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Numerical investigation of the stabilization of the no-motion state of a
fluid layer heated from below and cooled from above

Abstract
The feasibility of controlling flow patterns of Rayleigh–Bénard convection in a fluid layer confined in a circular
cylinder heated from below and cooled from above (the Rayleigh-Bénard problem) is investigated
numerically. It is demonstrated that, through the use of feedback control, it is possible to stabilize the no-
motion (conductive) state, thereby postponing the transition from a no-motion state to cellular convection.
The control system utilizes multiple sensors and actuators. The actuators consist of individually controlled
heaters positioned on the bottom surface of the cylinder. The sensors are installed at the fluid's midheight. The
sensors monitor the deviation of the fluid's temperatures from preset desired values and direct the actuators to
act in such a way so as to eliminate these deviations. The numerical predictions are critically compared with
experimental observations.
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Numerical investigation of the stabilization of the no-motion state of a fluid
layer heated from below and cooled from above

Jie Tang
Corporate Technology Laboratory, Aeroquip Corporation, Ann Arbor, Michigan 48105-1530

Haim H. Baua)

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6315

~Received 13 May 1997; accepted 24 March 1998!

The feasibility of controlling flow patterns of Rayleigh–Be´nard convection in a fluid layer confined
in a circular cylinder heated from below and cooled from above~the Rayleigh–Be´nard problem! is
investigated numerically. It is demonstrated that, through the use of feedback control, it is possible
to stabilize the no-motion~conductive! state, thereby postponing the transition from a no-motion
state to cellular convection. The control system utilizes multiple sensors and actuators. The actuators
consist of individually controlled heaters positioned on the bottom surface of the cylinder. The
sensors are installed at the fluid’s midheight. The sensors monitor the deviation of the fluid’s
temperatures from preset desired values and direct the actuators to act in such a way so as to
eliminate these deviations. The numerical predictions are critically compared with experimental
observations. ©1998 American Institute of Physics.@S1070-6631~98!01007-1#

I. INTRODUCTION

The ability to control complex convective flow patterns
is important in both technology and fundamental science. In
many technological processes, the naturally occurring flow
patterns may not be the optimal ones. By controlling the
flow, one may be able to optimize the process. The ability to
stabilize otherwise nonstable states may also assist one in
gaining deeper insights into the dynamics of flows. Since
fluid flow phenomena are highly nonlinear and possess many
degrees of freedom, the flow control problem is far from
trivial.

In prior experimental and theoretical investigations,1–5

various linear and nonlinear control strategies were used to
alter the bifurcation structure of the convective motion in a
thermal convection loop heated from below and cooled from
above. For example, with the aid of a controller, the transi-
tion from a no-motion to a motion state was delayed, natu-
rally occurring chaotic motion in the loop was suppressed,
otherwise nonstable periodic orbits embedded in the chaotic
attractor were stabilized, subcritical bifurcations were ren-
dered supercritical, and chaos was induced under conditions
in which the flow normally would be laminar. In the case of
the thermal convection loop, temporally complex flows were
controlled. The objective of this paper is to determine
whether systems with many spatial degrees of freedom can
also be successfully controlled. To this end, we investigate
the feasibility of delaying the transition from the no-motion
~pure conduction! to the motion state in the Rayleigh–
Bénard problem of a fluid layer heated from below and
cooled from above. We have chosen this problem for study

because the uncontrolled problem has been extensively stud-
ied and the phenomena observed are relatively well under-
stood. The Rayleigh–Be´nard problem is also of technologi-
cal importance since it serves as a paradigm for many
material processing applications.

A considerable amount of work has been devoted to de-
laying the onset of Rayleigh–Be´nard convection. Most of
these attempts included the use of predetermined~open loop
control!, time-periodic modulation of the temperature differ-
ence across the layer~for lucid reviews, see Davis,6 and
Donnelly7!. Unfortunately, this technique provides only mar-
ginal stabilization. Moreover, periodic modulation may lead
to a subcritical bifurcation,8 thereby causing the no-motion
state to be stable only for small disturbances. Kelly9 and
Kelly and Hu10 proposed delaying the onset of cellular con-
vection by causing the fluid in the layer to oscillate slowly
about a zero mean with out-of-phase, two horizontal velocity
components. In contrast, our objective is to maintain a state
of complete rest. While Kelly’s controller operates in an
‘‘open loop’’ mode, our controller is a closed loop~feed-
back! controller.

In theoretical studies focusing on an infinite layer of
Newtonian and Darcian fluids with various heating condi-
tions, Tang11 and Tang and Bau12–15 have shown that with
the aid of a feedback controller, the critical Rayleigh number
for the onset of convection can be significantly increased.
Using the control strategies of Tang and Bau, Howle,16–18

and Tang and Bau19 demonstrated experimentally that feed-
back control can be used to reduce the intensity of two-
dimensional convection in a slender box and in an upright
circular cylinder, respectively. It is interesting to note that
similar control strategies can be used to modify the flow
patterns of shear flows20 and surface tension driven flows.21

In this investigation, we study theoretically the effect of the
a!Author to whom correspondence should be directed. Electronic mail:
bau@seas.upenn.edu
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controller on Rayleigh–Be´nard convection in an upright cir-
cular cylinder. To the extent possible, the theoretical results
are compared with experimental data. Our objective is to
enhance our understanding of the flow patterns in the pres-
ence and absence of the controller, to study the effect of a
finite number of sensors and actuators on a controller’s per-
formance, and eventually to use the numerical code to opti-
mize the controller.

