
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

August 1988

Sublinear Parallel Time Recognition of Tree Adjoining Language Sublinear Parallel Time Recognition of Tree Adjoining Language

Michael A. Palis
University of Pennsylvania

Sunil Shende
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Michael A. Palis and Sunil Shende, "Sublinear Parallel Time Recognition of Tree Adjoining Language", .
August 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-66.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/689
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76359717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/689
mailto:repository@pobox.upenn.edu

Sublinear Parallel Time Recognition of Tree Adjoining Language Sublinear Parallel Time Recognition of Tree Adjoining Language

Abstract Abstract
A parallel algorithm is presented for recognizing the class of languages generated by tree adjoining
grammars, a tree rewriting system which has applications in computational Linguistics. This class of
languages is known to properly include all context-free languages; for example, the non-context-free sets

{anbncn} and {ww) are in this class. It is shown that the recognition problem for tree adjoining languages
can be solved by a concurrent-read, exclusive-write parallel random-access machine (CREW PRAM) in 0

(log2(n)) time using polynomially many processors. This extends a previous result for context-free
languages.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-66.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/689

https://repository.upenn.edu/cis_reports/689

SUBLINEAR PARALLEL TIME
RECOGNITION OF TREE

ADJOINING LANGUAGES
Michael A. Palis

and Sunll Shende

MS-CIS-88-66
LlNC LAB 127

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

August 1988

Acknowledgements: This research was supported in part by DARPA grant N00014-85-
K-0018, NSF grants MCS-82-07294, DCR-84-10413, MCS-83-05221, MCS-8219196-CER,
IR184-10413-A02 and U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027.

Sublinear Parallel Time Recognition

of Tree Adjoining ~anguages*

Michael A. Palis and Sunil Shende
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19 104-6389

Abstract
A parallel algorithm is presented for recognizing the class of languages generated by tree
adjoining grammars, a tree rewriting system which has applications in computational Linguis-
tics. This class of languages is known to properly include all context-free languages; for exam-
ple, the non-context-free sets {a" bncn} and { w w) are in this class. It is shown that the recog-
nition problem for tree adjoining languages can be solved by a concurrent-read, exclusive-write
parallel random-access machine (CREW PRAM) in 0 (log2(n)) time using polynomially many
processors. This extends a previous result for context-free languages.

* Research supported in part by ARO grant DA.429-84-9-0027, NSF grants MCS-8219116-CER, MCS-82-07294,
DCR-84-104 13, MCS-83-05221, and DARPA grant N00014-85-K-0018.

1. Introduction

Tree adjoining grammars (TAG's) were introduced in 1975 by Joshi, Levy and Takahashi [JOSH751

as a generalization of context-free grammars (CFG's). Unlike a CFG, a TAG is a tree rewriting system:

the basic elements are trees and the basic operation is adjunction which allows new trees to be created

from a finite collection of basic trees. In [JOSH75], it was shown that the class of languages generated by

TAG's (called tree adjoining languages or TAL's) properly includes all context-free languages (CFL's).

For example, the sets {anbn c"} and {ww } are TAL's but not CFL's.

In the last few years, TAG's have received renewed attention in the area of computational linguistics

because they have been found to be a useful grammatical model for natural language EKROC853. What

makes them more appealing is the fact that the important decidable and closure properties of a ' s also

hold for TAL's w A 8 5 1 . In particular, TAL's are also polynomial-time recognizable. This was first

shown by Vijay-Shanker and Joshi [VUA85] who gave an 0 (n6)-time recognition algorithm.

In W I 8 7 1 we gave a parallel implementation of the TAL recognition algorithm that runs in linear

time on a systolic array with n5 processors. The systolic algorithm is optimal: the speed-up is linear in the

number of processors. In a sense, our work extends the previous work by [KOSA75, CHIA84, CHAN871

on systolic CFL recognitiontparsing.

In this paper, we present a faster parallel recognition algorithm for TAL's. In particular, we show

that TAL recognition can be solved by a concurrent-read, exclusive-write parallel random-access machine

(CREW PRAM) in 0 (log2(n)) time using polynomially many processors. Thus, TAL recognition is in NC

(= class of problems solvable by PRAM'S in polylogarithmic time and a polynomial number of processors).

