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Numerical investigation of the stabilization of the no-motion state of a
fluid layer heated from below and cooled from above

Abstract

The feasibility of controlling flow patterns of Rayleigh-Bénard convection in a fluid layer confined in a circular
cylinder heated from below and cooled from above (the Rayleigh-Bénard problem) is investigated
numerically. It is demonstrated that, through the use of feedback control, it is possible to stabilize the no-
motion (conductive) state, thereby postponing the transition from a no-motion state to cellular convection.
The control system utilizes multiple sensors and actuators. The actuators consist of individually controlled
heaters positioned on the bottom surface of the cylinder. The sensors are installed at the fluid's midheight. The
sensors monitor the deviation of the fluid's temperatures from preset desired values and direct the actuators to
act in such a way so as to eliminate these deviations. The numerical predictions are critically compared with
experimental observations.
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Numerical investigation of the stabilization of the no-motion state of a fluid
layer heated from below and cooled from above

Jie Tang
Corporate Technology Laboratory, Aeroquip Corporation, Ann Arbor, Michigan 48105-1530

Haim H. Bau®
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6315

(Received 13 May 1997; accepted 24 March 1998

The feasibility of controlling flow patterns of Rayleigh—&#&d convection in a fluid layer confined

in a circular cylinder heated from below and cooled from abitlie Rayleigh—Beard problemis
investigated numerically. It is demonstrated that, through the use of feedback control, it is possible
to stabilize the no-motiorficonductive state, thereby postponing the transition from a no-motion
state to cellular convection. The control system utilizes multiple sensors and actuators. The actuators
consist of individually controlled heaters positioned on the bottom surface of the cylinder. The
sensors are installed at the fluid’s midheight. The sensors monitor the deviation of the fluid’s
temperatures from preset desired values and direct the actuators to act in such a way so as to
eliminate these deviations. The numerical predictions are critically compared with experimental
observations. ©1998 American Institute of Physids$§1070-663(98)01007-1]

I. INTRODUCTION because the uncontrolled problem has been extensively stud-
ied and the phenomena observed are relatively well under-
The ability to control complex convective flow patterns stood. The Rayleigh—Brrd problem is also of technologi-
is important in both technology and fundamental science. Irtal importance since it serves as a paradigm for many
many technological processes, the naturally occurring flownaterial processing applications.
patterns may not be the optimal ones. By controlling the A considerable amount of work has been devoted to de-
flow, one may be able to optimize the process. The ability tdaying the onset of Rayleigh-Bard convection. Most of
stabilize otherwise nonstable states may also assist one these attempts included the use of predetermi{ogeén loop
gaining deeper insights into the dynamics of flows. Sincecontrol), time-periodic modulation of the temperature differ-
fluid flow phenomena are highly nonlinear and possess mangnce across the laydfor lucid reviews, see Davfs,and
degrees of freedom, the flow control problem is far fromDonnelly’). Unfortunately, this technique provides only mar-
trivial. ginal stabilization. Moreover, periodic modulation may lead
In prior experimental and theoretical investigatidns, to a subcritical bifurcatio, thereby causing the no-motion
various linear and nonlinear control strategies were used tetate to be stable only for small disturbances. Keliyd
alter the bifurcation structure of the convective motion in akelly and HUt° proposed delaying the onset of cellular con-
thermal convection loop heated from below and cooled fromyection by causing the fluid in the layer to oscillate slowly
above. For example, with the aid of a controller, the transi-about a zero mean with out-of-phase, two horizontal velocity
tion from a no-motion to a motion state was delayed, natucomponents. In contrast, our objective is to maintain a state
rally occurring chaotic motion in the loop was suppressedof complete rest. While Kelly's controller operates in an
otherwise nonstable periodic orbits embedded in the chaotitopen loop” mode, our controller is a closed lodjfeed-
attractor were stabilized, subcritical bifurcations were renhack controller.
dered supercritical, and chaos was induced under conditions |n theoretical studies focusing on an infinite layer of
in which the flow normally would be laminar. In the case of Newtonian and Darcian fluids with various heating condi-
the thermal convection loop, temporally complex flows weretions, Tand* and Tang and Bad*° have shown that with
controlled. The objective of this paper is to determinethe aid of a feedback controller, the critical Rayleigh number
whether systems with many spatial degrees of freedom cafor the onset of convection can be significantly increased.
also be successfully controlled. To this end, we investigateJsing the control strategies of Tang and Bau, Hotfié?
the feasibility of delaying the transition from the no-motion and Tang and Bad demonstrated experimentally that feed-
(pure conduction to the motion state in the Rayleigh— back control can be used to reduce the intensity of two-
Benard problem of a fluid layer heated from below anddimensional convection in a slender box and in an upright
cooled from above. We have chosen this problem for studyircular cylinder, respectively. It is interesting to note that
similar control strategies can be used to modify the flow
dAuthor to whom correspondence should be directed. Electronic mailPatterns of shear flofand surface tension driven flofs.
bau@seas.upenn.edu In this investigation, we study theoretically the effect of the
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controller on Rayleigh—Beard convection in an upright cir- heat transfer process. In order to minimize computer time
cular cylinder. To the extent possible, the theoretical resultand to avoid the need of solving a conjugate heat transfer
are compared with experimental data. Our objective is tgroblem, we did not compute the temperature distribution in
enhance our understanding of the flow patterns in the preghe side wall.

ence and absence of the controller, to study the effect of a A simplified, crude model of the side wall thermal
finite number of sensors and actuators on a controller's petsoundary condition was provided by Buell and Catfon
formance, and eventually to use the numerical code to opti-
mize the controller. ( 21 52

