
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

August 1972

The Table Generating Routines of a Data Description Language The Table Generating Routines of a Data Description Language

Processor Processor

Peter Gross
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Peter Gross, "The Table Generating Routines of a Data Description Language Processor", . August 1972.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-73-01.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/750
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/750
mailto:repository@pobox.upenn.edu

The Table Generating Routines of a Data Description Language Processor The Table Generating Routines of a Data Description Language Processor

Abstract Abstract
The Data Description Language Processor, designed by J. A. Ramirez, is the compiler for a modified
version of the Data Description Language (DDL), written by D. P. Smith.

Two main phases exist in the DDL Processor:

1) The Syntactic Analysis phase and

2) The Code Generation phase

The former phase checks the DDL source for local and global syntactic flaws before passing control to
the latter. In order to speed up execution of phase 2, internal tables (one symbol and several data tables),
containing encoded versions of the DDL source input, are constructed. The tables, created during syntax
analysis, will facilitate global syntax checking (verifying all DDL statement references to be valid), and will
permit code generation to operate more quickly by providing it with the "essence" of the source data and,
hence, negate the necessity of a second pass over the source input.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-73-01.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/750

https://repository.upenn.edu/cis_reports/750

TECHNICAL REPORT

THE TABLE GENERATING ROUTINES O F A DATA
DESCRIPTXON LANGUAGE PROCESSOR

Peter Gross

Prepared for the

Office of Naval Research
Information Systems Branch

Arlington, Virginia

under

Contract NO0014-67-A- 0216-001 4
Research Project No. 049-098

UNIVERSITY O F PENNSYLVANIA
The Moore School of Electrical Engineering

Philadelphia, Penne ylvania 1 91 04

Report No. 73-01

TECHNICAL REPORT

THE TABLE GENERATING ROUTINES OF A DATA
DESCRIPTION LANGUAGE PROCESSOR

Peter Gross

Prepared for the

Office of Naval Reeearch
Information Systems Branch

Arlington, Virginia

under

Contract N00014-67-A- 0216-001 4
Research Project No. 049-098

UNIVERSITY OF PENNSYLVANLA
The Moore School of Electrical Engineering

Philadelphia, Penns ylvania 1 91 04

Report No. 73-01

I

University of Pennsylvania
TkB MOOKE SCHOOL CIF ELt3CTRICAL E N G I m I N G

Philadelphia, Pe~lnsylvania 19104

'ME mI;E GENERATING RCUTINES a' A DA'A
DESCRIPTION LCINGU'AC;E PROCESSCW

Peter Gross

August 1972

Submitted t o the
Office of Naval Research

Information Systems Branch
Arlington, Virginia

under
Contract ~00014-67-A-0216-0014

Research Project No. 049-2p

Reproduction i n whole or i n part i s
permitted f o r m y purpose of the

United States Government

Moore School Report No. 75QI

(~pc, ,r t ly rrassilrration of tltle, body of abslracl and indewing annotation n~unt & e

7 . O R I G I N A T I N G A C T I V I T Y (C0fp0t6te author)
I)

S E C U R I T Y C L A S S I F I C A T I O N

The Moore School of Electrical Engineering UNCLASSIFIED
University of Pennsylvania
Philadelphia, Pennsylvania 19104 I -

3 R F P O R T T I T L C '

I THE 'IWiLE GENERATING RWTINES OF A N'1# DESCRIPTION LANGUAGE PROCESSQR I
4 I)ESCRII.'TIVE NOTES (Typ of repott and.inclusive date*)
Technical Report -

I. A u r ~ O R (s 1 (P1r.t name. middle Inlfial, 1a.t name)

Peter Gross

I Moore School Report No* 73-01
6. R E P O R T D A T E

August 1972
(a. C O N T R A C T O R G R A N T N O .

' ~ b . O T H E R R E P O R T ~ O (5 1 (Any oth*? n u k n ' t b t uy be rmml#8d
Uli* -pod)

70. T O T A L NO. O F P A G E 5 7b. N O . O F R E F S

105 7
'o.. O R I G I N A T O R ' S R E P O R T N U M B E R W)

-. I

80. D I S T R I B U r l O N S T A T E M E N T

Ihe Data Description Language Processor, designed by J. A. Ra~n$rez~~~, is the

compiler for a modified version of the Data Description Lsnguage (DDL) , written by
C5 I D.P.Smith

Two main phases exist in the DDL Processor:

1) The Syntactic Analysis phase and
*

2) The Code Generation phase

Zhe former phase checks the DDL source for local and global syntactic flaws before

passing control to the latter. In order to speed up execution of phase 2, internal

tables (one symbol and several data tables), containing encoded versions of the DDL

source input, are constructed. m e tables, created during syntax analysis, will

facilitate global syntax checking (verifying all DDL statement references to be

valid), and will permit code generation to operate more quickly by prwiding it with

Reproduction in whole or in part is permitted for any purpose of the United States
government.

the "essence" of the source data and, hence, negate the necessity of a second pass

over the source input. I

I t . S U P P L E M E N T A R Y N O T E S 12. 5 P O N 5 O R l N G M I L I T A R Y A C T I V I T Y

Security Classification A-91408

'IHE 'BIBLE GENERATING RWPINES OF A DA'PA
DESCRIP!PION LANGUAGE PROCESSOR

Abstract

?he Data Description Language Processor, designed by J. A.

RamirezC7', i s the compiler for a modified version of the Data

[5 1 Description Language (DDL) , written by D. P. Smith .
Two main phases exist in the DDL Processor:

1) The Syntactic Analysis phase and

2) The Code Generation phase

The former phase checks the DDL source fo r local and global

syntactic flaws before passing control t o the l a t t e r . In

order t o speed up execution of phase 2, internal tables (one

symbol and several data tables), containing encoded versions

of the DDL source input, are constructed. 'Ihe tables, created

during syntax analysis, w i l l f a c i l i t a t e global syntax checking

(verifying a l l DDL statement references t o be valid), and will

permit code generation t o operate more quickly by providing it

with the "essence" of the source data and, hence, negate the

necessity of a second pass over the source input.

!EE 'IXBLF: GENERATING ROUTINES OF' A DATA

DESCRIP!lTON LANGUAGE PROCESSOR

by PEm GROGS

The development of the Data Description w a g e has been an effort

cnrrlied out by several individuals on the staff of the project supported

by the Office of Naval. Research by Contract NOO~~-67-A-0216-0014. ?.he

development of the language i tself has been carried out by Dr. Diane

Pirog Smith. The first manual for the use of the language was published

in April 1971L7'. The hngmge was re-designed and a new manual was in-

Dl cluded in Dr . Smith's dissertation i n December 1971 .
Subsequently, a definition of the hnguage and the design of a pro-

ceasor for the language was initiated. A f i r s t report on the design

was published i n December 1971C7' by the design team.

'Ihe author i s a participant in the design of the processor. !lb other

participents are Jesus Ramirez, and A. French. In the interest of complete-

ness, the author has included in th is report a view of the entire system.

Zhis i s a major revision and documentation of the design reported in the

December 1971 reporb.

Certain sections of the document were prepared w i C h the help of other

documents or other members of the project. 'Ihese contributioas are out-

lined below:

Section 1.1 - DM, Annual Report, Decenaber 197l [TI
Section 1.2 - DDL Anna;lal Report, Dec-er 1971 L71

Section 2.1 - 'Ihe Syntactic Analysis Program Generator

as Designed by J. A. Ramirez aad A. French Dl
Section 3.2.1 - EBW With Subroutine Calls was Designed by

section 4.2 - !lh data table formats were described in

the December l g n hnual. ~ e p o r t ~ ~ ' and

were revised throughout the fol lming

months by J. A. Ramirez and the author.

To define the authors specific contributions, references are made i n

the following sectioasof th i s report indica%ing the sources of informa-

tion.

The author acknowledges the advise, support, and direction he has

received from everyone in the design team and wishes t o thank them for

thei r assistance and a id ,

1.0 IN~OJXTCTION . . * * * 1

1.1 Need f o r a DDL . 1

1.2 Summary of DDL Capabilities 1

1.3 Important Features of the Design 3

. 1.4 Internal Tables in the DDL Processor 4

1.5 Organization of the Thesis 5

. 2.0 OVERAI~T, DESIGN CIF m~ DDL PROCESSOW 6

2.1 m e syntactic w s i s program ene era tor 6
. 2.2 me DDL Campiler 6

2.2.1 me ~ e x i c a l Phase 6

2.2.2 me Syntactic Analysis and Peble Generation Phase . . 6

2.2.3 Code Generation 8

3.0 INmamm . a m m . m . m . . m m m m . m . . m . . e . . . 9

. . 3.1 Introduction 9

. 3.1.1 Linear Structure 9

. 3.1.2 Hash S t ruckre 10

. 3.1.3 P e e Structure 10

. 3.2 Mechanics of lsble Generation U.