Our result extends that of Rytter PYTT.851, where he showed that CFL recognition can be solved in

0 (log2(n)) time by a CREW PRAM with n6 processors (see also PYTT87, RUZZSO]).

2. Tree Adjoining Grammars

Tree adjoining grammars were first defined in [JOSH75]. The original definition has been modified

since; the one used here is from [VUA85, WEIR871.

Definition 2.1. A tree adjoining grammar (TAG) is a 4-tuple G = (VN,VT J J) where VN is a finite set of

nonterminal symbols, VT is a finite set of terminal symbols, I is a finite set of initial trees and A is a finite

set of auxiliary trees.

An initial tree has the following properties: internal nodes are labeled by nonterminal symbols; leaf

nodes are labeled by either terminal symbols or the empty string E.

An auxiliary tree has the following properties: internal nodes are labeled by nonterminal symbols;

there is exactly one leaf node (called the foot node) which is labeled by the same nontenninal symbol that

labels the root node; all other leaf nodes are labeled by either terminal symbols or &.

A tree is called elementary if it is either an initial tree or an auxiliary tree. A node of an elementary

tree is called a nonterminal node if it is labeled by a nonterminal symbol. We assume that every node of

every elementary tree has a unique index; this can be done in one of several ways, say by a tuple (tree

number, position within the tree).

There is an operation called adjunction with which trees can be composed. Let l- be a tree contain-

ing some nonterminal node x and let r, be the subtree rooted at x . Let A be an auxiliary tree whose root

node is labeled by the same nonterminal symbol that labels x . (See Figure 2.1, but ignore the Ci 's for the

moment.) Adjoining A into r at node x results in a new tree 63 obtained as follows: replace the subtree T,

by A, then replace the foot node of A by rx. We say that O = ADJ(T,x,A).

Adjunction can be generalized by associating a constraint with each nonterminal node of an elemen-

tary tree. Constraints may be of two types - selective adjunction (SA) or obligatory adjunction (OA) - and

are represented as tuples of the form (type, subset) where the type E {SA,OA} and subset is a subset of

auxiliary trees. For a node with an SA constraint, any tree that is adjoined at the node should belong to

the specified subset (the subset itself should contain only auxiliary trees whose roots have the same label as

the node). The same is m e for a node with an OA constraint except that, in addition, at least one adjunc-

tion should take place at the node. We say that an auxiliary tree is adjoinable at a node if this tree

belongs to the subset given by the node's constraint. Note that if a node has an SA constraint and the

specified subset is empty, then no adjunction can take place at the node. This special case is sometimes

Figure 2.1. The adjunction operation.

referred to as the null adjunction (NA) constraint.

In constrained adjunction, the nodes of the resulting tree Q would have the constraints shown in Fig-

ure 2.1 (indicated by the Ci's). More precisely, the portion of Q copied from A have the same constraints

as A; the tree copied from l?, have the same constraints as I-,, except for the root which instead gets the

constraint of the foot node of A.

A tree r derives a tree Q in one step (written r + Q) iff 8 results from r by adjoining an auxiliary

tree at some node of r. r derives 8 (written r +* 0) iff there is a sequence of zero or more trees start-

ing with r and ending in 8 such that every tree in the sequence derives its successor in one step.

Let x be a node of some elementary tree r and let T, be the subtree rooted at x . The tree set of x

is defined as T(x) = {O I T, +* 8 and Q has no nodes with OA constraints}. If x is the root of an initial

tree, then every tree in T(x) has the property that its frontier (the left-to-right sequence of its leaf labels) is

a string in vT*. For a TAG G , we define the language generated by G as L (C) = {w I w is the frontier

of some tree in T(x,) and xo is the root of some initial tree}. A language L is called a tree adjoining

language (TAL) iff L = L(C) for some TAG C .

TAG'S are known to be smctly more powerful than CFG's tJOSH751. For example, the sets

{anbn cn } and {ww } are TAL's but not CFL's. Figure 2.2 gives an example of a TAG G for which L (G)

G = ({S}, {a,b,cl, {to}, {tt,tz} 1.

Figure 2.2. A TAG G generating the language { a n b n c n I n > 0).

