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Abstract 

In this paper, we describe TAKE-ONE, a parallel method of specifying human motion animation 
by a controlled mixture of values from three kinds of simulation: kinematic, dynamic, and con- 
straint. In addition, tools to assist an animator to define qualities such as realism, individuality 
and expressiveness are developed. 

The issues in comprehensive animation methods are explosion of complexity, difficulty in de- 
termining values of input parameters, and lack of ease in fine-tuning an animation. We discuss 
the advantages and issues involved in structuring the specification of an animation. We provide 
a structured method to use or to convert to, a parameterized motion definition. We introduce a 
met hod of specification to  allow the development of the essential and minimal definitional qualities 
of an action. The result is that a reduction in run-time complexity and user-specification is effected 
and groundwork for an action database is done. 

We develop techniques to refine kinematic animation specification so that it is more represen- 
tative of actual positional goals and so that it is compatible with the use of the other methods. We 
provide a structure to systematically merge animations from the three methods, through user or 
program control, and provide an interface to an iterative method of definition and fine-tuning. Ex- 
amples are provided to show the power of the TAKE-ONE method, including: an object placement 
example whose implementation is explained in detail, a wheel-turning task, and finally, a classical 
ballet pirouette which will serve as a goal example for our completed work. 



Chapter 1 

Introduction 

1 .  The Goal 

Our research is a result of the need for realistic, expressive human motion interacting with an 
environment. The current systems available give us the ability to position a figure, provide full 
kinematics and dynamics simulation, satisfy geometric constraints and use graphical and language 
interfaces. Thus, we now have the ability to create a methodology that uses these tools in a 
structured, high-level manner to achieve natural human motion. 

1.2 Human Motion Animation 

Human motion animation has received considerable attention over the past decade. The first 
approach was to define a kinematic specification of the path for each joint of the body. Interpolation 
methods to provide sufficient smoothness to this path were developed and these methods produced 
reasonably acceptable animations. The problems with kinematic methods, however, were many. 
First, the motion could not be realistic in the sense that the body would react to internal or external 
forces. Secondly, the complexity of the specification was intractable and so, only simplistic and 
brief animations were attempted. Third, there was no way to control the specification so that 
refinements were systematic or that previous defined animations could be modified to fit a new 
situation. A minor improvement came with the general use of inverse kinematics so that the user 
might specify a global position of a terminal joint of the body (e.g. hand, foot) and allow the angles 
of the connecting joints to be automatically determined. This technique was the first attempt at a 
higher-level specification but did little to address any of the objections noted above. Track systems 
which allowed the grouping of parameters so that they might be separately controlled also were 
developed. These allowed finer control over the interaction of the animation variables, but again 
did not provide a major solution to the method's problems. 

Dynamics systems were developed to address the problem of realism and to have the figure 
realistically interact with its environment. Spectacular animations have been produced by such 
methods, but dynamics systems have substantial problems. First, as in keyframe systems, we still 
have the explosion of complexity, but it is more difficult issue since the user now has to specify 
forces instead of positions. This has been shown to be a serious limitation. Secondly, dynamics 
systems suffer from a time complexity which limits the availability of their use. Third, dynamics 



systems have no convenient means to achieve positional gods. 
Animations by constraints has dso been attempted. These systems start with a set of global 

conditions and iteratively find a solution. Constraint systems have excelled in solving specifications 
that have no closed-form solution (such as simultaneous satisfaction of multiple goals in a close 
loop). Path control of the solution, however, is very difficult since by definition, the final solution 
is unknown. 

Recently, attempts at hybrid systems have been presented. These systems merge specifications 
from one of the methods in various ways. One method is to  provide a kinematic specification for 
certain animation variables and to provide dynamics for others. Another method is kinematically 
driven so that the dynamics forces are 'seeded' by a predefined path. Other methods use kinematic 
contraints to reduce the degrees of freedom for a dynamic simulation or to provide constraints 
on the magnitudes of the forces in a dynamics simulation. These systems are the closest to our 
approach in that they recognize the need for specification from each of the simulation methods, 
but their handling of the merging of these methods is too limited for our purposes. 

Lastly, there have been the Artifical Intelligence systems which approach the problem of spec- 
ification at the task level or natural language level. These systems comprise a rapidly evolving 
research area, but have limitations in our application. First, the models in these systems are quite 
complex and the set of possible animations are small. Secondly, while these systems address the 
problem of decomposition of a specification into smaller units, they do not provide a means to 
generate how the smaller units should be animated. 

1.3 Our Approach 

Our approach to  the problem of human motion specification, is to construct TAKE-ONE, a 
methodology of the process of providing specification of an animation and of its implementation. 
TAKE-ONE will include the existing methods of kinematic, dynamic and constraint specification 
("KDC methods"), along with our implementation of Effort-Shape methodology, a way to represent 
ezpressiveness. We will show improvements on the KDC methods by providing a significantly im- 
proved keyframe animation system, and introduce a precise system for merging kinematic, dynamic 
and constraint simulations, which substantially differs from any hybrid method currently available. 
This merging is done by a parameter to the system, called FLOW which was suggested by the 
Effort-Shape literature. 

An important aspect of the TAKE-ONE system is the controlled method of iterative refinement 
of an animation. Animation design presently suffers not from the power of the specification but 
from the lack of control of the specification. Certain approaches have been taken to address this 
problem (mainly the Artifical Intelligence language-oriented interfaces, task-level specifications, 
etc.). However, this work is at a process definition level, which is at too high a level for many 
applications. Also, the A1 methods do not yet address the refinement of the animation in any 
structured way. In the TAKE-ONE system, we provide a method to locally, iteratively refine an 
animation for general user applications. As an adjunct to this, the development of a minimal set 
of TAKE-ONE parameters that provide definition of a database of primitive action definitions is 
necessary. 

'For an example, refer to [19] 



We view an animation as a limit of a process of refinements of initial data (usually taken from 
a data base) augmented by additional data (e.g. more keyframes) and by TAKE-ONE parameters. 

We will implement the method of adding specification by the use of well-defined modifiers and 
through language-semantics (e.g. "gravity", "resisting") so that the TAKE-ONE system will be 
available to a novice user. A user might also begin with with a human-language expression of a 
TAKE-ONE parameters instead of numerical values. 

The set of TAKE-ONE parameters specifying an animation will be hierarchically grouped to 
avoid exponential explosion of the specification. We hope to avoid much of the complexity of this 
problem by the techniques of minimization and structured control that are intrinsic to TAKE-ONE. 
Also, we will have access to A1 inheritance schemes for structured handling of the parameters. 

Current work on a Natural Language interface and a high-level architecture for task animation 
control that could function as a program interface to TAKE-ONE will also address this problem. 

1.3.1 Criteria for Egective Control of Human Motion Animation 

We require an effective human motion animation system to be computationally efficient and usable 
by a non-expert. To achieve this, we must allow for a data base of actions that are usable in 
multiple situations. Also, we must allow for structured refinement procedures of new or archived 
actions so that they may be modified to fit the current application and these procedures must be 
understandable by the non-expert user. Finally, we hope that the structured development of the 
specification of actions might provide a tool to test hypotheses of the factors that constitute the 
identity of an action and also, lead to insights into the factors or behaviors that constitute human 
actions. 
We categorize these goals in four criteria of specification, refinement, adaptability and analysis, 
whose meaning we define as follows: 

s Specification 

- to isolate necessary definitional qualities of a motion 

- to include expressiveness, individualistic qualities of an actor 
- to be understandable by a non-expert user 

- to offer reasonable complexity of specification and computation 
- to handle non-orthogonal (overlapping) specifications 

s Refinement 

- to include a continuous (limit-directed) method of refinement 

- to include clearly defined methods of control 

- to permit locality of modification 

- to detect non-limiting (conilicting) criteria 

s Adaptability 

- to create a data base of essential definitional qualities of an action 

- to allow instantiation of archived actions to particular agent, a t  tit u te, intent 



- to permit degrees of freedom in specification to be expressed as ranges of the parameters 
of definition, not absolute values 

a Analysis 

- to allow qualitative/quantitative analysis of motion 

- to increase knowledge about motion 

1.4 Contribution of this Thesis 

1.4.1 What we plan to do 

Our work is directed towards the development of a more complete specification of motion semantics. 
The work in this thesis is intended to develop and test interaction methodology that uses some of 
the established techniques in human motion animation to execute those semantics. We intend to use 
the present computer animation systems with modifications essential to our work. In particular, we 
will initially concentrate on the development and verification of a parallel control structure which 
forms one of the parameters to TAKE-ONE, called FLOW. 

