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ABSTRACT 

Recently, several strategies for transaction processing in partitioned dis- 

tributed database systems with replicated data have been proposed. We survey 

t h e e  strategies in light of the competing goals of maintaining correctness a d  

achieving high availability. Extensions. and combinations are then discussed, 

and guidetines for the selection of a strategy for a particalar application art  

praented. 

INTRODUCTION 

In r disrributed database system, data is often replicated to  imprwe pcrfarmance and . 
Ttis material t brtd upoa work axpportcd by tbc Nadoad Science Poundatiw under Grmt 

ECS-8303146. 



availability. By aoring copies of shared data on processors where it is frequently -d, the 

need for. expensin, remote read accesses is decreased. By storing copies of critical data on 

processen with independent failure modes, thq probability that at least one copy of the data is 

accessible increaucs. Thrwzgh replication, it is possible, in theory, to provide arbitrarily high 

data availability. 

In practice, realizing the benefits of data replication b difficult since the correctnrss of 

data must be maintained. One important aspect of correctness with replicated data is that of 

lnuruaf conristency: all copies of the same logical data-item must agree on exactly one 'current 

value' for the data-item. Furthermore, this value should 'make sense' in terms'of the transac- 

aim; :recrrted on copies of the data-item. This agreement process is obviously complicated 

when communication between sites containing copies of the same fogical data-item faiIs. The 

most disruptive of these failures are partition fdIures, comuiunication failures that fragment 

the network into isolated subnetworks, called partitions. Unless detected and recognized by 

all affected processors, such failures provide the opportunity for independent, uncoordinated 

updates to be applied to different copies of the data, thereby compnnnising the correctness of 

data. Consider, for example, an Airline Reservation System implemented by a distributed 

database that splits into two partitions as the result of a failure in the communication net- 

work. If at the time of the failure all the nodes have one seat remaining for PAN AM 537, 

and reservations art made in both partitions, correctness has been violated: who should get 

the last scat? There should not be more seats reserved for a Bight than physicaIIy exist on the 

plane. (Some airlines do not implement this constraint and d a w  overbookings.) 

The design of a replicated data management algorithm tolerating partition failures is a 

notoriously hard probtem. Typicfly, the cause or extent of a partition failure can not be dib 

ctrned by the processors themselves. At best, r pnrcessor may be able to identity the other 

proctssors in its partition; but, for the processors outside of its partition, it will not be able to 

distinguish between the case where those p-rs are simply isolated Ennn it and the case 

where those processors are down. In addition, slow responses from certain protxswm can 



c a w  the network to appear partitioned even when it is not, further complicating the design 

of a fault-tolerant algorithm. 

As far back as 1977, Rothnie and Goodman in their well-known survey paper [ROG077] 

identified partitioned operation as one of the importaut and challenging open issues in distri- 

buted data management. Since then our understanding of the problem has increased dramati- 

cally, while numerous and divem so1utions have beca p r v d .  In this paper, we survey 

several of the more general solutions, and discuss current research trends in this still young 

and active research area. 

Although our discussion is couched within a database contea, most muIts have more 

general applications. In fact, the onIy essential notion in many casts is that of a transaction. 

Hence, these strategies arc immediately applicable to mail systems, calendar systems, object- 

oriented systems-applications using transactions as theit underlying model of processing. 

The remaining sections of the survey are organized as follows. Section 1 discusses the 

principal consideration in the design of a processing strategy for a partitioned system, the 

trade-off between correctness and availability. Section 2 discusus the notion of correctness in 

a replicated database system, and introduces a taxonomy of partition processing algorithms. 

Sections 3 and 4 survey the current solutions for transaction processing while the system is 

partitioned, and suggest extensions and combinations. Section 5 discuss# a somewhat 

different problem: how to complete transactions in progress at the time of a partition failure. 

Guidelines for the selection of a partition strategy are presented in section 6, along with 

suggestions for future research. 

