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1. Introduction 

Tree adjoining grammars (TAG's) were introduced in 1975 by Joshi, Levy and Takahashi [JOSH751 

as a generalization of context-free grammars (CFG's). Unlike a CFG, a TAG is a tree rewriting system: 

the basic elements are trees and the basic operation is adjunction which allows new trees to be created 

from a finite collection of basic trees. In [JOSH75], it was shown that the class of languages generated by 

TAG's (called tree adjoining languages or TAL's) properly includes all context-free languages (CFL's). 

For example, the sets {anbn c"} and {ww } are TAL's but not CFL's. 

In the last few years, TAG's have received renewed attention in the area of computational linguistics 

because they have been found to be a useful grammatical model for natural language EKROC853. What 

makes them more appealing is the fact that the important decidable and closure properties of a ' s  also 

hold for TAL's w A 8 5 1 .  In particular, TAL's are also polynomial-time recognizable. This was first 

shown by Vijay-Shanker and Joshi [VUA85] who gave an 0 (n6)-time recognition algorithm. 

In W I 8 7 1  we gave a parallel implementation of the TAL recognition algorithm that runs in linear 

time on a systolic array with n5 processors. The systolic algorithm is optimal: the speed-up is linear in the 

number of processors. In a sense, our work extends the previous work by [KOSA75, CHIA84, CHAN871 

on systolic CFL recognitiontparsing. 

In this paper, we present a faster parallel recognition algorithm for TAL's. In particular, we show 

that TAL recognition can be solved by a concurrent-read, exclusive-write parallel random-access machine 

(CREW PRAM) in 0 (log2(n )) time using polynomially many processors. Thus, TAL recognition is in NC 

(= class of problems solvable by PRAM'S in polylogarithmic time and a polynomial number of processors). 

Our result extends that of Rytter PYTT.851, where he showed that CFL recognition can be solved in 

0 (log2(n )) time by a CREW PRAM with n6 processors (see also PYTT87, RUZZSO]). 

2. Tree Adjoining Grammars 

Tree adjoining grammars were first defined in [JOSH75]. The original definition has been modified 

since; the one used here is from [VUA85, WEIR871. 



Definition 2.1. A tree adjoining grammar (TAG) is a 4-tuple G = (VN,VT J J )  where VN is a finite set of 

nonterminal symbols, VT is a finite set of terminal symbols, I is a finite set of initial trees and A is a finite 

set of auxiliary trees. 

An initial tree has the following properties: internal nodes are labeled by nonterminal symbols; leaf 

nodes are labeled by either terminal symbols or the empty string E. 

An auxiliary tree has the following properties: internal nodes are labeled by nonterminal symbols; 

there is exactly one leaf node (called the foot node) which is labeled by the same nontenninal symbol that 

labels the root node; all other leaf nodes are labeled by either terminal symbols or &. 

A tree is called elementary if it is either an initial tree or an auxiliary tree. A node of an elementary 

tree is called a nonterminal node if it is labeled by a nonterminal symbol. We assume that every node of 

every elementary tree has a unique index; this can be done in one of several ways, say by a tuple (tree 

number, position within the tree). 

There is an operation called adjunction with which trees can be composed. Let l- be a tree contain- 

ing some nonterminal node x and let r, be the subtree rooted at x .  Let A be an auxiliary tree whose root 

node is labeled by the same nonterminal symbol that labels x .  (See Figure 2.1, but ignore the Ci 's for the 

moment.) Adjoining A into r at node x results in a new tree 63 obtained as follows: replace the subtree T, 

by A, then replace the foot node of A by rx. We say that O = ADJ(T,x,A). 

Adjunction can be generalized by associating a constraint with each nonterminal node of an elemen- 

tary tree. Constraints may be of two types - selective adjunction (SA) or obligatory adjunction (OA) - and 

are represented as tuples of the form (type, subset) where the type E {SA,OA} and subset is a subset of 

auxiliary trees. For a node with an SA constraint, any tree that is adjoined at the node should belong to 

the specified subset (the subset itself should contain only auxiliary trees whose roots have the same label as 

the node). The same is m e  for a node with an OA constraint except that, in addition, at least one adjunc- 

tion should take place at the node. We say that an auxiliary tree is adjoinable at a node if this tree 

belongs to the subset given by the node's constraint. Note that if a node has an SA constraint and the 

specified subset is empty, then no adjunction can take place at the node. This special case is sometimes 



Figure 2.1. The adjunction operation. 

referred to as the null adjunction (NA) constraint. 