A 36(y,¢,2)
2T 502 vy @
Y de Y

)0(%@,2): FrE—
Il. THE MATHEMATICAL MODEL AND THE

NUMERICAL CODE . -
whereA =Nia/(\yty), Ny IS the thermal conductivity of the

We consider an upright circular cylinder of radi(e side wall material, and,, is the side wall’s thickness. When
and height H) filled with a fluid, heated from below and A —c<, the wall is perfectly insulating. Whef =0, the walll
cooled from above. Two different heating conditions areis conducting and its temperature distribution is independent
considered. In one ca$8), the nominal bottom temperature of the processes occurring in the fluid. In our
is specified. In the second ca@®), the nominal bottom heat experiment$l® A ~0.35. Thus the experimental data is ex-
flux is specified. In the absence of a controller, either thepected to fall between the insulating and conducting cases.
bottom temperaturécase A or the bottom heat fluxcase B In our numerical simulations, we considered the two
are uniform. We use these two types of heating conditiondimiting cases: insulated side wal\ —~, case ¢ or per-
because later on, we will compare our numerical predictionsectly conducting side wallA =0, case ). To clarify our
with experimental observations. In our experiments, we usedotation, when we refer to case AC, we mean to say that the
an array of heaters mounted on a silicon wafer and the trubottom temperature is uniforiftase A and the side wall is
heating condition was somewhere between the uniform temnsulated(case G.
perature(case A and uniform flux(case B condition. We used a staggered control volume approach to dis-

The mathematical model consists of the Oberbeck-cretize the equations. The momentum and energy equations
Boussinesq equatioffs formulated in cylindrical coordi- were integrated over a control volume, resulting in algebraic
nates. The cylinder's heighH, is the length scale; the ve- equations which were subsequently solved usingtheLER
locity U= (a/H) R Pr is the velocity scalepU/H is the  algorithm?* We denote the number of grid points in the
pressure scale; and/U is the time scalea is the fluid's  (r,¢,z) directions by ,,n,,n,). Backward differences
thermal diffusivity; u is the shear viscosityy is the kine-  were used to approximate the time derivatives. The convec-
matic viscosity; P+ v/« is the fluid’s Prandtl numberg is  tive terms were approximated using theick schemé& with
the thermal expansion coefficiers;is the gravitational ac- a modified formulation next to solid boundarf@sSpecial
celeration; and\; is the thermal conductivity of the fluid. In care was given to the singularity at the cylinder’'s center,
case A, the nominal temperature differendd,;g between r=0, where the radial and angular components of the veloc-
bottom and top, is the temperature scale andAfigg-based ity are not defined. By constructing a small circle of radius
Rayleigh number iRr=gBA T gH%/ av. In case BgH/\; (e—0) around the center, we obtained the conditions:
is the temperature scale and the heat-flux based Rayleigh(e,¢,2)=—u(e,p+m,2) and dJu(e,p,z)/dr=30du(e,e
number iqu=g,8qH4/)\fav, whereq is the nominal heat + 7,z)/dr for the radial component of the velocity. Similar
flux. The aspect ratio of the cylindetyEa/H) is the ratio of  relationships were obtained for the angular component of the
the cylinder’s radius and height. The nondimensional temwvelocity. We mention these conditions &0 since many
perature is denoted 6(r,p,z,t), where Osr<y, researchers have erroneously prescribed zero radial velocity
0=<¢=<2m, 0<z=<1, andt=0 are, respectively, the cylin- nexttor=0.
drical coordinates and timeu, v, andw denote, respec- The discretized equations were solved using a
tively, the radial, angular, and vertical velocity components.projection-based, iterative solver, GMREG:eneralized
The critical Rayleigh number for the onset of convection isMinimum Residual Method with preconditioning?’ This
denoted byR, ., wherex stands for eithefT or q. The solver proved to be more robust and somewhat more efficient
reduced Rayleigh numbéy) is the ratio between the actual (on average about 11% faste¢han the Tri-diagonal Matrix
and the critical Rayleigh numberg=R /R ;. Algorithm (TDMA) with Alternative Direction Implicit It-

For the purposes of code verification, we occasionallyerations(ADI), which we initially tried. The iterations were
used slip boundary conditions at some of the solid boundterminated when the residues of the momentum, energy, and
aries. When we carried out the actual numerical simulationgnass conservation equations were all smaller than'20
nonslip boundary conditions were specified at all solidWe also verified mass conservation by computing the mass
boundaries. flow through various vertical and horizontal cross sections of

The side wall thermal boundary condition presented ahe cylinder and on vertical circular surfaces and establishing
problem. Our experimental apparatus was constructed frorthat the net mass flow was smaller thar 1D Finally, we
Plexiglas and the working fluid was silicon oil. The thermal verified that in case C, under time-independent conditions,
conductivity of the Plexiglas wall was slightly higher than the differences in the heat flow through any horizontal cross
that of the silicon oil. Thus the side wall participated in the section were also smaller than 16.
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Ill. CODE VERIFICATION example, for a cylinder with an aspect ratyp=0.5 and

The code was verified by assuring that conservation law: r=0.7, Fig. 1 depicts the growth rateas a function of the

were satisfied and verifying that the results were reasonabl aylelgh numbequ, and the ”?eSh size. Hollow squares,
grid size independent as well as by comparing our result olid squares, tnangle;, and diamonds correspond, respec-
with those of other researchers and, when feasible, with ana?-\llgg’zoxtci5 mesg fgf;jx 1(5 8671' ‘ (1?('18);11) ,t

lytic solutions. For axisymmetric flow of a Br6.7 fluid in a ). an .( . ). Unfortunately, due to
cylinder with an aspect ratiadius/heightof y=1.75, type cpmputer power I|m|ta_1t|ons, we were _not able tg further re-
AC thermal boundary conditions, slip walls, and reducedf'n? the grid. The estimate of the critical Rayleigh number
Rayleigh numbersy=<2, our computed Nusselt numbers ;’Vh'cg ct:)or'refpon:js:[_ to a zero growth raie<0) was ob-
(with 15X4X 15 grid pointg agreed within 0.3% with the ained by interpolation. . .
two-dimensional, axisymmetric calculations of Jones Figure 1 indicates that the critical number was not inde-
Moore. and Wei,sés who utilized 48<84 grid points. For ‘pendent of the mesh size and that it increased as the mesh