L CO- VERSUS AVAILABILITY 

When designing a system which i s  to operate in the presena of partitioning, the two c o w -  

ing goah of availability-the normal function of the system should be disrupted as little as 

possibl-and correctneJb-data must bt correct when recovery is comple t~mus t  somehow 

I$e met. Thest goah arc not independent; hence, trade-offs are involved. 



Correctness can be achieved simply by srupcnding operation in all but one of the parti- 

tion groups and forwarding updates at recovery; however availability has been severely 

compromised. In some applications, this is not acceptable. Typically in these applications 

either partitions occur frequently or occur at c r i t i d  moments when access to the data is 

imperative. For example, in the Airline Resenation System it may be too expensive to have a 

high connectivity network and partitions may occasionally occur. Many transactions are uc- 

cuted each second (TWA's centralized reservations system [GISPM] estimates 170 transactions 

per second at peak time), and each transaction that is not executed may represent the loss of a 

customer. In a military command and control application, a partition can occur because of an 

enemy attack, and it is precisely at this time that we do not want transaction processing 

halted. 

On the other hand, availability can be achieved simply by allowing all nodes to process 

transactions "as usuaI" (note that transactions can only execute if the data they reference is 

accessible). However, correctness may now be compromised. Transactions may produce 

"incorrect" results (eg., reserving more seats than physically available) and the databases in 

each group may diverge. .In some applications, such *'incorrectn results may be acceptable in 

light of the higher availability achieved: when partitions are reconnected, the problems may be 

corrected by executing transactions missed by a partition, and by choosing certain transactions 

to "undo!' If the chosen transactions have had no real worlds effects, they can be undone 

using standard database recovery methods. U, on the other hand, they have had reai world 

effects, then appropriate cornpenrating trorrractiorrr must be run, transactions that not only 

restore the values of the changed database items but also issue real world actions to nullify 

the effects of the chosen transactionr (eg, by canafing certain resenations and sending mes- 

llages to affected users). Alternatively, carecthg rreruuctianr can be run, transforming the 

database from an incorrect state to a comct state without undoing the effects of any previ- 

ously ran transactions. For instance, in a banking application the correction for averdrawing a 

checking account during a partitioning is the application of an overdraft charge. Cf course, in 



some applications incorrect results are either unac+ptabIe or incorrectable. For example, 

it may not be possible to undo a correct a transaction that effectively hands $1,000,000 to a 

customer. 

Since it is clearly impossible to satisfy both goah simultaneously, one or both must be 

relaxed to some extent depending on the application% requirements. Relaxing avaiIabiIity is 

fairly straightforward; one simply didlows certain transactions at certain sites. Relaxing 

correctness, w the other hand, usually requires extensive knowledge about what the informa- 

tion 5 the database represents, how applications manipulate the information, and how much 

undoinglcorrectinglcompensating inconsistencies costs. The first step in choosing a partition 

processing strategy is to determine which is more important-correctnm or availability; the 

second step is to try understand the trade-offs between the two properties for the database at 

hand. 

2. THE NOTION OF CORRECTNESS 

What does correct processing mean in a database system? Informally, a database is correct if 

it correctly describes the external objects and processes that it is intended to model. In 

theory, such a vague notion of correctness could be formalized by a set of static constraints on 

objects and their attributes and a set of dynamic constraints on how objects can interact and 

evolve. In practice, the complete specification of the constraints governing even a srnaI1 data- 

base is impractical (besides, even if it were practical, the enforcement of the constraints would 

not be). Consequently, database systems enforce a less ambitious, very general notion of 

correctness based on the order of transaction execution and on a s m d  set of static data con- 

straints, known as integrity constraints. 

I .  this section, we examine the notion of correctness, beghmhg informally with exam- 

ples illustrating incorrect behavior, follwed by a more formal definition of correctness in the 

traditional database system. When referring to the state of the database, we use the terms 

"correct" and '*consistentn interchangeably. 



Consider a banking database that contains a checking account a d  a savings account for 

a certain customer, with a copy of each a c c ~ ~ h t  stored at both Site A and Site B. Suppose a 
.. 

coxxm&xiications failure isolates the two sites. Figure 1 showa the result .of executing a check- 

ing withdrawal at A (for $100) and two checking withdraw& at B (totaling $100). 