. 3.2.1 EBNF w i t h Subroutine Calls 11

. 3.2.2 Local Syntax Checking 13

. 3.2.3 Wble Generation 13

. 3.2.4 Global Syntax Checking 17

. 4.0 P g L E G E X W l ! f X N G R a T ~ S F O R D D L 18

. 4.1 The Symbol mble l 8

. 4.1.1 me !bee Structure and its U s e s 18

4.1.2 Growth and Search Tree Algorithms 20

. 4.1.3 Tree Resturc%uring Algorithm 23

4.1.6 The Calling of the Symbol S b l e Entry Routine 29
. 4.2 me Data Tablee 34

. 4.2.1 Ueage of the Data Tbbles 34

4.2.2 Data lsble Format Design Considerations 34

4.2.3 Subroutine Calls fo r Dsta lsble Constructions 40

. 4.2.3.1 File Statement 40

4.2.3.2 Record Statement 40

. 4.2.3.3 Group Statement 41

. 4.2.3.4 Field Statement 42

4.2.3.5 Length Statement 43

4.2.3.7 Card Statement 44

. 4.2.3.8 pape Statement 44

. 4.2.3.9 Disk Statement 45

. 4.2.3.10 Convert statement .&6

. 4.2.3.~ scan statement 46

. 4.3 Example of Symbol mble and Data lhble Creation 47

5.0 CONCUSIONS . 57

1 s 0 INIIRmCmm

1.1 m e Need For A DDLs '%he need for an efficient method of convert-

data for use in different programs or in different computer installations

has long been recognized by most EDP users. Organization of data can pre-

sently be handled by use of data description facilities contained in oper-

ating systems and data mana~ement systems, programming langusges, or in

user-written software. Usually, the method chosen is useful for a part-

icular computer and c m t be transferred to a different system due to

hardware and software incompatibilities. In addition, orre user's organi-

zation of data caanot be efficiently camrrmaicated to another a$ most data

organization is implicit in the software used. Other restrictions ma;y

force the individual to write special conversion routines in order to

accomplish an interchange of data.

The DDL research group collaborated to design and build a utility

which would convert data between programs &/or systems, and whose

power would be great enough to encampass most existing and most future

programming languages and computer systems. This utility was to be a

campiler, written in PL/~, built to translate a Data Definition Lan-

guage (DDL) designed by D. P. SmithC5', with mrrjor modifl~atlon6~

1.2 Summary of DDL Capabilities. The DDL processor was designed to

satisfy two important requirements of data Interchange:

1) data def inition (organization)

2) data translation (movement and/or conversion)

The initial step towards simplifying data interchange was to make data

and its organization independent of machines and their processors. P l i s

-2-

was acconap1ished by using a language for describing data separate from

the language for processing data. ?he DDL provides the descriptive lan-

guage while the DDL processor is a se t of programs which w U perform

the translation of the data described in the language. 'Ihe capabilities
i t

are summarized below :

a) INTERFACING F1L;ES WI!lB DIFFEREIXT PROGMMS AND PROGWMLNG UIM-

CUAm

Frequently f i l e s created by one program cannot be processed by

another program or by another program written in a different

programing language. These conflicts can be el.lminsted using

the DDL processor t o convert the f i l e s into a structure cunpat-

ible fo r processing by the other program.

b) INIF;FU?A.CING FILES WIm DIFFERENT OPERATING SYST@NS AND DIFF-

ERENT DAm MANAGEN4NT SYS'ZENS

Files created under one operating system or data management

system cannot, in general, be processed by a different oper-

ating or data management system. With DDL, the conversion

of f i l e s fo r processing by ei ther operating system or data

management system can be achieved.

c) INTEFU?ACING FILES WIm NEW I N S W n O N S

Advancing technology and inoreased requirements necessitate

Jt
For the present implementation read "Sequential Files" fo r "Files"

i n sections a) through e)

- 3-
phasing out of old camputers and replacement by new systems. Ihe

DDL would enable files to be prepared for such transfers.

If only a small amount of data in a file is used by a program, it

is more efficient to create a smaller file consisting only of the

useful data. The DDL allows for the creation of many files from

one file.

e) INTERFACING FIUS TO USE MEW DEVICES

Advances in technology necessitate introduction of new input/autput

devices which enhance the cost effectiveness of the system in use.

5 e change in the new I/O devices can be facilitated by the DDL pro-

cessing of the old files onto the new devices.

USE HUMAN

It is hoped that DDL will be used as a standard language to des-

cribe data structures in a precise manner, just as BNF is nuw used

to describe the syntax of many hquages.

1.3 Inportant Features of the Design. The DDL processor consists of

three major parts. The syntactic Analysis Program Generator (SAPG)
*

uses the definitions of the DDL (in EBNF) to generate the Syntactic

Analysis Program (SAP) . As its name implies, the SAP parses DDL source

-x-
Extended Backus Naur Form (EBNF) will be discussed in Section 3.2.1

-4-
input, ÿ canning fo r syntactic flaws. Concurrent with t h i s action, sub-

routines are called t o generate internal tables which are encodings of

the DDL source statemenfx. 'Ihese tables are used for global syntax

checking and subsequent code generation.

1.4 Internal Tables In the DEL Processor. In designing DDL there were

two major philosophies with which the designers had t o contend: (a) A

multiple-pass co~lpiler i n which DDL source wauld be parsed by a lexical

routine, the output of which would be wholly rewritten in storage (core

or peripheral) fo r subsequent syntax analysis, and re-rewritten in stor-

age fo r f i na l code generation, and (b) A two pass method in which DDL

source would be lexically parsed, these units individuslly passed t o a

syntax analysis and statement encoding phase, and t h i s data stored for

the code generation phase.

DDL designers chose the l a t t e r method for two reasons. First ly,

t h i s method allows speedier execution of code generation since the

source code i s in a simplified form. Noise (delitniters, banks, etc.)

units are omitted as only the essence of the statetnents is retained,

and many codes are employed. This eliminates the need for reparsing

the DDL source input for code generation. Secondly, and more imgort-

antly, when ;future mechanical techniques are developed t o perform code

generation, it i s most l ikely that the m c t i o n of complete syntax

checking (local and global) be carried out prior t o aay code genera-

tion. Encoded tables, created a t syntax analysis t ime, permit this

complete syntax checking phase t o take place, enabling subsequent

automatic code generation.

Local syntw mulyais consists of a check for proper construction

of individual source statements, st andirlg alone. Global syntax analy-

eis is responsible for verieing the legitimacy of references among

oevcral 1)DL source statements. Local syntax analysis can be carried

out by simple compari~ons between -the input source and the EBNF descrip-

tion of the DDL. Hovcver, global syntax analysis requires storirq of

the data in temporary (or permanent, if necessary) tables to ensble

" w ~ i . n g t t through the code to resolve all references.

B e nlajor drawback in using method (b) over (a) is that encoding

forces an increased overhead in the r u n n a of the processor. Hawever,

this tradeoff is balanced by the fact that method (a) requires another

pass (parse) of the source code during code generation.
. .

1.5 Organization of the Thesis. Section 2 provides a short overviev

of the deoign of the processor, describing briefly the three major

phases. Section 3 outlines the functions of the internal tables, illu-

strates, 'by exasrrple, how their designs are arrived at, and runs through

the mechanics of the subroutine call facility of EBNF. Section 4 des-

cribes the fomts of the internal tables (symbol and ah) and sketches

the algorithms for their creation. My conclusions are contained in Sec-
-. ---_ _ _ _ _ --- ...-

_I- --- --- _ _ _

2.0 OVERALL DESIGN C[F IME DDL PROCESSm

2.1 The Syntactic Analysis Program Generator. A s can be readily inferred

from i t s name, the syntactic analysis program generator (WG) outputs a

PL/l program (the syntactic analysis program) t o perform the syntax check-

ing on the DDL source statemen%s. As seen i n figure 1, the input t o the

SAPG is the description, in EBNF, of the particular DDL t o be implemented.

With t h i s desiw, a hypothetical DDL user who wishes t o transform his data

base i n a fashion the current DDL processor cannot handle need only supply

the necessary additions t o DDL in EBNF, and l e t the SAPG produce the syn-

tax checking code automatically. Needless t o sqy, the user must also pro-

vide the routines t o generate internal tables and carry out the code gen-

eration.

The DDL Coqpiler. DDL compiler consists three phases:

a) Lexical

b) Syntactic Analysis and Table Generation

c) Code Generation

2.2.1 me Lexical Phase. !Be lexical phase i s used t o speed up the exe-

cution of syntax a;nalysis of the DDL source code. It groups the DDL in-

put s tr ings into logical enti t ies , and these units w i l l be parsed by SAP

as if' they were single characters. Examples of such units are identif iers

(n~mes) and punctuation.