cylinders with aspect ratioy=1.67 (n, =48, n,=80) and size was refined. To estimate the grid-independ&pt, we
y=1.42 (n,=48, n,=80), our results (n,=21, n, =4 depicted the critical Rayleigh number as a function of
. r ’ z ’ r ’ ¢ ’

n,=21) agreed with those of Jones, Moore, and Weiss(nran,xnz)*l, extrapolated the curve to zero mesh size

ithin 0.7% and 4.5%, respectively. Additional com ar'sons.using a quadra_tip curve fit’ and obtained the “gr_id size-
Wit ° > pectively " par gdependent” critical Rayleigh numbeR,, .= 1420. This es-

\F/)v:(t)r:”t(;] ézigg?: .:,Lc:;]egac:;putatmns of other researchers al{unjate falls short by about 5.8% from the analytically ob-
In a cylinder of aspect ratia=0.5, P=0.7, type BC tained value of 1508&the Appendix.

thermal boundary conditions, nonslip bottom and top, and

slip side wall, we used our code to compute the critical Ray4v. THE UNCONTROLLED CASE

leigh number at the onset of convection and compared the

results with the analytical ondthe Appendix. The numeri-

cally computed critical Rayleigh numbeR,, ., was obtained

by observing whether intentionally introduced disturbance

amplify or decay. We started the computations by specifyin ; TS X !

the Rayleigh number, a conductive temperature field, and J'€mselves since they provide information on Rayleigh—

small disturbance. We assumed that close to criticality, th&€nard convection in an upright circular cylinder. All the

disturbances grew/decayed as exponential functions of tim&omputations were carried out for nonslip walls and a cylin-

Accordingly, on a log—log plot, we depicted one of the vari- der of aspect ratioy=0.5. In order to facilitate comparison

ables, i.e., the vertical velocity component at a midheighf"’ith other researchers’ results, computations were carried
point, as a function of time. By fitting a straight line to the OUt for various Prandtl numbers. When we compared the

data, we obtained an estimate of the growth rateThe computational results with our own experimental data, we

computations were repeated for a few subcritical and supegPecified Pr135, which is still much smaller than the

critical Rayleigh numbers and the various growth rates werd& ™47 7% 10° of the silicon fluid used in our experiments,
plotted as functions of the Rayleigh number. In the vicinity but sufficiently large so that further increases in the Prandtl

of the critical Rayleigh number, the growth rate, varied number were not likely to introduce significant changes in

nearly linearly as a function of the Rayleigh nhumber,For the si_mulations’ results. . .
First, we computed the critical Rayleigh number for the

onset of convection in a cylinder with AC type thermal
04 boundary conditions. The method we used to obtain the criti-
cal Rayleigh number was described in Sec. Ill. Upon ex-
trapolation, we obtained the grid-independent critical Ray-
leigh numbeR .~3735+5. Our predictedRy ; value is in
reasonable agreement with results obtained by Buell and

We first carried out computations in the absence of a
controller. The purpose of these numerical experiments was
Jo provide a reference state against which the controlled flow

ould be compared. The results are also of interest all by

02

5 0.0 e Cattorf® who used linear stability and a Galerkin technique
v to obtain Ry .~3800 and Neumarii who used nonlinear,
finite difference numerical simulations to obtain
0.2 R .~3610. In contrast, using similar techniques to those of

Buell and Catton, Charlson and Skhi obtained

Rr .~4500. This relatively high estimate & . was appar-
ently caused by inappropriate treatment of the singularity at
r=0. We repeated the same calculations for thermal bound-
ary conditions of type AD to obtaifRy .~ 7,500+ 50.

FIG. 1. The growth rater is depicted as a function of the Rayleigh number, Next, we computed the temperature and flow field in the
Ry, and the mesh size. Hollow squares, solid squares, triangles, and di%ylinder with AC type thermal boundary conditions. In order

monds correspond, respectively, to mesh sizes §X7), (11x18x11), o . . . .
(15x20x15), and (1%24x19). The cylinder aspect ratioy=0.5.  '© facilitate comparison with other workers, the simulations

Pr=0.7. The thermal boundary conditions are of type BC and slip is allowedVere initially —carried out for_ Pr6.7 ﬂl_-'id- When_
at the side wall. Ry=17 500,y~4.7, and P# 6.7, Figure 2 depicts the verti-

0.4
1100 1200 1300 1400 1500 1600

Ry
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FIG. 2. The vertical component of the velocity, at the cylinder's mid-
height =0.5) is depicted as a function ofand ¢. y=0.5. Ry=17,500.
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Pr=6.7. Thermal boundary conditions are of type AC.
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cal component of the velocityy, at the cylinder’s midheight
(z=0.5) as a function of and¢. Figure 2 illustrates that the
postcritical flow field consists of a single convective cell.
The flow is symmetric with respect to the plape 7/2. The
cylinder is divided into two parts by the vertical= 0 plane.
The flow ascends in the sectar< <27 and descends in
the sector &< ¢<<sr. This flow pattern is qualitatively similar
to the predictions of linear theoty and the experimental
observations of Miler, Neumann, and Webbét, Tang!
and Tang and Bat? The results are also in good quantitative
agreement with the numerical computatiéhs?

Figures 3a) and 3b) depict, respectively, the projec-
tions of the vector fields on the plane of symmetry
(p=m/2) and the plane =0) when Ry=17 500, Pr
=6.7, andy~4.7. Figure &) depicts the isotherms in the
o=m/2 plane. The flow field depicted in Fig(8 and the
isotherms depicted in Fig.(8 are consistent with a single

oo L— o Ny
-0.50

FIG. 3. The projections of the vector fields on the plangs,#/2 (a) and
¢=0 (b), and the isotherms in the plage= 7/2 (c) are depicted as func-
tions of r and z. The thermal boundary conditions are of type Ag,
~4.7, P=6.7 andy=0.5.

