ions must be changed).

I n addit iob, the EBNF source statements provide excel lent documenta-

t i o n of the ru l e s of grammar f o r the language and of t h e l og i c of the

syntact ic ana lys i s program. The Syntactic Analysis Program Generator

a l s o cen t ra l i zes the generation of syntax-checking programs.

2.4.2 The I-J Translator

This program is used (i n conjunction with the J - K Translator)

t o generate the Semantic ~ n a l ~ s i s / ~ o d e Generation phase of the DDL

Compiler. Most of i t s logic i s generated using t h e Syntactic Analysis

Program Generator, thereby keeping implementation cost low. Other

benef i ts of t he I-J Translator l i e i n t he f a c t t h a t it provides a method

f o r t r an s l a t i ng t he self-documenting, human readable I-Lang i n t o t he

encoded J-Lang form used i n t e rna l l y by the DDL processor. Thus encoded,

t he log ic can be t r an s l a t ed by the same program which i s used i n the DDL

compiler (t he J - K Transla tor) .

2.4.3 The J - K Translator

It i s used i n th ree places i n the system: (1) it forms the

t h i r d phase of t he DDL Compiler, (2) it i s used a t the end of the

Compiler Generator program which produces t he Semantic ~ n a l ~ s i s / ~ o d e

Generation log ic , (3) it i s used a t the end of t he Compiler Generator

program which produces t he Syntactic Analysis Program. Although it i s

not a simple program, i t s cost i s d i s t r i bu t ed over th ree important a reas

of DDL implementation. The J - K Translator performs - a l l t he K-Lang

generation done by the DDL Processor. Any extensions t o the K-Lang a f fec t

only it and t he K-Interpreter . Together with the K-Interpteter , it provides

t he ba s i s f o r t he machine independence of t he DDL Processor.

2.4.4 The K-Interpteter

This program simulates t h e K-machine. It i s used t o "execute"

t he DDL compiler, and the program which t he compiler produces - the

Data Conversion Processor. It decodes machine-level ins t ruc t ions and

performs t he elementary commands indicated by them. It is t he primary

method used t o achieve machine independence. Because it operates

i n t e rp r e t a t i ve ly it provides an excel lent place i n which t o place debugging

too l s , program performance monitors, and use r data v a l i d i t y t e s t s .

3. THE DDL COMPILER GENERATOR

3.1 Compiler-Compilers

One of the main problems i n using computers i s t h a t of effective

programming. An important advance was made with the introduction of

mechanical t rans la tors a s an a i d i n preparing programs. An easy t o

use a r t i f i c i a l language was developed and a t rans la tor wri t ten t o trans-

l a t e t h a t language in to a machine language. I n i t i a l l y these t rans la tors

were handwritten i n an "ad-hoc" manner f o r a par t icu la r machine and

language. But using the theory of automata and formal l i ngu i s t i c s

a s too ls compiler wri ters were able t o develop be t t e r techniques f o r

t rans la tor construction. An important s tep was the development of a

formal language i n which t o describe the syntax of a programing language.

The def in i t ion of the ALGOL syntax L N A ~] was an ear ly and success-

f u l attempt t o describe programming languages i n a formal way. The

automatic construction of compilers i s based on such a formalization.

The following excerpt from a paper by J. A. Feldman on FSL (Formal

Semantic I,anguage) [~ e 11 out l ines the basic method and should serve

a s an adequate introduction t o our discussion of compiler-compilers.

When a compiler f o r some language, C f , i s required,

the following s teps a r e taken. F i r s t the formal syntax
P

of x , expressed i n a syntactic metalanguage, is fed

in to the syntax loader. This program builds tab les which

w i l l control the recognition and parsing of programs i n

-4 the language . Then the semantics of , writ ten i n a

semantic metalanguage, i s fed i n t o the semantic loader. This

program builds another table , t h i s one containing a descrip-

t i o n of the meaning of statements i n 2 . Finally, everything

- 28 -

t o the l e f t of the double l i n e [in Fig. 3-11 i s

discarded leaving a compiler f o r 2 .
The resul t ing compiler i s a table-driven t rans la tor . The

compiler kernel includes Input-Output, code generation routines and

other f a c i l i t i e s used by a l l t rans la tors . Examples of t h i s type may

be found i n the work of P. Ingerman CIN 11; W. M. McKeeman, J. J . Horning,

D. B. Wortman [MC 11; Feldman [~ e 11; Brooker and Morris [~ r 11.

3.2 The DDL Compiler Generator

The correspondence between the compiler-compiler described by

Feldman [~ e 11 and the DDL Compiler Generator i s given i n the following

sentences:

a) The metalanguage used t o express the formal syntax (of DDL)

i s EBW (see Section 3.3) .
b) The Syntax Loader i s the (SAPG) Syntactic Analysis Program

Generator, i.e., the EBNF of DDL i s fed in to the SAPG.

This program produces the SAP (syntact ic Analysis program)

which w i l l control the recognition and parsing of programs

i n the language DDL.

c) The semantic* metalanguage i s the I-Lang (see Section 6) .

d) The Semantic Loader corresponds t o the (CGPG) Code Generation

Program Generator (or I-J Translator) . The Code Generation

logic (i n I -~ang) i s fed in to the CGPG. This t rans la tor

produces the CGP (code Generation program) which w i l l control

code generation.

Source
Code in

Figure 3-1

A Compiler-Compiler

This figure appears in [~ e 11.

Compiler

Kernel

Machine r7

e) The compiler kernel corresponds t o the s e t of Syntactic and

Semantic supporting subroutines.

The corresponding diagram f o r t he DDL Compiler Generator i s shown

i n Figure 3-2. Everytlling t o t he l e f t of t he double l i n e i n Figure 3-2

i s discarded leaving a compiler f o r DDL.

I n t he next sect ion a descr ip t ion of the ~~ metalanguage i s

presented. In the following ones the descr ip t ion of each of t he com-

ponents of the DDL Compiler Generator i s presented.

3.3 Description of the Metalanguage (EBNF)

The formal syntax of the DDL language w i l l be described with the

a i d of a metal inguis t ic formulae Extended BNF (EBNF) .+ The i n t e rp r e t a t i on

of t h e bas ic EBNF i s be s t explained by an example.