The FLOW method is an outgrowth of an attempt to implement the Effort-Shape methodology 
[5] [6] a categorization of the factors inherent in human and animal motion. Our model quantifies 
(with computationally essential modifications) the Effort-Shape model in terms of computer ani- 
mation techniques. We also draw on the Effort-Shape model for its natural language vocabulary 
of the motion factors. Essential to the system is a verification and development of our model. The 
decomposition and structured control of animation specification in itself will comprise much of our 
work. The final test of an implementation of Effort-Shape will provide a means to measure the 
completeness of our system. 

We intend to develop a hierarchical concept and the implementation of reduction and generaliza- 
tion of specification. This will mean, respectively, the distillation of a specification of an action into 
essential definitional TAKE-ONE parameters, and secondly, the generation of a minimal definition 
of an action so that the additional degrees of freedom may used to control the individual qualities 
of a range of instantiations. 

This is necessary to show the control of the power of the parameters of TAKE-ONE, and also, 
to prove the essential property of iterative refinement. 

We will examine language interface methods to FLOW, and the perceived change in the actor's 
intent, personality or talent as we vary the animation parameters. We develop examples that 
illustrate the proper use of the FLOW mixture, criteria for how and when to break up an animation 
into smaller units, and simple ways of specifying FLOW and the parameters to merge the units. 

1.4.2 Limits of Our Planned Work 

We will consider a verification of the TAKE-ONE system to be established when the following 
capabilities may be demonstrated: 

a An action database is established 

'Effort-Shape is described in Chapter 2. 



r A non-expert user will be able to construct a basic animation using this database 

r The basic animation may be iteratively modified by a non-expert to produce a set of anima- 
tions for different criteria of agent individuality, agent expressiveness and animator intent 

1.4.3 What we plan to not do 

Our work is comptatible with ongoing research in general process control and a natural language 
interface to animation planning. We do not intend to implement interfaces to these, except as is 
necessary or convenient to demonstrate our model. We will, however, direct our work within the 
content of this compatible research and show methods for merging the methods when appropriate. 

We intend to integrate our system with an extensible model of articulated figures and their 
environment [5] whose interface is current in development. Joint work on the development of criteria 
for a generalized motion data base will contribute to the organizational placement of TAKE-ONE 
in task animation applications and will be presented as it becomes available. 

1.5 Test Cases 

In Chapter 5, we present a detailed example that has been implemented in TAKE-ONE. This 
example is a simple case of the use of FLOW to avoid the use of inverse dynamics to achieve 
positional control. We will refer to two additional animations in this paper, whose implementation 
is part of the planned work. 

The first is an animation of a human figure turning a wheel. This example has simple enough 
specification to serve as a general test case of the power of the TAKE-ONE parameters, most 
importantly, FLOW. Unspecified degrees of freedom (such as turn rate, initial end ending velocities) 
will be examined for how they affect the identity of the action (e.g. heavy or light wheel) and the 
characteristics of the agent. 

We will also refer to an additional example, PIROUETTE, through this paper, since PIROU- 
ETTE provides a very challenging animation goal. PIROUETTE is a sequence of simple classical 
ballet turns (composed of en dehors turns from fifth position) Classical ballet offers idealized po- 
sitional goals as a definition of a en dehors turn. We will augment this with a specification of the 
turn from a dynamics point of view, and then examine the FLOW mixture of the combination. 
Issues to settle are: 

r 1) Can the "dynamic" quality of the turn be obtained through a minimum of specification 
(keyframes, forces, constraints)? 

2) How can the positional goals be relaxed from the ideal? 

r 1) Can the animation be controlled through TAKE-ONE parameters to provide different 
interpretations of the action or actor? 

Other issues will be posed as the animation is tested through TAKE-ONE. 
The kinematic specification of a single pirouette turn involves an initial placement of the feet 

(in fifth position, with feet turned oppositely outward) and the arms in first position (rounded and 
central to the body, at sternum-level). The legs are initially straight. 



To start the turn, the actor moves one arm to the side (opposite direction to which she will 
turn) and bends the knees. 

The actor then 'pushes off' floor with both feet, raising the front leg by sliding it up the other 
in a formalized bent position, closing the arms, and rising to stand on the toes of the supporting 
leg. This push off is both in the direction of an upwards push (to effect the rising onto the toes 
of the supporting leg) and the two pushes sideways by both of the legs that produces a torque 
about the central axis of the body. The movement of the closing of the arm, (though it does affect 
the moment of inertia and therefore, the angular velocity), is known to contribute little to the 
magnitude of the torque about this axis. 

The front leg is ideally at the knee of the other leg when the turn is 114 completed. The actor 
has turned while keeping the body as straight as possible and still has the head directed back to 
the original focus. 

The next action to take place is the maintenance of the head directed to the orginal front, until 
this is impossible to  accomplish. At that time, the head is quickly turned around the body until 
it can again focus on the orginal focus. This action is called 'spotting' and while it does have 
some dynamics effect, it is not of much interest to our simulation, since it provides little driving 
kinematics or dynamics. However, ideally, the head is again focussed towards front when 314 of the 
turn is completed. If a second turn is desired, the turn proceeds with only the head providing any 
additional movement. The movement of the head is known not to contribute to the torque about 
the body. 

There are dynamics criteria of magnitude on the original torque caused by the sideways push 
of the feet, and the degree off true vertical of the central axis of the body that will determine the 
number of possible repetitions of the turn. 

When the actor is ready to stop, this takes place at the 3/4 position of the turn. The actor is 
facing 270 degrees from the initial starting position and the head has been turned around to again 
focus towards the front. The actor then begins to open up both arms and to slide the front leg 
down the supporting leg while bending the supporting leg. Both legs arrive at the position on the 
ground as initially (fifth position) but with the legs bent. The arms are fully open and the legs 
back in position and the head is focussed forward at the end of the turn. 

Some driving dynamics are provided in 1141, the positional goals by [ll] [12]; and the constraints 
by the joint constraints of the body. Additional constraints are on the magnitude of the torques 
that can be produced by the feet and certainly, a non-self intersecting constraint of the actor. The 
definitional degrees of freedom include 

a 1) the flexibility in timing of the positions 

a 2) a range of error allowed in achieving the positioning goals 

3) the addition of dynamics forces to achieve expressive qualities 

The second item is the most interesting since failure to achieve some of the positional goals 
produces side-effects. As an example, if the body is not rotating at a true vertical, the angular ac- 
celeration of the turn will cause a horizontal acceleration thereby 'tilting' the turn. After some time, 
this horizontal force will cause a large enough deviation off true vertical to allow the gravitation 
force on the body to cause the turner to fall. 

This example will be referred to throughout this paper and will be presented as work to be 
done in the Research Plan. 



1.6 Overview of the Chapters 

Chapter 2 reviews related work is several relevant areas of human motion. We present the problems 
that are inherent in each of the methods if used as the sole means of specification. We present the 
attempts t o  combine the specifications from each of the methods and conclude that these hybrid 
methods are not sufficient. We draw on previous work to establish what attributes are necessary in 
effective human motion control, and establish concrete criteria to use in evaluation of our system. 

Chapter 3 gives an overview of the TAKE-ONE system and its methodology. We discuss the 
related work in formal movement disciplines to provide a set of motion attributes that will form 
the parameters of the TAKE-ONE system. We introduce one of these parameters, FLOW, and 
give the details of its use. We introduce the semantics of the TAKE-ONE system, that is, how the 
parameters of TAKE-ONE can be interpreted by a non-expert user and how the parameters can 
be similiarly refined. We briefly discuss the possible application of a hierarchy for inheritance of 
TAKE-ONE parameters to  control the definitional explosion of complexity. Finally, we evaluate 
TAKE-ONE in terms of our criteria of Chapter 1. 