Downloaded 24 Oct 2007 to 158.130.69.60. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 10, No. 7, July 1998 J. Tang and H. H. Bau 1601

075 |\ ™

6(0,2)
i
o
(=]
>

7
o’
1
!

-

0.25 RY \

0.00 02
0.00 0.25 0.50 0.75 1.00 05 0.3 0.0 0.3 05

z r

FIG. 4. The temperature along the cylinder ax¢0z), is depicted as a FIG. 6. The gomputed temperature when _the poundary conditions are of
function of the vertical coordinate when Ry=5000 (y~1.3, upright tri-  tYPe AC (solid circles and type AD (solid triangles and the non-
angles, Ry=17 500(y~4.7, solid circles andR;=50 000(y~ 13.4, solid dimensional measured temperatyselid diamonds are depicted as func-

squares Pr=6.7, y=0.5 and the thermal boundary conditions are of type fions of the radiusy=1.5, Pr=135, andy=0.5. The profiles were chosen
AC. in such a way as to include the maximum and minimum midheight tempera-

tures.

cell flow pattern. The flow field in the =0 plane[Fig. 3b)]

exhibits four counter-rotating eddies. atz=0.5 along the cylinder's diameter that lies in the sym-
Witness that the temperature figldig. 3(c)] exhibits a metry plane (= /2) and az=0.75 along the diameter that
temperature inversion. This phenomenon is shown morges in the =0 plane.R=17 500 andy~4.7. The hollow
clearly in Fig. 4, which depicts the temperature along thesquares, upright solid triangles, and solid lines represent, re-
cylinder’s axis ¢ =0) as a function of the vertical coordinate spectively, our own results with (78X 7), (15x20x 15),
z for Ry="5000 (x~1.3), Rr=17 500 (¢~4.7) and 50 000  and (19<24x 19) grid points. The X) represent data com-
(x~13.4). Atz=0, the nondimensional temperature is equalputed by Muler, Neumann, and Web¥r(with 24x 24x 24
to 1. WhenR;=5000 (upright triangley the temperature mesh points Witness the good agreement between the vari-
decreases monotonically asincreases. This is no longer oys computational results. The velocity profile along the di-
true for largerRy values. WherR;=17 500(solid circles,  ameter az=0.5 is consistent with up flow in one half of the
asz increases, the temperature along the cylinder’s axis inizylinder and down flow in the other half. The velocity profile
tially decreases, attains a local minimum, then increasegtz= (.75 is consistent with the four eddies seen in Fig).3
again to a local maximum, and finally declines to zero at theQuaIitativer similar results to those shown in Figs. 2-5
top boundary £=1). The magnitude of the temperature dip were obtained for the high Prandtl number cases.
does not change much as the Rayleigh number further in- | the experiments, we measured the temperature distri-
creasesi.e., Rr=50 000, solid squargs bution at the fluid’s midplanez=0.5). In Fig. 6, we com-
Figure 5 depicts the vertical components of the velocCitypare the measured and computed temperature distributions
along a diameter on which we observed the minimum and
maximum temperatures. As a function of the radius, the fig-
ure depicts the nondimensional measured temperésoiizl
diamond$ and the computed temperatures using AC type
(solid circles and AD type(solid triangle$ thermal bound-
ary conditions.y=1.5 and P#135. In the experiments, the
nondimensional temperature is defined a8=(T
—To)/ATgt, whereT, Ty, andATg are, respectively, the
measured midheight temperature, the temperature of the top
boundary, and the difference between the average bottom
temperature and the top temperature. Since in the experi-
ment, the side wall participated in the heat transfer process,
050 025 0.00 025 0.50 the boundary conditions at this wall were not accurately
r known. For this reason, we carried out calculations for both
FIG. 5. The vertical components of the velocityzat 0.5 along the cylin- perfectly conductingD) and perfectly insulatingC) walls.
der's diameter that lies in the symmetry plang=(#/2) and atz=0.75 In the V|C|n|ty of the Cylinder’s Centerr(< 03), there is little
along the diameter that lies in the plape=0 are depicted as functions of influence by the side wall, and the computations using either
the radial coordinate,. R=17 500,x~4.7, Pr=6.7, andy=0.5. The hol-  thermal boundary condition yielded similar results. The ex-

low squares, upright solid triangles, and solid lines represent, respectively, .
our own results with (K8x7), (15<20x15), and (1% 24x19) grid perimental data was also close to the computed results. As

points. The &) represents data computed by Muller, Neumann, and Webe@N€ approaches the Si(_i(? wall, the effect of the side wall
(1984, with 24< 24x 24 mesh points thermal boundary condition becomes pronounced, and the
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ABmax(0.5)

0.5 1.0 15 2.0 25 3.0 35 4.0
X

FIG. 7. The maximum mid-plane temperature different,,,(0.5), is
depicted as a function of the reduced Rayleigh nunflyer Solid squares,
solid diamonds, and solid triangles represent, respectively, experimental
data, computational data for AC type thermal conditions, and computational
data for AD type thermal conditions. P35 andy=0.5.

computational results for the C and D type wall conditions
deviated considerably. It is reassuring to note that the experi-
mental data lies between the numerical results for insulating
and perfectly conducting walls.