If a TAL L does not contain the empty string e, then L is generated by a TAG G in normal form

mIR871, which is analogous to the Chomsky normal form for f f G 1 s [A H O ~ ~] ~ A TAG G is in normal

form iff it has a single initial tree of the form depicted in Figure 2.3-(a), and auxiliary trees each having

one of the forms depicted in Figure 2.3-(b)'. In particular, note that: (1) every tree is binary; (2) every

node with exactly one child has an OA constaint; and (3) every node with two children, and every foot

node, has an NA constraint. Figure 2.4 gives a TAG GI in normal form which is equivalent to the TAG

G of Figure 2.2.

For the remainder of the paper, we consider only TAL's which does not contain E and assume that

the corresponding TAG'S are in normal form.

4"

3. Derivation Trees and Realizable Items

Let x be a node of some elementary tree T. Call x an open node if r is an auxiliary tree and the

1 The nonnal form given here is slightly different, but equivalent (in terms of the languages generated) to the one
given in FEIR871 .

i
! and symmetric var~ants I

I

(b)

Figure 2.3. A TAG in normal form.

Figure 2.4. A TAG G I in normal form equivalent to the TAG G of Figure 2.2.

foot node of r is a descendant of x . Otherwise, call x a closed node. It is easy to verify that every tree 6

in T (x) has a frontier of the form u1Au2, where u,, u2 E vT8 and either: A E VN is the label of the foot

node of (if x is an open node), or A = E (if x is a closed node). In both cases, we define the size of O

as lull + lu21.

Let (x , y) be an ordered pair of nodes. Let O be a tree in T (x) containing a subtree A in T (y) , as

shown in Figure 3.1 -(a) to -(c). In the figure, x and y are assumed to be open nodes; the three cases

correspond to the three possible positions, relative to the frontier of A, of the foot node (labeled A) of the

elementary tree containing x . As special cases: if x is a closed node then A is absent. and if y is a closed

node then the subtree below A does not exist. Now, consider the tree I'I that results when A is replaced by

the single node y (see Figure 3.1-(d) to -(e)). We call the set of a - s u c h trees ll as the tree set of (x , y) ,

or T (x , y). In general, the frontier of ll consists of 4 terminal substrings, labeled u l m u4 in the figure.

4

The size of ll is defined as lui I.
i=l

Figure 3.1. Forms of trees in the tree set of (x ,y) .

Recall that every tree 8 in T (x) is derived via one or more sequence of adjunctions starting with the

subtree rooted at x. We now introduce the notion of a derivation tree which allows us to represent a

sequence of adjunctions corresponding to a tree in T (x) .

Definition 3.1. Let x be a node of some elementary tree T. A derivation tree for x is defined inductively

as follows:

If x is a leaf node (of l?), then the tree D consisting of the single node x is a derivation tree for x .

If x is an internal node with an OA constraint, xl is its only child, and x2 is the root of an auxiliary

tree adjoinable at x, let D I and D2 be derivation trees for x l and x2, respectively. Then the tree D

with root x, left subtree D and right subtree D2 is a derivation tree for x .

If x is an internal node with an NA constraint, left child XI , and right child x2, let Dl and D2 be

derivation trees for x l and x2, respectively. Then the tree D with root x , left subtree D and right

subtree D is a derivation tree for x .

We let D (x) denote the set of all derivation trees for x.

A derivation tree for x specifies a sequence of adjunctions that results in some tree Q in Tfx). Pro-

cedure CONVERT below returns this tree @:

procedure CONVERT(D);
I* Returns the me 8 corresponding to derivation tree D . *I
begin

if D is a single node tree then
8 c D

else
letx be therootofD;
8 1 c CONVERT(1eft subtree of x);
e2 c CONVERT(right subtree of x);
if x has an OA constraint then

let A be the tree with root x and the single subtree 8 1 below it;
0 + ADJ (AJ ,Qz)

else I* x has an NA constraint *I
Q t tree with root x, left subtree and right subtree e 2 ;

endif;
end if;
return(@);

end CONVERT.

We leave it to the reader to verify that if D E D (x) then CONVERT(D) E T (x) , and if 8 E T(x)

then there is at least one D E D (x) such that 8 = CONVERT(D). The size of D, denoted ID 1, is &fined

as the size of the corresponding tree CONVERT (D).