Chapter 4 continues with the presentation of TAKE-ONE by detailing a second parameter, 
ADM. ADM will be used to control kinematic specification both by allowing automatic generation 
and iterative refinement of a kinematic simulation. Additionally, ADM will allow a flexible means 
to  adjoin a kinematics simulation to  a dynamics simulation. 

Chapter 5 gives a detailed example that has been produced through the TAKE-ONE system. 
Chapter 6 presents the current status of the TAKE-ONE system and presents the Research 

plan. 



Chapter 2 

Related Research 

2.1 Representative Existing Models 

2.1.1 Parametric Interpolation 

Early approaches to  animation were purely kinematic. The user would specify the positions of an 
animation variable and the time a t  which these positions should occur. These position-time pairs 
were referred to as key positions, from the terminology of Classical 2-D animation. To provide 
enough information for animation (24-30 frames per second), i.e. values for the in-betweens, (the 
times between key positions), interpolation methods would have t o  be used. The most satisfactory of 
these interpolation methods was the cubic B-Spline which allowed second-order continuity (visually: 
"no jerk") and which allowed the most independence of control over the interpolation of the different 
sets of in-betweens ("local control"). 

The number of animation variables to control a human figure, however, was inconvenient to 
handle. To animate a human figure in an environment produced additional concerns of relative 
timing. And finally, in a jointed figure, motion of one joint affected another. 

The parameterization of an animation addressed the concerns. Keyframes which included key 
positions for a group of animation variables at one time, were the first parameterization. In this 
method, each animation variable in a keyframe would be separately interpolated, but the user would 
need to only specify a keyframe-time sequence. Track systems gave the user finer control over the 
interaction of the keyframes. Inverse kinematics (e.g. in the use of reaches where the position of 
the finger could be specified, and the angles of the shoulder and elbow automatically determined) 
were added as a standard procedure in kinematic simulations to address the interaction problem. 
Finally, the attention was focussed on greater control of the dynamics of the path traversed by 
an animation variable over the course of the animation. The interpolation methods yielded very 
similiar dynamics for any input, i.e. a smooth changes in acceleration by virtue of the cubic spline. 
Much work was done to  address this problem through the method of interpolation, which while it 
produced many sophisticated methods of intrinsic interest, it was not successful as a solution to the 
timing of human motion animation. The introduction of dynamics systems became the alternative 
approach. 



Gomez: TWIXT 

Gomez [lo] developed a pure kinematic system, called TWIXT, that formalized the interaction 
between dependence and independence of the control needed for the animation variables by the 
concept of the track. In track systems, animation variables are partitioned into groups; each of these 
groups are separately animated. The final specification was a juxtapositioning of the animations 
from each track. Thus, the user could independently and iteratively determine the relative timings 
between each of the tracks. In this system, the tracks were the parameters to  be controlled. 

Steketee-Badler: Double-Interpolant 

Steketee and Badler [16] increased the control over the interpolation of an animation variable by 
separating the specification of the path and the speed of traversal of that path. Their method 
was a double (B-spline) interpolant mapping keyframe times to  keyframe index ("kinetic spline") 
and keyframe index to  position ("motion spline"). The resultant motion was a composite of these 
two interpolations. The double interpolant method also allowed for acceleration control across the 
boundaries of separately interpolated animations ("joining"). Thus, specification of the kinematic 
path and the speed of the traversal were othogonalized. Many other variations on the method 
of interpolation for kinematic simulations have been developed and provide similiar capabilities, 
especially when coupled by a kinematic reach capability, described above. The double interpolant 
method, though, provides what we believe is the cleanest semantics and the most intuitive user 
interface, and thus, formed the basis for TAKE-ONE'S kinematic simulation ability. 

2.1.2 Kinematic Simulations 

Zelter: Motion Control Program 

Zelter [20] developed a kinematic system for human gait based on state changes of the variables 
("Motion Control Program"). The motor control program would decompose a high-level specifi- 
cation of an action (e.g."walkn) into subactions, and a low-level processor would subdivide these 
into atomic actions. (e.g. "heel-off"). This work is representative of the last major efforts at pure 
kinematic control, for while it significantly addressed the particular problems in the target domain 
("walking") and drew support for its methodology from biomechanical studies, it still produced 
uniform dynamic and unexpressive animations. 

Badler et al: TEMPUS/JACK 

Badler [4] developed an interactive system, TEMPUS, that allowed definition of a keyframe to be 
any sequence of control commands. Thus, a keyframe might have an instantiation of a new body, 
positioning of another body, change of color of an object and a change in the view orientation, all 
within a single keyframe. However, the control commands were mainly limited to static properties 
of a variable so that varying constraints conditions (i.e. move the hand with the glass) were difficult. 
(Our test case, GLASS, was produced through this system.) A unifying model [5] of environment 

. . 

and human body model has recently appeared to address these problems. 

'The interface JACK [15] is currently under development and is expected to be available for use in our planned 
test cases. 



2.1.3 Dynamics Simulations 

As we saw, improvements in kinematic simulation methods could not adequately address the prob- 
lem of imparting dynamics to a kinematic simulation. Attempts at dynamics systems then ap- 
peared, and while, theoretically, dynamics would produce the most accurate and powerful form of 
specification, it was quickly found that the method was almost completely intractable. Specifying 
forces was an impossible task for the average user; sample values had to be supplied. The methods 
to resolve these forces to obtain a sequence of positions for animation required non-linear methods 
(such as numerical approximations to integration) and so the time complexity of the simulation was 
a limiting factor. Finally, the power of dynamics was so great, that unless a suitable set of opposing 
forces could be determined to control their extent, the simulations had to be artifically clamped. 
Thus, for human motion animation, dynamics simulation systems very quickly dewloped into the 
current hybrid models, attempting to merge kinematic or constraint specification to provide that 
control and dynamics simulations to provide the driving fefeee. 

Armstrong et al: Dynamics simulations 

Amstrong, Graon and L&e [I] devslepsd rr, d y n d e e  mimiltion flystem whieh dews iterbtive 
unsr nnntral d slra dyn~m9ow pmcbm~tsm, The oSfnctr of dytrnmlois e~lno419ilann atr fi Blagle jslat la  
automatieally propaghted through the bodyj the~eby relieviiig the uoer of speeifieakiefi fe2 thefie 
dependent vsslahler, Pbth apaciflcatlan In mtlflcdly handled, even for the case when the motlan lo 
driven by pure dynamics. If a torque is applied to a free-swinging limb, the path is c,ent,@cd by a 
~onrtrdnt; an tihs Qerquo md Iba rake af. eh~hlnw, $krrn, %ha radlnm nought 6y the @@a eat dyakmlaa 
is reduced since dynamics only provides the criteria to initiate a motion, not to  control it. 

Girard: Dynamic-Kinemat ic Simulation 

Girard [9] used a combination of dynamics and kinematics to produce articulated figure locomotion. 
His method separated the locomotion task into a dynamically determined path and kinematically 
determined leg motions. Hybridization therefore occurred across degrees of freedom. Interactions 
between the methods were limited to the dependency of kinematics on an adjustment to the anima- 
tion figure's banking angle during movement. Girard established a database of postures which could 
be instantiated and modified (though mostly, by conditions on the dynamics) to fit the current ap- 
plication. The user had access to a interactive method of refinement of path control. Interestingly, 
this system was designed to perform a type of iteration of global specification (i.e. applied to the 
entire system, not to just a single force) to achieve a final goal animation. However, this iteration 
was under program control and was directed to the resolution of the dynamics forces. The user, 
though, had the ability to view the incremental effect of adding dynamics specification. 