2.2.2 The Syntactic Analysis and !Table Generation Phase. 'Ihe syntactic

analysis phase i s responsible for the detection and flagging of errors

I v
TRANSLATED

i n the DDL ewrce input. B e W C generates P L / ~ code t o parse the input

and, should an error be discovered, certain hand-written smtac t ic routines

will be called t o output a message informing the user the location and

nature of the misconstruction.

Concurrent with t h i s error detection phase is the table generation

phase. A t t h i s time, routines are called whose ful;ctions are t o capture

semantic information coztained in the DDL source statements and t o build

tables t o preserve this data for use during code generation, as well as

detection of global syntax errors. mere w i l l be several tables gener-

ated a t t h i s time: a single Symbol Bble and many Data Zhbles.

2.2.3 Code Generation. After comgletion of the internal tables, the

code generation phase masswes the data contained therein and generates

P L / ~ code t o define structures and/or perform data movement on the user1 s

data base.

3.1 Introduction. In most compiler applications internal tables are

constructed t o hold the pertinent infomation about the structure or

statements contained in the programming language. mese fables ordin-

a r i l y take the form of vectors or matricies, although DDL uses push-

downs (stacks) fo r its storage medium.

A symbol table i s a storage device fo r items each having a unique

name or key associated with them. B e key i s given and, on a table

access, a pointer t o the information associated with the i t e m i s re-

turned by the table accessing mechanism. If t h i s information is smaU

i n size, then the information i t se l f may be returned, otherwise a point-

e r t o where the data i s stored is returned. 'Ihe DDL processor uses the

l a t t e r method.

A t the same time the symbol table is created, data tables are also

constructed by the DDL compiler. lhese tables store the information

contained in the DDL source necessary for global syntax checking and

further compilation by the code generation phase. They may be regarded

as "f i les t ' in which the "real datat' is located, and whose "rimes" are

stored in the symbol table fo r convenient reference.

While most techniques fo r data table construction are Ad Hoc, there

exist many formal methods of symbol table creation, three of which are

described below.

3.1.1 Linear Structure. If successive entires of a symbol table are

arranged in an arbitrary fashion, the average number of entr ies which

must be scanned In a tabla of length n, in order t o locate a component, i s

n/2, lZPlis ty-pe of organization i s l inear since the search time depends

lincarlly on the s ize of the table. Search time m y be considerably short-

ened by building sow structure into the symbol table. Two structures t o

be considered are Hash and 'Tree.

3.1.2 Hash Structure. Hashing techniques part i t ion the s e t of a l l source

codes by applying a function which maps them into a b i t pattern with a

lesser number of' b i ts . This hashing fUnctian is usually chosen t o satisfy

-two cr i ter ia :

1) The mapping from a source code t o i t s b i t pattern can be

readily performed.

2) Source codes are mapped into b i t patterns i n an unpre-

dictable and random manner.

A hashing function partitions the s e t of a l l source code into equivalence

classes such that two source codes are equivalent if and only if they have

the same b i t pattern.

This method requires a function t o be found which sa t i s f i es c r i t e r ia

1, however DDL source names may be up t o 31 characters in length and a

function t o perform the bashing would necessarily be very colnplex asd t h e

consuming. For t h i s reason and the reason given in the previous section,

Wee structuring of the DDL symbol table was chosen as a camgromise.

3.1.3 Tree Structure. An efficient method of searching a structure is by

repeated bisection of a l ist . Unfortuwtely, when a table is created entry

by entry, the midpoint of the l i s t i s unknown and the bisection method can-

- 11-
not be used, However, storing of the l i s t a s a binary t ree achieves the

same effect as structuring it as a "bisectable list". All entr ies l e s s

than the given symbol table entry are reached by going down a branch,

and a l l entries greater, by going up. In spite of the fact that the

paths in the t ree w i l l be of uaequal lengths, the distance of the average

node from the root i s log2n, where n i s the number of nodes in the tree.

3.2 Mechanics of Table Generation.

3.2.1 EBNF with Subroutine C a l l s . !Be syntactic structure of the DDL

i s described via Backus-Naur Form with a few minor modifications.

Sequences of characters enclosed in the brackets () represent BNF meta-

l inguist ic variables whose values are collections of symbols specified

on the right of the " : : ='I. A n example of BNF (without the modifications)

is :

(example): : =?KIS(IS) A (SENTENCE)

1-0
!The non-terminal (values enclosed i n ()) (EXAMPLE) is defined as follars:

("!IRISt', followed by the definition of (IS) (not supplied) in

t h i s example), the terminal "A", followed by the definition

of (SENTENCE) (not supplied)) or "HELLO"

Any expression which f a i l s both these alternatives does not belong t o the

class of statements defined by (EXAMPIE).

'Ihe extensions t o BIG ar ise with the introduction of square brackets

[' I , "]" and the asterisk "*". This extended BNF (EBNF) has the distinc-

t ion of fac i l i t a t ing human canrprehension of repeating en t i t i es contained

in statement definitions. Items enclosed in square brackets appear

zero or one times, while square brackets followed by a star (I t * ") i nd i ca~e

an indef inate number of repititions. Any mark in a f o&a which ie' not a

meta-linguistic symbol, or which i s not enclosed in the meta-laiqpistic

symbols (,), dcnotes i t s e l f . A further extension t o EBW, in the fom of

subroutine cal ls , i s i ~ l e m e n t e d t o allow the c o q i l e r writer the r'lex-

sibflfty of outputtixg diagnostic wssages as well as storing semantic in-

f o m t i o n contained in the DDL source in one pass. The foUowhg is an

example of EBNF with subroutine calls:

(LEFT-SIDE) : : =(RIGIT-SIDE)/SUB - w/[,)/SUB - -/I*
If a;n input statement is t o be identified as a (LEFT SIDE) it must consist -
of: the (RIGHT SIDE) definition, followed by 0 or more occurrences of -
, (I . A t syntactic analysis time, a f te r correct recognition of

the units (RIGIT - SIDE) and (RIGfIE), subroutines SUB - C A L U and SUB CALL2 -
w i l l be enabled t o capture the semantic information currently being

scanned. If fa i lure t o recognize a uni t cams t o pass, then the parsing

of the statement halts, no further subroutine cal ls in this production

are made, and an error message i s generated. The statement is discarded
*

and parsing w i l l continue with the next DDL statement .
There are two points that should be mentioned concerning the syntax

of EBNF:

1) Subroutine cal ls may appear w h e r e except between (and).

2) An EBNF statement l ine may be nothing more than subroutine

calls.

SC
If the present production has an " 1 " (m) symbol further on, parsin@;
res tar ts with the definition following the " I " .

3.2.2 Local Syntax Checkine;. Subroutine ca l l s w i l l be placed in appro-

priate locations in the EBNF i n order t o prepare the compiler fo r certain

terminal symbol fai lures. This accomplished by employing a f a i l stack

which is provided with suitable error message codes t o be cited should a

b l "failure" i n the scanning occur. See French .
3.2.3 'I9;ble Generation. A s i n local syntax checking, the internal tables

t o be used for global syntax checking and code generation are constructed

via the subroutine ca l l f ac i l i t y of the EBSF. A t appropriate points, ca l l s

are made t o P L / ~ routines which build the symbol table and data table en-

t r i e s . These tables are the stepping stones for the subsequent code gen-

eration phase which walks through them t o determine the user 's data base

structure and/or data movement intentions. !Be tables are P L / ~ based

structures which are created, only a f t e r it has been determined, through

local syntax routines, that the DDL statement under consideratian is con-

structed correctly.

I n order t o fully understand the logic and the xnechanics Incorpor-

ated in the process of table generation, an involved example w i l l . be

given.

!Be familiar ARRAY declaration contained in many prograprrmin@: Languages

w i l l be the i l lustrat ion. In order t o provide the global syntax check-

ing phase and the code generation phase with data per^^ t o the con-

tents of the ARRAY declaration, table entr ies consisting of' c r i t i c a l in-

formation must be constructed. &ese structures are given in Figure 2.

ARIblY declaration examples:

Corresponding table entries (see Figure 2 for content definition) :

j ARRAY
~DECL* j , i

U a h g the contents of the data entries, global syntax routine w a l k through

the information resolving a l l references, and code generation uutputs the

code necessary t o define the structure. In order t o build these entries

subroutine cal ls , embedded a t appropriate locations in the E m , are w r i t -

ten. me EBNF with subroutbe cal ls fo r the present exaqple is as followso

I IDE!iTlf 15% / STATEMENT

STMT

DEFI.Y lTl0t-4

TYPE
t

FLAG FOR

S E C O ~ D

b u ~ D

---Ti SECOrJD

BOUND

.--.< --> -.