Definition 3.2. Let (x,y) be an ordered pair of nodes. Let Dl E D(x) be a derivation tree for x contain-

ing a subtree D2 with root node y (hence, D2 E Do)) . Then the tree obtained by replacing D2 in D l by

the single node y is called a derivation tree for (x,y). The set of all such derivation trees is denoted

As before, one can verify that if D' E D (x ,y) then CONVERT (D') E T(x ,y), and if O' E T(x ,y)

then there is at least one D' E D (x g) such that O' = CONVERT(Df). ID' I is defined as the size of the

corresponding tree CONVERT (D').

In the following discussion, we consider a fixed terminal string a = a l a z . . . a,, ai E VT and n > 0,

which is to be recognized. For convenience, we use aij to denote the substring a i + ~ . . . a,. In particular,

aii = E.

Definition 3.3. Let a be as above and let x and y be nodes.

(I) A derivation tree D E D (x) is valid for the pair of substrings (aij , au) iff CONVERT (D) has a fron-

tier aii A au .

(2) A derivation tree D' in D (x,y) is valid for the 4-tuple of substrings (q,au,apq,a,) iff

CONVERT(D') has the frontier shown in Figure 3.2 (depending on the form of CONVERT(D')).

Part (2) of the definition is intended to capture the fact that if the node y in COWERT(D') E

T(x ,y) is replaced by a tree in TO.) whose frontier is a,, B qs, the result is a tree in T (x) whose frontier

is aijA au. Put another way, if the leaf node y in D' E D(x,y) is replaced by a derivation tree in D (y)

which is valid for (apq,a,), then the result is a tree in D (x-) which is valid for (aij,au).

Definition 3.4. Let n > 0 be an integer. An item is a tuple of the form (x,i,jC,l) where x is a node and

0 I i 5 j I k I 1 I n . The size of the item is (j - i) + (1 -k) . A pair of items is a tuple of the form (I1 J2),

where Il and I are items. The size of (I ,,I2) is size([- size(12).

Definition 3.5. Let a be the terminal string to be recognized.

(1) An item (x,i , j ,k,I) is realizable iff there is a derivation tree in D (x) which is valid for (aii,ak,).

(2) A pair of items ((x ,i , j ,k ,l),O, ,p ,q ,r,s)) is realizable iff there is a derivation tree in D (x ,y) which is

valid for (aij ,au,ap,,a,).

Figure 3.2. The frontier of CONVERT (D'), where D' E D (x ,y) is valid for (aij ,au ,am ,cr,,).

Thus, if la1 = n , then a E L (G) iff for some 0 I j I n , (x,O,j J ,n) is realizable, where xo is the

root node of the initial tree of G .

Definition 3.6. Let I,, I, and I , be items. We write I,, I , :- I , and I , , I, :- I, iff one of the following

conditions holds:

I , = (x , i , j , k , l) , Iy = (y ,m , j , k ,p) , I , = (z , i , m , p , l) , i I m < j 5 k I p 51, x is a node with an OA

constraint, y is its only child, and z is the root of an auxiliary tree adjoinable at x .

Ix=(~,i,jyk,l),ly=(Y,i,m,m,p),I,=(z,p,jyk,i),iImIpIj5k<l,xisanodewithanNA

constraint, y and z are the left and right chiIdren of x , respectively, and y is a closed node.

I, = (x , i , j , k , l) , Iy = (Y , i , j , k ,m) , I , = (z , m , p , p , l) , i 4 j < k S m I p 5 1 , x is a node with an NA

constraint, y and z are the left and right children of x , respectively, and z is a closed node.

Let R be the set of all realizable items and realizable pairs of items. The next theorem follows from

the definitions.

Theorem 3.1. R is the least set satisfying the following conditions:

(0) For each leaf node x of an elementary tree,

(a) i f l a b e l (x) ~ (VN u&) then (x , i , i , i , i) € R f o r 0 I i I n ;

(b) i f l a b e l (~) = a ~ , ~ + ~ t h e n (x , i , i , i , i + l) ~ R and (x , i , i+ l , i+ l , i+ l)~ R ;

(1) If I, E: R and I,, I , :- I, then (Ix ,Iy) E R ;

(2) I f t I x J y) ~ R a n d (I , J ,) ~ R , t h e n (I , J ,) ~ R ;

(3) If(f,I,J,)€ R andIy ~ R , t h e n I , E R .

