- . o
cnn ) \ University of Pennsylvania

Libraries ,_
O UNIVERSITY 0f PENNSYLVANIA 4 ScholarlyCommonS
Technical Reports (CIS) Department of Computer & Information Science
August 1972

The Table Generating Routines of a Data Description Language
Processor

Peter Gross
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Peter Gross, "The Table Generating Routines of a Data Description Language Processor”, . August 1972.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-73-01.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/750
For more information, please contact repository@pobox.upenn.edu.


https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/750
mailto:repository@pobox.upenn.edu

The Table Generating Routines of a Data Description Language Processor

Abstract

The Data Description Language Processor, designed by J. A. Ramirez, is the compiler for a modified
version of the Data Description Language (DDL), written by D. P. Smith.

Two main phases exist in the DDL Processor:
1) The Syntactic Analysis phase and
2) The Code Generation phase

The former phase checks the DDL source for local and global syntactic flaws before passing control to
the latter. In order to speed up execution of phase 2, internal tables (one symbol and several data tables),
containing encoded versions of the DDL source input, are constructed. The tables, created during syntax
analysis, will facilitate global syntax checking (verifying all DDL statement references to be valid), and will
permit code generation to operate more quickly by providing it with the "essence" of the source data and,
hence, negate the necessity of a second pass over the source input.
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Abstract

The Data Description Language Processor, designed by J. A.

[71, is the compiler for a modified version of the Data

Ramirez
Description Language (DDL), written by D. P. Smith[sl.
Two main phases exist in the DDL Processor:

1) The Syntactic Analysis phase and

2) The Code Generation phase
The former phase checks the DDL source for local and global
syntactic flaws before passing control to the latter. In
order to speed up execution of phase 2, internal tables (one
symbol and several data tables), containing encoded versions
of the DDL source input, are constructed. The tables, created
during syntax analysis, will facilitate global syntax checking
(verifying all DDL statement references to be valid), and will
permit code generation to operate more quickly by providing it
with the "essence" of the source data and, hence, negate the

necessity of a second pass over the source input.



THE TABLE GENERATING RQUTINES OF A DATA

DESCRIPTION LANGUAGE PROCESSOR

by PETER GROSS



ACKNOWLEDGEMENTS

The development of the Date Description Languesge has been an effort
carried out by several individuals on the staff of the project supported
by the Office of Naval Research by Contract NOOO14-67-A-0216-001Lk. The
development of the language itself has been carried out by Dr. Diane
Pirog Smith. The first manual for the use of the language was published
in April 1971[7]. T™e language was re-designed and a new mamal was in-
cluded in Dr. Smith's dissertation in December 19‘71[5].

Subsequently, a definition of the language and the design of a pro-
cessor for the language was initiated. A first report on the design
was published in December 1971[7] by the design team.

The author is a participant in the design of the processor. The other
participants are Jesus Ramirez, and A. French. In the interest of complete-
ness, the author has included in this report a view of the entire system.
This is a major revision and documentation of the design reported in the
December 1971 report.

Certain sections of the document were prepared with the help of other

documents or other members of the project. These contributions are out-

lined below:

Section 1.1 - DDL Anmual Report, December 1971[7].

Section 1.2 - DDL Anmual Report, December 1971[7].

Section 2.1 - The Syntactic Analysis Program Generator
as Designed by J. A. Ramirez and A. 17'::'&31:&:1'1[1:l

Section 3.2.1 - EBNF With Subroutine Calls was Designed by
Je« Ramirez

Section 4.2 - The data table formats were described in

the December 1971 Annual Report[n and



were revised throughout the following

months by J. A. Remirez and the suthor.

To define the suthors specific contributions, references are made in
the following sectionsof this report indicating the sources of informa-
tion.

The asuthor acknowledges the advise, support, and direction he has
received from everyone in the design team and wishes to thenk them for

their assistance and aid,



1.0

2.0

3.0

k.o

TABLE OF CONTENTS

INTRODUCTION « o o o o o o o o o o s s o o s o o o o o o
1.1 Need for @ DDL + o o o ¢ o o o o o s o o ¢ s & & =
1.2 Summary of DDL Capabllities o« ¢« o o ¢ o o ¢ ¢ o o &
1.3 TImportant Features of the Design . . « o ¢« ¢ ¢ « o
1.k 1Internal Tables in the DDL Processor . « « ¢ o o o
1.5 Organization of the Thesis « ¢« « ¢ o ¢ ¢ ¢ s o o o
OVERALL DESIGN OF THE DDL PROCESSOR o o « o o ¢ ¢ ¢ o o
2.1 The Syntactic Analysis Program Generator . . « « o
2.2 The DDL Compiler « + o o ¢ o o o o o o ¢ ¢ o o o

2‘2‘1 me mical Pllase L] L L] L] Ld . L [ ] . L d L ] L L]

2,2.,2 The Syntactic Analysis and Table Generation Phase

2 L] 2 . 3 COde Generation L ] . . L] . L] L] L] * L ] L] L] [ ) L]

INmmL mBIJES [ ] L * L [ L] * L] L L] L] [ ] L] ® L] L] L * . L )

3.1 Introduction o o o o ¢ o o s ¢ ¢ ¢ ¢ 0 s 0 s 0 o o
3.1.1 Linear SEIUCLUTE o o o o o o « o o o o o o o
3.1.2 Hash Structure . « o o ¢ ¢« o ¢ o ¢ o ¢ o o »
3.1.3 Tree Structure « « o« ¢« o ¢ o ¢ 0o ¢ ¢ ¢ o ¢ o

3.2 Mechanics of Table Generation . « ¢« « ¢ ¢ o o o o &
3.2.1 EBNF with Subroutine Calls « « « « o o o » o
3.2.2 Tocal Syntax Checking .« « ¢« o ¢ o ¢ o o o o
3.2.3 Teble Generation o+ « « o « o o o e e e
3.2.4 @lobal Syntax CheckKing « « « « o o o o o o &

TABLE GENERATING ROUTINES FOR DDL

]+ L l me Symbol mble L ] . L] L] L] L 2 L] L] . L4 L L 4 L -* L] L L]

4,1.1 The Tree Structure and its Use8 o« « ¢ o o« o

.

[}

O W WV © O 00 OO OO O U1 F o w OB ¢

FE & &

13
13
17
18

18




L,1.,2 Growth and Search Tree Algorithms

4.,1.3 Tree Resturcturing Algorithm

h.llu Flow Charbs L] . . . * L] L] . . . L L] L ] . L ] .

holosEb(am.plesooqoono-'o-oonoooo

4,1.6 The Calling of the Symbol Teble Entry Routine

b2 The Data TEDLES « « o o o o o o o o o o o o o o o o

4.,2,1 Usage of the Data TADIES o « o o o o o o o o

4.2,2 Data Table Format Design Considerations . . .

4,2,3 Subroutine Calls for Date Table

4.2.3.1 PFile Statement . . .
4.,2,3.2 Record Statement . .
4,2.3.3 Group Statement . .
4.2,3.4 Field Statement . .
4.2,3.5 Length Statement . .
4.2,3.6 Count Statement . .
4.,2,3.7 Card Statement . . .
4.,2,3.8 Tape Statement . . .
4,2.3.9 Disk Statement . . .
4.2,3.10 Convert Statement .

4,2,3.11 Scan Statement . . .

4,3 Example of Symbol Teble and Date Table

Constructions

Creation . .