FIGURE 2

-16-

CARFAY - D E C L A H A T . ~ ~ > : : = (N~ME)/AN@.Y - NAME/ WY ((BOUNDS)

/DIMENSION/ /[, (B ws /DIMENSION/]*) ;

(BOS) : : = (. I N ~ C E R }/FIRST - BWND/ [: (IN~GER/SECOND - BQJ?ID/]

(w) : : = / N A M E ~ R E C O G N ~ /

(I N ~ G E R) : : ==/IP~GER - ~ C O G N I ~ ; E R /

E3rplanat;ion of subroutine c a l l s (using example 3) :
I

Afier recognition of "A2B" as a (NAME}, SAP calls

1. ARRAY - NAME:
?his routine se ts the S'IMT TYPE entry i n the table t o the -
code for an ARRAY declaration statement. 'Phen the POIN!lLliX-TO -
DEFINITLON entry i s f i l l e d with the pointer value of the loca-

t ion where t h i s statementts definition resides. !be NAME

entry i s f i l l e d with "A2BV, the name of the array. 'Ibis value

is s t i l l available as we have not attempted t o scan another

unit of input as yet. An in i t ia l iza t ion of the NO OIF DIMEN- - -
SIONS entry t o 0 occurs here fo r subsequent incrementation by

the subroutine DIMENSION.

After recognition of " (" and "2" (as an (IN~GER)) , SAP calls:

2. FIF,ST - BOLPND
'

This routine f i l l s in the FIRST - BaTND entry of the table w i t h

thq current lexical unit ("2"). Since no foresight as t o the

possible occurrence of the second bound i s available, the f lag

FIAG FOR SECOND BaTND i s se t t o 0. It w i l l be overridden by a - - -
subsequent subrmtine c a l l i f the second bound does indeed occur.

/\f.l:cri critcring thc oihionnl cl-&use i n (DW) by mcwkcim I t : " , and after

r.ecul:l~izbllb, %he "4" us an (ZN!~EGEII), FAp cal ls :

91.i.c ~.ou'l;Lllc clu~ugec FIAG FOR - :;GCOND PIOITRT'11 t o a 1, siguifijing -
a presence. SXCOND BOUND i s assigned the value "4" (the cu-rr- -
ent3.y scanned unit) .

ShP now calla:

4. DIMENSION

This routine incren~erlts the NO @ DIMENSIONS by one, thus pro- - -
vidhlg the code generation phase with the correct number of

dimensions i n the array.

'lbe optionulity [, R O S /DIMENSION/]* is sa t is f ied by recognition of

" , I t , located betweer1 t h e "4" and the "1" i n the source ingut. Il?e pre-

vlous routines are re-executed, entering the "1" and the "3" in to the

table in the same fashion a s berore. Similarly, the "5" is placed in to

an entry in the table but, a f t e r campletion of t h i s entry, the above

op t ioml i ty i s not sa t is f ied (no I t , " i n the input stream), SAP skips t o

rccogriize the uni t foilowing the It*" i n the EBW, accepts the ") " and the

11 , . 11 us valid input characters, and hal ts t h i s statement's parse with an

indica"con t o the routine of a successful recognition.

3.2.4 Global Syntm Checking. After construction of the tables i s cum-

pleted, control i s passed t o a routine which walks t h r o u a the entr ies

Just created, verifying that all statement.references are valid. For

example, i f a FIU: statement in DDL references something other than a

R.I3COl3D or Storage s-L;atement, an error f l a g i s set. If no data table

entry cxis-l;s fo r some ident i f ier i n the symbol table, the name i s flagged.

I n case of e i ther error t y p , a nlessage i s printed and control i s not paos-

ed t o code generation.

RC)[JENE:S FOR

1 'Be Symbol Wble. As previously mentioned in Chapter 3, the symbol

table i s a binary tree structure whose entries are lexicographically

ordered. The entr ies are %he names of the DDL source statements, located

a t the statement head. In Figure 3a, the statement identif iers are

RCD-NAME,Fl, GRP1, GRP2, F2. It i s necessary t o connect each occurrence

of a statement identif ier i n DDL with the data (the res t of the statement)

accompaaying it. &is i s accomplished in two steps:

1. The accampanying data is stored away into a data table

entry.

2. A pointer i n the symbol table t o t h i s storage location i s

set .

In DDL it i s necessary that the data stored in Step 1. also contain a

l ink t o i t s name (thus creating a doubly-chained l i s t) . I n t h i s fashion,

a great deal of intercommunication among DDL statements can occur. Eiese

interrelationships are exhibited in Figure 3b. Note that the links from

within the data entries reference the names of statements in the symbol

table. 'fhese references are crucial t o both global syntax checYing and

code generation. ?he l a t t e r phase w i l l use the information contained

herein t o generate proper structure declarations or data movement cammands.

4.1.1 The Tree Structure and i ts Uses. If an identif ier i s ehcauntered

in the suurce input, a routine is called t o locate the name in the symbol

table and, if already present, return i t s location. Otherwise, an entry

i s opened for the name and the new location i s returned. Using th i s pro-

cess with an unstructured symbol table cuuld prove very time consuming and

- 18-

FIGURE 3

therefore, some structure i s defined on the symbol table fo r which the seek ..

t h e i~ minimized.

lPhe composition of the symbol table w i l l be a binary t r ee whose nodes

contain the infomnation i l lus t ra ted in Figam 4. A l l items of infortnati~n
*

in the subtrees extending frOm a given node which are large: than the

item of information a t that node w i l l be i n the subtree pointed t o by the

upward pointer. Similarly, all smaller items are in the subtree pointed

t o by the downward pointer. 1931s structure i s i l lus t ra ted in Figure 5 .

If a subtree contains no items, a pointer t o that subtree i s cmsidered

t o be a pointer t o a nul l node. .

4.1.2 Growth and Search Tree Algorithms. Such t rees are easy t o gruw.

me f i r s t item 02 information i s placed in the t ree a t the root. There-

af ter , each new item is placed in the t ree by camparing it with the root

and moving up or down depending on whether the new item is larger or

smaller. This process is repeated a t each node un t i l an attempt is made

t o move t o a null node. !Be item is then placed a t t h i s point in the

tree. Section 4.1.4 contains the flow chart of t h i s procedure.

A s an example, consider adding the i t e m "H" t o the t ree ia Figure &.

1) H - - move up

2) H (J ~ - - move down

3) H)E-- move up

4) H)G- move up

Since there is not item up fran G, H is attached a t t h i s poislt. NOW Stme

*
Any ordered relation may be used-DDL uses lexicographical ordering.

.
~ - ..-..--. - ...- -CI --.-----.-I- 1"- 1

S Y M TABLE ENTRY
I

j

I
OF 1 OF TABLE 1

NAME ! D ~ L i I POINTER
I

I ' :STATEI.:~;J.:IT !
. . - .--. .-....- :......................

I .. -.--. --'-
r . . , 1 I-- --- .- "-"-I

Id ORDER

A,Ji,J2,E, B,G, f

1 I
, LENGTH NAME U P W A R D DOWN WAR^ Dm I

KEYS ENTERED

IN ORDEii

F; &,a, A, E, G,JZ

mathematical properties of the tree structure grown by this algorithm w i l l

be considered.

The shape of a tree containing a given set of n items depends on the

order i n which the items are encountered. For exanple, Figure 6 i s con-

structed by considering the sane i t am as in Figure 5 but in a different

order. ?he algorithm thus generates a tree for each of the n! possible

arrangements of n items; but not all the trees are distinct, as can be

seen from Figure 7. In the analysis t o f o l l m it i s considered that each

of the n! permutations of n items is equi-probable. '&us sane trees w i l l

be generated more often than others. It can be stated without any contra-

diction that an i t e m can be searched for following exactly the same steps

used t o insert that i t em. It i s reasonable t o assume that the t ime required

i s proportional t o the number of nodes visited. It is obvious that in Fig-

ure 6 twenty-two nodes must be visited t o find each item, while Figure 7

requires 19 visits . Clearly, the tree i n Figure 7 i s not only better but

optimum. An e o r i t h m , whose flow chart is presented in Section 4.1.4, is

presented below. It w i l l convert any tree into its opti?num tree.