II. THE MATHEMATICAL MODEL AND THE
NUMERICAL CODE

We consider an upright circular cylinder of radius~a!
and height (H) filled with a fluid, heated from below and
cooled from above. Two different heating conditions are
considered. In one case~A!, the nominal bottom temperature
is specified. In the second case~B!, the nominal bottom heat
flux is specified. In the absence of a controller, either the
bottom temperature~case A! or the bottom heat flux~case B!
are uniform. We use these two types of heating conditions
because later on, we will compare our numerical predictions
with experimental observations. In our experiments, we used
an array of heaters mounted on a silicon wafer and the true
heating condition was somewhere between the uniform tem-
perature~case A! and uniform flux~case B! condition.

The mathematical model consists of the Oberbeck–
Boussinesq equations22 formulated in cylindrical coordi-
nates. The cylinder’s height,H, is the length scale; the ve-
locity U5(a/H)AR Pr is the velocity scale;mU/H is the
pressure scale; andH/U is the time scale.a is the fluid’s
thermal diffusivity; m is the shear viscosity;n is the kine-
matic viscosity; Pr5n/a is the fluid’s Prandtl number;b is
the thermal expansion coefficient;g is the gravitational ac-
celeration; andl f is the thermal conductivity of the fluid. In
case A, the nominal temperature difference,DTTB between
bottom and top, is the temperature scale and theDTTB-based
Rayleigh number isRT5gbDTTBH3/an. In case B,qH/l f

is the temperature scale and the heat-flux based Rayleigh
number isRq5gbqH4/l fan, whereq is the nominal heat
flux. The aspect ratio of the cylinder (g5a/H) is the ratio of
the cylinder’s radius and height. The nondimensional tem-
perature is denoted u(r ,w,z,t), where 0<r<g,
0<w<2p, 0<z<1, and t>0 are, respectively, the cylin-
drical coordinates and time.u, v, and w denote, respec-
tively, the radial, angular, and vertical velocity components.
The critical Rayleigh number for the onset of convection is
denoted byRx,c , where x stands for eitherT or q. The
reduced Rayleigh number~x! is the ratio between the actual
and the critical Rayleigh numbers,x5Rx /Rx,c .

For the purposes of code verification, we occasionally
used slip boundary conditions at some of the solid bound-
aries. When we carried out the actual numerical simulations,
nonslip boundary conditions were specified at all solid
boundaries.

The side wall thermal boundary condition presented a
problem. Our experimental apparatus was constructed from
Plexiglas and the working fluid was silicon oil. The thermal
conductivity of the Plexiglas wall was slightly higher than
that of the silicon oil. Thus the side wall participated in the

heat transfer process. In order to minimize computer time
and to avoid the need of solving a conjugate heat transfer
problem, we did not compute the temperature distribution in
the side wall.

A simplified, crude model of the side wall thermal
boundary condition was provided by Buell and Catton23

S ]2

]z2 1
1

g

]2

]w2D u~g,w,z!5
L

g

]u~g,w,z!

]r
, ~1!

whereL5l fa/(lwtw), lw is the thermal conductivity of the
side wall material, andtw is the side wall’s thickness. When
L→`, the wall is perfectly insulating. WhenL50, the wall
is conducting and its temperature distribution is independent
of the processes occurring in the fluid. In our
experiments,11,19 L;0.35. Thus the experimental data is ex-
pected to fall between the insulating and conducting cases.

In our numerical simulations, we considered the two
limiting cases: insulated side wall~L→`, case C! or per-
fectly conducting side wall~L50, case D!. To clarify our
notation, when we refer to case AC, we mean to say that the
bottom temperature is uniform~case A! and the side wall is
insulated~case C!.

We used a staggered control volume approach to dis-
cretize the equations. The momentum and energy equations
were integrated over a control volume, resulting in algebraic
equations which were subsequently solved using theSIMPLER

algorithm.24 We denote the number of grid points in the
(r ,w,z) directions by (nr ,nw ,nz). Backward differences
were used to approximate the time derivatives. The convec-
tive terms were approximated using theQUICK scheme25 with
a modified formulation next to solid boundaries.26 Special
care was given to the singularity at the cylinder’s center,
r 50, where the radial and angular components of the veloc-
ity are not defined. By constructing a small circle of radius«
(«→0) around the center, we obtained the conditions:
u(«,w,z)52u(«,w1p,z) and ]u(«,w,z)/]r 5]u(«,w
1p,z)/]r for the radial component of the velocity. Similar
relationships were obtained for the angular component of the
velocity. We mention these conditions atr 50 since many
researchers have erroneously prescribed zero radial velocity
next to r 50.

The discretized equations were solved using a
projection-based, iterative solver, GMRES~Generalized
Minimum Residual Method! with preconditioning.27 This
solver proved to be more robust and somewhat more efficient
~on average about 11% faster! than the Tri-diagonal Matrix
Algorithm ~TDMA ! with Alternative Direction Implicit It-
erations~ADI !, which we initially tried. The iterations were
terminated when the residues of the momentum, energy, and
mass conservation equations were all smaller than 10212.
We also verified mass conservation by computing the mass
flow through various vertical and horizontal cross sections of
the cylinder and on vertical circular surfaces and establishing
that the net mass flow was smaller than 10212. Finally, we
verified that in case C, under time-independent conditions,
the differences in the heat flow through any horizontal cross
section were also smaller than 10212.
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III. CODE VERIFICATION

The code was verified by assuring that conservation laws
were satisfied and verifying that the results were reasonably
grid size independent as well as by comparing our results
with those of other researchers and, when feasible, with ana-
lytic solutions. For axisymmetric flow of a Pr56.7 fluid in a
cylinder with an aspect ratio~radius/height! of g51.75, type
AC thermal boundary conditions, slip walls, and reduced
Rayleigh numbers,x<2, our computed Nusselt numbers
~with 1534315 grid points! agreed within 0.3% with the
two-dimensional, axisymmetric calculations of Jones,
Moore, and Weiss,28 who utilized 48384 grid points. For
cylinders with aspect ratiosg51.67 ~nr548, nz580! and
g51.42 ~nr548, nz580!, our results ~nr521, nw54,
nz521! agreed with those of Jones, Moore, and Weiss
within 0.7% and 4.5%, respectively. Additional comparisons
with three-dimensional computations of other researchers are
provided later in this paper.