5 . o coNcmsIoNs * L] . L ] L[ ] * L ] L] L] L ] . L] L3 L ] L] L . . L L L L L ]

BEIJI wRAHIY . * . L d . L] . L] . L L ] . L] L] L L L L] . L L] L] L L L

20
23
26
29
29

p=

p=

Lo
4o

41

L2
k3

=

Ly




1.0 INTRODUCTION

1.1 The Need For A DDL. The need for an efficient method of converting

data for use in different programs or in different computer installations
has long been recognized by most EDP users. Organization of data can pre-
sently be handled by use of data description facilities contalned in oper-
ating systems and data management systems, programming languages, or in
user-written software. Usually, the method chosen is useful for & part-
lcular computer and cennot be transferred to a different system due to
hardware and software incompatibllities. In addition, one user's organi-
zation of data cannot be efficiently communicated to another as most data
organization is implicit in the software used. Other restrictions may
force the individuel to write special conversion routines in order to
accomplish an interchange of data.

The DDL research group collaborated to design and build a utility
which would convert data between programs a.nd/ or systems, and whose
power would be great enough to encompass most existing and most future
prograxming lengueges and computer systems. This utility was to be a
compiler, written in PL/1, built to translate a Data Definition Lan-

guege (DDL) designed by D. P. Smi't:h[5 ] , with major modifications.

1.2 Summary of DDL Capabilities. The DDL processor was designed to
satisfy two important requirements of data interchange:

1) data definition (organization)

2) data translation (movement and/or conversion)
T™he initial step towards simplifying date interchange was to make data

and its organization independent of machines and their processors. This

-1-
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was accomplished by using a language for describing data separate from
the language for processing data. The DDL provides the descriptive lan-
guage while the DDL processor 1s a set of programs which will perform

the translation of the data described in the language. The capabilities

*
are summarized below

a) INTERFACING FILES WITH DIFFERENT PROGRAMS AND PROGRAMMING LAN-
GUAGES

Frequently files created by one program cannot be processed by
another program or by another program written in a different

programming language. These conflicts can be eliminated using
the DDL processor to convert the files into a structure compat-

ible for processing by the other program.

b) INTERFACING FILES WITH DIFFERENT OPERATING SYSTEMS AND DIFF-
ERENT DATA MANAGEMENT SYSTEMS

Flles created under one operating system or data management
system cannot, in general, be processed by a different oper-
ating or data management system. With DDL, the conversion
of flles for processing by either operating system or data

mansgement system can be achieved.
c) INTERFACING FILES WITH NEW INSTMLIATIONS

Advancing technology and increased requirements necessiltate

*For the present implementation read "Sequential Files" for "Flles"

in sections a) through e)
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phasing out of old computers and replacement by new systems. The

DDL would enable files to be prepared for such transfers.
d) EXTRACTION OF DATM FROM FILES

If only & small amount of data in a file is used by a program, it
1s more efficient to create a smaller file consisting only of the

useful data. The DDL allows for the creation of many files from

one file.
- @) INTERFACING FILES TO USE NEW DEVICES

Advances in technology necessitate introduction of new input/output
devices which enhance the cost effectiveness of the system in use.
The change in the new I/ O devices can be facilitated by the DDL pro-

cessing of the old files onto the new devices.
f) USE AS A HUMAN COMMUNICATION IANGUAGE

It is hoped that DDL will be used as a standard language to des-
cribe data structures in a precise manner, just as BNF is now used

to describe the syntax of many langusages.

1.3 Important Features of the Design. The DDL processor consists of

three major parts. The syntactic Analysis Program Gemerator (SAPG)

*
uses the definitions of the DDL (in EBNF ) to generate the Syntactic

Analysis Program (SAP). As its name implies, the SAP parses DDL source

*Extended Backus Neur Form (EBNF) will be discussed in Section 3.2.1



“le
Input, scanning for syntactilc flaws. Concurrent with this action, sub-

routines are called to generate internal tables which are encodings of
the DDL source statements. These tables are used for global syntax

checking and subsequent code generation.

1.4 Internal Taebles in the DDL Processor. In designing DDL there were
nfwo major philosophies with which the designers had to contend: (a) A
multiple-pass compiler in which DDL source would be parsed by a lexical
routine, the output of which would be wholly rewritten in storage (core
or peripheral) for subsequent syntax analysis, and re-rewritten in stor-
age for final code generation, and (b) A two pass method in which DDL
source would be lexically parsed, these units individually passed to a
syntex analysis and statement encoding phase, and this data stored for
the code generation phase.

DDL designers chose the latter method for two reasons. Firstly,
this method allows speedier execution of code generation since the
source‘code is in & simplified form. Noise (delimiters, banks, etc.)
units are omitted as only the essence of the statements is retained,
and meny codes are employed. This eliminates the need for reparsing
the DDL source input for code generation. Secondly, and more import-
antly, when future mechanical techniques are developed to perform code
generation, it is wmost likely that the function of complete syntax
checking (local and global) be carried out prior to any code genera-
tion. Encoded tables, created at syntex analysis timg, permit this
complete syntax checking phase to take place, enabling subsequent

autometic code generation.
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Locol syntax analysils consists of a check for proper construction
of individual source statements, standing alone. @lobal syntax analy-
sis is responsible for verifylng the legitimacy of references among
cseveral DDL source statements. ILocal syntax analysls can be carried
out by simple comperisons between the input source and the EBNF descrip-
tion of the DDL. However, global syntax analysis requires storing of
the date in temporary (or permsnent, if necessary) tables to enable
"welking" through the code to resolve all references.

The major drawback in using method (b) over (a) is that encoding
fofces an increased overhead in the }unning of the processor. However,
this tredeoff is balanced by the fact that ﬁethod (é) requires another

pass (parse) of the source code during code generation.

1.5 Organlzation of the Thesis. Section 2 provides a short overview

of the denlgn of the processor, describing briefly the three major
phases. Section 3 outlines the functions of the internal tables, illu-
strates, by example, how their designs are arrived at, and runs thrdéugh
the mechenics of the subroutine call facility of EBNF. Section 4 des-
cribes the formats of the internal tables (Symbol and Data) and sketches

the algorithms for thelr creation. My conclusions are éontained in Sec-

tion 5,



2.0 OVERALL DESIGN OF THE DDL PROCESSCR

2.1 The Syntactic Analysis Program Generator. As can be readily inferred

from its neme, the syntactic analysis program generator (SAPG) outputs a
PL/.'L program (the syntactic analysis program) to perform the syntax check-
ing on the DDL source statements. As seen in figure 1, the input to the
SAPG is the description, in EBNF, of the particular DDL to be implemented.
With this design, a hypothetical DDL user who wishes to transform his data
base in & fashion the current DDL processor cannot hendle need only supply
the necessary additions to DDL in EBNF, and let the SAPG produce the syn-
tax checking code automaticeally. Needless to say, the user must also pro- '
vide the routines to generate internal tebles and carry out the code gen-

eration.

2.2 The DDL Compiler. The DDL compiler consists of three phases:

a) Lexical
b) Syntactic Analysis and Table Generation

¢) Code Generation

2.2,1 The Lexlcal Phase. The lexical phase is used to speed up the exe-

cution of syntex anslysis of the DDL source code. It groups the DDL in-
put strings into logical entities, and these units will be parsed by SAP
as if they were single characters. Examples of such units are ldentifiers

(names) and punctuation.

2.2,2 The Syntactic Analysis and Table Generation Phase. The syntactic

analysis phase 1ls responsible for the detection and flagging of errors

-6-
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in the DDL source input. The SAPG generates PL/1 code to parse the input
and, should an error be discovered, certain hand-written syntactic routines
wlll be called to output a message informing the user the location and
nature of the misconstruction.