4.1.3 Tree Restructuring Algorithtn. Ihe algorithm which resturctures the

tree consumes time for execution. A natural question t o ask is whether

the tixne saved i n searching a reorganized tree is greater than the time

required for the conversion from the non-optimal t o the optimal form. By

referencing W. A. Martins 8a D. N. NessL3', it can be deduced that *ere

is same n beyond which application of the restructuring algorithm must

result (on the average) in saving. However, in the present application,

since the number of accesses from the table is not estimated t o be high,

r
I

1 ' T w ~ IDENTICAL TREES FOR N = 3

I - - . - - . -.. -..-I ^.^.""*. ,. .-.. . . -.. I ._ . . . * j_ _. . , __---. _._* ..,---*-... -.-_-----

restructuring will be attempted on a trial and error basis. Based on this

empirical evidence, restructuring will occur only after a certain number

of entries have been processed. Present implementations place this &er

between twenty and thirty and alternates m q y be used.

4.1.4 Flow Charts.

a) Grodh and Search P e e Algorithm

Explanation:

Tne data items input t o the algorithm are stored in the vari-

able ITEMS. Upward pointers are i n IUP, an array. SimUwly,

downward pointers are i n IDWN. B e current number of items

i s i n I N , the beginning of the tree in IBEG, the current node

t o be used is labeled ICUR.

Initializatian of program variables.

Put the input word into the array of

nodes.

Is this the first input? I f yes-return.

If not, place item in l i s t .

Determine if ITEM goes into upper sub-tree

or lower sub- tree.

Lower sub-tree i s detemined. Is node m i l l ?

If not, set current node t o this non-null

node and return t o 5 t o restart,

~f l ine 6 is Yes, then insert value at th is

node. Return.

If the answer t o 6 is no, then an upward sub-

tree i s required for the placing of I=. Is

the pointer to the upper sub-tree null?

If not, set current node t o point t o th is

non-rull node, and return t o 5 t o restarb.

Iff answer t o 9 is yes, inser t the value into - 1
I

.t;hat node- Return.

b) Tree Restructuring Algorithm 1

Owing t o %he fac t that the procedure contains recursive routine,

I won't endeavor t o flow chart t h i s algorithm in the same detaiL

as i n the previous case. An English description of the sLeps t o

be followed w i l l be provided.

'Ihe procedure LBEST returns as its answer, a pointer t o the root

node of the restructured tree. 'Ibis procedure also establishes

%he environment fo r the other subroutines, IQ3W and INEX1.

IBEST colrrputes 1GRw(n), where n i s the m b e r of nodes in the

t ree t o be restructured. It returns the result of t h i s cmputa-

t ion (which i s the restructured tree) as i t s answer. m e pro-

cedure I G R W (~) i s responsible f o r constructing an optimum t ree

containing n nodes. It may be recursive, as it may call i t se l f .

It uses the procedure NMT, which r e k r n s a pointer t o the

smallest node i n the old t ree the f i r s t time it i s called, aJzd

a pointer t o the smallest node, not previously returned, on each

successive call. IGRCXJ(~) can take three courses of action:

1) If a--O, return a pointer t o a NULT, node.

2) If n ~ l , c a l l NEXT and return i t s remilt.

3) If n>l,

a) C a l l 1@a~(~(n- l) /2J)

b) Call NEXT

c) Call 1@CW(r(n-1)/27)

Zhen after the node pointed t o as a result of b) by replacing

i t s down pointer with the result of a), and its up pointer

with the result of c). The procedure Next is given a pointer

to the root of the original tree by 3BESTo Each time it is

called by IGR(XJ it moves one step through the tree and returns

the next node i n ascending sequence. It also saves place in

the tree for the next ca l l by IGRCIW. Given a sub-tree, NEXT

returns the nodes i n the lower branch by calling i t s e l i recurs-

ively with this branch as an argument, then it returns the root

node of the subtree, and then the nodes in the upper branch.

4.1.5 Examples. Ihe PL/l output contained in Figures 8 & 9 represents

the tree structures shown in Figures 10 & ll respectively. Data for

Figure 8(10) was input and restructured, resultiag in the structure of

Figure g(l.1) .
me Calling of the Symbol Table Entry Routine. Statements

are generally input with the following format (EBNF) : {IEE@!T!IFIER) IS

(s~~~~TEMENT);

For exanrple :

RCD IS REC~D(G~, a) ;
GRP IS GR(XTP(F~ ,F~ ,F~) ;

ICo enter the names RCD, GRP into the symbol table, a routine called EN!WYM

i s called after recognition of the identifiers. Zhus the EBNF w i t h sub-

routine calls for the majority of the DDL source statements is:

(IDENTIFIER)/ENTESYM/ IS <s~-T);

ENTESYM returns a pointer t o the location in the symbol table of the iden-

h
l

l
i

I1

P

 '4

- c..
\1

,
I

I
'

1

...
> 1 -
i I

-
.
i

I 1-1 I ! I 'I
, -

I

,as
C.'

I
d

 ,t
I :I'
1 :; 5 ! I I i i 8 C.' u
>

'
J

C

)
(I-
.-4 a,

F

I'J 4

1 9

, r-
tn u).
.-I

I m

I 1 j I$ 4

4 w

d

U
\

j f 4
 I

I
 r>

!
I

.

L
'

L

I 4

Crl

I 1:: 0

lC
 1

;v

'
(
4

I a:
I+ 1: I I 1 10 .f
(V

a!
r
(

U
I

I I I a

N

m

'
a

d

'VI

I I i !?

' .c.
a

4

Jm

!

I I I i ! t"
13

/
U

r

N

G

'w

I
C

0
I 1

I
!
d

LI 'c >

'I,
'
0

11:
!ii
Id la

t-

I-

$!
I: I

C

N

z
I:

g
12

d

IV
I

' * l
a

Q
1

a P

o

Q
,

c.9
0

u'

ry
01
B-4 C

O
W

c
)

m

* u 8-4 d

/
m

I C

LI1
LLI
-. d N
.

U

.
-
I

m

i i rg 'C
)

: c;
cl'
id
I a

'IC

'(V

/ * ! c?
1%

C:
L
. '

I a'
r
l

a?
'r-
.
h
l

e

l 1 1 !O

:or;

IC
: O

'u-
r
(

;
a
?

.I-
'n

l
I Q

! I i I O
D

1 nA ' ln

CO

I r

*

I m

I I I I I

! :z A
1 e

' N

L

u

'3

I I", !a

IN I Q

19 I-
'

1: CV
u

I i Q
)

rr
i3 Ln I i IJ
I 2 0)
I r

(

m

I i

t i f i e r Just recognized.

2 me 1)ata Tables.

4.2.1 Usage of the Data Tables. For every DDL statement certain relevant

information must be stored in core fo r l a t e r use i n the global syntax check-

b g phase as well as i n the code generation phase. To t h i s end, each in-

stance of a source statement in i t i a tes procedures which open data table

entr ies whose function i s the preservation of the pertinent information.

me DDL data table designs are by no means unique and, given different

de~i~ners /~ro~rammers , different designs fo r these tables most l ikely would

be conceived. As long as the tables generated by the internal routines

correspond exactly t o the tables expected by the code generation phase azly

applicable construct ma;y be used.

4.2.2 Data RFlble Format Design Considerations. If the code generation

phase is t o generate declaration and/or translation statements fo r a

user ' s f i l e structure, handwritten subroutines must u t i l i z e the appropriate

data table information. Up t o th i s point i n the thesis no allusion t o

actual DDL source statements has been made. However, in order t o relate

the evolution of the data table designs, certain examples of DDL source

w i l l be examined.

Assume the following DDL source was input t o the compiler:

(a) RCD IS RECORD(GRP~(~) ,GRP~);

(b) GRPl IS G R W P (F ~ , F ~ (~)) ;

(C) GRP2 IS GRCUP(F~ (2) , ~ 2) ;

(d) F1 IS FIEL;D(BIT(~)+-'~OO ') ;
(e) F2 IS FIELD(CHAB(~));

Statement (a) describes a record of a user's file conposed of two groups:

GW1, which occurs twice and GRP2. GBP1 is specified in statement (b)

wherein it is defined as a group consisting of two members: F1 and F2

which repeats three times. G R E is a group with members F1, repeating

twice, and F2. F1 is a field of three bits initially assigned the value

"100". F2 is a field of two characters with no initial assignment. This

structure is pictorally represented in Figure 12.

In order to preserve this structure, the DDL compiler will create

individual data tables, unique for each source statement. Ibe global syn-

tax checking routine will walk through these tables, verifying that all

references to any statement are valid. B e code generation phase is

saddled with the responsibility of declaring the PL/l structure representa-

tive of this description, using the encoded tables as guidelines. For this

example, it is fairly obvious that the following F%/1 declaration describes

the file presented in the example:

DCL 1 RCD,

2 ~ 1 (2) ,

3 F1 BIT(^) IN11?A~('100'),

3 F2 ~ (2 1 ,

2 -,
3 ~1 BIT(3) INITIAL(100) ,
3 F2 CIUIR(2);

It is necessary that the compiler provide the code generation phase with

the encoded table containing sufficient data t o declare the above struc-

ture.