In constrained adjunction, the nodes of the resulting tree Q would have the constraints shown in Fig- 

ure 2.1 (indicated by the Ci's). More precisely, the portion of Q copied from A have the same constraints 

as A; the tree copied from l?, have the same constraints as I-,, except for the root which instead gets the 

constraint of the foot node of A. 

A tree r derives a tree Q in one step (written r + Q) iff 8 results from r by adjoining an auxiliary 

tree at some node of r. r derives 8 (written r +* 0) iff there is a sequence of zero or more trees start- 

ing with r and ending in 8 such that every tree in the sequence derives its successor in one step. 

Let x be a node of some elementary tree r and let T, be the subtree rooted at x .  The tree set of x 

is defined as T(x) = {O I T, +* 8 and Q has no nodes with OA constraints}. If x is the root of an initial 

tree, then every tree in T(x) has the property that its frontier (the left-to-right sequence of its leaf labels) is 

a string in vT*. For a TAG G ,  we define the language generated by G as L (C) = {w I w is the frontier 

of some tree in T(x,) and xo is the root of some initial tree}. A language L is called a tree adjoining 



language (TAL) iff L = L(C ) for some TAG C . 

TAG'S are known to be smctly more powerful than CFG's tJOSH751. For example, the sets 

{anbn  cn } and {ww } are TAL's but not CFL's. Figure 2.2 gives an example of a TAG G for which L ( G )  

G = ( {S},  {a,b,cl, {to}, {tt,tz} 1. 

Figure 2.2. A TAG G generating the language { a n b n  c n  I n > 0). 

If a TAL L does not contain the empty string e, then L is generated by a TAG G in normal form 

mIR871, which is analogous to the Chomsky normal form for f f G 1 s  [ A H O ~ ~ ] ~  A TAG G is in normal 

form iff it has a single initial tree of the form depicted in Figure 2.3-(a), and auxiliary trees each having 

one of the forms depicted in Figure 2.3-(b)'. In particular, note that: (1) every tree is binary; (2) every 

node with exactly one child has an OA constaint; and (3) every node with two children, and every foot 

node, has an NA constraint. Figure 2.4 gives a TAG GI in normal form which is equivalent to the TAG 

G of Figure 2.2. 

For the remainder of the paper, we consider only TAL's which does not contain E and assume that 

the corresponding TAG'S are in normal form. 

4" 

3. Derivation Trees and Realizable Items 

Let x be a node of some elementary tree T. Call x an open node if r is an auxiliary tree and the 

1 The nonnal form given here is slightly different, but equivalent (in terms of the languages generated) to the one 
given in FEIR871 .  
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Figure 2.3. A TAG in normal form. 

Figure 2.4. A TAG G I  in normal form equivalent to the TAG G of Figure 2.2. 

foot node of r is a descendant of x .  Otherwise, call x a closed node. It is easy to verify that every tree 6 

in T ( x )  has a frontier of the form u1Au2, where u,, u2 E vT8 and either: A E VN is the label of the foot 

node of (if x is an open node), or A = E (if x is a closed node). In both cases, we define the size of O 

as lull + lu21. 



Let ( x , y )  be an ordered pair of nodes. Let O be a tree in T ( x )  containing a subtree A in T ( y ) ,  as 

shown in Figure 3.1 -(a) to -(c). In the figure, x  and y  are assumed to be open nodes; the three cases 

correspond to the three possible positions, relative to the frontier of A, of the foot node (labeled A ) of the 

elementary tree containing x .  As special cases: if x is a closed node then A is absent. and if y is a closed 

node then the subtree below A does not exist. Now, consider the tree I'I that results when A is replaced by 

the single node y (see Figure 3.1-(d) to -(e)). We call the set of a - s u c h  trees ll as the tree set of ( x , y ) ,  

or T ( x , y  ). In general, the frontier of ll consists of 4 terminal substrings, labeled u l  m u4  in the figure. 