In a cylinder of aspect ratiog50.5, Pr50.7, type BC
thermal boundary conditions, nonslip bottom and top, and
slip side wall, we used our code to compute the critical Ray-
leigh number at the onset of convection and compared the
results with the analytical ones~the Appendix!. The numeri-
cally computed critical Rayleigh number,Rq,c , was obtained
by observing whether intentionally introduced disturbances
amplify or decay. We started the computations by specifying
the Rayleigh number, a conductive temperature field, and a
small disturbance. We assumed that close to criticality, the
disturbances grew/decayed as exponential functions of time.
Accordingly, on a log–log plot, we depicted one of the vari-
ables, i.e., the vertical velocity component at a midheight
point, as a function of time. By fitting a straight line to the
data, we obtained an estimate of the growth rate,s. The
computations were repeated for a few subcritical and super-
critical Rayleigh numbers and the various growth rates were
plotted as functions of the Rayleigh number. In the vicinity
of the critical Rayleigh number, the growth rate,s, varied
nearly linearly as a function of the Rayleigh number,R. For

example, for a cylinder with an aspect ratiog50.5 and
Pr50.7, Fig. 1 depicts the growth rates as a function of the
Rayleigh number,Rq , and the mesh size. Hollow squares,
solid squares, triangles, and diamonds correspond, respec-
tively, to mesh sizes (73837), (11318311),
(15320315), and (19324319). Unfortunately, due to
computer power limitations, we were not able to further re-
fine the grid. The estimate of the critical Rayleigh number
which corresponds to a zero growth rate (s50) was ob-
tained by interpolation.

Figure 1 indicates that the critical number was not inde-
pendent of the mesh size and that it increased as the mesh
size was refined. To estimate the grid-independentRq,c , we
depicted the critical Rayleigh number as a function of
(nr3nw3nz)

21, extrapolated the curve to zero mesh size
using a quadratic curve fit, and obtained the ‘‘grid size-
independent’’ critical Rayleigh number,Rq,c51420. This es-
timate falls short by about 5.8% from the analytically ob-
tained value of 1508~the Appendix!.

IV. THE UNCONTROLLED CASE

We first carried out computations in the absence of a
controller. The purpose of these numerical experiments was
to provide a reference state against which the controlled flow
would be compared. The results are also of interest all by
themselves since they provide information on Rayleigh–
Bénard convection in an upright circular cylinder. All the
computations were carried out for nonslip walls and a cylin-
der of aspect ratiog50.5. In order to facilitate comparison
with other researchers’ results, computations were carried
out for various Prandtl numbers. When we compared the
computational results with our own experimental data, we
specified Pr5135, which is still much smaller than the
Pr;4.773105 of the silicon fluid used in our experiments,
but sufficiently large so that further increases in the Prandtl
number were not likely to introduce significant changes in
the simulations’ results.

First, we computed the critical Rayleigh number for the
onset of convection in a cylinder with AC type thermal
boundary conditions. The method we used to obtain the criti-
cal Rayleigh number was described in Sec. III. Upon ex-
trapolation, we obtained the grid-independent critical Ray-
leigh numberRT,c;373565. Our predictedRT,c value is in
reasonable agreement with results obtained by Buell and
Catton23 who used linear stability and a Galerkin technique
to obtain RT,c;3800 and Neumann29 who used nonlinear,
finite difference numerical simulations to obtain
RT,c;3610. In contrast, using similar techniques to those of
Buell and Catton, Charlson and Sani30 obtained
RT,c;4500. This relatively high estimate ofRT,c was appar-
ently caused by inappropriate treatment of the singularity at
r 50. We repeated the same calculations for thermal bound-
ary conditions of type AD to obtainRT,c;7,500650.

Next, we computed the temperature and flow field in the
cylinder with AC type thermal boundary conditions. In order
to facilitate comparison with other workers, the simulations
were initially carried out for Pr56.7 fluid. When
RT517 500,x;4.7, and Pr56.7, Figure 2 depicts the verti-

FIG. 1. The growth rates is depicted as a function of the Rayleigh number,
Rq , and the mesh size. Hollow squares, solid squares, triangles, and dia-
monds correspond, respectively, to mesh sizes (73837), (11318311),
(15320315), and (19324319). The cylinder aspect ratiog50.5.
Pr50.7. The thermal boundary conditions are of type BC and slip is allowed
at the side wall.

1599Phys. Fluids, Vol. 10, No. 7, July 1998 J. Tang and H. H. Bau
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cal component of the velocity,w, at the cylinder’s midheight
(z50.5) as a function ofr andw. Figure 2 illustrates that the
postcritical flow field consists of a single convective cell.
The flow is symmetric with respect to the planew5p/2. The
cylinder is divided into two parts by the verticalw50 plane.
The flow ascends in the sectorp,w,2p and descends in
the sector 0,w,p. This flow pattern is qualitatively similar
to the predictions of linear theory23 and the experimental
observations of Mu¨ller, Neumann, and Webber,31 Tang,11

and Tang and Bau.19 The results are also in good quantitative
agreement with the numerical computations.29,32

Figures 3~a! and 3~b! depict, respectively, the projec-
tions of the vector fields on the plane of symmetry
(w5p/2) and the plane (w50) when RT517 500, Pr
56.7, andx;4.7. Figure 3~c! depicts the isotherms in the
w5p/2 plane. The flow field depicted in Fig. 3~a! and the
isotherms depicted in Fig. 3~c! are consistent with a single

FIG. 2. The vertical component of the velocity,w, at the cylinder’s mid-
height (z50.5) is depicted as a function ofr and w. g50.5. RT517,500.
Pr56.7. Thermal boundary conditions are of type AC.