Concurrent with this error detection phase is the table generation
phase. At this time, routines are called whose fuactions are to capture
semantic information contained in the DDL source statements and to build
tables to preserve this date for use during code generation, as well as
detection of global syntax errors. There will be several tables gener-

ated at this time: a single Symbol Table and many Data Tebles.

2.2.3 Code Generation. After completion of the internal tables, the

code generation phase massages the data contained therein and generates
PL/1 code to define structures and/or perform data movement on the user's

datsa base.



3.0 INTERNAL TABLES

3.1 Introduction. In most compller applications intermal tables are

constructed to hold the pertinent information about the structure or
statements contained in the programming language. These tables ordin-
arily take the form of vectors or matricies, although DDL uses push-
downs (stacks) for its storage medium.

A symbol table is a storage device for items each having a unigque
name or key assoclated with them. The key is given and, on a table
access, a pointer to the information associated with the item is re-
turned by the table accessing mechanism. If this information is small
in size, then the information itself may be returned, otherwise a point-
er to where the data is stored is returned. The DDIL processor uses the
latter method.

At the same time the symbol teble is created, datea tables are also
constructed by the DDL compiler. These tables store the information
contained in the DDL source necessary for global syntax checking and
further compilation by the code generation phase. They may be regarded
as "files" in which the "real data" is located, and whose "names" are
stored in the symbol table for convenlent reference.

While most techniques for data table construction are Ad Hoc, there
exist many formel methods of symbo; table creation, three of which are

described below.

3.1.1 Linear Structure. If successlve entires of a symbol table are

arranged in an arbiltrary fashion, the average number of entrles which

-0~
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must be scanned in a table of length n, in order to locate a component, is
n/2. This type of organization is linear since the search time depends
linearly on the size of the table. Search time may be considerably short-

ened by building some structure into the symbol table. Iwo structures to

be considered are Hash and Tree.

‘

3.1.0 Hash Structure. Hashing techniques partition the set of all source

codes by applying a function which maps them into a bit pattern with a

lesser number of bits. This hashing function is usually chosen to satisfy

two criteria:

1) The mapping from a source code to its bit pattern can be
readily performed.
2) Source codes are mapped into bit patterns in an unpre-
dictable and random manner.
A hashing function partitions the set of all source code into equivalence
classes such that two source codes are equivalent if and only if they have
the same bit pattern.
This method requires a function to be found which satisfies criteria
1, however DDL source names may be up to 31 characters in length and &
function to perform the hashing would necessarily be very complex and time
consuming. For this reason and the reason given in the previous sectlon,

Tree structuring of the DDL symbol table was chosen as a compromise.

3+.1.3 Tree Structure. An efficient method of searching a structure is by

repeated bisection of a list. Unfortunately, when a table is created entry

by entry, the midpoint of the list is unknown and the bisection method can-
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not be used. However, storing of the list as a binary tree achieves the
same effect as structuring it as s "bisectable list". All entrles less
than the given symbol table entry are reached by going down a branch,

and all entries greater, by going up. In spite of the fact that the
paths in the tree will be of unequal lengths, the distance of the average

node from the root is logen, where n is the number of nodes in the tree.

3.2 Mechanics of Table Generation.

3.2.1 EBNF with Subroutine Calls. The syntactic structure of the DDL

is described via Backus-Neur Form with a few minor modifications.
Sequences of characters enclosed in the brackets {( ) represent BNF meta-
linguistic variables whose values are collections of symbols specified
on the right of the "::=". An example of BNF (without the modifications)
is:

(example ): :=THIS(IS) A (SENTENCE)

|EELLO

The non-terminal (values enclosed in ( )) (EXAMPLE) is defined as follows:

("M™HIS", followed by the definition of (IS) (not supplied) in

this example), the terminal "A", followed by the definition

of (SENTENCE) (not supplied) ) or "HELLO"
Any expression which fails both these alternatives does not belong to the
class of statements defined by (EXAMPILE).

The extensions to BNF arise with the introduction of square brackets

"[", "]" and the asterisk "*". This extended BNF (EBNF) bas the distinc-
tion of facilitating human comprehension of repeating entities contained

in statement definitions. Items enclosed in square brackets may appear
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zero or one times, while square brackets followed by a star ("*") indicate
an indefinate number of repititions. Any mark in a formula which is not a
meta-linguistic symbol, or which is not enclosed in the meta-linguistic
symbols {,), denotes itself. A further extension to EBNF, in the form of
subroutine calls, is implemented to allow the compiler writer the flex-
abillty of outputting disgnostilc messages as well as storing semantic in-
formation contained in the DDL source in one pass. The following is an
example of EBNF with subroutine calls:

(LEFT SIDE)::=(RIGHT SIDE)/SUB_CALL/[, (RIGHT2)/SUB_CALL2/]*
If an input statement is to be ldentified as a (LEFILSIDE) it must consist
of: the (RIGHT SIDE) definition, followed by O or more occurrences of
",(RIGHT2)". At syntactic analysis time, after correct recognition of
the units (RIGHT SIDE) and (RIGHT2), subroutines SUB_CALLl and SUB_CALL2
will be enabled to capture the semantic information currently being |
scanned. If failure to recognize e unit comes to pass, then the parsing
of the statement halts, no further subroutine calls in this production
are made, and an error message is generated. The statement is discarded
and parsing will continue with the next DDL statement*.

There are two points that should be mentioned concerning the symtex

of EBNF: .
1) Subroutine calls may appear anywhere except between {and).
2) An EBNF statement line may be nothing more than subroutine
calls.
*If the present production has an "|" (CR) symbol further on, parsing

restarts with the definition following the "|".
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3.2.2 Local Syntax Checking. Subroutine calls will be pleced in appro-

priate locations in the EBNF in order to prepare the compiler for certain
terminal symbol failures. This accomplished by employing a fall stack
which 1s provided with suitable error message codes to be cited should a

"failure" in the scanning occur. See French[l].

3.2.3 Table Generation. As in local syntex checking, the internal tables

to be used for global syntex checking and code generstion are constructed
via the subroutine call facility of the EBNF. At appropriate points, calls
are made to PL/1 routines which build the symbol table and date table en-
tries. These tables are the stepping stones for the subsequent code gen-
eration phase which walks through them to determine the user's data base
structure and/or data movement intentions. The tables are PL/l based
structures which are created, only after it has been determined, through
locel syntex routines, that the DDL statement under consideration is con-
structed correctly.

In order to fully understand the logic and the mechanics incorpor-
ated in the process of table generation, an involved example will be

glven.

EXAMPLE 1.

™e familiar ARRAY declaration conteained ;Ln many programming languages
willl be the 1llustration. In order to provide the global syntax check-
ing phase and the code generation phase with data pertaining to the con-
tents of the ARRAY declaration, table entries consisting of critical in-

formation must be constructed. These structures are given in Figure 2.
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ARRAY declaration examples:
1) A ARRAY (1);
2) XI ARRAY (2:3);
3) A2B ARRAY (2:4,1:3,5);

Corresponding table entries (see Figure 2 for content definition):

1) STMT IDENTIFIER 'ARRAY 5 l

DECL.
¥
STMT DEFINITION Al1l1to
2) STMT IDENTIFIER ARRAY
DECL. }
STMT DEFINITION X1 11412 |1 3%
i
3) STMT IDENTIFIER ARRAY
DECL. ‘1
e i
STMT DEFINITION A2B | 3 2%1 L1 l1 13 1{s5{o