4 

The size of ll is defined as lui I. 
i=l 

Figure 3.1. Forms of trees in the tree set of (x ,y ) .  

Recall that every tree 8 in T ( x )  is derived via one or more sequence of adjunctions starting with the 

subtree rooted at x.  We now introduce the notion of a derivation tree which allows us to represent a 

sequence of adjunctions corresponding to a tree in T ( x ) .  

Definition 3.1. Let x be a node of some elementary tree T. A derivation tree for x is defined inductively 

as follows: 



If x is a leaf node (of l?), then the tree D consisting of the single node x is a derivation tree for x .  

If x is an internal node with an OA constraint, xl  is its only child, and x2 is the root of an auxiliary 

tree adjoinable at x,  let D I and D2 be derivation trees for x l  and x2, respectively. Then the tree D 

with root x, left subtree D and right subtree D2 is a derivation tree for x .  

If x is an internal node with an NA constraint, left child XI ,  and right child x2, let Dl  and D2 be 

derivation trees for x l  and x2, respectively. Then the tree D with root x ,  left subtree D and right 

subtree D is a derivation tree for x . 

We let D (x) denote the set of all derivation trees for x. 

A derivation tree for x specifies a sequence of adjunctions that results in some tree Q in Tfx). Pro- 

cedure CONVERT below returns this tree @: 

procedure CONVERT(D ); 
I* Returns the me 8 corresponding to derivation tree D . *I 
begin 

if D is a single node tree then 
8 c D  

else 
letx be therootofD; 
8 1  c CONVERT(1eft subtree of x ); 
e2 c CONVERT(right subtree of x); 
if x has an OA constraint then 

let A be the tree with root x and the single subtree 8 1  below it; 
0 + ADJ (AJ ,Qz) 

else I* x has an NA constraint *I 
Q t tree with root x, left subtree and right subtree e 2 ;  

endif; 
end if; 
return(@); 

end CONVERT. 

We leave it to the reader to verify that if D E D (x) then CONVERT(D ) E T ( x ) ,  and if 8 E T(x) 

then there is at least one D E D (x) such that 8 = CONVERT(D). The size of D,  denoted ID 1, is &fined 

as the size of the corresponding tree CONVERT (D ). 

Definition 3.2. Let (x,y) be an ordered pair of nodes. Let Dl  E D(x) be a derivation tree for x contain- 

ing a subtree D2 with root node y (hence, D2 E Do)) .  Then the tree obtained by replacing D2 in D l  by 

the single node y is called a derivation tree for (x,y). The set of all such derivation trees is denoted 



As before, one can verify that if D' E D (x ,y ) then CONVERT (D') E T(x ,y ), and if O' E T(x ,y ) 

then there is at least one D' E D ( x g )  such that O' = CONVERT(Df). ID' I is defined as the size of the 

corresponding tree CONVERT (D' ). 

In the following discussion, we consider a fixed terminal string a = a l a z  . . . a,,  ai E VT and n > 0, 

which is to be recognized. For convenience, we use aij to denote the substring a i + ~  . . . a,. In particular, 

aii = E. 

Definition 3.3. Let a be as above and let x  and y be nodes. 

(I) A derivation tree D E D ( x )  is valid for the pair of substrings (aij , au )  iff CONVERT (D ) has a fron- 

tier aii A au . 

(2) A derivation tree D' in D (x,y) is valid for the 4-tuple of substrings (q,au,apq,a,)  iff 

CONVERT(D') has the frontier shown in Figure 3.2 (depending on the form of CONVERT(D')). 

Part (2) of the definition is intended to capture the fact that if the node y in COWERT(D') E 

T(x ,y ) is replaced by a tree in TO.) whose frontier is a,, B qs, the result is a tree in T (x ) whose frontier 

is aijA au. Put another way, if the leaf node y in D' E D(x,y ) is replaced by a derivation tree in D (y) 

which is valid for (apq,a,), then the result is a tree in D (x-) which is valid for (aij,au). 

Definition 3.4. Let n > 0 be an integer. An item is a tuple of the form (x,i,jC,l) where x is a node and 

0 I i 5 j I k I 1 I n .  The size of the item is ( j - i )  + ( 1 -k ) .  A pair of items is a tuple of the form (I1 J2), 

where Il and I are items. The size of (I ,,I2) is size([ - size(12). 