SITE A SITEB 

Ckcking := Ckcking - $25 
Checking := Ckcking - $100 

Ckcking := Checking - $75 

Fig. 1 An anomaly due to concurrent write operations 
on the same data item in separate partitions. 

Although the resulting copies of the checking account contain the same value, we know intui- 

tively that the actions of the system are incorrect-the account owncr extracted $200 from a 

checking account containing only $100. The anomaly is caused by a conflicting write opera- 

tions issued in parallel by transactions executing in different partitions. 

An interesting aspect of this example is that in the resulting database all copies are 

1 mutually consistent , i.e., all copies of a data item contain the same value. Mutual consistency 

is not a sufficient condition for correctness in a (transaction-oriented) database system, 

although it commonly used the correctness criterion for replicated file systems and for infor- 

mation databases, mch m telephone directories. It is a h  nat r necessary condition: consider 

the example where A u e c u t a  the SlW withdrawal while B docs nothing. Although the 

rtsulting copies of the checking account contain different values, the resulting database is 

Tbh ir the narrowest intaprtratiw d rcvall rrrr of the term "UI~lud coadrteacy" that appcu in tbe 
literature. Some mthon rrrc mutt4 consistency rponymody with oaecopy cqmvalcnce (dcdntd in the 
oa t  section). 



correct if the system recognizes that the value in A's copy is the most recent one. 

A different type of anomaly on the same database is illustrated in Figure 2. Here, we 

assume that the semantics of the checking withdmwd aUow the account to bt overdrawn as 

allowed as long as the overdraft is covered by funds ia the saving account (is.. 

checking +savings 0). 

SITE A SITE B 

lf checking+savings> $200 If checking+savings> $?GO 
t k n  checking := ckcking - X200 then savings := savings - t200 

Flg. 2 An anomaly due to concurrent read and write operations 
in different partitions. 

In the execution illustrated, however, these semantics are violated: 5400 is withdrawn, whereas 

the a c c m t a  together contain only E300. The anomaly was not caused by conflicting writes 

(none existed sirce the transactions updated different accounts), but instead because accounts 

are aIlowed to be read in one partition and updated in another. 

Concurrent reads and writes in different partitions are not the only sources of incon- 

sistencies in a partitioned system-more will be identified shortly. Nor do they always cause 

inconsistencies: for example, if the savingb withdrawal in Figure 2 is changed to a deposit, the 

intended semantics of the database noold not be violated. However. the above are typical 

anomalies that can occur if conflicting transactions are executed in different partitions. 

2.2. Database Model 

A database is a set of logical d a a  i t e m  that support the basic operations read and write. 

The granularity of these items is not important: they could k records, ats, relations, etc. 



The state of the database is an assignment of values to the logical data items. For brevity, log- ~ 

ical data items a n  subsequently catled data i tem or, more simply, items. 

A t r ~ ~ u c t i o n  is a program that issues raad aad write operations on the data items. In 

addition, a transaction may have effects that m external to the database, such as dispensing 

money or displaying results on a user's tcrminrJ. The items read by r transaction constitute its 

redset; the items written, its writesn. A readonly trumuctian neither issues write requests nor 

has external effects. Transactions are assnmed to be correct. Marc precisely, a tronraction, 

when executed alone, transform an initially correct dataisuse state into anotkr correct stare 

VGGL821. 

Transactions interact with one another indirectly by reading and writing the same data 

items. Two operations on the same item are said to conflict if at least one of them is a write. 

Conflicts arc often labeled either red-write, write-read, or write-write depending on the types 

of data operations involved and their order of execution [BEGOSI]. Conflicting operations 

are significant because their order of execution affects the find database state. 