1 < CRITERION STPIT > : : = C R I E R I O N (< CRITERION MP NAME >" ;

< RPLVAL STMT >")

1 < IUDN > "OF c REF NAME >"

t A complete descr ip t ion of the Syntax of DDL i s presented i n
Appendix A.

Machine $,
Figure 3-2

The DDL Compiler Generator

Sequences of characters enclosed i n the bracket < > represent

BNF metalinguist ic var iables whose values a r e sequences of symbols. The

marks : := and 1 (the l a t t e r meaning OR) a r e BW metalinguist ic symbols.

The extension of BNF (EBIVF) i s through use of double quotes " and * a s

a l s o metalinguist ic symbols. Double quotes a r e used t o indicate t h a t the

item enclosed by these symbols may appear zero o r one times i n t he

"object" formulae. If the close quotes a r e followed by *, t h e symbols

may appear zero o r more times.t Any mark i n a formula, which is not a

var iable or a connective, denotes i t s e l f (o r the c l a s s of marks which

a r e similar t o i t) . Juxtaposit ion of marks and/or var iables i n a formula

s i gn i f i e s juxtaposit ion of the sequences denoted.

Therefore the above formulae (1 through 8) gives a ru l e f o r t h e

formation of:

< CRITERION SlMT >, i n l i n e 1. It indicates t h a t t he < C R I ~ R I O N S'IMT >

begins with t he keyword CRITERION, followed by "(", followed by some value

of t he var iable < CRITERION MP NAME >, and t h a t ;< RPLVAL S?MT > may

appear zero o r one times, f i n a l l y ") " must appear.

< C R I E R I O N MP NAME >, i n l i n e 2. It ind ica tes t h a t the variable

< CRITERION EXP NAME > w i l l take some value of the variable < TJUDN >.

< RPLVAL S'PMT >, i n l i n e 3. It indicates t h a t t he < RPLVAL S9MT >

begins with t h e keyword RPLVAL, followed by "(", followed by some value

of < DAm NAME: >, followed by the separator "," followed by some value

of the variable < REP VAL >, followed by ") " .

< DAm NAME >, i n l i n e 4. It indicates t h a t < DA'B NAME > w i l l

take some value of t h e var iable < REF NAME >.

f To allow nested quotes, the following conventions f o r preparation
of source input cards were adopted:

punch a i n the column preceding an open quote;
punch a [:g{ i n the column following a close quote.

< REP VAL >, i n l i n e 5 . It ind ica tes t h a t < REP VAL > w i l l

e i t h e r be (1) some value of t he var iable < REF NAME > o r (2) some

value of the var iable < CONSTRNT S'IMT >.

< REF NAME >, i n l i n e 6. It ind ica tes t h a t < REF NAME > w i l l

e i t h e r be (1) some value of the var iable < UUDN >, and that the keyword

OF followed by some value of t h e var iable < REF NAME > (note here the

r i g h t recursion of t he production) may occur zero o r one times, o r (2)

some value of the var iable < IUND >, and t h a t the keyword OF followed

by some value of the var iable < REF NAME > may occur zero o r more times.

< UUDN >, i n l i n e 7. It ind ica tes t h a t < W D N > w i l l take some

value of the var iable < ALPHA CHAR > followed by the occurrence of zero

o r more times of the value of the var iable < SINGLE STRING >. (~ o t e

t h e use of t he meta l inguis t ic symbol * t o achieve r i g h t repe t i t ion .)

< SINGLE STRING > i n l i n e 8. It ind ica tes t h a t < SINGLE STRING >

w i l l e i t h e r be (1) some value of the va r iab le <ALPHA CHAR > o r (2) some

value of t he va r iab le c DECIMAL DIGIT >.

The above descr ip t ion of EBNF i s su f f i c i en t f o r t h e syntax

descr ip t ion of DDL (see Appendix A) , but t o allow the subroutine c a l l

speci f ica t ion permitted by t he SAPG, EBNF must be f u r t h e r extended. This

i s described i n t he next paragraph.

3.3.1 Extended BNF with Subroutine Cal ls
e

The extensions t o EBNF allow semantics t o be added t o the syntact ic

descr ip t ion. They permit the spec i f i ca t ion of subroutines which w i l l be

executed during syn tac t i c analys is , and thus simplify t h e machine-

a s s i s t e d program generation of t he SAP. The programmer provides a non-

procedural descr ip t ion of t he language as input and then receives procedural

l og i c (a ~ rogram) which w i l l perform syntax-checking of t h e language he

described. The program (SAP) w i l l a l s o contain c a l l s t o t he subroutines

*
which produce t he Symbol Table and Data Bibles. The SAP i s produced

i n J-Lang by t he SAPG.

An example of an EBNF statement with subroutine c a l l s is :

< item 1 > : : = < name > / SUB^/ : (< p a r t 1 >//" ,/.SEW/ < p a r t 2 >//I!*)

This statement means :

To t e s t f o r (recognize) a syntact ic u n i t (o r token) ca l l ed "item l",

f i r s t see if the current pointer i n t he input s t r i n g po in t s t o the start

of a s t r i n g which s a t i s f i e s the syntact ic de f i n i t i on of "name". (DO t h i s

by ca l l i ng a recognizer routine.) I f t h e recognizer e x i t s f a l s e go t o

a system rout ine ca l l ed .FAIL (see Section 4.3.3 f o r a discussion of t h i s

rou t ine) . I f < name > was recognized, then c a l l .SUBl. Upon re tu rn from

t h i s rout ine check t h a t the next token i n the input is a ":". If not,

c a l l .FAIL. Similar ly check the next two tokens i n the input s t r ing ,

i . e . , fo rH("and < p a r t 1>. I f they a r e recognized then c a l l .VCALL

(t h i s i s indicated by //) , .VCALL pops the "subroutine vector stack"

(see Sect. 4.3.2 f o r the discussion of t h i s rout ine) and gives control t o

the rout ine whose address was on top of t he stack. Af te r re turning from

t h a t subroutine t he syn tac t i c analyzer t e s t s f o r t he next token, but

f a i l u r e t o f i n d a match does not cause a c a l l t o .FAIL, because the token

i s the f i r s t element i n an opt ional group a s indicated by the " symbol.