In the experiments, for low supercritical Rayleigh num-
bers, we used the difference between the maximum and

minimum midplane temperatures, (b)
A 0na( 0.5 =max o(r, ¢,0.5)) —min( 6(r,¢,0.5)) FIG. 8. The textured areas if®) and (b) depict, respectively, 17 and 9
re re independently controlled actuators. When 56 actuators are used, each of the

7area elements acts as an independent actuator. The grid distribution on the

as an indicator of the intensity of the convection. Figure 7, - 4 <urface is shown in Figb&

depicts A 0,,,,(0.5) as a function of the reduced Rayleigh

number (x). Solid squares, solid diamonds, and solid tri-

angles represent, respectively, experimental data, computa-

tional data for AC type thermal conditions, and computa-values and directed the actuators to adjust their power supply

tional data for AD type thermal conditions. Whan<1, in  in such a way as to counteract naturally occurring distur-

the absence of convection,f,,(0.5)=0. When convection bances.

starts to gain importance Ky<1.5), A 6,,,(0.5) increases In order to economize in computer time, in most of the

monotonically as a function of. Again, the experimental numerical simulations of the controller, we used a crude

data lies between the AC and AD cases. Whes increased mesh of 78X 7 grid points. The investigations presented in

beyond 1.5A 6,,,,(0.5) initially varied little and eventually Sec. lll suggest that for the type of flow patterns existing in

decreased slowly. Foy<1.5, A 6,,,(0.5) provides an indi- our cylinder, this grid provides qualitatively correct results.

cator of the convection’s intensity. In some of the numerical simulations, each of the area
Thus far, we have described the flow and temperatur€lements acted as an independent actuator to form a total of

fields in the cylinder in the absence of a controller. In the56 actuators. In other numerical simulations, we combined a

next section, we focus our attention on how a controller affew of the element$denoted by different textures in Figs.

fects the flow patterns in the cylinder. 8(a) and 8b)] to form 17[Fig. 8@a)] and 9[Fig. 8b)] inde-
pendently controlled actuators. FigurébBalso shows the

grid distribution on the heated surface. This corresponds to
V. THE CONTROLLED CASE 56 actuators. The number of sensors matched exactly the
In this section, we examine two types of controllers: anumber of actuators, and the sensors were located in the

controller that controls the cylinder's bottom temperaturemidheight plane above the actuators. In the numerical work,
distribution and a controller that controls the bottom’s heaffor computational convenience, we used actuators in the
flux distribution. For example, the bottom of the experimen-shape of circular segments. In contrast, in the experimental
tal apparatus of Tang and BRwas equipped with 24 indi- Work, the actuators had a rectangular shdpe.

vidually controlled heatergactuators mounted on a silicon In cases A and B, the controller rules were specified,
wafer. The actuator's power supply was under computer contespectively, as

rol. Twenty-four di nsor ition h linder’

tro enty-four diode sensors positioned at the cylinder’s 0(2=0)=1—ke(6,(z=0.5—0.5), %)

midheight continuously monitored the deviation of the mid-
height temperature distribution from the desired conductiveand
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T This change of behavior was indicated by the abrupt change
of slope of they (k) curve. As long as no flow existed, the
bottom temperature was uniform and the isotherms were
horizontal. The controller modified the stability characteris-
tics of the no-motior{conductive state without affecting the
conductive state itself.

To illustrate the effect of the controller on the supercriti-
cal flow patterns, we depict in Fig. 10 the isotherms in the
midplane ¢=0.5) whenR;=29 000, P=135, k=0 (a),
kr=4 (b), andk;=8.0 (c). In the absence of the controller
[k+=0, Fig. 1@a)], the flow consisted of a single cell; the
flow ascended in one half of the cylinder and descended in
the other half. Whek=4 (b), the single cell flow structure
was still in existence; but a larger fraction of the cross sec-
tion was occupied by the ascending flow and a smaller frac-
tion by the descending flow. Whd@=8 (c), the isotherms
were consistent with axisymmetric flow. We emphasize that
in Figs. 1@b) and 1Qc), the bottom temperature was not
uniform, and it was dictated by the controller riqg. (2)].

FIG. 9. The ratio between the critical Rayleigh numbers in the presence andhe Rayleigh number was based on the nominal bottom tem-
the absence of the controller is depicted as a function of the controller gairberature_

for case AD 56 actuator&6, k/2, AD); case AC with 5656, k;, AC), 17 Since no experimental apparatus is perfect. of some con-
(17, ks, AC) and 9(9, kt, AC) actuators; and case BD with 56 actuators p PP P !

(56, /10, BD). Pr=135 andy=05. cern was the ability of the controller to cope with imperfec-
tions. In order to assess the controller’s ability to cope with
imperfections, we specified a slightly non-uniform bottom

30, (z=0) temperature, i.e., we replaced the “1” in E¢2) with
oz ~1+ky(6(2=0.9-0.5), @ 1ter cos(p). Under this condition, the purely conductive

. . . (no-motion) state no longer existed and weak convection was

where the subscriptk} identifies the sensors and the corre- always present. Whesa=0.1, Fig. 11 depicts the maximum

s_pondlng actuators_. In th_e above, gnd kq are the propor midheight temperature differenca,f,,,(0.5), as a function
tional controller gains. Since the time constant of the con- : .

. . : . of the reduced Rayleigh numbéy) and controller gains
vective processes in the fluid was on the order of minute

and the response time of the actuators was on the order %F'ZO (solid diamonds 3 (solid squareg and 4 (hollow

. . riangles. As a result of the imperfection, the transition from
seconds, it was not necessary to account for time delays |{1 . ) ;
Egs.(2) and (3). he no-motion to the motion state is gradual and no longer

abrupt as in the case of the perfect bifurcatifig. 7). The
A. Cases AD and AC figure illustrates that even in the presence of imperfection,