Using the contents of the data entries, global syntax routine walk through
the information resolving all references, and code generation ocutputs the
code necessary to define the structure. In order to build these entries
subroutine calls, embedded at appropriate locations in the EBNF, are writ-

ten. The EBNF with subroutine calls for the present example is as followsy
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(ARRAY_DECLARATION): : =(NAME )/ARRAY NAME/ ARRAY ({BOUNDS)
/DIMENSION/[, (BOUNDS /DIMENSION/1¥);
(BOUNDS ): : = INTEGER )/FIRST_BOUND/ [ : (INTEGER/SECOND_BOUND/ ]
(NAME): :=/NAME _RECOGNIZER/
(INTEGER): : =/INTEGER_RECOGNIZER/

Explanation of subroutine calls (using example 3):

| After recognition of "A2B" as a (NAME), SAP calls

1. ARRAY NAME

This routine sets the SIMT TYPE entry in the table to the
code for an ARRAY declaration statement. Then the POINTER TO_
DEFINITION entry is filled with the pointer value of the loca-
tion where this statement's definition resides. The NAME
entry is filled with "A2B", the name of the array. This value
is still available as we have not attempted to scan another
unit of input as yet. An initialization of the NO_OF DIMEN-

‘ SIONS entry to O occurs here for subsequent incrementation by
the subroutine DIMENSION.

| After recognition of "(" and "2" (as an (INTEGER)), SAP calls:

\ 2, FIRST BOUND

This routine f£ills in the FIRSIL#OUND entry of the table with

| the current lexical unit ("2"). Since no foresight as to the

| possible occurrence of the second bound is avallable, the flag
FIAG FOR_SECOND BQUND is set to O. It will be overridden by a

| subsequent subroutine call if the second bound does indeed occur.
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After ertering the optional clause in (BOUND) by recognizimg ":", and alter
recognizing the "4" as an (INTEGER), GAP calls:
3. SECOND BOUND
Tris routine clanges FLAG FOR SECOND BOUND to a 1, signilying
a presence. SECOND BOUND is assigned the value "4" (the curr-
ently scenned unit).
SAP now calls:
L. DIMENSION
This routine increments the NO_OF DIMENSIONS by one, thus pro-
viding the code generation phase with the correct number of
dimensions in the array.
me optionality [, BOUNDS /DIMENSION/]* is satisfied by recognition of
",", located between the "h" and the "1" in the source input. The pre-
vlious routines are re-executed, entering the "1" and the "3" into the
table in the same fashion as before. Similarly, the "5" is placed into
an entry in the table but, after completion of this entry, the above
optionality is not satisfied (no "," in the input stream), SAP skips to
recognize the unit following the "*" in the EBNF, accepts the ")" and the
";" as valid input characters, and halts this statement's parse with an

indication to the routine of & successful recognition.

3.2.4 (Global Syntax Checking. After construction of the tables is com~

pleted, control is passed to a routine which walks through the entries
Just created, verifying that all statement references are valid. For
example, if a FILE statement in DDL references something other than a
RECORD or Storage statement, an error flag is set. If no data table
entry exists for some identifier in the symbol table, the name is flagged.

In case of either error type, a message is printed and control is not pass-

ed to code generation.



4.0 TABLE GENERATING ROUTINES FOR DDL

L.1 The Symbol Table. As previously mentioned in Chapter 3, the symbol

teble 1is a binary tree structure whose entries are lexicographically
ordered. The entries are the names of the DDL source statements, located
at the stetement head. In Figure 3a, the statement identifiers are
RCD NAME,Fl, GRPl, GRP2, F2., It 1s necessary to comnect each occurrence
of & statement identifier in DDL with the data (the rest of the statement)
accompanying it. This is accomplished in two steps:
l. The accompanying data is stored away into a date table
entry.
2. A pointer in the symbol table to this storage location is
set.
In DDL it 1s necessary that the data stored in Step 1. also contain a
link tb its name (thus creating & doubly-chained list). In this fashion,
a great deal of'intercommunication among DDL statements can occur. These
interrelationshlps are exhibited in Figure 3b. Note that the links from
within the date entries reference the names of statements in the symbol
teble. These references are cruclal to both global syntax checking and
code generation. The latter phase will use the information contained |

herein to generate proper structure declarations or data movement commands.

L.1.1 The Tree Structure and its Uses. If an identifier is encountered

in the source input, a routine is called to locate the name in the symbol
teble and, if already present, return its location. Otherwise, an entry
is opened for the name and the new location is returned. Using this pro-

cess with an unstructured symbol table could prove very time consuming and

~18-
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therefore, some structure is defined on the symbol table for which the se‘ek
time 1s minimized.

The composition of the syubol table will be a binary tree whose nodes
contain the information illustrated in Figure 4. All items of information
in the subtrees extending from & given node which are larger* *.:han the
item of information at that node will be in the subtree pointed to by the
upward pointer. Similarly, all smaller items are in the subtree pointed
to by the downward pointer. This structure is illustrated in Figure S.

If a subtree contains no items, a pointer to that subtree is considered

to be a pointer to a null node. °

L,1.2 @rowth and Search Tree Algorithms. Such trees Aa.re easy to grow.

The first item of information is placed in the tree at the root. There-
after, each new item is placed in the tree by comparing i1t with the root
and moving up or down depending on whether the new item is larger or
smeller. This process 1s repeated at each node until an attempt is made
to move to a null node. The item is then placed at this point in the
tree. Section 4.1.4 contains the flow chart of this procedure.
As an example, consider adding the item "H" to the tree in Figure 6.'

1) H)A-- move up

2) H{J1l-- move down

3) H)E-- move up

4) H)G-- move up

Since there is not ltem up from G, H is attached at this point. Now some

*Any ordered relation may be used-DDL uses lexicographical ordering.
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mathematical properties of the tree structure grown by this algorithm will
be considered.

The shape of a tree contalning a given set of n items depends on the
order in which the items are encountered. For example, Figure 6 is con-
structed by considering the same items as in Figure 5 but in a different
order. The slgorithm thus generstes a tree for each of the n! possible
arrangements of n items; but not all the trees are distinct, as can be
seen from Figure 7. In the analysis to follow it is considered that each
of the n! permutations of n items is equi-probable. Thus some trees will
be generated more often than others. It can be stated without any contra-
diction that an item can be searched for following exactly the same steps
used to insert that item. It is reasonable to assume that the time required
is proportional to the number of nodes visited. It is obvious that in Fig-
ure 6 twenty-two nodes must be visited to f£ind each item, while Figure 7
requires 19 visits. Clearly, the tree in Figure T is not only better but
optimum. An algorithm, whose flow chart is presented in Section 4.l.lk, is

presented below. It will convert any tree into its optimum tree.

4,1.3 Tree Restructuring Algorithm. The algorithm which resturctures the

tree consumes time for execution. A natural questlon to ask is whether
the time saved in searching a reorganized tree is greater than the time
required for the conversion from the non-optimal to the optimal form. By
referencing W. A. Martins & D. N. Ness[3], it can be deduced that there
is some n beyond which application of the restructuring algorithm must

result (on the average) in saving. However, in the present application,

since the number of accesses from the table is not estimated to be high,
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restructuring will be attempted on a trial and error basis. Based on this
empirical evidence, restructuring will occur only after a certain number
of entries have been processed. Present implementations place this number

between twenty and thirty and alternates may be used.



-26-

.14 Flow Charts.
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Explanation:

The data items input to the algorithm are stored in the vari-
able ITEMS. Upward pointers are in IUP, an array. Similarly,
downward pointers are in IDOWN. The current number of items

is in IN, the beginning of the tree in IBEG, the current node
to be used is lebeled ICUR.,

BAX IABELS EXPLANATION

1. Initialization of program variables.

2. Put the input word into the array of
nodes.

3. Is this the first input? If yes-return.

L, If not, place item in list.