(~ o t e t h a t quotes surround the opt ional group.) I n t h i s case f a i l u r e

causes the scan t o skip t o the f i r s t token a f t e r the " o r "* ind ica t ing

end of opt ional group. This token i s ")" i n t h i s case? If t h e ","

*
See Section 4. and 4. f o r a desc r ip t ion of t he Symbol Table
and Data Tkble respectively.

3 When references a r e made t o punctuation marks i n t he t e x t they w i l l
be enclosed i n double quotes.

was found a c a l l i s made t o .SETP2, then a t e s t i s made f o r t he token

< pa r t 2 >. I f t h i s f a i l s , then .FAIL i s cal led . (~ o t e t h a t only i f the

f i r s t item of a n opt ional group i s present then a l l o ther items i n the

group must be present .) Af te r successfully recognizing < p a r t 2 >, a

c a l l i s made t o the vector subroutine .VCALL. Af te r re turn , the syntax

analyzer repeats the check f o r the "," before /. SETPP/. This loop of

t e s t i n g f o r t he opt ional p a r t i s s ign i f i ed by t h e * following the If

(c lose quotes) . I f no * was present the scan would have proceeded t o

t h e next token, ") " . Eventually the loop w i l l terminate when a , " i s

not found.

There a r e three other points which should be mentioned with respect

t o EBNF syntax.

(1) subroutine c a l l s may appear anywhere except between

< and >.

(2) an EBNF statement l i n e may be nothing more than subroutine

c a l l s .

(3) opt ional pa r t s may be nested without l i m i t .

3.4 The Syntactic Analysis Program Generator (SAPG)

The SAPG w i l l be hand coded i n P L / ~ ; it cons i s t s of three phases

o r passes. An overview of the creat ion of t he SAPG i s shown i n Figure

3-30

3.4.1 Pass 1 (The alg;rithm i s given i n Appendix E, Par t I .)

Pass 1 of the SAPG reads t he EBNF source statements (~ r o d u c t i o n s)

and encodes them i n t o a t ab l e ca l l ed the Encoded Table.

- - -. .- .-.

Program
Generator,
i n P L / ~ I'

Figure 3-3

Creation of the Syntactic Analysis Program Generator
(SAPG)

Lexical un i t s of each production a re encoded i n the Encoded Table

which i s organized by production. The un i t s a r e typed as: (a) terminal

symbols, (b) subroutine c a l l s or (c) non-terminal symbols. The en t r i e s

f o r each l ex i ca l un i t a r e ac tua l ly pointers t o tab les containing the

types l i s t e d above, one t ab l e f o r each type. The non-terminal symbols

a r e fur ther divided in to two tables . Non-terminals appearing on the l e f t

side of a production a re kept i n the Symbol Table. Non-terminals appear-

ing on the r i gh t side of a production a re placed i n a work t ab l e f o r

use i n Pass 2. A l l the symbols within a t ab l e a r e unique. (This i s

done t o conserve storage i n the Encoded Table, since the same entry i n

tab les may be referred by d i f fe ren t en t r i e s i n the Encoded Table.) Each

production thus far found acceptable i s saved i n the Encoded Table f o r

processing by Pass 2 of the W G .

The symbol table,consists of a l l non-terminal symbols appearing

a s the l e f t pa r t of a production, i . e . , appearing t o the l e f t of the meta-

l i ngu i s t i c symbol "::=". These symbols a r e the syntactic un i t s of the

language being defined. A subroutine (.ENTSYM) searches the symbol

t a b l e f o r t he current symbol. I f it already appears i n t he t ab le , an

ambiguity i s present i n t he language, and t he e n t i r e production i s

flagged and r e j e c t e d . I f an entry i s not found, a new en t ry i s created

f o r t he symbol. (~ i e j ec t ed productions a r e noted, but not analyzed

during t he second pass of the SAPG.)

The production is a l s o checked t o see i f it i s "singular". A

s ingular production i s a production of the form < item 1 > ::= < item 2 >.

This type of production e f f ec t i ve ly equates < item 1 > and < item 2 >.

< item 2 > may be subs t i tu ted f o r < item 1 > i n any production which con-

t a i n s < item 1 >. Doing so el iminates unnecessary intermediate l eve l s

of the language spec i f i ca t ion . (This subs t i tu t ion w i l l be done i n t e rna l l y

by t h e SAPG. The l i s t i n g of t he source statements produced by t h e SAPG

w i l l be an exact copy of t he source statements, along with diagnostic

information.) Singular productions a r e flagged f o r Pass 2 of the SAPG,

so t h a t a l l poss ible intermediate l eve l s may be el iminated.

Detailed scanning of the EBW source statements i s accomplished

by a l e x i c a l rout ine (.LEXEBTJF). See Appendix E, Par t u s rout ine

re tu rns t o t he SAPG the next l e x i c a l u n i t i n t he input stream a s wel l

a s an indicat ion of t h e beginning of a new production. (A l e x i c a l u n i t

i s a meta l inguis t ic symbol, a non-terminal symbol (i . e . , a s t r i n g of

characters beginning with It<" and ending with ">"), a separator (i . e . , a

character such a s ",", : (I t ,
'I)", It;"), o r a terminal symbol (i . e . , any

s t r i n g of characters which does not include a meta l inguis t ic symbol,

a non-terminal symbol, a separator, o r embedded blanks) .) The l e x i c a l

rout ine inputs source records a s necessary t o f u l f i l l the requests of t he

SAPG f o r a new l e x i c a l u n i t .

3.4.2 Pass 2 ÿ he algorithm i s given i n Appendix E, Par t 11 .)

Pass 2 of the SAPG scans the outputs of the f i r s t pass t o resolve

a l l symbolic references. A s many a s possible intermediate l eve l s of

s ingular productions a r e removed so t h a t there w i l l be no s ingular pro-

duction references remaining. Each singular production i s resolved

e i t h e r t he f i r s t time it i s referenced by another production o r a s it

i s encountered during t he course of scanning t he output from the f i rs t pass,

whichever occurs f i r s t . The resolut ion of s ingular productions need be

performed only once. If any non-terminal symbol on t he r i g h t s ide of a

production i s not found i n t he symbol t ab le , the production i s flagged.