In order to study the effect of the controller on the criti- the controller still successfully reduces the intensity of the

cal Rayleigh number at the onset of convection, we specifie§oNvective motion. _
the Rayleigh number and computed the flow field. Once the [N the case AC, smaller controlier gains were needed to
initial transient died out, we engaged the controller with vari-2chiéve the same relative increase in the critical Rayleigh
ous gains and observed whether the controller was able fgUmber as inthe AD case. This is perhaps due to the fact that
successfully suppress convection. Case AD is investigatetl® critical Rayleigh number for the onset of convection in
first. case AD is about twice as large as in the AC case. When the
For the AD case and 56 actuators, the curve denoted bjumber of heaters was 56, 17, and 9, the curves in Fig. 9
(56, kr/2, AD) in Fig. 9 depictsy,, the ratio of the critical denoted by(56, kr, AC), (17, ky, AC), and (9, kr, AC)
Rayleigh numbers in the presence and absence of the coflepict the reduced critical Rayleigh numbaer) as a func-
troller as a function of the controller gaik{/2. The symbol tion of the controller gain. In all these cases kasncreases
“ks/2" indicates that the numerical values of the controller SO doesy.. These curves illustrate the effect of the number
gain listed on the abscissa should be multiplied by a factor 0@f actuators on the controller's performance. In the range of
2. In other words, the domain of the cur(&5, kt/2, AD) in parameters investigated here, the reduction in the number of
Fig. 9 is from 0 to 10. Witness that as the controller gainactuators from 56 to 17 had little effect on the controller’s
increases, the critical Rayleigh number for the onset of conperformance. Further reduction to 9 actuators led, however,
vection increases as well. Wh&n< 9, the supercritical con- to a significant deterioration in the controller's performance.
vection in the cylinder was qualitatively similar to that ob- For example, when the controller's gaikg=5, a control
served in the absence of the controller, and it predominantlgystem with 9 and 56 actuators led, respectively, to a 2.1-
consisted of a single convective cell. For larger controllerand a 4.8-fold increase in the critical Rayleigh number. In
gains ky>9), the supercritical flow pattern in the controlled our experimental investigatioi,we used 24 actuators. The
cylinder changed to predominantly axisymmetric convectionnumerical simulations suggest that this is more than enough

Controller Gain
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for effective control for the range of Rayleigh numbers con-
sidered in the experiment.

In order to identify other potential causes as to why the
controller in the experiments did not perform as well as pre-
dicted by the theory, we investigate the effect of discontinu-
ous changes in the actuator’'s output on the controlled sys:
tem’s performance. In the experiments, we used digital
control that caused the actuator’'s output to vary by discrete
jumps. To assess the effect of such changes on the controlle
system’s performance, we conducted a sequence of simula
tions in which we varied the actuators’ output by finite in-
crements corresponding to 10% of the nominal heated sur-
face’s temperature in the absence of a controller. In other
words, we set the controller rule to be

Wh i1
en I_E

=

1
+§ X 0.1 then 0k(0)=Ol><|

ABmax(0.5)

o
=
N

o
o
N
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=
(=]
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X0.1=1-k¢(6,(0.5—-0.5 FIG. 11.

J. Tang and H. H. Bau

§=90°

¢=180°

(b)

FIG. 10. The isotherms in the midplane=0.5) are depicted wheR;
=29 000, P+135, k=
=135, y=0.5.

0 (a), kr=4 (b) and k;=8.0 (c). Case AD. Pr

o
o

0.2

04

In the presence of an imperfection, the difference between the
maximum and minimum midplane temperatures is depicted as a function of
the reduced Rayleigh number for various controller gains. Solid diamonds,
solid squares, and hollow triangles correspond, respectiveky,=t®, 3, and
4. Case AD. P+ 135 andy=0.5.
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FIG. 12. The maximum and minimum midheight temperatde2sand the corresponding actuators’ outgit are depicted as functions of timé) ( When
t<0, the controller is off. The controller is appliedtat O after steady convection has been established. Cas®AG000, y= 1.32, the number of actuators
is 17, and the actuators’ output is updated every 434 time steps by 0.1 increment85Pandy=0.5.

In the above, i) is a positive integer. temperature in a very significant way. However, as soon as
Figure 12 illustrates the effect of such a discrete controlthe controller has reduced the intensity of the convection, the
ler on the system’s performance. For case AC, Figga)l2 actuators’' temperature returns to a value close to the nominal
and 12b) depict, respectively, the maximum and minimum value of(1) and the midheight temperatures approach, but do
midheight temperatures and the corresponding actuatorsiot quite attain, the desired value of 0.5. When the controller
output as functions of time. In this simulatio®R=5000, is active, the maximum difference in the midheight tempera-
xc.=1.32, the number of actuators is 17, and the actuatordure is about 0.06—an eightfold reduction from the uncon-
output is updated every 434 time steg@ghich is equivalent trolled case. Witness that the controller succeeds in suppress-
to X609 by 0.1 increments. The dargkottom) line in Fig.  ing established convection. This indicates that the controlled
12(b) corresponds to the dafkop) line in Fig. 13a). Atthe  state has fairly sizable basin of attraction. Because of the
start of the simulation, the controller is off, the actuatorsdiscrete changes in the actuators’ output, a time independent
provide the nominal temperatufé) and convection devel- state is never established. The actuators’ outputs oscillate
ops in the cylinder. In the absence of control, the maximumaround the nominal value of 1, and the midheight tempera-
difference in the cylinder’s midheight temperatures is aboutures undergo small amplitude oscillations. When the actua-
0.48. Once steady convection has been established, the disrs’ output is allowed to change continuou$bgs.(1) and
crete controller is turned on at nondimensional tite0. (2)] and in the absence of noig¢eot shown herg the mid-
Initially, the turning on of the controller affects the actuators’ height temperatures and actuators’ output assume exactly the
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FIG. 13. The maximum and minimum temperatufies’C) recorded by diodes located at the cylinder's midheightind the corresponding actuators’ power
variations(mW) are depicted as functions of timg~1.25 andk=100 mW/K. Whent<0, the controller is off. The controller is turned ontat0, after a
steady convection has been established.