A s the record statement provided In the example now stands, Figure

13 f'urnishes a proto-kyye of a RECrQRI> STMT b t a table entry. Referring

t o t h i s diagram, a simulation of the steps the coae generation phase would

take upon encountering th i s entry i s given.

1. From examination of the CODE entry, determination of the

TYPE (REXXRD) of data takes place.

2. I he pointer t o the symbol table entry which contains the

"name" of the source statement i s followed, and using t h i s

value, the "DCL 1 RCD," l ine is generated.

3. !Be "number of groups" entry a l e r t s the code generation

phase to the number of accesses of contained group entries

that must be performed.

4. The group entries are pointers t o a symbol table entry

containing the i r "names". This value, along w i t h the sub-

sequent " r ep i t i t ion number" entries, allow generation of

the l ines " G R P ~ (~) " and "GRP2".

5 . The declaration i s not camplete as we must t ravel the

pointers t o locate the group entr ies ' data tables as well

as the f i e ld entr ies ' data table. '&is i s done to acquire

the remaining information about the structure.

It must be pointed out that the mCORD STPIT data table entry provided in

the above example is a restr ict ion of the actual entry used in DDL. It

was used t o simplify the discussion, and the reader is advised t o consult

APPENDIX B where he w i l l find. the expanded form used in the DDL processor.

DATA TABLE . ENTRY FOR P R O ~ O T Y P E

-40-

4.2. J Subroutine Calls for Data Table Constructions. Ihe succeeding sec-

tions provide the EBNF with subroutine calls for the set of DM, statements.

In order for the reader to comprehend the logic used for placement of the

calls, it may be beneficial to consult Appendicies A and B. In addition,

DDL source statements correspondirg to the EBNF will be provided.

4.2.3.1 File Statement. With this statement the user describes his over-

all file structure. This consists of the record names contained therein,

the code used (EBCDIC,BCD, or ASCII), and the medium of storage used

('114PE, DISK or CARD) .
EBm:

(FILES~T) : : = FILE/DFUETG/ ((RECCWD - NAME)/FRN/, CIIAR - CODE=
(CODE), SWRAGE= (XAME)/FsN/)

(CODE) : : = BCD/FC~/

IASCII/FC~/
I EBCDIC/FC~/

MAMPI;E:

FLLE - NAME IS FII;E(REC - NCIME,CEAR-CaDE~CDIC,SMRACZ=
~ - N A M E) ;

4.2.3.2 Record Statement. The R E C W S W describes the user's record

structure by allowing specification of the groups cantained in the file,

The fields which are subordinate to no group are also specified in this

statement. A password to the record structure also be provided by

the user.

RECORD - NAME IS RECOWD(GWL (1: 8) , PRE CRI% 'LABCRTt , GRP~ (2) , -
LOCK= 'LOCKCRT' ,FU3C - SIZEPVARIAB~(~)) ;

4.2.3.3 Group Statement. ?he group statement f'unction much in the same

w a y as the record statement except at a lower level in the file structure.

It ma;y contain groups and fields.

/N--G/ I*) / ~ o - G /
4

(NAME-LIST): := same as in R E C W SZMT.

Esclumz:

GRP IS GRUJP (GRP2 (1) ,FLD(~: 8) , POST-CRIB ' CRT') ;

4.2.3.4 Field Statement. Dais lengthy (in EBNF) statement describes the

lowest level of the DDL f i l e structure-the fields, mere are many options

C i ~ t can be specified, and by careiW scrutiny of the EBN? most can be

located and understood.

(DELIMITER): := yDDLlhlP1(RJNc~-~)/~M/'

(C O ~ I Q N >: : =(NAME)

(SOURCENAME): : = (PAPAM_s!IM!I?)/PAR/

I (W)/m/[((SUBSCRIPT)) I

C (NAME)IN=/ C((SUBSCRIPT)) I I*/ALLO - T/
[,pm=(pm)I

(SUBSCRIPT): : = (s m >/Ls/[: (]sa~~~)/vs/

(B am) : : = (REF-AME)/m/

I (P A R A M - s ~) / ~ /

I (LNIOEGER)/INT/

(POS) : : =(REF-=)/RNP/
I (PARAM-SILMT)/~/

I (mmm)/INTP/

I */sp/

I (LABEL)/W
EXAMrmE:

FIELD - NAME IS FIELD(BIN(=;A(~: 1) .B(o: 2) ,POS=~);

4.2.3.5 Length Statement. Occasionally some f i e l d have a value which

is based upon the length of another record, f ie ld , or gruug. This state-

ment allows the user t o specify these possibi l i t ies .

EBNF :

(L E N G ~ - S ~ T) : : = DDL-UZNGEI/DLGNTG/ ((DADL-NAME }/m/)
(mw-NAME): :=OiEF-nAME)

lixAMPm:

FIEU) - NAME IS FIELD(CHAR(7) (= L E 2 l ~ 9 3 3 (~ 1 ~ ~ ~) 3 (9)) ;

4 -2.3 .6 Count Statement. A s i n the case of the Length Stmt . . t h i s rtllows

the user t o provide a value based on the number of occurrences of another

record, group, or f ield.

mNF:

(cUJTT - SW): : =DDL - CCUNT/DCNW/ ((IXW - NAME)/cDN/)

(U~-NAME) : : = (FW - NAME)

ExAbFLE:

FTEXD - NAIVE IS FIEU>(CHAR(~) (=couNT(W.EZD~(~)) ;

4.2.3.7 C a r d Statement. Information as t o the medium of storage fo r the

f i l e must be passed t o the processor. !Ibis statement specifies card stor-

age

EBNF :

(CARP-sm): := CARD/DCARDTG/

E2amLE:

CARD w IS CARD; -
4.2.3.8 Tape Statement. 'Pape storage i s the mediwn used for the f i l e .

EBNF:

(WE - s ~ T) : := ~/D~PETG/((TWE-DA~-C~BLOCR))

(II#PE - DA'114 - CTL - BLOCK): : = (K E X ~ - FCRMAT),VOTL~NAME=(IJAME)/VO~L/
[,NO - TRKB=(NO-~)/m//'J
[,PARITY= (PARITY)/m/ /'J

C, DEXSITY= (C[ENSIW)In/]

[I KEC-MODPP (REC-MCU~E IF^/ I
[,---(--=)/m/I
[, SWT'-FILE=(IN~GEB)/INZL/]

C, C ' ~ ~ ~ ~ = (C ' P L ~ C B A R)/cc/3
(RECORD - FORMAT): := FMED/KEF/((BLOCK~S~)/~?BLKS/~, (REC(RD-SIZE)

/ r n ~ / I 1
I V A R ~ I Z / R F V / (~ - B L O C X ~ S I Z E)I-/

L, ~ - ~ E C ~ R D _ S ~) / V R S ~ / I)
I v - - s p m / m / (~WU[_BLOB(_SIZE)/vBm/

C, (MAX-RFCCRD_S~)/lmRSm/l)

I u m F ~ r n (~ ~ B L O C K ~ S I Z E) / U B ~ /)

l2aMmx:

II#eE - NAME IS !R~F%(FMED(~,~),vQ~NA~E VOa003,NO - PEM;S#7

PARI'M=oDD, IjEN~1%=800, ~-UB.EL=L;BLOO~

, S m T - FIU=2, cIZCH&Ft=@)

4.2.3.9 Disk Statement. As in the previaus structure, this statawnt is

referenced via the f i l e statement and its function is to describe the disk

storage of the user's f i l e .

EBNF:

(DISK - s m) : : =DISK/DDISKTG/ ((DLSK-~-P,-BLOCR))

(DISK - W~~CTLBLOCK): : = (R E C ~ - F ~ T } / D R F / ~ V B I , -
(ma) /vw/

C, ~ I N T - 4 -) / = / 3

L,UNI'PS= (lYFJEmx)/riTYP/ I
[,sPA(=E~ (PARAME-)/mm/J

(RECORD - FORMAT): : = same as in rWgE S!iW.

Q%RAMEIERs): :=(m1m), (~ r n) , ' ~ & / [, (m-~)/n/][,-/m/l

(UNIIS): := TRACKS

I mmms/cy/

1 (IN~GER)/m=/

(QUANTITY) : : = (mmm)

(I N (~ ~ E M ~ T > : : =~IR"CEm)

!JXFEEX : := 2314

lam
1 3300

MAMPm:

DISK - NAME IS DISK(FIXED (5) , VM~NAME=VOLOC%, INT-NAME=NK) ;

?he following two statements are d a t a movewnt ccwpna;nds, and pruvide code

generation with data relevant t o the structure mappings from the user's

suurce to target f i le .

4.2.3.10 Convert Statement. rPhis statenent a lets the cangpiler t o the

f i l e s (source and target) that the user i s employing for his conversion.