Definition 3.5. Let a be the terminal string to be recognized. 

(1) An item (x,i , j  ,k,I)  is realizable iff there is a derivation tree in D ( x )  which is valid for (aii,ak,). 

(2) A pair of items ((x ,i , j ,k  ,l ),O, ,p ,q ,r,s)) is realizable iff there is a derivation tree in D (x ,y ) which is 

valid for (aij ,au,ap,,a,). 



Figure 3.2. The frontier of CONVERT (D'), where D' E D (x  ,y ) is valid for (aij ,au ,am ,cr,,). 

Thus, if la1 = n , then a E L (G ) iff for some 0 I j  I n , (x,O,j J ,n ) is realizable, where xo  is the 

root node of the initial tree of G .  

Definition 3.6. Let I,, I, and I ,  be items. We write I,, I ,  :- I ,  and I , ,  I, :- I, iff one of the following 

conditions holds: 

I ,  = ( x , i , j , k , l ) ,  Iy = ( y ,m , j , k ,p ) ,  I ,  = ( z , i , m , p , l ) ,  i I m < j 5 k I p 51, x is a node with an OA 

constraint, y is its only child, and z is the root of an auxiliary tree adjoinable at x .  

Ix=(~,i,jyk,l),ly=(Y,i,m,m,p),I,=(z,p,jyk,i),iImIpIj5k<l,xisanodewithanNA 

constraint, y and z are the left and right chiIdren of x ,  respectively, and y is a closed node. 

I, = ( x , i , j , k , l ) ,  Iy  = (Y , i , j , k ,m) ,  I ,  = ( z , m , p , p , l ) ,  i 4 j  < k  S m I p 5 1 ,  x  is a node with an NA 

constraint, y and z are the left and right children of x ,  respectively, and z is a closed node. 



Let R be the set of all realizable items and realizable pairs of items. The next theorem follows from 

the definitions. 

Theorem 3.1. R is the least set satisfying the following conditions: 

(0) For each leaf node x of an elementary tree, 

(a) i f l a b e l ( x ) ~  (VN u&) then (x , i , i , i , i ) €  R f o r 0 I i  I n ;  

(b) i f l a b e l ( ~ ) = a ~ , ~ + ~ t h e n ( x , i , i , i , i + l ) ~  R and (x , i , i+ l , i+ l , i+ l )~  R ;  

(1) If I, E: R and I,, I ,  :- I, then (Ix ,Iy ) E R ; 

(2) I f t I x J y ) ~  R a n d ( I , J , ) ~  R , t h e n ( I , J , ) ~  R ;  

(3) If(f,I,J,)€ R andIy ~ R , t h e n I ,  E R .  

Thus, we can decide if a E L ( G )  using the algorithm below: 

Algorithm A : 

begin 
R t set obtained by applying rule (0) of Theorem 3.1; 
repeat 

R ' t R ;  
apply rules (1) - (3) of Theorem 3.1 to R ; 

until (R' = R ); 
if (xo,O,j J ,n ) E R for some 0 5 j I n then 

accept 
else 

reject 
endif; 

end. 

We now show that Algorithm A terminates after O(log(n)) iterations of the repeat loop. The proof 

employs a "tree-cutting" technique similar to those used in CRYTT85, RYl'T87, RUZZ801. For a realizable 

item I,, define level(Ii) = k iff I, first becomes a member of R at the k-th iteration of the repeat loop. 

Similarly, for level((l,Jy)), where (I, ,Iy) is a realizable pair of items. Let L l ( n )  = max(level(lx) 1 size(],) 

S n } and L 2(n ) = max{level((I, ,Iy )) I size((fx ,Iy )) 5 n } . 



Theorem 3.2. For n 2 2, 

( 1 )  L ,(n) l max{L1(2n/3), L2(2n/3)} + 1; 

(2)  L2(n ) l max{L ,(2n /3), L2(2n 13)) + 3. 