time-independent values of 0.5 and 1, respectively, and height temperatures return close to their conductive values
state of pure conduction is maintained. [Fig. 13@)]. In the absence of a controller, the maximum
The time series shown in Fig. 12 is interesting because idifference in midheight temperatures is abeu6.2 K. The
resembles closely our experimental observations. In Fig. 13;ontroller reduces this temperature difference to less than 1
we reproduce a time series from our experimental data. K—about a sixfold decrease from the uncontrolled case.
Figures 18a) and 13b) depict, respectively, the maximum Similar to the numerical simulations, the controller in the
and minimum temperaturg@ °C) recorded by sensors lo- experiment is robust and is able to suppress established mo-
cated at the cylinders midheight.x.~1.25 and tion. Because of the discrete changes in the actuators’ output,
k=100 mW/K. Figure 1&) depicts the powefin mW) sup- a steady state is never established. The actuators’ and sen-
plied to the actuators located directly beneath the diodessors’ signals fluctuate as functions of time. The amplitude of
Whent<0, the controller was inactive and steady state conthe temperature fluctuatiorj&ig. 13a)] is very small and
vection was established inside the cylinder. At time0, the  barely visible on the scale of the figure. The numerical simu-
controller was turned on. Similar to the theoretical investigalations strongly suggest that the controller’s inability in the
tion depicted in Fig. 1), the actuator reacf§ig. 13b)]by  experiment’ to reduce the difference between the maximum
a sizable change in the actuator’s signal. Once the controlleand minimum midheight temperatures to zero is due to dis-
successfully suppressed the convective motion, the actuatortsete changes in the actuator's power which were necessi-
signals return close to their nominal values and the midtated by the limited resolution of the digital control system.
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FIG. 14. The difference between the maximum and minimum midheight ¢

temperatures is depicted as a function of the reduced Rayleigh number f?fIG 15. The midheight temperatué0.25,0,0.5 is depicted as a function
controller gainsk,=0 (solid diamond} 2 (solid squarek 6 (solid circles, C o _ e A

and 8(solid triangle$. The figure also includes experimental data depicted of time. Case BD. Pr 135, y=0.5,k;=60, and Ra30 000,

as hollow symbols. The hollow squares, hollow circles, and hollow triangles

correspond, respectively, to controller gaiks, 2.%., and 3.k.. Case , . . .
BD. Pr=135 andy=0.5. ¢ ° the actuators’ power may have led to a deterioration in the

controller's performancésee Figs. 12 and )3temperature
sensing at only a few spatial locations may have led to an
B. Case BD underestimation of the maximal temperature difference; and
) articipation of the side walls in the heat transfer process was
Next, we describe the performance of the controller thaﬁ]ore complex than what we assumed in the theoretical
modifies the bottom heat flux. The curve denotg€, k,/10,  odel.
BD) in Fig. 9 depicts the reduced critical Rayleigh number At large controller gaindi.e., k,>50), the bifurcation
(xc) as a function of the controller gairk{). The “k,/10” ; b/ i indi
\Xc) i - q occurred directly from the no-motion state to time-periodic
implies that the values on the horizontal axis should be mulxqnvection. For illustration purposes, Fig. 15 depicts the mid

tiplied by 10 in order to get the controller gain. Similar to height temperatured(1,0.%) as a function of timek,= 60

A, th ntroller fully retains a no motion stat . .
case A, the controller successiully retains 0 MOtoN ST 1 Ra=30 000. Witness that once initial transients have
under conditions when cellular motion would have existed in . . - ;
died out, the temperature oscillates as a periodic function of
the absence of the controller. For the range of controller

S . . : time. This oscillatory behavior is consistent with linear sta-
gains |nygst|gated by.us and for Rayle|gh number; SllghtlybiIity analysis of the no motion state of the controlled
above critical, the motion was asymmetric and consisted of ?Qayleigh—Baard convection in an infinite fluid layaf This

single convective cell. For Rayleigh numbers much above : . : .
L . . . analysis predicted that at high controller gains, a loss of sta-
criticality, axisymmetric motion was observed.

bility of the no-motion state occurs through a Hopf bifurca-

Figure 14 depicts the difference between the maximun}. ’ e
. . . . ion. In other words, at large controller gains, the “principle
and minimum mid-height temperatures as a function of the

. . . of exchange of stability” is no longer valid. It is interesting
reduced Rayleigh number for controller gaikg=0 (solid 2 )
diamonds, 6 (solid squares 15 (solid circles, and 20(solid to note that as the fluid’s Prandtl number increases, the Hopf

triangles. The figure also includes experimental data de_blfurcat|0n occurs at lower Rayleigh numbers. Similar oscil-

. : . latory behavior was also observed in our experiments when
picted as hollow symbols. Direct comparison between ex: : 19
I?rge controller gains were uséti’

periments and theory was complicated by the very high heal The controller was fairly rugged, and it was able to

losses in our experimental apparatus which prevented us . .
L . : counteract large disturbances. In some of our numerical
from obtaining an accurate relationship between the magni-.

. . . simulations(i.e., Fig. 13, we started the numerical simula-
tude of the controller gain used in the experiment and the on ! ; L
. L2 oo . ion with the controller being off. Once time-independent
used in the theoretical investigation. In Fig. 14, the hollow

diamonds are the experimental data in the absence of thCeonvectlon was established in the cylinder, we switched the

. controller on. The controller successfully suppressed the
controller. The hollow squares, hollow circles, and hollow ; . . . .
: : . convective motion and established and retained a conductive,
triangles correspond, respectively, to controller gakqs

2.%., and 3.k, wherek, is the proportional controller no motion state.