EBNF :

(CONVERT - SW) : : =CONVERT/DCONV'PG/((Fm - NAME)/cs/ mm

(F I ~ N A M E)/cT/

(F ~ N A M E) : :=(NAME)

MAMVL;E:

C C X M I E R T (F ~ A INTO ~ms) ;

4.2.3.U Scan Statement. Although no new entry is created by the rou-

tines in this statement, the RECORD data table entry is modified. 'Ihe

SCAN STMT specifies the order that groups w i t h i n the record are t o be

parsed a t code generation t ime. lhis infonna2,ion must necessarily be

provided if a f i e ld ' s values depend on another f ield, or conibination of

others. B e position within the f i e ld a t which scanning must occur i s

also provided in t h i s statement.

EBm:

(SCAN - SN): := SCAN/IX~CAIO%/(REC=(RE:CW - r a m) / ~ a a ~ /

: (cam - -)C, (OR~TP--)I")
/=CAN/

<mm-NAMES): : . ~ ~) / ~ 1 / ~ ((P~IIION)) I

(pa31 Irn: m): : = ~ z a ~ n ,)/Pl/

I (I N ~ ? E ~) / P ~ /

(KEcO-NAME) : :)

EXAMFTX:

4.3 Exerngle of Symbol mble and Data Wble Creation. !be DPL source for

t h i s exangle follows immediately and the files described therein are

i l lustrated in Figure 14. Figures l5a and 15b portre;y graphically the

symbol table and data table structures that would be created by the table

generating routines .

SFLD3 IS FIEI;D(CHAR - PICTURE= 'AAX ') ;
SRC - CRD IS CARD;

cONVERT(SELE INTO !BLE);

I i
IT 2 I SFLE

i
7

I "" : ; 3.:- C Q - D '

DATA TABLES

. . -. -I ..o.INUL
..-i '. ' I o I / iu i - i / S 5 1 i 1 3 NULL 0

---.- ---- ...- -...-. ., ..,.... -- . -. . . . - . .-.- A --.-.--- - - * .----

lot

l a c

--.-.... .-.---- -" ---T--.- .---A- .- - - - T w - . - - - * - M . - - .

ifi5 --.-A SR0ii.l .- -.- s \ t I 2 - 1517 1 j 1 2 F U L L / 9 / 0 I MULL\
I-. --.---....-- - - - -- . - - - h - 2 .-__,

Loc

l o c

5.0 CONCUSION

'~hrOWhout the evolution of the DDL compiler certain ambivalences

kept cropping up i n project discussions. One particular area of con-

cern was whether encoding of the source statemellls was econamically

beneficial (were internal tables needed?). l[he answer t o this question

i s certainly not cut and d r y and, i n reality, can only be supplied if

and when same other t e a t r i e s t o implement a compiler fo r DDL which

does not encode the source but which reparses. Nevertheless, encoding

of the input reduces the amount of work performed by code generation

and permits the use of global syntax checking routines, separate from

code generation. This dichotolqy (local and global syntax checking sepa-

ra te from code generation) permits modifications t o the compiler t o be

performed modularly, simplifying matters considerably.

However, economics was not the sole reason fo r performing th i s

shuffling of data. mere i s one very crucial consideration that per-

haps outweighs even the economic q u e s t i o n - c ~ i c a t i o n between uur

routines and the future users or cmpiler writers who will inevitably

modify these routines. ?he internal tables have been designed t o

f ac i l i t a t e comprehension of the logic i n global syntax checking and

data preservation. For purposes of clarity, P L / ~ structures are created

t o contain the encoded statements. Subsequent code generation rattines

refer t o the data contained in these tables BY NAME. A s an exaqple, the

entry fo r the record name i n the FILE data table structure is referenced

by FILF:.RECORD NAME. Seeing t h i s qualified name i n the code is enough -
of a clue t o identify which structure is currently being dealt w i t h .

Ord.k~arily, certain array positions, transparent t o the reader unless

well documented, would be agreed upon, by convention, t o contain the

Any individual who has had the unfortunate task of de-

bugging someone e l s e t s logic w i l l concur with ngr claims t o the advan-

tages of referencing data by name.

Storage optimization i s always foremost in the minds of campiler

designers as excessive storage w i l l result in a very expensive processor.

For t h i s reason, certain techniques for space saving were employed. In

the data table fortnats (APPENDIX A) are found many pointer entr ies refer-

encing various DDL names. &e pointers are used instead of the name them-

selves because they occupy only 1 word while names m q ~ be up t o 32 char-

acters. !kus a substantial saving of space ma,y be realized if a name i s

Trequently referenced.

In many instances, data table entr ies do not have a f-fxed structure

(see REFER option, P L / ~ 3' Compiler, Language Reference ~anual) . This

means that they are allocated space only aft'er it has been determined

just how much information is t o be stored i n them. It i s apparent that

collection of t h i s data must occur by way of temporary storwe. These

temporals were chosen t o be P L / ~ controlled variables (variables which

ac t l i ke pushdowns and whose allocation and de-allocation i s toa t l ly pro-

grammer controlled) so that, a f t e r all infortnation has been amassed, the i r

storage allocation would be freed, thus reducing the amount of unused

storage i n the processor.

13ne use of EBNF with subroutine cal ls in the DDL compiler allowed

every data table used for global syntax checking and code generation t o

be created i n the same pass in which both lexical and local syntax analy-

s i s were performed. %is meant that one pass over the source was per-

forraed i n the ENTIRE c a p i l e r .

By designing the symbol table and data tables as doubly chained

llsts, the code necessary for wa,lking thruugh the structures was im-

mensely simplified. Links were travelled frm statement identif ier

t o statement data and back wain with relat ive ease and eff icient speed.

It i s hoped that the choice of encoding source statements w i l l

prove the right one. Whether the tradeoff's were beneficial or not it

must be pointed out that, when future autcmatic programming techniques

are developed, our DDL compiler has a dis t inct syntsx phase and code

generation phase, a separation which enhances the poss ibi l i t ies of

mechanical code generation.

1. French, A., "A Syntactic Analysis Program Generator", M.Sc Thesis,

The Moore School of Electr ical Engineering, Universiw of Pennsyl-

vania, August 197'2. [Tin preparation]

2. Hopgood, F . R . A*, "Compiling Techniques", Ma,cdonald/~lsevier Cam-

puter Monographs, 1970.

3. Martin, W. A. and Ness, D. N., "Optimizing Binary Trees Grown With

A Sorting Algorithm", Cormr~lnications of the Am, Vol. 15, No. 2,

February 1912.

4. McKeeman, W. M. and Horning, J. J. and Wortman, D. B., "A Compiler

Generator", Prentice-Hall, 1970.

5 . Smith, D. P., "An Approach t o Data Description and Conversion" j - Ph.D

Dissertation, The Moore School of Electr ical Engineering, University

of Pennsylvania, Moore School Report #72-20, December 1971.

6. Wegener, P., "Programning Languages, Information structures, and

Machine Organization", McGraw-Hill, 1968.

7. French, A . and Ranirez, J. and Solow, H. and Prywes, N. S., "Design

of the Data Description Language Processor", Annual Report, The

Moore School of Elec t r ica l Engineering, University of Pennsylvania,

Moore School Report $72-19, December 1971.

APPENDM A

D A Z !lB.BIX FORMATS

The data table formats corresponding t o the EBNF stakements i n Section

4.2.3 and the subroutines flow-charted i n APPENDIX B appear in t h i s sec-

t ion.

DCL 1 ST-ENTRY BASED(ST,PTK)t
2 UP-PTK PUZNTER,
7 I'jiII\IN-F"SK C'CIINTFR,
2 DT-_I-'TR P I I I N T E R ,
2 S I Z E F I X E D B I N A R Y ,

i

2 K E Y C t i A K (K E Y , S I Z E REFER(ST ,ENTR%SIZE) ;

- DATA T A B L E ENTRY FOR LENGTH AND COUNT STMT'S .

I

I DEL I. L E N G T H - D D L BASEU(DTP7R 1 ,
2 TYPE F I X E D R I N ,
2 UATA-NAME P O I N T E R ;

DCL 1 COUNT-DUL BASED (D T P T R)
2 T Y P E F I X E D B I N ,
2 DATA-NAME PO INTER;

D A T A TABLE ENTRY F O R CONVERT S T M I .

DCL 1 CONVkKT B A S E D (D T P T R) 9

4 T Y P E F I X E D B I i \ l t
7 1'Al.t(1lf 'I PIJ I N V k K t
2 SOURCE P O I N T t R ;

DATA TAHL":NTRY FOR FILE STATENENDL

DCL 1 FTLE PASF,D(TYI'PTR),
2 TYPE FIXISD D I N ,

2 :;sM POINTFR,

2 BWOFF FIXED BIN,

2 RCD - NAME POINTER,
2 STORAGE POINTER,

2 CTiAR CODE FIXED BIN j -

DATA TARLE FOR RECORD STMT.