Proof. Consider a realizable item I, = @,-,-,-,-I of size n > 2. Then, there is a derivation wee D, for x 

such that ID, I = n .  Moreover, it is easy to prove that there is an internal node y # x in D, such that 

n/3  I ID, I ,  ID,, 1 5 2nI3, where Dy is the subtree rooted at y and D,, is D, with D, replaced by the 

single node y . Clearly, D, and D , ,  represent some realizable I, and ( I ,Jy)  with levels at most L 1(2n/3) 

and L2(2n/3), respectively. Part (1) of the theorem then follows from the fact that I, becomes a member 

of R by applying rule (3) of Theorem 3.1 to (I, Jy  ) and I,. 

Consider a realizable pair of items (I, J, ) of size n 2 2, where I, = (x,-,-,-,-) and I Y = (y ,-,-,-,-). 

Then, there is a derivation tree D,, for (x ,y ) such that ID,, I = n . Consider the path from no& y  to 

node x in D,, and let y ,  be the h s t  node in this path such that ID,, , I > n12, where D,,, is the subtree 

rooted at y 1. Thus, 1 5 n 12, where D,, , is D,, with DY lY replaced by the single node y  I. (See Fig- 

ure 3.3). 

Figure 33. Derivation tree D,, . 

Let y2 and y3 be the children of y l ,  where y 2  is the child having y as a descendant. Let D Y z ,  and 

D,, be the subtrees rooted at y 2  and y,, respectively. Clearly, IDYZY 1 < ni2. DY3, on the other hand, can 

have size m > 2ni3; however, from the first part of the proof, a node y 4  can be found such that IDy4[, 

1D,,,y41 S 2m/3 5 2113, where Dy is the subtree rooted at y 4  and DY3, is Dt3 with DY replaced by the 



single node y ,. 

Clearly, the trees Dxa1, DYIVY9 DY,,y4 and Dy , represent some (1, Jy (ly2Jy 1, (IY3Jy 2 and I,, E R , 

respectively, all of size < 2ni3. Hence, al l  have levels at most k = max{L1(2n/3), L2(2ni3)}. Moreover, 

(I,Jy j can be derived from these elements by applying the following rules of Theorem 3.1: 

(a) Apply rule (2) to (Iy3Jy 4) and Iy4 t~ obtain IY3; 

(b) Applyruk(1)toIy3and1y2,1y,:-Iy1 toobtain(IY1Jy,); 

(c) Apply rule (2) to (IY1Jy2) and ( f ,2 ,~)  to obtain (ly,Jy ); 

(dl Apply rule (2)  to (1, Jy and (1, 1,) to obtain (1, Jy 1. 

Thus, (I, J,) would be in R after the (k + 3)-th iteration (steps (b) and (c) can be completed during the 

same iteration). Part (2) of the theorem then follows. 0: 

Corollary 3.1. For n 2 1, L ,(n), L2(n) 5 c log(n) + 4, where c = 3/log(3/2). 

Proof. One can show that L 1(1), Lz( l ) .  1 4. The rest of the proof is straightforward induction on n and is 

left to the reader. 

Since all realizable items and realizable pairs of items have size at most n ,  it follows that Algorithm 

A terminates after c log(n) + 4 iterations of the repeat loop. 

4. The Parallel Algorithm 

Algorithm A can be easily implemented in parallel on a PRAM that allows both concurrent reads and 

concurrent writes. Every item (x  ,i , j ,k ,l ) and every pair of items ( (x  ,i , j ,k ,I),@ ,p ,q ,r ,s )) is assigned a 

cell in global memory. Initially, all cells are set to 0; membership in R would be indicated by writing 1 

on the cell. The PRAM executes as in Algortihm A, except that a rule is applied in parallel to all items 

and pairs of items. 

The initialization step (application of rule (0)) can be executed in constant time using O(n)  proces- 

sors. For one iteration of the repeat loop, rules (1) - (3) can each be applied in constant time using 0 (n12) 



processors by considering all possible triples (I,,Iy ,I,) and assigning one processor to each triple. Finally, 

acceptance can be checked in constant time using O ( n )  processors. Thus, the PRAM runs in time 

0 (log(n )) and uses 0 (n 12) processors. 

Note that concurrent writes (as well as concurrent reads) may happen since an item or a pair of items 

can be in R by applying the same rule during the same iteration to different sets of elements. Using well- 

known techniques (see, e.g., [KUCE82]), the parallel algorithm can be made to run on a CREW PRAM in 

0 (log2(n)) time and the same number of processors. 
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