gain in the experiment. The experimental data and the theq-

retical predictions exhibit similar trends. As the gain in-({/l' CONCLUSIONS

creases, the controller succeeds in maintaining a low mid- This paper describes a numerical investigation of
height temperature difference for higher Rayleigh numbersRayleigh—Beard convection in an upright circular cylinder
The discrepancies between theory and experiment can be and the effect of a linear controller on the stability of the
tributed to the differences between the theoretical model ando-motion state. It was demonstrated that the no-motion state
the experimental setup. We mention here only a few differin a confined medium can be controlled and that the control-
ences. In the experiment, imperfection made identification ofer can counteract the adverse effects of imperfections. The
the critical Rayleigh number difficult; discrete variations of controller is capable of suppressing established convection.
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The numerical code can be used to examine the performance 1\ 96(r,¢,— b
. . . . Py T2 (90( ‘}/,(D,Z)
of various control strategies. The numerical results are in a(r,(p, _): = =0 (A3)
gualitative agreement with experimental observations and 2 gz ar
with theoretical predictions for the unconfined case. Unfor-and
tunately, the degree of stabilization which was achieved in )
physical experiments falls short of theoretical predictions. wlro +1) _ owW(r,e,*3) _ IW(y,,2) _
The numerical simulations suggest that this shortcoming may T2 9z ar
have been caused by discrete variations in the actuators) o above, V2=V2+D2, V2= (1ir)(aldr)[r(dlar)]

power in the experiment. It is conceivable, therefore, that+(1/r2)(&2/a¢2), and D=d/dz. We proceed in the usual

refinements in the experimental apparatus will improve th?/vay by expandingv and @ into the normal modes
controller’'s capabilities and will bring its performance closer ’

to that predicted by this theoretical work. W
( ) a n,m,k ( S}

0. (A4

_ Wn,m,k
0 (Z)fn,m,k(ry‘P)EXqUn,m,kt)a (A5)
APPENDIX: LINEAR STABILITY ANALYSIS n.m.k

In this Appendix, we use linear stability theory to com- wheref, m (1) satisfies the equation

pute the critical Rayleigh number for the onset of convection fo+>\2f:O. (AB)
in an upright circular cylinder with uniform heat flux heat-
ing, an insulating side wallcase BQ, nonslip velocity
boundary conditions at the bottom and top boundaries, and
slip boundary condition at the side wall. This analysis IS,/ ~2_y2y/n2_y2_ 2_v2_p1 2 _
similar to the one carried out by RosenBfdor the onset of (BT=AD" A= 0)(D7 A"~ Prio)+A Rq)e_?A7)
convection in a upright cylinder with a uniform bottom tem- .

perature. The results of these stability analyses were used Y§th the boundary conditions

N\ is a real positive number and the growth rates og
gim . O satisfies the equation

validate our numerical code. 0(1)=DO(-1)=(D2-N\2—g)O(+})
Briefly, we linearized the Oberbeck—Boussinesq equa-
tions about the conductive, no motion statesv=w=0 =D(D?-N\?-0)O(+x3H=0. (A8)

and6(r,¢,{) =3~ {, where—3=<{<3. After some manipu- Equation(A7) admits a solution of the form
lations, we obtained linear equations for the vertical compo- 5

nent of the velocityw, and for the deviation of the tempera- B 2 )
ture, ', from the conductive temperature distribution. 6(2)= 2, (A; cosfixiz) A5 sinh(xiz)), (A9)

wherex;’s are the roots of the polynomial equation

J
~1 7 w2 — 2 4
Progr VW RO VW A (2= A) (= \2= 3) (X2~ \?—Pr ! g) + \?Ry=0,
(A10)
and . . .
In order to have a nontrivial solution, we require that the

EY) , determinant,
EZW-FV 0, (A2) M E -

Det /=0 (A11)

where we dropped the superscript. The boundary condi-
tions are where

X1 X2 X3 RS .
cosh = cos > cos > X4 Sin > X5 Sin

X X X
M=| I'; cos)‘(—l> r, cos)‘(—2> | I cosk{—3

N

N

[ X1 . [ X2 . [ X3 X1 X2 X3
{1 sml'(?) {5 sin ?) {3 smk(;) 0 cosr{? {o cosl‘(;) {3 cos}‘(?
RS X2 X3 . [ X . [ X R
sm?‘(? sml’(i) smt’(i) —X 3|nl-<?) —X, sml-(?) — X3 sm?‘(;
E= 0 0 0 = 0 0 0 ’
0 0 0 0
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FIG. 16. The critical Rayleigh number is depicted as a function of the radial wave numfére circles denote the admissible values efhen the azimutal
wavenumberm, equals 1 and 2.

Fi=Xi2—)\2—0', and{;=x;T';. To find the critical Rayleigh 5S. H. Davis, “The stability of time periodic flows,” Annu. Rev. Fluid
number, we setz=0 in Eq.(A11). For a given value ok, ~ Mech.8 57(1976. ,

. . R. J. Donnelly, “Externally modulated hydrodynamic systems,"Non-
Eqg. (All) is an eigenvalue problem fd®; and o . In the

. . linear Evolution of Spatio-Temporal Structures in Dissipative Continuous
absence of controlg, is always zero and the critical Ray- Systemsedited by F. H. Busse and L. Kram@lenum, New York, 1990

leigh number is independent of the Prandtl number. Figure pp. 31-43.
16 (solid line) depictsR, as a function of. 8M. N. Roppo, S. H. Davis, and S. Rosenblat, “tied convection with
In the confined cylinder\ admits only discrete values. _time-periodic heating,” Phys. Fluida7, 796 (1984).
The solution of Eq. (A6) has the form, f, (r,) %R. E. Kelly, “Stabilization of Rayleigh—Beard convection by means of a
. y In,m\ls

o . . A slow nonplanar oscillatory flow,” Phys. Fluids 4 647 (1992.
_‘Jm()‘nr)eXme‘P)' wherem is an integer. The admissible R, E. Kelly and H. C. Hu, “The onset of Rayleigh~Bard convection in

values of N are determined by requiring that 4 nonplanar oscillatory flow,” J. Fluid Mect249, 373(1993.
(alar)Im(hyy)=0. The first few values of N are !J. Tang, “Active control of Rayleigh—Beard convection,” Ph.D. thesis,
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