5 Determine 1f ITEM goes into upper sut;-tree

or lower sub-tree.

6. Lower sub-tree 1s determined. Is node null?

Te If not, set current node to this non-null
node and return to 5 to restart.

8. If line 6 is Yes, then insert value at this
node. Return.

9. If the answer to 6 is no, then an upward sub~
tree 1s required for the placing of ITEM. Is
the pointer to the upper sub-tree mull?

10. | If not, set current node to point to this

non-mill node, and return to 5 to restart.
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11. If answer to 9 is yes, insert the value into

that node~ Return.

b) Tree Restructuring Algorithm

Owing to the fact that the procedure contains recursive routine,
I won't endeavor to flow chart this algorithm in the same detail

as In the previous case. An English description of the steps to

be followed will be provided.

The procedure IBEST returns as its answer, a pointer to the root
node of the restructured tree. This procedure also establishes
the enviromment for the other subroutines, IGROW and INEXT.
IBEST computes IGROW(n), where n is the number of nodes in the
tree to be restructured. It returns the result of this computa-
tion (which is the restructured tree) as its answer. The pro-
cedure IGROW(n) i1s responsible for constructing an optimum tree
conteining n nodes. It may be recursive, as it may call itself.
It uses the procedure NEXT, which returns a pointer to the
smallest node in the old tree the first time it is called, and
a pointer to the smallest node, not previously returned, on each
successive call. IGROW(n) can take three courses of action:
1) If n=0, return a pointer to a NULL node.
2) If n=l, call NEXT and return its result.
3) If n>l,
a) Call IGROW(L(n~1)/2J)
b) Call NEXT
¢) call IGROW([(n-1)/27)
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Then after the node polnted to as a result of b) by replacing
its down polnter with the result of a), and its up pointer
with the result of c¢). The procedure Next is given a pointer
to the root of the original tree by IBEST. FEach time it is
called by IGROW 1t moves one step through the tree and returns
the next node in ascending sequence. It also saves place in
the tree for the next call by IGROW. Given a sub-tree, NEXT
returns the nodes in the lower branch by calling itself recurs-
ively with this branch as an argument, then it returns the root

node of the subtree, and then the nodes in the upper branch.

h,1.5 Examples. The PL/1 output contained in Figures 8 & 9 represents
the tree structures shown in Figures 10 & 11 respectively. Data for

Figure 8(10) was input and restructured, resulting in the structure of

Figure 9(11).

4,1,6 The Celling of the Symbol Table Entry Routine. Statements in DDL

are generally input with the following format (EBNF): (IPENTIFIER) IS
(ST TEMENT);
For example:

RCD IS RECORD(G1,G2);

GRP IS GROUP(F1,F2,F3);
To enter the names RCD, GRP into the symbol table, a routine called ENTESYM
is called after recognition of the identifiers. Thus the EBNF with sub-
routine calls for the majority of the DDL source statements is:
(IDENTIFIER)/ENTESYM/ IS {STATEMENT);

ENTESYM returns a pointer to the location in the symbol table of the lden-
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tifler Just recognized.

4,2 The Dete Tables.

4.2.1 Usage of the Data Tables. For every DDL statement certain relevant

Information must be stored in core for later use in the global syntax check-
ing phase as well as in the code generation phase. To this end, each in-
stance of & source statement initiates procedures which open data table
entries whose function 1s the preservation of the pertinent information.

The DDL data table designs are by no means unique and, given different
designers/programmers, different designs for these tables most likely would
be conceived. As long as the tables generated by the intermal routines
correspond exactly to the tables expected by the code generation phase any

applicable construct may be used.

L.,2,2 Data Table Format Design Considerations. If the code generation

phase 1s to generate declaration and/or translation statements for a
user's file structure, handwritten subroutines must utilize the appropriate
data table information. Up to this point in the thesis no allusion to
actual DDL source statements has been made. However, in order to relate
the evolution of the data table designs, certaln examples of DDL source
wlll be examined.
Assume the following DDL source was input to the compiler:

(a) RCD IS RECORD(GRP1(2),GRP2);

(b) GRP1 IS GROUP(F1,F2(3));

(¢) GRP2 IS GROUP(F1(2),F2);

(d) F1 IS FIELD(BIT(3)+<'100');

(e) F2 IS FIELD(CHAR(2));
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Statement (a) describes & record of a user's file composed of two groups:
GRP1, which occurs twice and GRP2. @RPl is specified in statement (b)
vherein 1t is defined as a group consisting of two members: Fl and F2
which repeats three times. GRP2 is a group with members Fl, repeating

twice, and F2. Fl is a field of three bits initially assigned the value

"100". F2 is a field of two characters with no initial assignment. This
structure is plctorally represented in Figure 12.

In order to preserve this structure, the DDL compiler will create
individual data tables, unique for each socurce statement. The global syn-
tax checking routine will walk through these tables, verifying that all
references to any statement are valid. The code generation phase is
saddled with the responsibility of declaring the PL/l structure representa-
tive of thils description, using the encoded tables as guidelines. For this
exemple, it 1s fairly obvious that the following PL/l declaration describes

the file presented in the example:

DCL 1 RCD,
2 GRP1(2),
3 F1 BIT(3) INITIAL('100'),
3 F2 CHAR(2),
2 GRP2,
3 F1 BIT(3) INITIAL('100'),
3 F2 CHAR(2);

It is necessary that the compiler provide the code generation phase with
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the encoded table contailning sufficient date to declare the sbove struc-
ture.
As the record statement provided in the example now stends, Figure
13 furnishes a prototype of a RECCRD STMT date table entry. Referring
to this dlagram, a simulation of the steps the code generation phase would
take upon encountering this entry is given.
l. From examination of the CODE entry, determination of the
TYPE (RECCRD) of data takes place.
2. Te pointer to the symbol table entry which contains the
"neme" of the source statement is followed, and using this
value, the "DCL 1 RCD," line 1s generated.
3. The "number of groups" entry alerts the code generation
phase to the nmumber of accesses of contained group entries
that must be performed.
L, e group entries are pointers to a symbol table entry
containing their "nsmes". This value, along with the sub-
sequent "repitition number" entries, allow generation of
the lines "GRP1(2)" and "GRP2".
5. The declaration is not complete as we must travel the
pointers to locate the group entries' data tables as well
as the field entries' dats table. This is done to acquire
the remaining information ebout the structure.
It must be pointed out that the RECCRD STMT data table entry provided in
the above example is & restriction of the actual entry used in DDL. It
was used to simplify the discussion, and the reader is advised to comsult

APPENDIX B where he will find the expanded form used in the DDL processor.
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4.2.3 Subroutine Calls for Data Teble Constructions. The succeeding sec~

tions provide the EBNF with subroutine calls for the set of DDL statements.
In order for the reader to comprehend the loglc used for placement of the
calls, 1t may be beneficial to consult Appendicies A and B. In addition,

DDL source statements corresponding to the EBNF will be provided.