If there a r e no flagged productions, the output from Pass 2 i s saved f o r

Pass 3. Otherwise, the generation of SAP i s discontinued.

3.4.3 Pass 3 (The algorithm appears i n Appendix E, Par t I11 .)

Pass 3 of the SAPG outputs the J-Lang SAP. The SAP depends heavily

on the PROCEDURE- and DO-group and IF-?HEN-ELSE-clause fea tu res of the

J-Lang. Each production i s encoded a s a PROCEDURE which w i l l r e tu rn a

t r u e o r f a l s e value depending upon whether o r not the syn tac t i c u n i t i s

recognized. The scan f o r syntact ic u n i t s i s accomplished by nexted

IF-THEN-ELSE clauses using DO groups. (G-ptionally r epe t i t i ve items a l s o

use t he GOT0 statement t o cause scanning f o r another syntact ic u n i t of

t he same type previously sought f o r .) This type of construction a l s o

el iminates the n e c e s s i t ~ of look-ahead scanning of the EBNF source

statements. The exclusive nature of the EBNF descr ip t ions i s accomplished

by t he exclusive nature of t he ETEN and ELSE clauses.

Pass 3 of t h e SAPG operates i n an e r ro r f r e e environment s ince

it i s not ca l l ed by Pass 2 unless no e r r o r s have been detected. Thus

no code w i l l be generated f o r detectable erroneous language spec i f i ca t ions .

3.5 The Code Gene r a t ion Program Generator (I- J Translator)

The I-J Translator i s composed of t he SAP f o r I-Lang and a s e t of

syn tac t i c and semantic supporting rout ines . The SAP f o r I-Lang i s produced

using the SAPG described above (sec t ion 3 .4) . The syntax desc r ip t ion of

I-Lang expressed i n EBNF i s f ed t o the SAPG; the r e s u l t i s the SAP f o r

I-Lang. The I-Lang SAP performs syntax-checking of t h e I-Lang and,

because of t he subroutine c a l l s embedded i n it, w i l l produce the i n t e rna l

symbol and data t ab l e s . The syntact ic and semantic supporting subroutines

a r e a l s o used t o help perform the syntax ana lys i s and t o transform t h e

I-Lang statements t o J-Lang statements. For a descr ip t ion of the I-Lang

see Sect ion 6 and f o r J-Lang see Section 7.

Because t h e output of the SAPG (the SAP f o r I - ~ a n g) i s i n J-Lang,

it must be t r an s l a t ed from J-Lang i n t o K-Lang (f o r a desc r ip t ion of K-Lang

see Section 8) . To perform t h i s t r an s l a t i on t he J - K Translator w i l l be

used (t he descr ip t ion of t h e J-K t r an s l a t i on i s given i n Section 4 .4) .

The J-K t r a n s l a t o r w i l l not perform any syn tac t i c ana lys i s here since

J-Lang was produced by t h e SAPG and it need not be checked. An overview

of the creat ion of the I-J Translator i s shown i n Figure 3-4.

Because the J-Lang i s i n a one-to-one correspondence wi&h the I-Lang,

l i t t l e semantic and code generation i s required and t he majori ty of t h e

log ic i n t he I-J Translator i s f o r J-Lang syntax checking.

This completes t he descr ipt ion of the SAPG and t he I-J Translator.

I n the sect ion t ha t follows a l l t h e components of the DDL Compiler Generator

a r e joined and t he descr ipt ion of t he overa l l log ic of the DDL Compiler

Generator i s given.

3.6 DDL compiler-enerator Logic low

An overa l l descr ipt ion of t he components of the DDL Compiler-Generator

i s given i n Figure 3-5. The DDL Compiler Generator accepts a s input t h e

EBNF descr ipt ion of DDL and t he Code Generation log ic i n I-Lang and

produces the DDL-SAP and t he DDL-CGP respectively.

3.6.1 Creation of the SAP f o r DDL

To produce t he SAP f o r DDL a syntax specif icat ion of DDL described

i n EBNF i s fed t o t he SPG, t he output i s the SAP f o r DDL i n J-Lang.

This output is then fed t o the J - K Translator and t he r e s u l t i s the SAP

f o r DDL i n K-Lang. The flow is shown i n the l e f t pa r t of Figure 3-5.

3.6.2 Creation of t he CGP f o r DDL

The Code Generation Program f o r DDL w i l l be produced i n t he follow-

ing way: The Code Generation log ic coded i n I-Lang i s f e d t o t he I-J

Translator, which w i l l output the CGP f o r DDL i n J-Lang. Because t he

SAP (a component of the I-J Translator) i s i n K-Lang t h e program w i l l be

in te rpre t ive ly executed using the K-Interpreter. (For a descr ipt ion of

t h e K-Interpreter see Section 4.5.) After t he CGP i n J-Lang has been

produced it w i l l be f ed t o the J b K Translator, which t r ans l a t e s t h e CGP

i n t o K-Lang. The flow i s shown i n the r i gh t pa r t of Figure 3-5.

of DDL
(E B N F)

CODE GENERATION

\::!f::/

DDL SYNTACTIC D D L CODE GENERATION

ANALYSIS PROGRAM \ -(Kiongl / \ !:f:y /

r ------ - -- - - - - - -,
I

SYNTACTIC ANALYSIS

1
I I - J TRANSLATOR

PROGRAM GENERATOR
i

Figure 3-5

DDL Compiler-Generator Logic Flow

I I L- Long SN TACTIC
(P L 11) SYNTACTIC t3 , K-INTERPRETER

I 1 ANALYSIS cr ::E",:ENG ' ' -b

SUBROUTINES I DDL sYNTAct l c (K- Long) [PL/I) I
I ANALYSIS PROGRAM

(J -Long)
I

v I
I I DDL CODE GENERA

1 PROGRAM
(J-Long)

1
1

v I
J - K TRANSLATOR

I
I

(P L / 1) I
I
I

I
D D L COMPILER GENERATOR

1
J

(PL / 1) I

4. THE DDL COMPILER

The DDL Compiler i s generated using t he DDL Compiler Generator.