FIG. 3. The projections of the vector fields on the planes,w5p/2 ~a! and
w50 ~b!, and the isotherms in the planew5p/2 ~c! are depicted as func-
tions of r and z. The thermal boundary conditions are of type AC,x
;4.7, Pr56.7 andg50.5.

1600 Phys. Fluids, Vol. 10, No. 7, July 1998 J. Tang and H. H. Bau

Downloaded 24 Oct 2007 to 158.130.69.60. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



cell flow pattern. The flow field in thew50 plane@Fig. 3~b!#
exhibits four counter-rotating eddies.

Witness that the temperature field@Fig. 3~c!# exhibits a
temperature inversion. This phenomenon is shown more
clearly in Fig. 4, which depicts the temperature along the
cylinder’s axis (r 50) as a function of the vertical coordinate
z for RT55000 (x;1.3), RT517 500 (x;4.7) and 50 000
(x;13.4). Atz50, the nondimensional temperature is equal
to 1. WhenRT55000 ~upright triangles!, the temperature
decreases monotonically asz increases. This is no longer
true for largerRT values. WhenRT517 500~solid circles!,
asz increases, the temperature along the cylinder’s axis ini-
tially decreases, attains a local minimum, then increases
again to a local maximum, and finally declines to zero at the
top boundary (z51). The magnitude of the temperature dip
does not change much as the Rayleigh number further in-
creases~i.e., RT550 000, solid squares!.

Figure 5 depicts the vertical components of the velocity

at z50.5 along the cylinder’s diameter that lies in the sym-
metry plane (w5p/2) and atz50.75 along the diameter that
lies in thew50 plane.R517 500 andx;4.7. The hollow
squares, upright solid triangles, and solid lines represent, re-
spectively, our own results with (73837), (15320315),
and (19324319) grid points. The (x) represent data com-
puted by Müller, Neumann, and Weber31 ~with 24324324
mesh points!. Witness the good agreement between the vari-
ous computational results. The velocity profile along the di-
ameter atz50.5 is consistent with up flow in one half of the
cylinder and down flow in the other half. The velocity profile
at z50.75 is consistent with the four eddies seen in Fig. 3~b!.
Qualitatively similar results to those shown in Figs. 2–5
were obtained for the high Prandtl number cases.

In the experiments, we measured the temperature distri-
bution at the fluid’s midplane (z50.5). In Fig. 6, we com-
pare the measured and computed temperature distributions
along a diameter on which we observed the minimum and
maximum temperatures. As a function of the radius, the fig-
ure depicts the nondimensional measured temperature~solid
diamonds! and the computed temperatures using AC type
~solid circles! and AD type~solid triangles! thermal bound-
ary conditions.x51.5 and Pr5135. In the experiments, the
nondimensional temperature is defined asu5(T
2T0)/DT̄BT , whereT, T0 , andDT̄BT are, respectively, the
measured midheight temperature, the temperature of the top
boundary, and the difference between the average bottom
temperature and the top temperature. Since in the experi-
ment, the side wall participated in the heat transfer process,
the boundary conditions at this wall were not accurately
known. For this reason, we carried out calculations for both
perfectly conducting~D! and perfectly insulating~C! walls.
In the vicinity of the cylinder’s center (r ,0.3), there is little
influence by the side wall, and the computations using either
thermal boundary condition yielded similar results. The ex-
perimental data was also close to the computed results. As
one approaches the side wall, the effect of the side wall
thermal boundary condition becomes pronounced, and the

FIG. 4. The temperature along the cylinder axis,u(0,z), is depicted as a
function of the vertical coordinatez when RT55000 ~x;1.3, upright tri-
angles!, RT517 500~x;4.7, solid circles! andRT550 000~x;13.4, solid
squares!. Pr56.7, g50.5 and the thermal boundary conditions are of type
AC.

FIG. 5. The vertical components of the velocity atz50.5 along the cylin-
der’s diameter that lies in the symmetry plane (w5p/2) and atz50.75
along the diameter that lies in the planew50 are depicted as functions of
the radial coordinate,r . R517 500,x;4.7, Pr56.7, andg50.5. The hol-
low squares, upright solid triangles, and solid lines represent, respectively,
our own results with (73837), (15320315), and (19324319) grid
points. The (x) represents data computed by Muller, Neumann, and Weber
~1984, with 24324324 mesh points!.

FIG. 6. The computed temperature when the boundary conditions are of
type AC ~solid circles! and type AD ~solid triangles! and the non-
dimensional measured temperature~solid diamonds! are depicted as func-
tions of the radius.x51.5, Pr5135, andg50.5. The profiles were chosen
in such a way as to include the maximum and minimum midheight tempera-
tures.
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Downloaded 24 Oct 2007 to 158.130.69.60. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



computational results for the C and D type wall conditions
deviated considerably. It is reassuring to note that the experi-
mental data lies between the numerical results for insulating
and perfectly conducting walls.

In the experiments, for low supercritical Rayleigh num-
bers, we used the difference between the maximum and
minimum midplane temperatures,

Dumax~0.5!5max
r ,w

~u~r ,w,0.5!!2min
r ,w

~u~r ,w,0.5!!

as an indicator of the intensity of the convection. Figure 7
depicts Dumax(0.5) as a function of the reduced Rayleigh
number ~x!. Solid squares, solid diamonds, and solid tri-
angles represent, respectively, experimental data, computa-
tional data for AC type thermal conditions, and computa-
tional data for AD type thermal conditions. Whenx,1, in
the absence of convection,Dumax(0.5)50. When convection
starts to gain importance (1,x,1.5), Dumax(0.5) increases
monotonically as a function ofx. Again, the experimental
data lies between the AC and AD cases. Whenx is increased
beyond 1.5,Dumax(0.5) initially varied little and eventually
decreased slowly. Forx,1.5, Dumax(0.5) provides an indi-
cator of the convection’s intensity.