Thus, we can decide if a E L (G) using the algorithm below:

Algorithm A :

begin
R t set obtained by applying rule (0) of Theorem 3.1;
repeat

R ' t R ;
apply rules (1) - (3) of Theorem 3.1 to R ;

until (R' = R);
if (xo,O,j J ,n) E R for some 0 5 j I n then

accept
else

reject
endif;

end.

We now show that Algorithm A terminates after O(log(n)) iterations of the repeat loop. The proof

employs a "tree-cutting" technique similar to those used in CRYTT85, RYl'T87, RUZZ801. For a realizable

item I,, define level(Ii) = k iff I, first becomes a member of R at the k-th iteration of the repeat loop.

Similarly, for level((l,Jy)), where (I, ,Iy) is a realizable pair of items. Let L l (n) = max(level(lx) 1 size(],)

S n } and L 2(n) = max{level((I, ,Iy)) I size((fx ,Iy)) 5 n } .

Theorem 3.2. For n 2 2,

(1) L ,(n) l max{L1(2n/3), L2(2n/3)} + 1;

(2) L2(n) l max{L ,(2n /3), L2(2n 13)) + 3.

Proof. Consider a realizable item I, = @,-,-,-,-I of size n > 2. Then, there is a derivation wee D, for x

such that ID, I = n . Moreover, it is easy to prove that there is an internal node y # x in D, such that

n/3 I ID, I , ID,, 1 5 2nI3, where Dy is the subtree rooted at y and D,, is D, with D, replaced by the

single node y . Clearly, D, and D , , represent some realizable I, and (I ,Jy) with levels at most L 1(2n/3)

and L2(2n/3), respectively. Part (1) of the theorem then follows from the fact that I, becomes a member

of R by applying rule (3) of Theorem 3.1 to (I, Jy) and I,.

Consider a realizable pair of items (I, J,) of size n 2 2, where I, = (x,-,-,-,-) and I Y = (y ,-,-,-,-).

Then, there is a derivation tree D,, for (x ,y) such that ID,, I = n . Consider the path from no& y to

node x in D,, and let y , be the h s t node in this path such that ID,, , I > n12, where D,,, is the subtree

rooted at y 1. Thus, 1 5 n 12, where D,, , is D,, with DY lY replaced by the single node y I. (See Fig-

ure 3.3).

Figure 33. Derivation tree D,, .

Let y2 and y3 be the children of y l , where y 2 is the child having y as a descendant. Let D Y z , and

D,, be the subtrees rooted at y 2 and y,, respectively. Clearly, IDYZY 1 < ni2. DY3, on the other hand, can

have size m > 2ni3; however, from the first part of the proof, a node y 4 can be found such that IDy4[,

1D,,,y41 S 2m/3 5 2113, where Dy is the subtree rooted at y 4 and DY3, is Dt3 with DY replaced by the

single node y ,.

Clearly, the trees Dxa1, DYIVY9 DY,,y4 and Dy , represent some (1, Jy (ly2Jy 1, (IY3Jy 2 and I,, E R ,

respectively, all of size < 2ni3. Hence, al l have levels at most k = max{L1(2n/3), L2(2ni3)}. Moreover,

(I,Jy j can be derived from these elements by applying the following rules of Theorem 3.1:

(a) Apply rule (2) to (Iy3Jy 4) and Iy4 t~ obtain IY3;

(b) Applyruk(1)toIy3and1y2,1y,:-Iy1 toobtain(IY1Jy,);

(c) Apply rule (2) to (IY1Jy2) and (f ,2 ,~) to obtain (ly,Jy);

(dl Apply rule (2) to (1, Jy and (1, 1,) to obtain (1, Jy 1.

Thus, (I, J,) would be in R after the (k + 3)-th iteration (steps (b) and (c) can be completed during the

same iteration). Part (2) of the theorem then follows. 0:

Corollary 3.1. For n 2 1, L ,(n), L2(n) 5 c log(n) + 4, where c = 3/log(3/2).

Proof. One can show that L 1(1), Lz(l) . 1 4. The rest of the proof is straightforward induction on n and is

left to the reader.

Since all realizable items and realizable pairs of items have size at most n , it follows that Algorithm

A terminates after c log(n) + 4 iterations of the repeat loop.