2 TYPE FIXED BIN,

2 SYM POINTER,

2 LOCK CHAR(^),
2 NO MJ3M FIXED BIN,

2 M E ~ ~ B ~ S (N D W ~ REF^ (RECORD& NO - I.W)),

3 MZM - NAME POINTERy
3 F SUB TYPE F I B D BIN j - -
3 F SUB CONST F I Z D BIN, - -
3 F - SUB - VAR POINTER,

3 S SUB TYPE FIXED BIN, - -
3 S SUB CONST FIXFJD BIN, - -
3 S - SUB - VAR POINTER,

3 PRE - CT31T - FLAG l31T(1) ALI(fNED,

3 PR,E - CRIT';I/IPN CUR(?),

3 POST CRIT - FLAG i31~(1) ALIGNED,

3 POST - CRITTRION CTflR(7),
3 POS - FLAG FIXED'BIN,

3 POS - CONST FIXED BIN,

3 POS - VAR CHAR(^)^

DATA TABLE FJTRY FOR CARD STPIT,

IXL 1 Will ~~ASED(DTPTR),

2 TYPE F I X E D UIN,

2 SYM POINTER,

2 FORMAT BIT(^) ALIGNED,

2 NO CARDS F I X E D BIN, -
2 MODE TYPE F I X E D B I N 3 -

3ATA TABLE ENTRY FOR GROUP STMT.

2 TYP3 FIXED DIN,

2 NO Mm FIXED BIM, -
2 M ~ E R S (NDUMMY m m (GROUPPJJO PEN)), -

3 ME3 - NAME POINTETI,

3 F SIJB TYPE FIXED BIN, - L

3 F - SUB - CONST FI'iCED BIN,

3 F - SUB - VAR PPINTER,

3 S - SUI3 - TYPS F I n D BIN,

3 S - SUB - CONST FIXEE3 BIN,

3 S-SUB - VAR POINTER,

3 PRF: - CRIT - FLAG BIT(^) ALIoNED,

3 PRE - CRITERION c HAR(7) ,

3 POST - CRITERION CHAR(7);

nAl 'A T11;3LT!: :{NT!iY ic01'1 D I S K ST1';T.

2 SFACE,

3 UI\JZTS FI;373 DIN,

3 -2UANTITY FIXED BIN,

2 CTL - C:.3\R j31T(1) ALIGI?XD;

DATA TliRLB FNTRY F(?R TAPE STPIT.

I)\#;.' .L i'dll,!; L I ~ C X J (Y ~ I ~ ? ~ ~) ,

2 TYPE FIXE1-1 RIN,

2 FYM POrnTTB,

2 TAPE - FOWIPLT,

3 ROD - FORJUT - TYPE FIXTD B I N ,

3 BLOCK SIZE FIXED BIN, -
3 I1ECORD SIZE FIXED BIN, -

2 DENSITY CHAR(^),
2 NO - TRKS BIT(^) ALIGNED,

2 LABEL TYFE FIXED BIN, -
2 START FILE FIXED BIN,

2 VOL - N & P ' c I ~ A R (~) ,

2 PARITY BIT(^) ALIGNED,

2 %NAME cWIR(30),

2]-2F;',C - MODE E'I;mD BIN,

2 CTL - CHAR HIT(^) ALIGNEDj

A - lo

DATA 'TANLE TNTRY FOR PJELD STMT.

'I(: is I. it'I '1:LTI ; 'A? ED(~~TPTR) ,
2 TYPE F I X E D 13 I N ,

2 sm POINTER,
2 FLD T Y P E E I T (~) A L I G E D ,

2 F L D DESC POINTFA, -
2 FLAG CONV BIT(^) ALIGNED, -
2 CONVERSION C H A R C ~) ,

2 FLAG %lELIM BIT(^) ALIGNED, -
2 DELm SIZE F I X E D B I N , -
2 DRLIMITER c HAR (N D ~ J ! ~ RWER (DELIM SIZE)) ; -

DCL 1 DESC HASED(DTPTR~),

2 'PYPE BIT(^) ALIGNED,

2 LENGTH T Y P E FI.QTD B I N , -
2 LENGTH P A W POINTEX, -
2 LFBGT Y CONST FIXED BIN, -
2 LENGTH - LAB CHAR('?),

2 ASSG FIXED B I N ,

2 ASSO I PTR I:OINT:ilRj

DCL 1 B I T ATT BASED(DTPTR~),

2 SIZE F I X E D B I N ,

2 BIT - STRING (ND~IMY REFER (BIT ATTSSIZE)) J -

DCL 1 CHAR - ATT I~AFED(DTPTRZ) ,

2 S I Z E FIXJ3D E I N ,

2 CHAR - STRING c ~ (N D U M M Y REFER (C HAR-ATWIZE)) j
9.

XL 1 l~m PICTURE BASED(DTPTR~), -
2 A S S 0 F I X E D BIN,

2 P I C SOURCE NAME POINTER, - -
2LTNGT FJ CONST FIXED BIN, -
2 K I Z E PIC S P E C F I X E D BIN, - -
2 PIC SPEC CHAR(r r D m % n IZEFER (S I Z E PIC SPEC)) ; - - -

n-v

APPENDIX B

FLCRJ CHAX!lS FQR 'IHE DATA !DWZ CClNS'IRUC'PImS

The routines that generate the P L / ~ structures to be used for global

syntax checking and code generation are presented in this seation.
' ?

.',.

., E N T R Y ,
' .

.% --.* 1'

., E N T R Y ,,r7 I RECORD-NAME
' . /'

CALL EEITESYM
AN0 SET - S T O ~ ~ G K
TO ST- PrR

CARD S t M T PROCEOI/AC

ET SYM Qco.srn TO to .

S€ T TOT IPE

@-*~l-~@=3

NAME L I S T PROCEDURE (COUT*)

G R O U P STMT P R O C E D U R E

OEJC. LEE~GTH ,TYPE
= REF

@%. UHGIbJ. PI)MRl
= Sr,e:!?

EN TRY 0-1

DiSK STM: PROCEDURE

b 1

1 Qua NT IV =

I

4 ' ~ WFF
,

I4CLE ME qtr'
ENTRY LOX WFF

l3IS7nIPlJllON LIST

Dc:T.cnzc !locumcnt.ation Ccntcr
C:~.tncr.on S-Lxt.:i.c.m
KLcxand~ia, Virghia 22314 12 copies

Office of Naval 3csearch
r)cpart~ncn.t o:f the Navy
Z-,Corn,ation Systfn?? Yc-'ropm '
Code lr-37
At-lington, Virgixi-a 22217 . 2 copies

Off icc? of Navd Research
Branch of f.i.cc/Hoaton
l19s Smnler Street
Boston, Massncllusett s 02210' 1 COPY

Office of Naval Research
13ranc h Off iccjChicago
536 South Clark Street
Chicap;o, U.15.nois 60605

O S ~ ice o f . RTaval Research
Branch 0:Cf j.ce/~asadena
7.030 East Green S t r e e t
Pasadena, Californiz 91101 1 COPY

Dircc-tor, N u r d Research Laboratoliy
AlYN: Librnry, Code 2029 (ONRL)
Washbgt.cn, D. C. 20390 6 copies

U. S. r : :~~rnl I!:: ccnrcf~ J,zbol-atory
Tccllj i, ?:dl I1-Lfoj.?ri:~.Lion Division
I.rs:;lii r;t;ton, D. C. 20399 6 copies

Corrunandant of t l ~ Marhe Corps (code AX)
Dr. A. I,. S1afko:;ky
Scientiif i.c Acivisor
Wash-heton, D. C. 20380 1 COPY

Office of Eaval Research
k d o l455
Arlington, VirgLnia 22217

Office of Naval Research
Code h58
Arlington, Vir@nia 22217 1 COPY

Naval E lec t ron ics Laboratory Center
Cc);npu.tcr Science Dzpnrtment
San lliego, CaljXornia 92152 1 COPY

Naval Ship Research & Development Ctr.
Dr. G. H. Glcissncr
Conput a t ion & Mxthernatics Department
Bcthesda, Maryland 20034 . 1 COPY

Office of Naval Research
New York Area Off i ce
Dr. J. Ladermm
207 West 24th S t ree t
Nerr Yorlc, New York 10011 1 .copy

	The Table Generating Routines of a Data Description Language Processor
	Recommended Citation

	The Table Generating Routines of a Data Description Language Processor
	Abstract
	Comments

	tmp.1195317035.pdf.LX3S7