4.2.3.1 File Statement. With this statement the user describes his over-

all file structure. This consists of the record names contained therein,
the code used (EBCDIC,BCD, or ASCII), and the medium of storage used
(T™PE, DISK or CARD).
EBNF:
(FILE_STMT): := FILE/DFILETG/(RECORD NAME)/FRN/,CHAR CODE=
{CODE ), STORAGE={NAME )/FSN/)
(COIE): := BCD/FC3/
|asciz/FC2/
|EBCDIC/FC1/
EXAMPLE:
FILE NAME IS FILE(REC_NAME,CHAR CODE=EBCDIC,STCRAGE=

TMWPE_NAME);

4,2.3.2 Record Statement. The RECORD STMT describes the user's record

structure by allowing specification of the groups contained in the file,
The filelds which are subordinate to no group are also specified in this
statement. A password to the record structure mey also be provided by

the user.
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EBNF':
(RECORD_STMT): := RECORD/DRCDTG/({NAME LIST)NL R/[, (NMAME_LIST)
/NL_R/1*[,LOCK=" {NAME)/RCRIT/ ' ],REC_SIZE=
(REC_SIZE))/ALLO R/
(NAME_LIST): :={NAME )/NL1/{ (OCCURRENCE )]
(OCCURRENCE): := ({MIN_ocC)/NLF/[: {MAX_0CC)/NLSB/{CRITERION)])
(MIN_OCC): :=(INTEGER )/NLI/
(MAX_0CC): :=(INTEGER )/NLI/
(CRITERION): := PRE_CRIT='{NAME)/PC/
|POST_CRIT='{NAME)/NLC/
(REC_SIZE): := FIXED({INTEGER )/RCDBLX/)
| VARIABLE( {INTEGER )/RCD_V/)
EXAMPLE :
RECORD NAME IS RECORD(GRP1(1:8),PRE CRIT='LABCRT',GRP2(2),

LOCK="LOCKCRT' ,REC_SIZE=VARIABLE(T));

4,2,3.3 Group Statement. The group statement function much in the same

way as the record statement except at a lower level in the file structure.
It mey contain groups and fields.

EBNF':

(GROUP_STMT): := GROUP/DGRPTG/( {(NAME LIST)/NL_G/[, (NAME_LIST)

/NL_G/1*) /ALL0_G/

(NAME_LIST): := same as in RECGRD STMT.

'EXAMPLE;

GRP IS GROUP(GRP2(1),FLD(1:8),POST CRIT='CRT');
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4.2.3.4 Field Statement. This lengthy (in EBNF) statement describes the

lowest level of the DDL file structure-the fields. There are many options
that can be specified, and by careful scrutiny of the EBNF most can be
located and understood.
EBNF':
(FIELD STMT)::= FIELD/DFLDTG/({TYPE)[ (DELIMITER )][{CONVERSION)])
/ALLO F/
{TYPE): := BIN/B1/[ ({ENG)) 1[{BIT ASSGN)]
|crar/c1/ [ ({rEneTH ) 1[{CHAR AsseN)/c2/]
| NUM_PICTURE={NUM_PICTURE_SEEC )/l {NUM_ASSGN)]
|CHAR PICTURE=(CHAR PICTURE_SFEC)/C/[(CHAR ASSGN)/CF2/]
(LENGTH)::= */11/
| {tABEL)/15/
| {REF_MAME)/12/
| (PARAM_STMT)L3/
| (INTEGER)/LA/
(CHAR_ASSGN)::= «'(CHAR STRING)/CA/'
l&' (SOURCE_NAME )/BA1/'
(BIT ASSGN)::= '{(BIT STRING)/BA/
l&{SOURCE_NAME )/BAT/*
(NUM_ASS@N)::= '+~(NUM _STRING)/NA/
| &' (SOURCE_NAME )/BA2/
(BIT STRING)::=/BITSTRING recognizer/
(CHAR_STRING): :=/CHAR STRING recognizer/
(NUM_STRING): :=/NUM_STRING recognizer/
(LABEL): :=/IABEL recognizer/
(NUM_PICTURE SPEC)::=/NUM PICIURE recognizer/
(CHA;_PICTURE__SPEC): :=/CHAR_PICTURE recognizer/
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(DELIMITER): := ,DELIM='{PUNCT MARK )/DIM/"
(CONVERSION): : =(NAME )
(SQURCE_NAME ): : =(PARAM_STMT)/PAR/
| {name)/Ns/ [ ({SUBSCRIPT)) ]
[ .(uave)/ns2/ [ ({suBSCRIPT)) 1% /ALL0 T/
[,Pos=(pos)]
(SUBSCRIPT): : =(BOUND )/15/[ : (BaUNDY/uUS/
(BOUND): : =(REF_NAME )/RN/
| (PARAM STMT)/PM/
| {(IvTEGER )/ T/
(P0S): : =(REF_NAME )/RNp/
| ¢PARAM sT™MT)/PMP/
| (INTEGER )/ INTP/
| */s¥/
| ¢LABEL )/LBP/
EXAMPLE :
FIELD NAME IS FIELD(BIN{=A(1:1).B(0:2),P0S=T);

4.2.3.5 Length Statement.

Occasionally some field may have a value which

is based upon the length of another record, field, or group. This state-

ment allows the user to specify these possibilities.

EBNF:
(LENGTH_STMT): := DDL_LENGTH/DLGNTG/ (DA NAME)/LDN/)
(DATA_NAME): :=(REF_NAME)

EXAMPLE:

FIELD_NAME IS FIELD(CHAR(T7){=LENGIH(GRP1.FLD3(9));
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4L.2,3.6 Count Statement. As in the case of the Length Stmt.. this allows

the user to provide a value based on the mmber of occurrences of another
record, group, or field.

EBNF:

(COUNT_STMT): :=DDL,_COUNT/DCNTTG/( {DATA_NAME )/CDN/)

(DATA_NAME): :=(REF_NAME)

EXAMPLE:

FIELD NAME IS FIELD(CHAR(7)(=COUNT(GRP4.FLDT(8));

4.,2.3.7 Card Statement. Information as to the medium of storage for the

file must be passed to the processor. This statement specifies card stor-
age.

EBNF:

(CARD STMT): := CARD/DCARDTG/

EXAMPLE:

CARD NAME IS CARD;

4.2.3.8 Tape Statement. Tape storage is the medium used for the file.
EBNF:
(PR STMT)::= TAPE/DTAPETG/({TAPE DATA CTL, BLOCK))
(TAPE DATA CTL BLOCK)::={(RECCRD_FORMAT),VOL NAME=(NAME}/VOL/
[,NO_TRKS={NO_TRKS)/TT/]
[,PARITY=(PARITY )/ TE/]
[, DENSITY=(DENSITY }/T1/]

2
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(,REC_MODE=(REC_MODE)/F1/]
[, MPE_IABEL=(TAPE IABEL)/TPL/]
[,STFF_FIIE=(INTEGER)/INTL/]
[,cm_cHAR=(CTL, CHAR)/cc/]
(RECORD FCRMAT): := FIXED/REF/({BLOCK_SIZE )/FBIKS/[, {RECORD SIZE)
/FRSIZE/])
| VARIABLE/RFV/ ({MAX_BLOCK_SIZE )/VBLKS/
| [, (MAX_RECORD SIZE)/VRSIZE/])
| VAR_SPANNED/RFVS/({MAX_BLOCK_SIZE)/VBLKS/
[, {MAX_RECORD SIZE)/VSRSIZE/])
|UNDEFINED( (MAX_BLOCK_SIZE)/UBLKS/)
EXAMPLE: .
TAPE NAME IS TAPE(FIXED(8,2),VOL NAME VOLOO3,NO_TRKS#7
» PARITY=0DD, IENSITY=800, TAPE_IABEL=LBEL0O3
,START FILE=2,CTI, CHAR=6)

4.,2.,3.9 Diek Statement. As in the previous structure, this statement is

referenced via the file statement and its function 1s to describe the disk
storage of the user's file.
EBNF':
(DISK_STMT): : =DISK/DDISKTG/({DISK DATA_CTI, BLOCK))
(DISK DATA_CTL BLOCK)::=(RECCRD FORMAT)/DRF/,VOL NAME=
{NAME )/vOL2/
[,INT NAME=({NAME )/DN1/]
[,UNITS=( TYPEDSK)/DTYP/ ]
[, SPACE=(PARAMETERS )/DPARS/ ]

(RECORD FORMAT): := same as in TAPE STMT.