2.1.4 Constraint Simulations 

Pure constraint systems do not yet produce results sufficient for human motion animation. General 
forms of constraints might be expressed as set of logical conditions over time, and their satisfaction 
ordered in some manner. For human motion, these conditions may may be expressed as positional 
constraints ("kinematic constraints") or as constraints on forces ("dynamic constraints"). For these 

'In TAKE-ONE'S terminology, this is equivalent to FLOW of all-dynamics at start. See Chapter 3. 



applications, logical conditions (e.g. A is NOT B) must be expressed over a continuous domain 
(e.g. A is 6.5 inches away from B). The current model of human motion constraints is of a spring 
and damper system, so that the constraints may have weights. Thus, a constraint for A to be 
6.5 inches away from B might be weighted higher than a constraint for B to  be 4 inches away 
from A. This weighting is necessary to resolve multiple constraints over a continuous domain, to 
avoid contmdiction. (In a pure logical formation, the two constraints above are contradictory). 
Satisfaction of human motion constraints can provide a goal position, but is not convenient at  
solving the rate of this satisfaction. Thus, in the above example, resolution occurs when A is 6.5 
inches away from B; if initially B is not at that position, the control of the movement of B to A 
("satisfaction of the goal") is unspecified. The complexity of logical conditions necessary to  express 
a realistic environment and the temporal nature of human motion constraints leads to a system of 
multiple constraints overlapping in time. The method of resolution currently in use is to solve these 
conditions with an iteration through time, thereby preventing global control of the solutions (i.e. 
path of movement caused by multiple satisfaction of the system of constraints). Existing models of 
human motion animation "solve" this problem by some form of path control, usually by a limited 
implementation of kinematic specification. We will see that the existing approaches to this task 
are not satisfactory. An example of the use of constraints to position a figure at  an instant in time 
is given in [5]. 

Barr: Dynamic Constraints 

Barzel and Barr [REF] developed a system based on dynamic constraints. The user has a database 
of driving forces (e.g. gravity, torque) and a set of intuitively expressed constraints (e.g. "point 
to nail" which requires a point of an object to remain at a global position in space). The system 
resolves the set of simultaneous constraints into a set of forces necessary to achieve the constraint 
goals, through a method of inverse dynamics. Path specification is modeled by a sequence of 
point-to-nail constraints. Thus the system allows the hybrid control of kinematically specified 
paths and user-specified forces to drive the motion. The addition of dynamic constraints is handled 
artifically, however, since the complexity of their specification includes a user-designated function to  
designate the speed of the satisfaction of the constraint. Also, the use of constraints to solve a path 
specification is costly. The most serious objections is that the mixture of specification is handled 
in an inherently conflicting manner. The kinematic specification includes the velocity of the path 
traversal which can not be effected by any additional constraints or forces. Thus kinematics and 
dynamics are viewed as mutually exclusive methods of specification. 

Wilhelms: Kinematic-Dynamic simulation with Dynamic Constraints 

Wilhelms [IS] has developed a system that provides a hybrid K-D control, with constraints modeled 
by springs and dampers. As in [7], a kinematic specification is reduced to the set of forces necessary 
to achieve the path. However, in this work, since an animation is considered as transitions through 
a set of states, the problem of rate of satisfaction of positional goals is avoided. The hybridization 
is achieved by allowing an animation variable to be specified either by kinematics or by dynamics 
at any point in time, but not by both methods simultaneously. The hybridization, however, only 
intensifies the effect of an inaccurate kinematic path, and control of the composite set of forces 
along a path is very difficult. Thus, the most important property of kinematic path specification, 
i.e. the control over the smoothness (differentially continuity) of the animation over that path, 



is sacrificed. Combining this with the loss of speed control of traversal over the path (as in [7]), 
kinematic specifications are reduced to point-wise positional constraints. 

2.2 Problems with Existing Models 

Problems with the existing systems arise because each of the three KDC methods are not clearly 
understood for the power of their specification. This is a opposite issue to one of implementing 
the specification. One of the present systems, [7], elegantly handles simultaneous specifications 
from a set of forces to which a KDC specification has been diluted. However, this system actually 
limits the power of a kinematic specification. Kinematic specification, historically, was used to 
specify path definition, speed and smoothness of path traversal, absolute durations, and discrete 
positional goals. This overloading was clearly evident in the ease of use of the method (since path 
control, dynamics, and constraints were specified through the same two parameters, i.e. a set of 
keypositions and a set of keytimes. But conversely, this overloading made the determination of the 
values of these parameters very difficult. Dynamics systems have only transferred the overloading 
to a less intuitive, more computationally complex method. 

Certainly, dynamics and kinematics are dual to each other in that F = ma, but that also 
implies that the two methods can not be orthogonal. Thus, the problem of overspecification in a 
K-D method must be systematically handled. 

On the other side of the spectrum, constraint animation systems are naturally underdefined. 
The addition of kinematics or dynamics is clearly seen as necessary but the problem of how to  
incorporate them into constraints without inheriting their overspecification has not been resolved. 

Thus, any attempt at  the development of a methodology would ideally start by defining the 
purposes and extent of the tools to be used. For human motion animation, these tools are already 
existent, though not clearly understood. In this thesis, and specifically, in the test cases in our 
planned work, we hope to make the functionality of each tool, more precisely defined. 

2.2.1 Problems with Keyframe systems 

Keyframe animation, since it was the simplest and most commonly used, was our first focus in our 
attempt for clarification of each of the KDC methods. 

There are some intrinsic problems with keyframe animation. First, the specification of exact 
times and positions of the keyframes require special training or expertise, and many everyday ac- 
tions, such as touching one's nose, do not have a fixed set of essential keyframe position/times 
that define the action. Further, in a keyframe system, even the absolute duration of a keyframed 
animation cannot be changed, yet we know as many actions which have flexible durations (stirring; 
brushing hair) as those which are interpreted differently depending on their duration (touching a 
table versus smacking a table). Thus, keyframe animation can provide little insight to what con- 
stitutes an essential definition of an action. Keyframe animation simply provides a specification, 
at best, of a single instantiation of a movement while keyparameter systems have a limited appli- 
cation of their parameters. We seek to determine methods of parameterizing a general definition 
of a movement, whose parameters may be fixed or flexible. 

We summarize, below: 

Keyframe Animations were Over defined 



- pure keyframe systems need many keyframes t o  precisely define the action; but few 
keyframes are usually known or represent positional goals 

- dynamics can only be imparted through specification of timing of a keyframe so keyframes 
existed simply to  fix the dynamics 

- iterative refinement was done by ad hoc methods: i.e. additional keyframes, manual 
editing, guessing a t  changes in the key times 

- there was no way t o  specify ranges of acceptability or  "Don 't Care" for the values of the 
animation variables 

Keyframes at non-key times can introduce errors or redefine the animation 

- additional keyframes, occurring a t  non-key times, are more likely to  include arbitrary 
values; imprecise/ vaguely-defined animations could afford to  have a substantial range of 
error in specification or  interpolation as long as the resultant animation "looked good" 

- keyframes a t  non-keytimes usually forced an arbitrary parameter association (i.e. in- 
teraction between animation variables by co-definition in a keyframe); this interaction, 
since i t  is implicit, is not easily discernible 

a Keyframe methods lack ways to specify dynamics and phrasing (joining) of animation seg- 
ments 

- many keyframes were used simply to fix the dynamics 

- most systems required long animation durations t o  avoid the problems of phrasing 
(smoothly joined segments were done as a single animation; discontinuous segments 
could be done separately) 

We will see in Chapter 4 how the ADM parameter of the TAKE-ONE system addresses these 
concerns. 

Summary 

None of the existing systems provides a structured way to refine an animation, nor do they address 
the problem of essential definition. Armstrong's work recognizes the importance of refinement 
and definition, but only as a way to address the non-intuitive and intractable control of dynamics 
systems. 

Girard's work, the constraint systems and the A1 approaches allow modification of existing 
specification due to changes in the environment or due to the individuality of the actor. These 
systems, however, do not provide a means to  define that individuality. 