It i s used t o t r a n s l a t e DDL source statements i n t o a Data Conversion

Program i n K-Lang (t he object language of the K - ~ a c h i n e) . It does

t he t r an s l a t i on us ing the Syntactic Analysis Program and the Code

Generation Program. Since both the SAP and CGP a r e i n K-Lang, we

need a K-Interpreter t o execute them. And since the code produced

by CGP i s i n J-Lang we need t o t r a n s l a t e it t o K-Lang. Therefore, the

DDL compiler a s a whole w i l l consis t of:

(a) The Syntactic Analysis Program (SAP)

(b) The Code Generation Program (CGP)

(c) A s e t of Syntactic and Semantic supporting subroutines

(d) The J - K Translator

(e) The K-Interpreter

An overview of the DDL Compiler i s shown i n Figure 4-1.

4 . 1 The Syntact ic Analysis Program (SAP)

The Syntact ic Analysis Program i s created using t he SAPG and

J-K Translators. The main funct ion of t h i s program i s t o perform syntax

ana lys i s of the DDL-source statements, and the c rea t ion of the symbol

and Data Ilables. See Figure 4-2.

The Syntax Analysis, Phase 1 of the DDL Compiler, i s controlled

by t he SAP. A statement w i l l be scanned, using t he subroutine LEX,

which re tu rns t he next syntact ic u n i t present i n t he source statement;

each syntact ic u n i t i s then examined according t o t he log ic i n t he SAP.

Conversion na"B
Figure 4-1

The DDL Compiler

During t h i s process syntact ic supporting rout ines w i l l be cal led t o

capture syntact ic information, and t o produce e r ro r diagnostics (i f

necessary). I f a correct syntact ic un i t i s recognized, a c a l l t o

semantic supporting subroutines i s made, resu l t ing i n one o r more e n t r i e s

being made i n the Symbol Table (see Appendix C) and/or Data Wble (see

Appendix D) . Analysis of C R I W statements w i l l cause t h e output of

encoded s t r i ngs which a r e used i n Phase 2 (code ene era ti on). Discovery

of a syntax e r r o r w i l l cause control t o be returned t o ca l l i ng subroutines

with a code describing the e r ro r and a pointer t o the l a s t Symbol Table

en t ry used (these items w i l l be used i n producing e r ro r messages).

Section 4.1.1 and 4.1.2 describe t he two main data s t ruc tures which

a r e created by the syntact ic supporting subroutines during Phase 1 of

compilation.

4.1.1 Symbol 'Pable

The Symbol m b l e i s created during t he f i r s t phase of compilation.

The symbol t ab l e i s a doubly-chained balanced t r e e with f i l i a l s e t s i ze

ranging between 3 and 6 (see Appendix c) . Memory i s a l located a s it i s

required. Each node i s composed of th ree pointers:

1) a pointer t o the key (t he keys a r e i n separate storage area) ;

2) a pointer t o the f i r s t member of t he f i l i a l s e t of which t h i s

node i s a parent;

3) a pointer t o the next member of the f i l i a l s e t of which t h i s

node i s a member.

Data Table

Completion

- .." - - > . - - - - --- --.

I-
- - - - - - - - - - - -

-"- - --

- - _ _ - _ - - 1

(TO Phase 2,''.

i I
I - 0- I

I
Syntactic Analysis

I
I

of DDL Statements and 1 I
I

creation of the I
1 symbol and I
I Data Tbbles. I
I 1
I

: I

I I
I I

\ L , , ,,-, - ,,, - - - ,--- - - ---

1
I Phase 1A

I

Figure 4-2

Phase 1 of the DDL Compiler

c . - - - c ,---, I --, , ,,, ,,-

4.1.2 Data Table

The Data Table contains information which describes the "data"

associated with each symbol i n the Symbol Table. This "data" may be

pa r t of the source or t a rge t f i l e s , may describe one of the f i l e s , or

may be a procedure which uses the f i l e data t o enhance the f i l e descrip-

t ions (e.g., a linkage c r i t e r ion statement).

Many Data Table en t r i e s point t o other en t r i e s t o which they a r e

re la ted . Some rela t ionships a r e "subordinate member of a group", and

"supporting descriptionf ' . These re la t ionships play a very important

ro l e i n determining which of several items with iden t ica l simple names

i s the correct reference.

4.1.3 Phase 1A - Data 'Pdble Completion

When the supporting subroutines of phase 1 create the Data

Table en t r i e s (and the encoded t e x t of the CRIEX statement), a l l

symbolic names a r e converted t o symbol tab le entry numbers. One function

of phase 1A i s t o change the symbol tab le entry numbers i n t o data t ab l e

entry numbers. A second function i s t o i n se r t the "father" pointers in to

f i e l d and group en t r i e s . A t h i r d function i s va l id i ty checking on the

references - fo r example checking t o see t ha t a l l members of a group

a r e groups or f i e l d s . These three functions a r e done concurrently. A t

the end of phase lA the symbol t ab l e (with i t s two index s t ructures)

i s no longer needed and the space it occupies i s made available f o r use

i n phase 2. The processing of phase 1A i s described i n more d e t a i l

below.

4.1.3.1 Processing Logic

Using the Data Table entry index, the data tab le en t r i e s a r e pro-

cessed sequentially. F i r s t the type of entry i s determined (see Appendix

D l f o r the description of the encoding used). Using logic specific t o

the entry type, each pointer parameter i s located and, using the Symbol

Table (inverted) index, the symbol table data pointer entry i s obtained.

The Data Table entry number contained i n t h i s entry replaces the symbol

tab le entry number a s the pointer parameter. I f the entry i s a Field or

a Group the "most recent fa ther" entry i s moved from the Symbol Thble

entry f o r t h i s Field or Group, t o the "sup" (superior) pointer of the entry.

m e reason f o r the delay i n f i l l i n g t h i s f i e l d i s that there may be

more than one Group t o which t h i s F ie ld or Group belongs. I f t h i s i s

the case and i f then there is the poss ib i l i ty tha t one or more groups,

which declare t h i s Field t o be a member of them, may be discovered a f t e r

the Field i s defined. The best s t ra tegy i s t o wait u n t i l a l l groups

a r e known before f i l l i n g i n t he "most recent fa ther" pointer.