Thus far, we have described the flow and temperature
fields in the cylinder in the absence of a controller. In the
next section, we focus our attention on how a controller af-
fects the flow patterns in the cylinder.

V. THE CONTROLLED CASE

In this section, we examine two types of controllers: a
controller that controls the cylinder’s bottom temperature
distribution and a controller that controls the bottom’s heat
flux distribution. For example, the bottom of the experimen-
tal apparatus of Tang and Bau19 was equipped with 24 indi-
vidually controlled heaters~actuators! mounted on a silicon
wafer. The actuator’s power supply was under computer con-
trol. Twenty-four diode sensors positioned at the cylinder’s
midheight continuously monitored the deviation of the mid-
height temperature distribution from the desired conductive

values and directed the actuators to adjust their power supply
in such a way as to counteract naturally occurring distur-
bances.

In order to economize in computer time, in most of the
numerical simulations of the controller, we used a crude
mesh of 73837 grid points. The investigations presented in
Sec. III suggest that for the type of flow patterns existing in
our cylinder, this grid provides qualitatively correct results.

In some of the numerical simulations, each of the area
elements acted as an independent actuator to form a total of
56 actuators. In other numerical simulations, we combined a
few of the elements@denoted by different textures in Figs.
8~a! and 8~b!# to form 17 @Fig. 8~a!# and 9@Fig. 8~b!# inde-
pendently controlled actuators. Figure 8~b! also shows the
grid distribution on the heated surface. This corresponds to
56 actuators. The number of sensors matched exactly the
number of actuators, and the sensors were located in the
midheight plane above the actuators. In the numerical work,
for computational convenience, we used actuators in the
shape of circular segments. In contrast, in the experimental
work, the actuators had a rectangular shape.19

In cases A and B, the controller rules were specified,
respectively, as

uk~z50!512kT~uk~z50.5!20.5!, ~2!

and

FIG. 7. The maximum mid-plane temperature difference,Dumax(0.5), is
depicted as a function of the reduced Rayleigh number~x!. Solid squares,
solid diamonds, and solid triangles represent, respectively, experimental
data, computational data for AC type thermal conditions, and computational
data for AD type thermal conditions. Pr5135 andg50.5.

FIG. 8. The textured areas in~a! and ~b! depict, respectively, 17 and 9
independently controlled actuators. When 56 actuators are used, each of the
area elements acts as an independent actuator. The grid distribution on the
heated surface is shown in Fig. 8~b!.
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]uk~z50!

]z
5211kq~uk~z50.5!20.5!, ~3!

where the subscript (k) identifies the sensors and the corre-
sponding actuators. In the above,kT andkq are the propor-
tional controller gains. Since the time constant of the con-
vective processes in the fluid was on the order of minutes
and the response time of the actuators was on the order of
seconds, it was not necessary to account for time delays in
Eqs.~2! and ~3!.

A. Cases AD and AC

In order to study the effect of the controller on the criti-
cal Rayleigh number at the onset of convection, we specified
the Rayleigh number and computed the flow field. Once the
initial transient died out, we engaged the controller with vari-
ous gains and observed whether the controller was able to
successfully suppress convection. Case AD is investigated
first.

For the AD case and 56 actuators, the curve denoted by
~56, kT/2, AD! in Fig. 9 depictsxc , the ratio of the critical
Rayleigh numbers in the presence and absence of the con-
troller as a function of the controller gain,kT/2. The symbol
‘‘ kT/2’’ indicates that the numerical values of the controller
gain listed on the abscissa should be multiplied by a factor of
2. In other words, the domain of the curve~56, kT/2, AD! in
Fig. 9 is from 0 to 10. Witness that as the controller gain
increases, the critical Rayleigh number for the onset of con-
vection increases as well. WhenkT,9, the supercritical con-
vection in the cylinder was qualitatively similar to that ob-
served in the absence of the controller, and it predominantly
consisted of a single convective cell. For larger controller
gains (kT.9), the supercritical flow pattern in the controlled
cylinder changed to predominantly axisymmetric convection.

This change of behavior was indicated by the abrupt change
of slope of thexc(kT) curve. As long as no flow existed, the
bottom temperature was uniform and the isotherms were
horizontal. The controller modified the stability characteris-
tics of the no-motion~conductive! state without affecting the
conductive state itself.

To illustrate the effect of the controller on the supercriti-
cal flow patterns, we depict in Fig. 10 the isotherms in the
midplane (z50.5) whenRT529 000, Pr5135, kT50 ~a!,
kT54 ~b!, andkT58.0 ~c!. In the absence of the controller
@kT50, Fig. 10~a!#, the flow consisted of a single cell; the
flow ascended in one half of the cylinder and descended in
the other half. WhenkT54 ~b!, the single cell flow structure
was still in existence; but a larger fraction of the cross sec-
tion was occupied by the ascending flow and a smaller frac-
tion by the descending flow. WhenkT58 ~c!, the isotherms
were consistent with axisymmetric flow. We emphasize that
in Figs. 10~b! and 10~c!, the bottom temperature was not
uniform, and it was dictated by the controller rule@Eq. ~2!#.
The Rayleigh number was based on the nominal bottom tem-
perature.

Since no experimental apparatus is perfect, of some con-
cern was the ability of the controller to cope with imperfec-
tions. In order to assess the controller’s ability to cope with
imperfections, we specified a slightly non-uniform bottom
temperature, i.e., we replaced the ‘‘1’’ in Eq.~2! with
11«r cos(w). Under this condition, the purely conductive
~no-motion! state no longer existed and weak convection was
always present. When«50.1, Fig. 11 depicts the maximum
midheight temperature difference,Dumax(0.5), as a function
of the reduced Rayleigh number~x! and controller gains
kT50 ~solid diamonds!, 3 ~solid squares!, and 4 ~hollow
triangles!. As a result of the imperfection, the transition from
the no-motion to the motion state is gradual and no longer
abrupt as in the case of the perfect bifurcation~Fig. 7!. The
figure illustrates that even in the presence of imperfection,
the controller still successfully reduces the intensity of the
convective motion.