Further, most of the systems assume that the user has predefined the specifications of the 
animation. This uncertainty, however, is one of the qualities that distinguishes human motion from 
robotics. A user may have a general idea of the motion initially, so that the values of the parameters 
might be bounded, but these values will not be accurately known. Clearly, this has been the case in 
dynamics systems and keyframe systems intrinsically violate this uncertainty criteria. For human 



motion animation, unlike robotics motion, there is a need to provide the user with a structured 
method of iterative refinement. None of the present systems can provide this capability. 

We summarize the most serious objections to any other of existing methods of human motion 
animation: 

a Specification methods are conflicting, produce overdefined systems, are not-well understood 
conceptually. 

a Attempts at hybridization of the current KDC methods cause a decrease of functionality in 
at least one of the methods. 

a Input parameters may be too limiting (keyframe systems for absolute positional values; dy- 
namic systems for complexity of specification, especially in controlling positional goals). 

a There is no way to adapt present animations to other jointed figures, i.e. essential definitional 
qualities of the motion are not understood. 

a It is hard to include human qualities such as individuality and expressiveness within same 
action. 

a Current models are insufficient to express gradations in the motion due to level of experience, 
talent, foci. 

Thus, the present models are insufficient to satisfy our criteria of specification, refinement, 
adaptability and analysis. In the next chapter, we present our approach to these criteria. 



Chapter 3 

Our Approach To Human Motion 
Animation 

3.1 Our Methodology 

3.1.1 Express iveness  versus  Forces 

The term dynamics is commonly used to express both the actual forces that are being simulated and 
to represent an expressive quality of an action. While expressiveness might be reflected in changes 
in acceleration during a path traversal (which necessarily are caused by internal or external forces), 
this model of expressiveness is not powerful enough for TAKE-ONE'S purposes. 

Hereafter, we will confine the term dynamics to mean the computation for and with forces. 
We define expressiveness as the quality of a body that relates to its intent, talent or personality. 

A model which we can use as a basis for a specification of expressiveness is Effort-Shape. The 
Effort-Shape methodology and notation was developed by Laban [6] in an attempt to classify 
motion characteristics. We will describe some of the elements of Effort-Shape and show how we 
incorporate our interpretation of this model into TAKE-ONE. 

3.1.2 Effort-Shape 

During a study of Effort-Shape notation [6], [8] it became clear that one of the most important ideas 
behind observations of human movement was that there are a small number of dimensions along 
which qualities of a motion might be described. It was observed that actions had certain inherent 
ranges and combinations of Effort-Shape dimensions which were essential to the interpretation of 
the action (e.g., a slap as opposed to a punch) or to the intent or expression of the actor (e.g. 
urgency, nervousness). 

One of the chief proponents of Effort-Shape motion analysis, Irmgard Bartenieff says: 
((In d l  activity, there is a constant play for proportionality among the Effort elements to balance 

exertions and recuperations for most effective function and expression. Furthermore, the same 
activity, done by two individuals, may be organized with somewhat different Effort punctuations 
- Effort rhythms - even though the same elements are being used. When two people do the same 

'If necessary to apply the term d y n a m i c s  to represent ezpressiveness,  we will use the term in quotes. 



thing, it  is not the same ." 
In Badler 121, the Effort-Shape notation was related to a computational model for the use in human 
motion animation. In this work, the Effort dimension was abstracted as: 

the relative attack and decay accelerations of the motion 

whether the motion is characterized by end effector goals or just joint angle changes 

whether the motion is characterized by muscular control or freedom 

We examine each point in turn. 
The first point is rather well-established in the computer graphics literature as the notion of 

"easing." To implement this, we have developed a method of kinematic specification: ADM, the 
attackldecay method of TAKE-ONE. ADM will allow us to obtain a finer degree of control over 
acceleration than is usually offered by traditional key parameter systems. An additional advantage 
of ADM is that it can be used for direct modification of keyframe times to achieve continuity of 
acceleration across a Dynamic-Kinematic simulation boundary. We will return to ADM in the next 
chapter. 

The second point implies that the animator should have a continuous choice between totally 
indirect actions (specifying joint motions individually) and totally directed actions (relying on 
inverse kinematic procedures to achieve goals for articulated chains of joints). Previous methods 
have only provided the cases at the both extremes. The implementation of this point is part of our 
planned work. 

The third point might be taken to imply that a muscle model is required for natural animation, 
but we desire a simpler and less expensive computational model. Thus, we model this dimension 
by describing how a joint (or degree of freedom) responds to or initiates force. If the joint is able 
to resist forces, the muscles are in control and the motion is said to be Bound. If the muscles are 
not resisting the force, then they are reacting to it in a physical way and this is said to be Free. 
As in the previous point, we wish a continuum between these two extremes. This continuum from 
Free to Bound is called FLOW. 

FLOW can be viewed as a global modifier of the other Effort dimensions. In the Effort-Shape 
notation, changes in FLOW are one of the most important characteristics of natural human motion. 
As Bartenieff continues: 

"Flow is the initiator of action. Although it is not necessarily dominant, and may not appear 
identifiable as Bound or Free, its neutral continuity as flux will still underlie all other Effort elements 
3 ,, 

The individualization of motion and the combinational role of the FLOW concept has been 
established from extensive observations of actual movements. We will provide experimentation to 
test whether our implementation of FLOW has similiar properties. 

3.2 FLOW parameter of TAKE-ONE 

The FLOW parameter is used to reflect the user's determination of the relative weights or depen- 
dency of any animation variable's position and orientation on the results from each of the simulation 

'Bartenieff [6], page 53 
3Bartenieff [6], page 55 



methods. Thus, a user may designate that an animation may start off being 100% dependent on 
the kinematic position/orientation, but may be forced to be 100% dependent on dynamics at the 
end. (Examples of this would be a ball-toss or a free-fall in our GLASS example). Between the 
two extremes, (and associated with the times between starting and ending of the animation), the 
dependency may vary smoothly or discontinuously. 

The FLOW parameter of TAKE-ONE is based on the key observation that the state of the 
world (e.g. a body's configuration (position and orientation) and their derivatives) is defined by 
each of the simulation methods. We may obtain these values directly from a dynamic simulation, 
from a kinematic simulation via approximation or ADM and from a constraint simulation via ap- 
proximation. Further, the necessary information to instantiate any of the methods can be obtained 
from this state information without consideration of which method or methods contributed to the 
definition. (see Figure 3.1) 

FLOW is represented by sequence of (time, value) pairs, where each value is a triple (k, d, c), 
for the associated instant in time. Each component of the value is a weight to be applied to the 
corresponding data from a (Kinematic, Dynamic, Constraint) triple-simulation. Thus, at any time 
ti, if positionj, orientationj represents the position, and orientation of any animation variable from 
simulation method j, 

FLOWvalue = (k, d, c )  where k + d + c = 1 
and, 

resultant-position = 

k x positionk + d x positiond + c x position, 

resultant-orientation = 

k X orientationk + d x orientationd + c x orientation, 

An important property of this formulation is that incremental changes in any of the FLOW compo- 
nents are easily reflected in the others. Triangular Interpolation method gives weights to each of the 
kinematic, dynamic, and constraint resultant values, where the weights are interpolated between 
specified values to provide a smooth continuum of values. The final position at the designated time 
is a sum of the weighed values. 

3.2.1 An example of FLOW 

In this section, we refer to Figure 3.2. 
FLOW need not be specified for a l l  frame times. Instead, we input a FLOW specification of 

(time, value) pairs, (ti, fi), i = 0, n - 1. To get the value of FLOW at the frame times, we use one 
of the interpolating methods. Presently, we simply linearly interpolate, but we will examine other 
methods of interpolation in our later work. 

We break Flow into separate segments for the interpolation. In this case, we break the speci- 
fication into two branches, one from to to t; and another from ti+l to tn-1, and interpolate from 
fo to f; and from fi+1 to fn-1. (We also allow a discontinuous FLOW to be specified by ti = t;+l 
and fi # fi+l.) 