After the pointer parameters a r e changed they a r e used t o access

the associated data tab le entry and the "type" f i e l d of t h a t entry i s

t es ted f o r acceptabi l i ty a s a parameter. For example, the pointer found

a s a c r i t e r ion name i n a Record entry must point t o a data tab le entry

which describes a c r i t e r ion statement. I f the pointer parameter i s now

pointing a t a function description it i s assumed t h a t the function w i l l

re turn an integer, and a t e s t i s made t o see if an integer i s permitted.

(some typ ica l functions a r e LENG'M and CNT.)

4.2 Code Generation Program (CGP)

The second phase (see Figure 4-3) of the DDL compiler has three

important functions:

Output

\ Data
Figure 4-3

Phase '2 of the DDL
Compiler

(1) it c rea tes the Active F i l e Control Blocks (AFcB) and

the Auxil iary Descriptor Blocks (ADB) required f o r execu-

t i o n of the CREATE statement. (phase 2A)

(2) using t h e data s t ruc tu re created i n (1) it generates J-Lang

code t o load data i n t o main memory and execute the CREATE

statement. (phase 2 ~)

(3) it generates J-Lang code f o r the procedural statements

of DDL (cRITEX, RPVAL) . (phase 2 ~)

The next sect ions describe the implementation of these th ree

functions.

4.2.1 The Active F i l e Control Block (AFCB)

The format of the AFCB i s shown i n Figure 4-4. There i s one

AFCB f o r each f i l e which w i l l be used i n t h e execution of a CREATE

statement. The primary funct ion of the AFCB i s t o point t o records from

the f i l e which a r e current ly i n core. The number of these records i s

qu i t e small - usual ly j u s t t h e number of d i f fe ren t record occurrences

concurrently required i n the evaluation of t he c r i t e r i o n statements f o r

the l inkage speci f ied f o r t he f i l e . The following paragraphs describe

the f i e l d s of the AFCB.

The "pointer t o Data Table Entry f o r the STORFILE descript ion" i s

t he data t a b l e en t ry number of t he en t ry which contains the descr ip t ion

of t h e f i l e s t r uc tu r e . The f i r s t "pointer t o t h e Data Table Entry f o r

Linkage descript ion" contains the data t a b l e en t ry number f o r t he SEQUEN

statement which governs t he physical order of t he records i n t h i s f i l e .

Through the pointers i n these l inkage statements one f i n d s the c r i t e r i o n

expressions t h a t a r e used i n the creat ion of t h e l inkage.

AFCB and A D B ' s f o r C r e a t e Statement

Create statement
File l i s t

Target Source

' Active F i l e
Control Block

Auxil iary Descriptor Block

la Active 3

I F i l e Control
Block

To %ble Entry f o r
SZ%UE;.I S t x f i l e Descr. Record items
3ntry T, --

Pointer t o Data Relat ive Address Address of Data
, %ble Entry f o r of next l ink ,ge
a Linkage - *- ---.- - - --- - -

Pointer t o ADB of Record S

1 , ! 1 I t , t I rn

I I I t ! I I t " X1 I I
~ n & A ~ o f ~ S o c i a t ed

I i tem >>LY< L i 2 1-y

Pointer t o Data ' Relat ive Address Pointer t o ADB Descriptor
To DIFEC A Table Entry I of next l inkage 31ock f o r

1
or 3 3 E I) d f o r Linkage Descr. / Description , G:-cup Pointer t o ADB
Entr-f i

pointer t o ADB of Eiecord S I -

.f-
-

1

Other Linkage descr ip t ions

0
.ri \5/

I

Block f o r Group
Slack f o r

Figure k-4

The " re la t ive address of next linkage description" i s the address

of the next "pointer t o data table entry f o r linkage description". The

address i s r e l a t i ve t o the s t a r t of the AFCB. It i s necessary because

the ADB pointers which follow (and w i l l be explained next) a r e variable

i n number. The ADB pointers point t o the ADB's associated with the core

resident records, symbolically cal led S (source), T (ta rge t) , X 1 , X2 ,

e t c . These symbolic names a r e those used i n the CRI'IZM statements. They

r e fe r t o d i f fe ren t record occurrences a t d i f fe ren t times during processing.

The next group of f i e l d s of the AFCB i s a repe t i t ion of the format

jus t described. These f i e l d s point t o the DIREC o r EMBED statements

specified by the STORFILE statement. The ADB pointers f o r the S, T,

X , e tc . records a r e f o r use i n processing the CRITEX statements associated

with these linkages.

4.2.2 The Auxiliary Descriptor Block (ADB)

The ADB1s (see Figure 4-5) a r e used t o hold core address of the

record and the data descriptive information (e.g., length, repe t i t ion

count, e tc .) which var ies with each occurrence of the record. This

information cannot be stored i n the Data Table entry because there may

be two o r more occurrences of the record i n core concurrently, f o r example,

source and ta rge t of records used i n linkage, or multiple occurrences of

a repeating group.

The "data t ab l e entry pointer" i s used t o f i n d the symbolic name of

the record (or group or f i e l d) and the fixed descriptive data (e.g., CONCODE

statements, c r i t e r ion statements, and possibly repe t i t ion number, order,

e t c .) . For in te rna l use, the data tab le entry number i s the "name" of a

record, group or f i e l d . Therefore when searches a r e being made f o r names

(f o r example, i n t he c rea t ion of the assoc ia te l i n k s described below)

t h e "name" i s present i n t he ADB.

m e "Rel. address of Assoc. items" i s the ADB r e l a t i v e address

of the s t a r t of t he "TYPEt1 bytes. This i s necessary because the number

of data descr ip tors i s var iable . m e "address of data" i s the core

address of the s t a r t of t he data described by t he ADB. (~ o t e - t h i s i s

not f i l l e d i n u n t i l execution time.) The data desc r ip to rs a r e t h e items

which would be i n t he data t ab l e en t ry except t h a t they vary with each

occurrence of t he record. I n these cases t he data t ab l e en t ry contains

a pointer t o t he procedure which obtains the value t o be placed i n t h e

da ta descr ip tor . After code-generation f o r the data loading code t he

da ta t a b l e w i l l contain the number of t he descr ip tor i n t he ADE where

t he value w i l l be s tored.