In the case AC, smaller controller gains were needed to
achieve the same relative increase in the critical Rayleigh
number as in the AD case. This is perhaps due to the fact that
the critical Rayleigh number for the onset of convection in
case AD is about twice as large as in the AC case. When the
number of heaters was 56, 17, and 9, the curves in Fig. 9
denoted by~56, kT , AC!, ~17, kT , AC!, and ~9, kT , AC!
depict the reduced critical Rayleigh number (xc) as a func-
tion of the controller gain. In all these cases, askT increases
so doesxc . These curves illustrate the effect of the number
of actuators on the controller’s performance. In the range of
parameters investigated here, the reduction in the number of
actuators from 56 to 17 had little effect on the controller’s
performance. Further reduction to 9 actuators led, however,
to a significant deterioration in the controller’s performance.
For example, when the controller’s gainkT55, a control
system with 9 and 56 actuators led, respectively, to a 2.1-
and a 4.8-fold increase in the critical Rayleigh number. In
our experimental investigation,19 we used 24 actuators. The
numerical simulations suggest that this is more than enough

FIG. 9. The ratio between the critical Rayleigh numbers in the presence and
the absence of the controller is depicted as a function of the controller gain
for case AD 56 actuators~56, kT/2, AD!; case AC with 56~56, kT , AC!, 17
~17, kT , AC! and 9~9, kT , AC! actuators; and case BD with 56 actuators
~56, kq/10, BD!. Pr5135 andg50.5.

1603Phys. Fluids, Vol. 10, No. 7, July 1998 J. Tang and H. H. Bau

Downloaded 24 Oct 2007 to 158.130.69.60. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



for effective control for the range of Rayleigh numbers con-
sidered in the experiment.

In order to identify other potential causes as to why the
controller in the experiments did not perform as well as pre-
dicted by the theory, we investigate the effect of discontinu-
ous changes in the actuator’s output on the controlled sys-
tem’s performance. In the experiments, we used digital
control that caused the actuator’s output to vary by discrete
jumps. To assess the effect of such changes on the controlled
system’s performance, we conducted a sequence of simula-
tions in which we varied the actuators’ output by finite in-
crements corresponding to 10% of the nominal heated sur-
face’s temperature in the absence of a controller. In other
words, we set the controller rule to be

When S i 2
1

2D30.1<12kT~uk~0.5!20.5!

<S i 1
1

2D30.1 then uk~0!50.13 i .

FIG. 10. The isotherms in the midplane (z50.5) are depicted whenRT

529 000, Pr5135, kT50 ~a!, kT54 ~b! and kT58.0 ~c!. Case AD. Pr
5135,g50.5.

FIG. 11. In the presence of an imperfection, the difference between the
maximum and minimum midplane temperatures is depicted as a function of
the reduced Rayleigh number for various controller gains. Solid diamonds,
solid squares, and hollow triangles correspond, respectively, tokT50, 3, and
4. Case AD. Pr5135 andg50.5.
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In the above, (i ) is a positive integer.
Figure 12 illustrates the effect of such a discrete control-

ler on the system’s performance. For case AC, Figs. 12~a!
and 12~b! depict, respectively, the maximum and minimum
midheight temperatures and the corresponding actuators’
output as functions of time. In this simulation,R55000,
xc51.32, the number of actuators is 17, and the actuators’
output is updated every 434 time steps~which is equivalent
to 360 s! by 0.1 increments. The dark~bottom! line in Fig.
12~b! corresponds to the dark~top! line in Fig. 12~a!. At the
start of the simulation, the controller is off, the actuators
provide the nominal temperature~1! and convection devel-
ops in the cylinder. In the absence of control, the maximum
difference in the cylinder’s midheight temperatures is about
0.48. Once steady convection has been established, the dis-
crete controller is turned on at nondimensional timet50.
Initially, the turning on of the controller affects the actuators’

temperature in a very significant way. However, as soon as
the controller has reduced the intensity of the convection, the
actuators’ temperature returns to a value close to the nominal
value of~1! and the midheight temperatures approach, but do
not quite attain, the desired value of 0.5. When the controller
is active, the maximum difference in the midheight tempera-
ture is about 0.06—an eightfold reduction from the uncon-
trolled case. Witness that the controller succeeds in suppress-
ing established convection. This indicates that the controlled
state has fairly sizable basin of attraction. Because of the
discrete changes in the actuators’ output, a time independent
state is never established. The actuators’ outputs oscillate
around the nominal value of 1, and the midheight tempera-
tures undergo small amplitude oscillations. When the actua-
tors’ output is allowed to change continuously@Eqs.~1! and
~2!# and in the absence of noise~not shown here!, the mid-
height temperatures and actuators’ output assume exactly the

FIG. 12. The maximum and minimum midheight temperatures~a! and the corresponding actuators’ output~b! are depicted as functions of time (t). When
t,0, the controller is off. The controller is applied att50 after steady convection has been established. Case AC.R55000,x51.32, the number of actuators
is 17, and the actuators’ output is updated every 434 time steps by 0.1 increments. Pr5135 andg50.5.
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time-independent values of 0.5 and 1, respectively, and a
state of pure conduction is maintained.