(PARAMETERS ): : =(UNITS ), {QUANTITY )/2Q/[ , (INCREMENT)/11/][ ,RLSE/RLS/]
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(UNITS)::= TRACKS
| cyLINDERS/CY/
| (INTEGER )/ INTR/
(QUANTITY ): : = INTEGER)
(INCREMENT): : = INTEGER )
TYPEDSK ::= 231k
31
|3300
EXAMPLE:
DISK NAME IS DISK(FIXED(5),VOL_NAME=VOLOOG,INT NAME=IM);
The following two statements are date movement commands, and provide code
generation with data relevant to the structure mappings from the user's

source to target fille.

4.2.3.10 Convert Statement. This statement alets the compiler to the

files (source and target) that the user is employing for his conversion.
EBNF:
(CONVERT_STMT): : =<CONVERT/DCONVTG/ ( (FILE_NAME)/CS/ INTO
(FILE_NAME)/CT/
(FILE NAME): :=(NAME)
EXAMPLE:
CONVERT(FILEA INTO FIIES);

4,2,3.11 Scan Statement. Although no new entry is created by the rou-

tines in this statement, the RECORD data table entry is modified. The
SCAN STMT specifies the order that groups within the record are to be

parsed at code generation time. This informetion must necessarily be
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provided if a fleld's values depend on another field, or combinetion of
others. The position within the field at which scanning must occur is
also provided in this statement.
EBNF:
(SCAN_STMT): := SCAN/DSCANTG/ (REC=(RECORD NAME )/SCREC/
: (GROUP_NAMES ) [, {GROUP_NAMES }]#)
/ALLSCAN/
(GROUP_NAMES ): : =(NAME )/ 1/ [ ( (POSITION)) ]
(POSITION): :=(IABEL)/P1/
| {IvTEGER )/P3/
(RECORD_NAME): : =(NAME )
EXAMPLE:
SCAN(REC=REC_NAME: GRP3(2) , GRP1, GRP2(2) ) ;

4.3 Exemple of Symbol Teble and Data Table Creation. The DDL source for

this example follows immediately and the files described therein are
illustrated in Figure 14, Figures 15a and 15b portrey graphically the
symbol teble and data table structures that would be created by the teble

generating routines.

SFLE IS FILE(SRCD,CHAR CODE=BCD,STCRAGE=SRC CRD);
SRCD IS RECORD(SGRPL(2),SGRP2(3));
SGRP1 IS GROUP(SFLD1(4),SFLD2(2));

SGRP2 IS GROUP(SFLDL(3),SFLD3(2));

SFLD1 IS FIELD(BIN(SFLE.SGRP2(1).SFLD1(2));

SFLD2 IS FIELD(CHAR(T));
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SFLD3 IS FIELD(CHAR PICTURE='AAX');
SRC_CRD IS CARD;

TFLE IS FILE(TRCD,CHAR CODE EBCDIC,STCRAGE=TARTAPE);
TRCD IS RECCRD(TGRP1(3),TGRP2, TGRP2(2));

TGRP1 IS GROUP(TFLDL(2));

TGRP2 IS GROUP(TFLD2{2),TFLD3));

TGRP3 IS GROUP(TFLD3, TFLD4);

TFLD1 IS FIELD(BIN¢ '100');

TFLDR IS FIELD(CHAR{=SGRP1(2).SFLD2(1));

TFLD3 IS FIELD(CHAR PICTURE='AAX'{=SGRP2(3).SFLD3(2));
TFLD4 IS FIELD(CHARS-'ABC');

TARTAPE IS TAPE(FIXED(80),VOL_NAME=VOLOO3);

SCAN(REC=SRCD: SGRP2,SGRP1,SGRP3) ;
CONVERT(SELE INTO TFLE);
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5.0 CONCLUSION

Throughout the evolution of the DDL compiler certain smbivelences
kept cropping up in project discussions. One particular area of con-
cern was whether encoding of the source statements was economically
beneficlal (were internmal tebles needed?). The answer to this question
is certainly not cut and dry and, in reality, can only be supplied if
and when some other team tries to implement a compiler for DDL which
does not encode the source but which reparses. Nevertheless, encoding
of the input reduces the amount of work performed by code generation
and permits the use of global syntax checking routines, separate from
code generation. This dichotomy (local and global syntax checking sepa-
rate from code generation) permits modifications to the compiler to be
performed modularly, simplifying matters considerably.

However, economics was not the sole reason for performing this
shuffling of data. There is one very crucial consideration that per-
haps outwelghs even the economic question-communication between our
routines and the future users or compiler wrlters who will inevitably
modify these routines. The internal tables have heen designed to
facilitete comprehension of the logic in global syntax checking and
data preservation. For purposes of clarity, PL/l structures are created
to contaln the encoded statements. Subsequent code generation routines
refer to the data contained in these tables BY NAME. As an example, the
entry for the record name in the FILE data table structure is referenced
by FILE.RECORD NAME. Seeing this qualified name in the code is enough

of a clue to identify which structure is currently being dealt with.

=57~
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Ordinarily, certain array posltions, transparent to the reader unless
well documented, would be agreed upon, by convention, to contain the
information. Any individual who has had the unfortunate task “of de-
bugging someone else's logic will concur with my claims to the advan-
tages of referencing data by nsme.

Storage optimization is always foremost in the minds of compiler
deslgners as excessive storage will result in a very expe.nsive processor.
For this reason, certain technigues for space saving were employed. In
the data table formats (APPENDIX A) are found many pointer entries refer-
encing various DDL names. The pointers are used instead of the name them-
selves because they occupy only 1 word while names may be up to 32 char-
acters. Thus a substantial saving of space may be realized if a name is
frequently referenced.

In many Instances, date table entries do not have a fixed structure
(see REFER option, PL/1 F Compiler, Language Reference Manual). This
means that they are allocated space only after it has been determined
Just how much information is to be stored in them. It is apparent that
collection of this data must occur by way of temporary storage. These
temporals were chosen to be PL/1 controlled veriables (variables which
act like pushdowns and whose allocation and de-allocation is toatlly pro-
grammer controlled) so that, after all information has been amassed, their
storage allocation would be freed, thus reducing the amount of unused
storage in the processor.

The use of EBNF with subroutine calls in the DDL compller allowed
every data table used for global syntax checking and code generation to
be created in the same pass in which both lexicel and local syntex analy-

sis were performed. This meant that one pass over the source was per-

formed in the ENTIRE compiler.
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By designing the symbol table and date tables as doubly chained
llsts, the code necessary for walking through the structures was im-
mensely simplified. Links were travelled from statement identifier
to statement date and back again with relative ease and efficient speed.

It is hoped that the choice of encoding source statements will
prove the right one. Whether the tradeoffs were beneficial or not it
must be pointed out that, when future automatic programming techniques
are developed, our DDL compiler has s distinct syntex phase and code
generation phase, a separation which enhances the possibilities of

mechanical code generstion.
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APPENDIX A

DATA TABLE FORMATS

The data table formats corresponding to the EBNF statements in Section
,2.3 and the subroutines flow-charted in APPENDIX B appear in this sec-

tion.



DCL 1

SYMBOL TABLE ENTRY.

ST_ENTRY BASED(ST_PTR),

2 UP_PTR PUINTER,

DUWN_PTR POINTER,

DT_PTR PUINTER, _
SIZE FIXED BINARY, '
KEY CHAR(KEY_SIZE REFER(ST_ENTRY.SIZE));

~Ne
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DATA TABLE ENTRY FOR LENGTH AND COUNT STMT'S.