Figure 3.1: Common DataBase per Animation Variable 

*global history data* 

includes: 
position, Aposition, A2position, 

orientation, Aorientation, A20rientation 
(whose source = [Kinematic, Dynamic, Constraint] need not be known) 

along with: (as necessary) 
current torque, current momentum, 

interpolation method and parameters/coefficients, etc. 

*current parm state* 

includes: 
(position, Aposition, A2position, 

orientation, Aorientation, A20rientation) 



Example Flow Values 

(k,d,c,a, P, Y in [O,11) 

(k,d,c) at start = (1,0,0) 

(k,d,c) at time t = ( a ,  P, y )  

(k,d,c) at end = (0,0,1) 

c (0,071) 

Figure 3.2: Flow Diagram: an example 



The user can input a minimum of two FLOW (time, value) pairs for any animation. Suppose the 
user specifies a FLOW of (to, fo) = (0, (1,0,0)) ; (ti, fi)  = (t, (0,1,0)) ; (t,-1, f,-l) = (0, (1,0,0)) 
where t is some point in the (normalized) time range (0,l).  This FLOW signifies an animation 
that starts and ends with total kinematic control but achieves total dynamic control at time t .  
This FLOW is typical for motions that have determined starting and ending positions but may be 
driven by dynamics within the interior of the animation. Chapter 5 gives an example of FLOW in 
an animation that was produced by the TAKE-ONE system. 

The determination of the value t may be obvious, as in the case of regular circular motion 
(i.e. t = 112). Alternately, it may have to iteratively determined, determined as a constraint or 
determined by other parameters in our implementation of the Effort-Shape formalism. 

3.2.2 Use of FLOW to direct simulations 

In the simplest case, the animation must have a full simulation for each of the methods to be merged 
via FLOW. A minor improvement is obtained by directing the invocation of a simulation method 
as needed by FLOW. If, for some method, for some interval, the designated weight from FLOW is 
zero, then TAKE-ONE should prevent the running of that method of simulation. Conversely, if at 
any time, FLOW requires a value from a non-current simulation, a default value or an instantiation 
(possibly, with additional user input) should be done. 

FLOW can invoke dynamics simulation by animation variable, avoiding a full dynamics sim- 
ulation. Animation variables can be organized (see Research plan) into hierarchical groups with 
variables inheriting the dynamics specifications of other parameters. Since FLOW allows the par- 
allel power of both kinematic and constraint specifications, in some cases, the dynamics simulation 
may only need to include certain forces (e.g. torque or gravity) as in the case of PIROUETTE. 
This allows the use of closed form equations for the dynamics simulation, greatly decreasing com- 
putational complexity. 

Similiarly, since constraints and dynamics are integrated into FLOW, only the kinematic spec- 
ification of actual goal positions is required. This reduces the complexity of the kinematic specifi- 
cation. 

Further, the inclusion of a kinematics simulation avoids the necessity of determining the forces 
for inverse dynamics to achieve a goal position at some goal time. FLOW allows the switch from 
forward dynamics driving the action to inverse dynamics controlling the action to be specified in 
the Flow array. 

3.3 Motion Semantics of the TAKE-ONE SYSTEM 

3.3.1 Categorizing FLOW 

Providing precise, expressive and easy interfaces to TAKE-ONE is a major goal of our work. While 
the power of FLOW can be easily demonstrated, it still needs an method of specification that can be 
easily defined and interpreted by a non-expert user. We suspect that only certain combinations of 
FLOW will be seen in natural motion. A known useful FLOW is: all kinematics at the end-points 
of an animation, all dynamics by the mid-point. This is the FLOW used in initial runs of the 
GLASS example. (The final version has 50% at the midpoint, since at loo%, the effect of gravity 

4For a kinematic simulation, we must either run the entire simulation or else entirely exclude it. 
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would cause the glass to contact the table almost immediately after the start of the animation. 
This actually is a more interesting animation; for illustrative purposes, we choose a slower rate of 
descent). 

Other possibilities are dual of the above (all dynamics at the ends, all kinematics at the niid- 
point) or (all kinematics at each key-time of a kinematics simulation, all dynamics at the mid-point 
of each interval). We will examine the possible categorizations of FLOW in our planned work. 

3.3.2 Modification by differentials "more" or "less" 

Well defined semantics for "more" and "less" can be offered for both the ADM parameter described 
in the next chapter and FLOW, since they are continuous dimensionless quantities. In FLOW, for 
example, we can specify: 

for "more" kinematics: Sk = (1 - k ) / 2  

for "less" kinematics: Sk = k/2 

where the other Sd and Sc change accordingly. If repeated, these form a natural progression of 
refinements. 

It is interesting that a user, once given the ability of parallel specification, can easily adopt 
corrections to  an animation within this framework. Thus, in a test run for TAKE-ONE, a previously 
kinematically defined (i.e. overly smooth) motion of a leg kick was immediately critisized for 'not 
having enough dynamics' driving the motion at the highest part of the kick. Thus, there is some 
evidence that this method will provide a partial answer to our goal of refinement. 

3.3.3 Adding "Intelligence" to TAKE-ONE 

The addition of FLOW and ADM parameters, to  the specification of possibly three different simu- 
lations, would accentuate the user-specification task, were there not any orderly method to provide 
defaults for at least some of these values. Associated work by other researchers is being done 
to  address this issue from a process-control level, though we must will provide a basic ability for 
generating default value for the parameters of TAKE-ONE. 

Another need is an intelligent database so that typical animation variables (e.g. "right shoul- 
der") might be known to the system. We can immediately recognize the necessity of this database 
since the inclusion of dynamics forces requires that the 6-degrees of freedom for a single joint be 
identifiable, so that directional directives of the joint's motion might be queried. 

3.4 Summary 

The motion semantics of TAKE-ONE will be developed to  provide the availability of the system 
to  a non-expert user, control the explosion of complexity and allow expressiveness to be included 
in an animation. Thus, this will satisfy all but one of our criteria for specification developed in 
Chapter 1. 

51nformal Testing, Graphics Lab, 1988 



The remaining problems of our criteria demand closer examination. We need to test whether 
the FLOW and ADM parameters of TAKE-ONE are sufficient to achieve individuality of an actor 
or of a particular instantiation of an action. We still have at our disposal the other dimensions of 
Effort-Shape whose implementation could provide additional specification. 

The question of non-orthogonality (overlapping) specifications is partially resolved by the ability 
to  control the merging via FLOW and also, by the ADM kinematics-dynamics join application (an 
example of the latter is in Chapter 4.) Since we have only addressed the question of how to 
resolve non-orthogonal specifications and not how to prevent or minimize it, our model is clearly 
insufficient. (We might again remark that in an interactive, iterative system, that minimization of 
non-orthogonality is equivalent to providing the user with clearly definable tools of specification.) 
This insufficiency shows that at the present time, for this criteria, our system has done no better 
than the other hybrid models. However, there is no loss of functionality of any of the KDC 
methods in TAKE-ONE, and it achieves a truly parallel method of specification. The concept of 
genemlization, since it allows the minimization of specification (and therefore, minimal opportunity 
for non-orthogonality) will allow us to test the degree to which this non-orthogonality can be 
controlled. 

Finally, in order to  allow iterative refinement, we must carefully handle the addition of specifi- 
cation at each iteration. This procedure will be examined in the implementation of generalization 
in TAKE-ONE. Important issues that must be addressed are continuity of specification (to yield a 
limit and methods to recognize when that limit is not possible (i.e. further refinement is constrained 
along some dimension). 

An additional result of this work will be a method to construct an essential definition of a 
motion, thereby satisfy our remaining criteria of specification and analysis. PIROUETTE and also, 
the wheel turning example, will provide our test cases for evaluation of genemlization. 



Chapter 4 

ADM parameter of TAKE-ONE 

In this chapter, we introduce a method of animation control by AttackjDecay Map of Keyframe 
Times ("ADM"). We discuss, in the TAKE-ONE system, how this parameter can be used to provide 
a minimal definition for a kinematic specification. We discuss the modification of an existing 
kinematic specification via the ADM map to achieve acceleration control at the end-points. We 
show how this can be be used in an application at a Kinematic-Dynamic simulation boundary. 
We next discuss generation of a kinematic specification via the ADM map to structurally and 
iteratively define the specification. This application will provide a solution to the problems inherent 
in traditional keyframe animation outlined in Chapter 2. 