The time series shown in Fig. 12 is interesting because it
resembles closely our experimental observations. In Fig. 13,
we reproduce a time series from our experimental data.19

Figures 13~a! and 13~b! depict, respectively, the maximum
and minimum temperatures~in °C! recorded by sensors lo-
cated at the cylinder’s midheight.xc;1.25 and
k5100 mW/K. Figure 13~b! depicts the power~in mW! sup-
plied to the actuators located directly beneath the diodes.
Whent,0, the controller was inactive and steady state con-
vection was established inside the cylinder. At time,t50, the
controller was turned on. Similar to the theoretical investiga-
tion depicted in Fig. 12~b!, the actuator reacts@Fig. 13~b!# by
a sizable change in the actuator’s signal. Once the controller
successfully suppressed the convective motion, the actuator’s
signals return close to their nominal values and the mid-

height temperatures return close to their conductive values
@Fig. 13~a!#. In the absence of a controller, the maximum
difference in midheight temperatures is about;6.2 K. The
controller reduces this temperature difference to less than 1
K—about a sixfold decrease from the uncontrolled case.
Similar to the numerical simulations, the controller in the
experiment is robust and is able to suppress established mo-
tion. Because of the discrete changes in the actuators’ output,
a steady state is never established. The actuators’ and sen-
sors’ signals fluctuate as functions of time. The amplitude of
the temperature fluctuations@Fig. 13~a!# is very small and
barely visible on the scale of the figure. The numerical simu-
lations strongly suggest that the controller’s inability in the
experiment19 to reduce the difference between the maximum
and minimum midheight temperatures to zero is due to dis-
crete changes in the actuator’s power which were necessi-
tated by the limited resolution of the digital control system.

FIG. 13. The maximum and minimum temperatures~in °C! recorded by diodes located at the cylinder’s midheight~a! and the corresponding actuators’ power
variations~mW! are depicted as functions of time.x;1.25 andk5100 mW/K. Whent,0, the controller is off. The controller is turned on att50, after a
steady convection has been established.
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B. Case BD

Next, we describe the performance of the controller that
modifies the bottom heat flux. The curve denoted~56, kq/10,
BD! in Fig. 9 depicts the reduced critical Rayleigh number
(xc) as a function of the controller gain (kq). The ‘‘kq/10’’
implies that the values on the horizontal axis should be mul-
tiplied by 10 in order to get the controller gain. Similar to
case A, the controller successfully retains a no motion state
under conditions when cellular motion would have existed in
the absence of the controller. For the range of controller
gains investigated by us and for Rayleigh numbers slightly
above critical, the motion was asymmetric and consisted of a
single convective cell. For Rayleigh numbers much above
criticality, axisymmetric motion was observed.

Figure 14 depicts the difference between the maximum
and minimum mid-height temperatures as a function of the
reduced Rayleigh number for controller gainskq50 ~solid
diamonds!, 6 ~solid squares!, 15 ~solid circles!, and 20~solid
triangles!. The figure also includes experimental data de-
picted as hollow symbols. Direct comparison between ex-
periments and theory was complicated by the very high heat
losses in our experimental apparatus which prevented us
from obtaining an accurate relationship between the magni-
tude of the controller gain used in the experiment and the one
used in the theoretical investigation. In Fig. 14, the hollow
diamonds are the experimental data in the absence of the
controller. The hollow squares, hollow circles, and hollow
triangles correspond, respectively, to controller gainske ,
2.2ke , and 3.1ke , where ke is the proportional controller
gain in the experiment. The experimental data and the theo-
retical predictions exhibit similar trends. As the gain in-
creases, the controller succeeds in maintaining a low mid-
height temperature difference for higher Rayleigh numbers.
The discrepancies between theory and experiment can be at-
tributed to the differences between the theoretical model and
the experimental setup. We mention here only a few differ-
ences. In the experiment, imperfection made identification of
the critical Rayleigh number difficult; discrete variations of

the actuators’ power may have led to a deterioration in the
controller’s performance~see Figs. 12 and 13!; temperature
sensing at only a few spatial locations may have led to an
underestimation of the maximal temperature difference; and
participation of the side walls in the heat transfer process was
more complex than what we assumed in the theoretical
model.

At large controller gains~i.e., kq.50!, the bifurcation
occurred directly from the no-motion state to time-periodic
convection. For illustration purposes, Fig. 15 depicts the mid

height temperature,u( 1
4,0,12) as a function of time.kq560

and Ra530 000. Witness that once initial transients have
died out, the temperature oscillates as a periodic function of
time. This oscillatory behavior is consistent with linear sta-
bility analysis of the no motion state of the controlled
Rayleigh–Be´nard convection in an infinite fluid layer.14 This
analysis predicted that at high controller gains, a loss of sta-
bility of the no-motion state occurs through a Hopf bifurca-
tion. In other words, at large controller gains, the ‘‘principle
of exchange of stability’’ is no longer valid. It is interesting
to note that as the fluid’s Prandtl number increases, the Hopf
bifurcation occurs at lower Rayleigh numbers. Similar oscil-
latory behavior was also observed in our experiments when
large controller gains were used.11,19

The controller was fairly rugged, and it was able to
counteract large disturbances. In some of our numerical
simulations~i.e., Fig. 12!, we started the numerical simula-
tion with the controller being off. Once time-independent
convection was established in the cylinder, we switched the
controller on. The controller successfully suppressed the
convective motion and established and retained a conductive,
no motion state.

VI. CONCLUSIONS

This paper describes a numerical investigation of
Rayleigh–Be´nard convection in an upright circular cylinder
and the effect of a linear controller on the stability of the
no-motion state. It was demonstrated that the no-motion state
in a confined medium can be controlled and that the control-
ler can counteract the adverse effects of imperfections. The
controller is capable of suppressing established convection.