DCL } LENGTH_DDL BASED(DTPTR)
2 TYPE FIXED BIN,
2 DATA_NAME POUINTER;

DCL 1 COUNT_DDL BASED(DTPTRI),
2 TYPE FIXED BIN,
2 DATA_NAME POINTER}
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DATA TABLE ENTRY FOR CONVERT STMT.

DCL 1 CUNVERT BASED(DTPTR),
2 TYPE FIXED BIN,
2 TARGET PUINTER,
2 SUURCE POINTERS
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DATA TABLF ENTRY FOR FILE STATEMENT:

DCL 1 FTLA RASED(DTPTR),

2

2
2
2
2
2

TYPE FIXED BIN,
5YM POINTER,
BUFOFF FIXED BIN,

RCD_NAME POINTER,
STORAGE POTNTER,

CHAR_CODE FIXED BINj
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DATA TABLE FOR RECORD STMT.

DL 1 RECORD RASED(NTPTR),

2 TYPE FIXED BIN,

2 SYM POINTER,

2 LOCK CHAR(7),

2 NO_MFM FIXED BIN,

2 MEMBFRS (NDUMMY REFER (RECORDeNO MEM)),
3 MEM_NAME POINTFR,
3 F_SUB_TYPE FIXED BINy
3 F_SUB_CONST FIXED BIN,
3 F_SUB_VAR POTNTER,
3 S_SUB_TYPE FIXED BIN,
3 S_SUB_CONST FIXED BIN,
3 5_SUB_VAR POINTER,
3 PRE_CRIT FLAG BIT(1) ALIGNED,
3 PRE_CRIT"RION CHAR(T),
3 POST_CRIT FLAG BIT(1) ALIGNED,
3 POST_CRITHRION CHAR(7),
3 POS_FLAG FIXED'BIN,
3 POS_CONST FIXED BIN,
3 POS_VAR CHAR(T);
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DATA TARLE ENTRY FOR CARD STMT.

0L 1 CAD BASED(DTPTR),
2 TYPE FIXED BIN,
2 SYM POINTER,
2 FORMAT BIT(1l) ALIGNED,
2 NO_CARDS FIXED BIN,
2 MODE_TYPE FIXED BINj
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DATA TABLE ENTRY FOR GROUP STMT.

DCL 1 GROUP BASED(DTPTR),

2 TYPE FIXED BIN,

2 SYM POINTER,

2 NO_MEM FIXED BIN,

2 MFMBERS (NDUMMY REFER (GROUPWNO_MEM)),
3 MEM NAME POINTER,
3 F_SUB_TYPE FIXED BIN,
3 F_SUB_CONST FIXED BIN,
3 F_SUB_VAR POINTER,
3 S_SUB_TYPE FIXED BIN,
3 S_SUB_CONST FIXEB BIN,
3 8_SUB_VAR POINTER,
3 PRE_CRIT_FLAG BIT(1) ALIGNED,
3 PRE_CRITERION CHAR(7),
3 POST_CRIT FLAG BIT(1) ALIGNED,
3 POST_CRITERION CHAR(T7)3




DATA TABLY ENTRY WOR DISK STMT.

WL L DK BASED(IITTR),
2 TYPR FILD BIN,
2 SYM POINTHR,
2 DISK_FORIAT,
3 RCD FOIMAT TYP FIATD BIN,
3 BLOCK_SIZE FIXSD BIN,

3 R7UCOND SIZF TIXED BIN,

2 SFACE,
3 UNITS FIXED BIN,
3 JUANTITY FIXED BIN,
3 INCREMENT FIX&ED BIN,
3 RLSE BIT(1) ALIGIED,
2 V"L KAME CHAR(7),

(2%

DSIAME C(30),
DICK_TYPi FIXT) BIN,
REC_MODE F14%) BIN,
CTL_CHiR BIT(1) ALIGNED;

Ny N

no
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DATA TABLE ENTRY FOR TAPE STMT.

Dol L Tali BACED(DTITRY,

2 TYPE FIXED BIN,

2 SYM POINTER,

2 TAPE_FORMAT,
3 NCD_FORMAT TYPE FIXED BIN,
3 BLOCK_SIZE FIXED BIN,
3 RECORD SIZE FIXER BIN,
DENSITY CHAR(1),
NO_TRKS BIT(1) ALIGNED,
LABEL TYPE FIXED BIN,
START FILE FIXED BIN,
VOL_NAME'CHAR(6),
PARITY BIT(1l) ALIGNED,
NSNAME CHAR(30),
REC_MODE FII0iD BIN,
CTL_CHAR BIT(1) ALIGNED;

(AT AL S A% A A A* I LS I AS T A% I N
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DATA TABLE BNTRY FOR FIELD STMT.

nel. Lo PIRLD BACED(DTPTR),
2 TYPE FIXED BIN,
SYM POINTER,
FLD_TYPE BIT(1) ALIGNED,
FLD_DESC POINTER,
FLAG_CONV BIT(1) ALIGNED,
CONVERSION CHAR(7),
FLAG_DELIM BIT(1) ALIGNED,
DELIM_SIZE FIXED BIN,
DRLIMITER CHAR (NDUMMY REFER (DELIM_SIZE));

A NN NDN

[AS TN 2N B AV

DCL 1 DRESC BASED(DTPTR1),

TYPE BIT(1l) ALIGNED,
LENGTH_TYPE FIXED BIN,
LENGTH_PARAM POINTER,
LENGTH_CONST FIXED BIN,
LENGTH_LAB CHAR(7),
ASSG FIXED BIN,
ASSG_PTR POINTF#Rj

[AC 2 O T S T - T A I AS

NCL 1 BIT_ATT BASED(DTPTR2),
2 SIZE FIXED BIN,
2 BIT_STRING (NDUMMY REFER (BIT_ATTWSIZE))j

DCL 1 CHAR_ATT BASED(DIPTR2),
2 SIZE FIXED BIN, .
2 CHAR_STRING CHAR(NDUMMY REFER (CHAR_ATTWSIZE));

NCL 1 “UM_PICTURE BASED( DTPTR1),
2 ASSG FIXED BIN,

2 PIC_SOURCE NAME POINTER,
2L7NGTH CONST FIXED BIN,
2 $IZE_PIC_SPEC FIXED BIN,

2 PIC_SPEC CHAR( !DUMMY REFER (SIZE_PIC_SPEC));



DCL 1 SOURCE_NAME BASED{DITPTR3),
2 PARAM_STMT POINTER,
2 POS_FLAG FIXED BIN,
2 TOS_CONST FIXFD BIN,
2 75 VAR POTHT R,
2 P0S_LAB CMR(7),
2 NO_NAMRS FIXED EIN,
DDL_NAME(NDIMMY REFER (NO_NAMES));
NANE PCINTFR,
LOWER_SUB BIT(1) ALIGNED,

N

LOWRR_TYPE FIXED BIN,
LOWER_PARAM PCINTER,
LOWER_CONST FIXED BIN,
UFPER_SUB BIT(1) ALIGNED,
UPPER_TYPE FIXWD PIN,
UPPER_PARAM POINTER,
UPPER_CONST FIXED BIN;

w w w w w w w ww
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AFPPENDIX B

FLOW CHARTS FOR THE DATA TABLE CONSTRUCTIONS

The routines that generate the PL/l structures to be used for global

syntaex checking and code generation are presented in this segtian.

<o,
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COUNT STMT PROCEDURE
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CONVERT STMT PROCEDURE
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