4.1 Introduction 

As we presented in the previous chapter, the Effort dimension was abstracted as the relative attack 
and decay acceleration of a motion. This is the ADM parameter of TAKE-ONE, which we will 
examine in detail in this chapter. 

The ADM has as a basis the interpolant method Stekette [85], which allows temporal control 
to be separated from spatial control by separately interpolating the keyframe time to keyframe 
index function, and the keyframe index to motion variable value. This was extended by adding a 
third interpolant - a preprocessing Hermite function - mapping key times onto key times to effect 
acceleration control at the end points. In this application, the Hermite function is constrained to 
be monotonic to preserve the order of the key events. 

An immediate advantage of the triple interpolant method is that it can be used for direct 
modification of keyframe times to achieve continuity of acceleration across a Dynamic-Kinematic 
simulation boundary. Further, the juxtaposition of a dynamics simulation can use (or define) these 
accelerations, for user control over the degrees of continuity between the two different simulations. 
That is, an ending acceleration found from a dynamics simulation, can be translated to a starting 
acceleration input to the ADM method, to provide second-order smoothness across the simulation 
bounds. Similiarly, an ending acceleration can be used as input into a dynamics simulation, that 
begins at the end of a kinematic positioning. We discuss both these points in the detailed example 
presented in Section 2. 

Internal keyframes are less affected by the Hermite (ADM) mapping than keyframes occurring 
at the end-points so that this modification is appropriately localized. However, there is a trade-off 
of low-level control of the keyframe times to achieve the higher level goal of acceleration control. 



The ADM, however, is sufficient to specify smooth sequences of key-times for any sequence of key 
events. We will briefly describe in section 3 how TAKE-ONE might iteratively define a kinematic 
simulation through the use of a small number of basic keyfrarnes and ADM mapping parameters 
(i.e. kinematic generalization). In this manner, the user would achieve the greatest control over 
the specification. 

The ADM method, by the use of starting and ending accelerations, can only minimally affect 
interior keyframe times. This would prevent our attempts for reduction since the space of Hermite- 
interpolated functions is smaller than the space of continuous functions, which is the family to 
which monotonic sequences of keyframes times belong. However, a little reflection shows that the 
number of true keyframes, i.e. actual kinematic goals, for most actions, are few if the ability to 
specify constraints, and dynamic criteria is available. 

We will return to genemlization and reduction, in our planned work. 

4.1.1 Associated Questions 

Bound on ADM 

The requirement that keyframe times, under a reduction transformation, maintain their temporal 
order, places bounds on the magnitude of the ADM starting and ending inputs. 

Further, the ADM bounds in conjuction with dynamics specification leads to a relationship 
between the allowable bounds and the absolute duration of an action. Thus, the differences that 
we see everyday, of modification of the absolute times of essentially sirniliar action, depending on 
context of the surrounding movements, may be affected by this requirement for monotonicity. We 
hope to examine this possibility. 

Time as a dependent variable 

An associated concept is to generally remove absolute time from the specification of an animation, 
and instead replace temporal specifications by range constraints of TAKE-ONE parameters. We 
will investigate the extent of this possibility in our planned work. 

4.2 A Detailed Example: ADM use in Interaction of Methods 

In this section, we refer to the animation specification that is described in Figure 4.2. We will use 
the notation "KP" to represent the term Kinematic Positioning which is TAKE-ONE'S terminology 
for a keyframed animation (kinematic simulation). 

Between to and ti, the user has provided a kinematic positioning KP#l .  FLOW requires a dy- 
namics simulation starting from ti. At ti, the kinematic simulation defines a current-parm-statek. 
Using this value, a dynamics simulation can be initiated and FLOW used to merge the two methods 
between t i  and t,. The relative weights of this merging would be found from interpolating FLOW 
from (ti, (1,0,0)) and (t,, (O,l,O)) to  produce a FLOW value ( a ,P ,  y) , 0 < a < 1 , 0 < 0 < 1 , 
for any time t ,  ti < t < t,. 

At t j ,  FLOW requires a value from a kinematic simulation, but KP#1 has ended. By default, 
we can assume a holding value from KP#1 and continue uninterrupted until t,. 

'This work has been completed and will be presented in the thesis. 
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parallel simulations 

kinem. dyn. constraint via 
time simul. simul. simul. FLOW current-parm-state 

Value here can be used $0 initiate 
I any of the methods of simulation 

Figure 4.1: Interaction of Methods 



At t,, another kinematic simulation is specified by the user (see below for an alternative, 
at this point). The user may wish to simply insert the new KP#2 and continue in a standard 
way, merging via the FLOW or can optionally require the KP#2 be smoothly merged by the 
current-parmstate at t,. To do the latter, TAKE-ONE would use the current-parmstate to 
obtain ADM parameters to transform the keyframe times of KP#2 so that the initial accelerations 
match the current values. This would produce a kinematic positioning which is closely related to 
the current dynamics simulation. The effect is a capture of the dynamics simulation by KP#2. 

A more interesting case arises if KP#2 is not fully specified. 
In the extreme example, only the terminal keyframe (at t,-l) and an ending ADM parameter 

(ending acceleration) are specified. KP#2 keyframe at t, would be the default value held from the 
keyframe at t j ,  and the initial ADM parameters would be obtained from the current-parmstate at 
t,. The ADM map is then used to generate KP#2. 

In either case, FLOW between t, and tr, now expresses the rate of increasing influence of 
kinematics in the animation. That is, FLOW between t, and tp specifies the rate at which the 
inverse dynamics would have needed to be specified, in a pure dynamics system. 

At tp, since the FLOW value is not at (1,0,0), the dynamics sinzulation between tp and tq is 
not needed and TAKE-ONE would not continue the dynamics simulation part tp. 

Comment: If, instead of a FLOW value at t, = (0,1,0) and at tp  = (1,0,O), we had FLOW 
values at t, = not - specified and at t, = (0,1,0), then between t, and t,, the FLOW value 
would range from (a1, PI ,  0) to (0, 1 , O ) .  That is, between t, and t,, the dynamics effect would be 
increasing, not decreasing as in the above example. 

The effect of KP#2 (under any option) is a stabilizing effect on the dynamics simulation. In 
this case, if KP#2 is not specified via ADM parameters determined by current-parm-statet,, a 
user might see a discontinuity in the animation at t,. This is not a serious issue since TAKE-ONE 
has substantially provided alternatives to this situation. First, a KP simulation itself may provide 
approximations to the desired values through the common current-parmstate. Secondly, as we will 
see in this Chapter, since ADM addresses most of the problems in standard keyframe animation, 
a user is encouraged to use ADM for even pure kinematics simulations (see Section 4-6). The best 
solution is to encourage the user to use the ADM parameters at such transitions by providing an 
useful interpretation of the ADM parameter from the Effort-Shape formalism. 