FIG. 14. The difference between the maximum and minimum midheight
temperatures is depicted as a function of the reduced Rayleigh number for
controller gainskq50 ~solid diamonds!, 2 ~solid squares!, 6 ~solid circles!,
and 8~solid triangles!. The figure also includes experimental data depicted
as hollow symbols. The hollow squares, hollow circles, and hollow triangles
correspond, respectively, to controller gainske , 2.2ke , and 3.1ke . Case
BD. Pr5135 andg50.5.

FIG. 15. The midheight temperatureu~0.25,0,0.5! is depicted as a function
of time. Case BD. Pr5135,g50.5, kq560, and Ra530 000.

1607Phys. Fluids, Vol. 10, No. 7, July 1998 J. Tang and H. H. Bau

Downloaded 24 Oct 2007 to 158.130.69.60. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



The numerical code can be used to examine the performance
of various control strategies. The numerical results are in
qualitative agreement with experimental observations and
with theoretical predictions for the unconfined case. Unfor-
tunately, the degree of stabilization which was achieved in
physical experiments falls short of theoretical predictions.
The numerical simulations suggest that this shortcoming may
have been caused by discrete variations in the actuators’
power in the experiment. It is conceivable, therefore, that
refinements in the experimental apparatus will improve the
controller’s capabilities and will bring its performance closer
to that predicted by this theoretical work.

APPENDIX: LINEAR STABILITY ANALYSIS

In this Appendix, we use linear stability theory to com-
pute the critical Rayleigh number for the onset of convection
in an upright circular cylinder with uniform heat flux heat-
ing, an insulating side wall~case BC!, nonslip velocity
boundary conditions at the bottom and top boundaries, and a
slip boundary condition at the side wall. This analysis is
similar to the one carried out by Rosenblat33 for the onset of
convection in a upright cylinder with a uniform bottom tem-
perature. The results of these stability analyses were used to
validate our numerical code.

Briefly, we linearized the Oberbeck–Boussinesq equa-
tions about the conductive, no motion state,u5v5w50
andu(r ,w,z)5 1

22z, where2 1
2<z< 1

2. After some manipu-
lations, we obtained linear equations for the vertical compo-
nent of the velocity,w, and for the deviation of the tempera-
ture,u8, from the conductive temperature distribution.

Pr21
]

]t
¹2w5Rq¹1

2u1¹4w ~A1!

and

]u

]t
5w1¹2u, ~A2!

where we dropped the superscript~8!. The boundary condi-
tions are

uS r ,w,
1

2D5
]u~r ,w,2 1

2!

]z
5

]u~g,w,z!

]r
50 ~A3!

and

wS r ,w,6
1

2D5
]w~r ,w,6 1

2!

]z
5

]w~g,w,z!

]r
50. ~A4!

In the above, ¹25¹1
21D2, ¹1

25(1/r )(]/]r )@r (]/]r )#
1(1/r 2)(]2/]w2), and D5]/]z. We proceed in the usual
way by expandingw andu into the normal modes,

S w
u D5 (

n,m,k
S Wn,m,k

Un,m,k
D ~z! f n,m,k~r ,w!exp~sn,m,kt !, ~A5!

where f n,m,k(r ,w) satisfies the equation

¹1
2f 1l2f 50. ~A6!

l is a real positive number and the growth rate,s5sR

1 is I . Q satisfies the equation

~~D22l2!~D22l22s!~D22l22Pr21s!1l2Rq!U50
~A7!

with the boundary conditions

U~ 1
2!5DU~2 1

2!5~D22l22s!U~6 1
2!

5D~D22l22s!U~6 1
2!50. ~A8!

Equation~A7! admits a solution of the form

U~z!5(
i 51

3

~Ai cosh~xiz!1Ai 13 sinh~xiz!!, ~A9!

wherexi ’s are the roots of the polynomial equation

~x22l2!~x22l22s!~x22l22Pr21 s!1l2Rq50.
~A10!

In order to have a nontrivial solution, we require that the
determinant,

DetS M
F

E
ND50, ~A11!

where

M5S coshS x1

2 D coshS x2

2 D coshS x3

2 D
G1 coshS x1

2 D G2 coshS x2

2 D G3 coshS x3

2 D
z1 sinhS x1

2 D z2 sinhS x2

2 D z3 sinhS x3

2 D D , N5S x1 sinhS x1

2 D x2 sinhS x2

2 D x3 sinhS x3

2 D
G1 sinhS x1

2 D G2 sinhS x2

2 D G3 sinhS x3

2 D
z1 coshS x1

2 D z2 coshS x2

2 D z3 coshS x3

2 D D ,

E5S sinhS x1

2 D sinhS x2

2 D sinhS x3

2 D
0 0 0

0 0 0

D , F5S 2x1 sinhS x1

2 D 2x2 sinhS x2

2 D 2x3 sinhS x3

2 D
0 0 0

0 0 0

D ,
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G i5xi
22l22s, andz i5xiG i . To find the critical Rayleigh

number, we setsR50 in Eq. ~A11!. For a given value ofl,
Eq. ~A11! is an eigenvalue problem forRq and s I . In the
absence of control,s I is always zero and the critical Ray-
leigh number is independent of the Prandtl number. Figure
16 ~solid line! depictsRq as a function ofl.

In the confined cylinder,l admits only discrete values.
The solution of Eq. ~A6! has the form, f n,m(r ,w)
5Jm(lnr )exp(imw), wherem is an integer. The admissible
values of l are determined by requiring that
(]/]r )Jm(lng)50. The first few values of l are
l0;7.663, l1;3.682, and l2;6.108. Accordingly, we
haveRq0;6122.6,Rq1;1508.4, andRq2;3392.2. The two
lowest values ofRq are denoted by circles in Fig. 16. The
critical Rayleigh number is the smallest admissible one,
Rq1;1508.4. This Rayleigh number corresponds to the azi-
mutal wave numberm51, which corresponds to single cell,
asymmetric supercritical convection and which is consistent
with the results of our numerical computations as well as our
experimental observations.
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