Each "TYPE" f i e l d describes the sequent ia l ly corresponding "pointer

t o ADB of associa ted item". The meaning of type i s shown i n the following

t a b l e :

m e Meaning
- - -- - --- " "

1

Pointer t o "fa ther" (t he group which contains '
i t h i s item) 1 i I

i ! I ' 2 i 1 Pointer t o "son" (subdivision of t h i s group)

1 3 Pointer t o next core res iden t member of t h i s
repeating group (o r f i e l d)

!

; 4 Association l i n k
1

4

I- -. - - -+
!The pointers a r e t o ADB ' s.

The associa t ion l i n k corresponds t o the assoc ia te p a i r s i n t he

ASSOCIATE statement speci f ied by t he Cmm statement. Using these l i n k s

t he code generation log ic (t o be described i n 4.3.3) w i l l c rea te a

procedure which w i l l construct t he t a rge t record from the source records

(see Figure 4-5) .
4.2.2.1 The ADB Hierarchy

This paragraph describes i n more d e t a i l t h e procedure f o r deter-

mining the h ie ra rch ica l s t ruc tu re of the ADB's . It expla ins when an

ADB i s created and how it r e l a t e s t o other ADB's .

The hierarchy i s bas ica l ly a rep l i ca of the s t ruc tu re of t h e

da ta t a b l e s t ruc tu re (t h a t is, records, groups, and f i e l d s , i n descending

order of scope) . Beyond t he bas ic s t ruc tu re a r e (1) ADB s f o r t h e

"pseudo-variables" (data f i e l d s which r e s u l t from the statements LEN,

CNT and MIST), and (2) ADB' s f o r repeating occurrences of a group o r

f i e l d .

The pseudo-variables a r e constructed by t h e code generation logic ;

they a c t as normal user data f i e l d s except t h a t the data is inse r ted by

the data loading procedure (see Sections 4.2.3 and 5) . The ADB's f o r

pseudo-variables a r e l inked only as a r e s u l t of an assoc ia te statement.

There i s no h i e r a r c h i c a l l i n k i n g . Of course, the re may be any number of

references t o t he ADB, through t he data t ab l e , f o r use i n CRITEX expression

evaluation.

When a f i e l d o r group may repeat ADB's a r e created f o r t he number of

occurrences which w i l l be res ident i n main memory concurrently. I f t he

maximum number of occurrences i s f ixed, the ADBrs a r e generated (and

l inked sequential ly) a t code generation time. I f t he number i s var iable ,

the ADBrs a r e s e t up dynamically by log ic i:1 the data loading procedure.

4.2.2.2 Phase 2A Completion Logic

Af te r t he AFCB's and ADB's have been created, and t h e associa t ion

l i n k s from the ASSOCIATE statement have been made, the phase 2 log ic

searches down the " t ree" of A D B t s f o r the t a rge t f i l e , t o f i nd t he f i e l d s

which have no assoc ia t ion l i nks . These e x i s t because some groups a r e

associa ted with other groups, and t he f i r s t pass of assoc ia te linkage

doesn ' t en te r the subordinate f i e l d associa t ion. Once the t r e e has been

completed, code generation can start.

4.2.3 Phase 2B - Code Generation f o r CRFA'CE Statement

Code generation cons i s t s of creat ing an ordered l i s t of bas ic

J-Lang operations and subroutine c a l l s which w i l l load data i n t o main

memory, move each of t he source f i e l d s t o t he associa ted t a r g e t f i e l d ,

and then l i n k t he newly created record i n t o the f i l e which i s being created.

Code generation s t a r t s by creat ing a data loading procedure f o r

each f i l e t o be used. Data Loading i s t he process of l ink ing an input

record t o t he ADB and AFCB, and then executing whatever functions a r e

necessary t o complete the ADB descr ip tors . The generation of t h i s code

requires ge t t i ng the pointers t o funct ions which a r e parameters i n the

Data Table Entry and generating code t o c a l l these funct ions and place t he

returned values i n t he ADB. Now t h e ADB descr ip tor o f f s e t replaces the

funct ion pointer f o r the r e s t of code generation. In cases of var iable

length, o r repeating groups, t he information i n the CONCODE statements

i s used t o generate code t o recognize the end of data f i e l d s . The Data

Loading procedure i s fu r t he r described i n Section 5.

The code generation logic then walks the t r e e of ADB's of the

ta rge t f i l e , generating code t o move each f i e l d from the source t o

the t a rge t . (To f ind the source it uses the association l inks .) The

operand addresses used i n the generated code a re ind i rec t through the

ADB, not the d i rec t data addresses, which a re assigned a t execution time.

The data descriptions i n the Data tab le en t r i e s indicate where t o generate

code conversion ca l l s , length truncations, e tc . I n cases where the

data tab le indicates t h a t information w i l l be i n the ADB, the code

generation logic generates code t o obtain the values from the ADB descrip-

t o r s a t execution time. I n some cases, code t o move data w i l l not be

necessary because the source data i s i n the proper form f o r inclusion

i n the ta rge t record; a l l t h a t i s necessary i s t o s e t the core address

pointer of the ta rge t f i e l d ADB.

4.2.4 Phase 2C - Code Generation f o r CRITEX

CRITEX statements w i l l be t ransla ted using the technique of

stacking operators and operands on two d i f fe ren t stacks, and generating

code when newly input operator has a precedence lower than the operator

on the operator stack. To generate code the required number of operands

a r e taken off the top of the operand stack and the operator i s taken

off the operator stack. The r e su l t s of the operator a r e assigned a

symbolic location and the symbol used i s placed on the operand stack

i n place of the operands removed. Whenever code has been generated, the

new top of the operator stack i s tes ted against the recent input which

caused the code generation t o begin. I f the operator precedence of the

stack is lower than the input the code generation process i s repeated.