4.3 Iterative Specification 

The minimization of the number of keyframes leads easily to the generalization of a kinematic 
positioning. Given at least two keyframes to specify starting and ending configurations and times, 
the ADM can be used to generate a kinematic simulation as follows. First, we might generate a 
small number of intermediate keys at proportional equal times,and at proportional equal changes 
arc changes of positional values. (Such decompositions are always possible along a continuous 
kinematic path). The ADM input parameters can then be used to specify a sequence of key times 
for the generated key values, that reflect the users' desired starting and ending accelerations for 
the term of the kinematic positioning. In this way, default kinematic values can be generated for 
the FLOW method, and also, the user is freed from defining keyframes simply to provide enough 
information to use a cubic spline. We will return to this issue in our planned work. 
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Figure 4.2: Animation Controlled via FLOW 



4.4 Independent Use 

The ADM method addresses the concerns in keyframe or key parameter animations outlined in 
Chapter 2 and may be viewed independently as an alternative method to traditional kinematic 
animations. As saw outline in Chapter 2, the problems with keyframe or key-parameter systems 
are: 

r Keyframe Animations were Overdefined 

r Keyframes a t  non-key times can introduce errors or redefine the animation 

r Keyframe methods lack ways to specify dynamics and phrasing (joining) of animation seg- 
ments 

The ADM provides solutions to  these since: 

r ADM needs a minimum of specification to initiate a kinematic simulation; actions can be 
decomposed as finely as possible and the ADM parameters used to smoothly merge the 
pieces. 

r dynamics can be added to the end-points as a direct function of the ADM parameters. 

r ADM needs only 2 keyframes and two parameter values to generate a basic simulation. Refine- 
ment of the animation can be assisted through the joint addition of automatically generated 
key positions and heuristic user modifications 

r ADM has simple, structured iteration as a default 

The interaction of parameters may be simply addressed by any of the current kinematic simu- 
lation systems by the addition of polynomial and procedural forms. 
The remaining problem which are not directly addressed by ADM are : 

r how to address range of acceptability or "Don 't Care" 

This concern appears to not be able to be handled by ADM, and so must be addressed by other 
parameters or techniques of TAKE-ONE. 



Chapter 5 

Examples 

5.1 Introduction 

In this chapter, we present an example where taking a strict approach by any of the KDC techniques 
leads to expressive weakness or control difficulty. We then present our implementation of a simplified 
version of this example, below. 

5.1.1 An Example Requiring Hybrid Control 

There are numerous tasks whose specification requires a carefully choreographed interplay between 
kinematics, dynamics, and constraints. One such task is to place a heavy object on a cluttered 
surface. Ideally, kinematics would give the starting position; dynamics would cause the object 
to pull the arm down, and constraints would be used to cause the object to end up flat on the 
surface and to avoid obstacles on the way down. With kinematic control only, much interactive 
path planning would have to  be accomplished along with careful spacing of the key times to get the 
proper dynamic effect. With dynamic control only, a complex set of time-varying forces would have 
to  be determined to  avoid the obstacles and stop exactly on the surface. With constraints only, the 
dynamics of the object could depend on the method of weighting the obstacles to  be avoided; this 
together with a cluttered environment might result in an unusual path. 

Through FLOW, the problem would be modeled with a changing dependency on each of the 
methods of specification. At the beginning of the motion, a kinematic specification, that is, potential 
key positioned targets at given key times, would dominate. At sometime during the movement, 
dynamics in the form of a gravity force would be applied (perhaps with joint stiffness forces to 
model some of the arm dynamic characteristics.) Constraints would be considered along the entire 
path to avoid obstacles and to control the final surface to object relationship. 

In our example, as the object moves, kinematics becomes less important since, after the initiation 
of the action, the positional goals become increasingly better represented by dynamics and by 
constraints. The dynamics influences are relatively constant until the very end where they fade 
away to permit a graceful conclusion. Constraints modulate the dynamics path until the end when 
they dominate totally to fix the object neatly to the surface. 



Our detailed example is a simplication of the object placement example described above. Also, our 
example does not include a constraint to prevent the glass from intersecting other objects in the 
environment. 

In Figure 5.1, a series of frames are given for three versions of the animation. We include 
GLASS, which models the object placement purely kinematically. For this animation, we chose 
the least defined specification: i.e. the starting and ending keyframes and two in-betweens at 
proportionally even change in time and position. 

The second animation is GLASSDYN, which is a purely dynamic model. In this animation, the 
only forces are gravity to effect a free fall of the glass and an upwards force imparted by the hand. 
The hand "reaches" for the glass at every frame corresponding to the kinematic keyframes. The 
figure does not show the motion of the hand or glass between FRAME 1 and FRAME 17 where 
initially the upwards force dominates. Very quickly, however, gravity overcomes this force, and the 
hand and glass fall rapidly. By FRAME 25, the hand has lost the ability to  "reach" the glass and 
the motion of the hand ceases. The glass, however, continues to fall out of view. Since the user has 
access to  kinematic control, the user can specify only those forces which are considered to effect 
the "dynamics" of the action, not a complete set of forces which are needed to  drive the action. 

The third animation is GLASSFLOW, which is an example of a pair-case in the FLOW system. 
It merges the first two animations with the FLOW values of (time, (k,d,c)) of (0.0, (1.0,0.0,0.0)), 
(0.5, (0.5, 0.5, 0.0)) and (1, (0.0,1.0,0.0)). That is, at time 0.0 (FRAME I),  the animation is 
controlled by all kinematics; at time 0.5, (between FRAME 15 and FRAME 16), the animation is 
equally effected by kinematics and dynamics; and at time 1.0 (FRAME 31), the animation is again 
controlled by all kinematics. FRAMES 17 and 25 show the effect of the dynamics specification to 
achieve a faster descent, while FRAME 31 shows the kinematic goal of ending the animation with 
the glass on the table. This example shows the trade-off between complexity of specification and 
the local use of the appropriate methods, since without the power of constraints, the glass falls 
through the table (FRAME 25) and then magically rises to  rest on top of the table in FRAME 31. 
Varying the FLOW values to  reach all kinematics at the first time when the glass hits the table 
surface would correct this problem, but then the user would have to  know in advance when this 
condition would occur. The use of constraints would prevent the glass from falling through the 
table without any change in FLOW. The FLOW value of (0.5, 0.5, 0.0) at  time 0.5 was arbitrarily 
specified; the user could, in a refinement of the animation, require "more kinematic control" at  the 
midpoint of the animation and the FLOW value there would be correspondingly increased. The 
result would be a slower descent. 
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Chapter 6 

Research Plan 

6.1 What has been done 

6.1.1 Usage and Current Options 

We have a working system of TAKE-ONE which includes an implementation of ADM, and FLOW. 
The methods of simulation allowed are: 

Tradition Kinematic Simulation 

ADM for Kinematic Simulation 

Closed-form Dynamics Simulation 

The only grouping of parameters we support are determined by the kinematic simulation 
keyfrarnes. We must apply a single ADM map to all variables within that group. 

We allow kinematics and dynamics closed-forms to depend on the values from any kinematic 
animation variable. The converse, i.e. having a kinematic position depend on the dynamics, is not 
yet possible. 

We do not allow FLOW to direct the durations of the simulations, as we presented in our 
discussion of Figure 4.2. Instead, we do full simulations for each of the methods, and then apply 
FLOW. 

6.2 Proposed Extensions 

TAKE-ONE must be extended to include constraints, which will be done with the transfer of the 
system to  use JACK. We will include the method of genemlization by specifically implementing 
kinematic specification definition through an iterative ADM approach. We will develop a user 
interface to allow genemlization to be done for a dynamics simulation by defining a data base of 
forces (gravity, torque) that can be selected by the user. We will address the methods of constructing 
generalization for constraints. 

We will extend the implementation of ADM to allow genemlization. We will examine the extent 
to which an existing animation specification can be partially reduced to parameters of the ADM 
map for insertion into a database of defined actions. 



We will examine our hypothesis of the montonicity bounds on ADM have any semantic interpre- 
tation and examine the degree to which time can be replaced by ranges of TAKE-ONE parameters. 

We will decide if range of acceptability or "Don't Caw" can be expressed within ADM. 
We will implement a basic ability to provide default values for the parameters in TAKE-ONE. 
We will refine the handling of FLOW and ADM to include intuitive handling and test the 

relationship between our implementation and the Effort-Shape methodology. We will implement 
the remaining dimensions of Effort-Shape. 

We will develop a sample database of actions to test TAKE-ONE'S reduction methodology and 
to establish its validity for the Future work. 

We will produce our test cases to show the effectiveness of our methodology to capture individ- 
uality and expression. 

6.3 Future tasks 

The main future task is to show the effectiveness of TAKE-ONE as a comprehensive method 
of human motion animation. The power of TAKE-ONE as a tool to aid in the development of 
essential definitions for any class of motion must be examined. The flexibility of TAKE-ONE to 
handle archived definitions of this sort, from a database of actions, must be tested. 
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