4. The Parallel Algorithm

Algorithm A can be easily implemented in parallel on a PRAM that allows both concurrent reads and

concurrent writes. Every item (x ,i , j ,k ,l) and every pair of items ((x ,i , j ,k ,I),@ ,p ,q ,r ,s)) is assigned a

cell in global memory. Initially, all cells are set to 0; membership in R would be indicated by writing 1

on the cell. The PRAM executes as in Algortihm A, except that a rule is applied in parallel to all items

and pairs of items.

The initialization step (application of rule (0)) can be executed in constant time using O(n) proces-

sors. For one iteration of the repeat loop, rules (1) - (3) can each be applied in constant time using 0 (n12)

processors by considering all possible triples (I,,Iy ,I,) and assigning one processor to each triple. Finally,

acceptance can be checked in constant time using O (n) processors. Thus, the PRAM runs in time

0 (log(n)) and uses 0 (n 12) processors.

Note that concurrent writes (as well as concurrent reads) may happen since an item or a pair of items

can be in R by applying the same rule during the same iteration to different sets of elements. Using well-

known techniques (see, e.g., [KUCE82]), the parallel algorithm can be made to run on a CREW PRAM in

0 (log2(n)) time and the same number of processors.

References

[AH0721 Aho, A. V. and J. D. Ullman, Theory of Parsing, Translation and Compiling, Volume 1: Pars-
ing, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

[CHAN87] Chang, J. H., 0. H. Ibarra and M. A. Palis, Parallel parsing on a one-way array of finite-state
machines, IEEE Trans. Compur., C36:l (Jan. 1987), pp. 64-75; extended abstract also
appeared in Proc. 1986 Intl. Con& Parallel Proc., St. Charles, Illinois, pp. 887-894.

[CHIA84] Chiang, Y. and K. Fu, Parallel parsing and VLSI implementations for syntactic pattern recog-
nition, IEEE Trans. Patt. Anal. and Mach. Int. 6:3 (1984), pp. 302-313.

[JOSH751 Joshi, A. K., L. S. Levy and M. Takahashi, Tree adjunct grammars, J. Comp. Sysr. Sci., 10
(1975), pp. 136- 163.

[KOSA75] Kosaraju, S. R., Speed of recognition of context-free languages by array automata, SIAM J.
Comput., 4:3 (1975), pp. 331-340.

[KROC85] Kroch, A. S. and A. K. Joshi, The linguistic-relevance of tree adjoining grammar, Tech. Rpt.
MS-CIS-85-Id, Dept, of Comp. and Info. Sci., University of Pennsylvania, June 1985.

[KUCE82] Kucera, L., Parallel computation and conflicts in memory access, Inf. Proc. Lett., 14:2 (1982),
pp. 93-96.

[PAL1871 Palis, M. A., S. Shende and D. Wei, An optimal linear-time parallel parser for tree adjoining
languages, Tech. Rpt. MS-CIS-87-50, Dept. of Comp. and Info. Sci., University of Pennsyl-
vania, June 1987.

pUZZ801 Ruzzo, W. L., Tree-size bounded alternation, J. Comput. System Sci., 21, pp. 218-235.

[RY1T85] Rytter, W., The complexity of two-way pushdown automata and recursive programs, in Com-
binatorial Algorithms on Words, A. Apostolico and Z. Galil (eds.), NATO AS1 Series F:12,
Springer-Verlag, New YorWBerlin.

[RYTT87] Ryaer, W., Parallel O(log n) recognition of unambiguous context-free languages, Info. and
Comp., 73 (1987), pp. 75-86.

[VUA85] Vijayashanker, K. and A. K. Joshi, Some computational properties of tree adjoining gram-
mars, Proc. 23rd Ann. Meet. Assoc. Comp. Ling., Chicago, Illinois, July 1985, pp. 82-93.

WIR871 Weir, D. J., From context-free grammars to tree adjoining grammars and beyond, Tech. Rpt.
MS-CIS-87-42, Dept. of Comp. and Info. Sci., University of Pennsylvania, May 1987.

	Sublinear Parallel Time Recognition of Tree Adjoining Language
	Recommended Citation

	Sublinear Parallel Time Recognition of Tree Adjoining Language
	Abstract
	Comments

	tmp.1193875982.pdf.tOrZy