If not the input operator i s stacked. Whenever the top of the operator

s tack contains ") " immediately followed by " (" , both of these a r e

dele ted. The operator precedence is, from highest t o lowest:

Operator Comment
- - -.--- --- 7- -- -- -- - - A - - - - - ---I-"'-------- ---- -- -

(/ when it i s the newly input operator o r it i s 1
on t he s tack and being t e s t e d agains t ") " I

1

NOT

OR AND
f (i when on the s tack and not being compared with ") " ;
I -.--. 1 ... - ---- ---. .A

4.3 Syntactic and Semantic Supporting Subroutines

A s was s t a t ed before, Syntactic Analysis of Phase 1 of the

compiler is bas ica l ly t he in te rpre t ive execution of t he code generated

by the SAPG (t he SAP). This code requires many supporting subroutines.

The most important ones a r e discussed below:

a) Lexical Subroutine

b) The System Vector Subroutine

c) The Syntax Recognition Fa i lu re Subroutine

d) The Semantic Supporting Routines

4 .3 .1 Lexical Subroutine

This subroutine reads DDL source statements and buffers them.

It re tu rns s ingle tokens, when ca l l ed . Tokens a r e of 4 types:

1. names (s t r i n g s of characters within s ing le quotes)

2. keywords (s t r i n g s of characters not surrounded by quotes)

3. punctuation marks

4. iiumbers (s t r i n g s of decimal d i g i t s)

Each c a l l t o .LEX returns a pointer t o the next token, and the token type.

The l ex i ca l processing routine c a l l s a .PRINT routine t o p r in t

the source l i ne , i f t h i s option has been specified. (~ r r o r messages

a r e produced by the various syntactic processing "fai lure" routines.

These routines c a l l .PRINT di rec t ly .)

4.3.2 The System Vector Subroutine

There a r e many places i n ' t h e logic of syntactic analysis where

one routine needs t o have control over the succeeding sequence of routines.

I n par t icu la r , t h i s occurs when the succeeding routines w i l l process a

l i s t of parameters, which must occur i n f ixed order. The subroutines

described below help provide t h i s sequencing f a c i l i t y .

A "subroutine vector stack" (a stack of subroutine addresses) i s

used. By ca l l ing .SEW, addresses a re pushed on the stack. (The

parameters of the .SEW c a l l a r e the addresses, i n the order i n which

the subroutines a r e t o execute.) Each c a l l t o .VCALL causes control t o

be given t o a subroutine whose s t a r t i ng address i s popped off the vector

stack. It i s a CALL .VCALL which i s generated by the SAPG when it detects

// i n the EBNF source statements.

4.3.3 The Syntax Recognition Fai lure Subroutine

The logic f o r syntax recognizer "fai lure" e x i t s a l s o requires the

type of sequence control described i n the preceding paragraph. The stack

used here i s called the " f a i l vector stack". It i s s e t by a c a l l t o

.SEW, the parameters, a s before, a re the addresses t o be stacked; the

order i s the order i n which they a re t o be executed. When .FAIL i s

called, it gives control t o a subroutine whose address i s popped off

the f a i l vector stack. To pop the stack without executing any subroutine,

.Porn i s called. The SAPG automatically generates c a l l s t o .POPF;

they a re executed a f t e r each syntactic item i s correct ly recognized.

The execution of the .POPF a f t e r each syntactic item means t h a t when a

l i s t of f a i l u r e ex i t s i s s e t up, it specif ies an address f o r each syntactic
L

item including terminal symbols l i k e ",", ")I1, e tc . For example f o r

the s t r i n g

< name >: (< pa r t 1 >)

there would be 5 f a i l u r e e x i t s specified.

4.3.4 The Semantic Supporting Routines

The Semantic supporting routines a re called by CGP and a r e used

t o create the AFCB1s, ADB1s which help i n the code generation phase.

4.4 The J - K Translator

As mentioned i n the introduction of Section 4, the Code Generation

Program (CGP) produces J-Lang statements; t o t r ans l a t e the J-Lang in to

K-Lang (the object language of the K-Machine), a J-K Translator i s needed.

A complete description of it i s given i n Section 8, a f t e r the descriptions

of the J- and K-Languages. The overview of the J - K Translator i s shown

i n the f igure below.

\?

atement s TWSLATOR tatementg'

4.5 The K- Interpreter

A machine language in te rpre te r i s a computer program t h a t performs

the inst ruct ions of another program, where the other program i s wri t ten

i n some machine-like language. A machine-like langdage i s a method of

representing inst ruct ions using operation codes, address, e t c .

Machine language in te rpre te rs a r e used chief ly f o r the following
/

purposes:

1) t o allow the representation of a f a i r l y complicated sequence

of decisions and actions i n a compact, e f f i c i en t manner

without the need t o construct the physical machine (hardware)

which executes these inst ruct ions .

2) t o communicate between passes of a multiple pass program

(i . e . , i n a multipass program, the e a r l i e r passes mst

transmit information t o the l a t t e r passes). This informa-

t i o n i s often transmitted most e f f i c i en t ly i n a machine-like

language, a s a s e t of ins t ruct ions f o r the l a t e r pass.

This philosophy of multipass operation may be characterized

a s " te l l ing" the l a t e r pass what t o do, ra ther than simply

presenting it with f a c t s and asking it t o "figure out" what

t o do.

The interpret ive technique has the fur ther advantage of being

r e l a t i ve ly machine-independent - only the in te rpre te r must be rewrit ten

when changing machines. Furthermore, helpful debugging a ids can readi ly

be b u i l t i n t o an interpret ive system. Finally, an in te rpre te r can

usually be wri t ten so t h a t the amount of time spent i n interpreta t ion

of the code i t s e l f and branching t o the appropriate routine i s negligible.

I n t h i s case the machine-like language is the K-Lang, and the K-

Interpreter i s a computer program wri t ten i n P L / ~ , and then t ranslated

(using the P L / ~ compiler) in to 360 machine code. An overview of the

	Design of the Data Description Language Processor
	Recommended Citation

	Design of the Data Description Language Processor
	Abstract
	Comments

	tmp.1201117234.pdf.FTHyJ