A generaily accepted notion of correctness for a database system is that it executes tran- 

sactions so tnat they appear to usen as indivisible, isolated actions on the database. This pro- 

perty, referred to as atomic execution, is achieved by guaranteeing the following properties: 

(1) The execution of each transaction is an "all or nothing": either all of the transaction's 

writes and external operations are performed or none are performed. In the former cast 

the transaction is said to be committed; in the latter case, aborted. The property is often 

refered to as crtomic co-tnunt. 

(2) The execution of several transactions concurrently products the same database state as 

mme serial execation of the 8arnc tmuactiona. The execution is then said to be serioliz- 

able. 

The lint property is established by the commit and recovery algorithms of the database sys- 

tem; the second, by the concurrency control algorithm. 



Atomic transaction execution together with the aforementioned corcectncsprtsening 

assumption imply that the execution of any set of transactions transforms an initially correct 

database state into a new, correct state. (The foilow. from a simple induction argument on 

the number of transactions.) Of coune, atomic execution is not aIways necessary to prtJtnre 

correctness (we explore this mote Iater on). Nonetheless, most real database system imple- 

ment it as their m1e correctness criteria because of its simplicity and generality. Atomic ue- 

cution can be enforced by very general mtchanhm that carefully order the execution of 

conflicting data operations, mechanisms that arc independent of the semantics of the data 

being stored and of the transactions manipuIating it. Moreover, atomic execution corresponds 

to most users' intuitive model of processinethat of sequential processing. 

Some systems allow additional correctness criteria to be expressed in the form of 

integrity cons.;rJdnts. Unlike atomicity, these are semantic constraints. They may range from 

. simple constraints-eg. the balance of checking accounts must be nonnegative-to elaborate 

ones thar relate the values of many data items. In systems enforcing integrity constraints, a 

transacticn is allowed only if its execution is atomic and its results satisfy the integrity con- 

straints. To simplify the discussion, throughout the rest of the paper we wiI1 assume that 

integrity constraints ate checked as part of the namal processing of a transaction. 

Notice that we have not specified whether we were discussing a centralized or a distri- 

buted database system-it has not been necessary to do so since the definitions, the properties 

of transaction processing, and the correctness criteria are the same in both. Of course, the 

algorithms for achieving correct transaction processing differ markedly between the two types 

of implementations. 

In a replfcuted datobosc, the valne of each logical item x is stored in one or more physkd 

data i tem, which are referred to as the copies of I. Each read and write operation issued by a 

transaction on some logicai data item must be mepped by the database system to correspond- 

ing operations on physical copies. To be correct, the mapping must ensure that the concurrent 

execution 4 transactions on replicazed data is  eqvivalnu to a serial execution on nonreplicated 



data, a property known as one-copy serial&abUiry. The logic that is responsible for performing 

this mapping is called the replica control algarithm. 

As a correctness criterion, one-copy seridhbility t attractive for the same reasons that 

(normal) stridizability is: it is intuitive, and it can be enforced using general-purpose mechan- 

isms that are independent of the semantics of the database and of the transactions uecutcd. 

The literature on the model and problem discussed above is extensive. The transaction 

concept was first introduced in [EGLWq. A single-site re#mry algorithm is presented in 

[GMBLZBl]. Single-site concurrency control algorithms are too numerous to list, but three 

influential psoposais are two-phase locking (EGLT761, timestamp ordering [BEGOBO], and 

optimistic concurrency control (KUROSl]. The seminal paper on scriaIizability theory is 

[PAPA79]. [BLAUSl] discusses the enforcement of integrity constraiats. (GRAY781 contains 

an in-depth treatment of many issues in the implementation of a database system. 

For nonpartitioned distributed database systems, concurrency control algorithms are sur- 

veyed in [BEG0811 and [KOHLBl]. Atomic commitment protocols are discussed in 

[GRAY78], [HASHSO], and [SKEE82b]. Replica control algorithms arc contained in [GXFF79], 

[STON79], and [GSCDFRS3]. A good discussion of the requirements for maintaining one- 

copy seridizability in the presence of failures can be found in [BEG083]. 

23. Partitioned Operation 

Let us now consider transaction processing in a partitioned network, where the commun- 

ication connectivity of the system is broken by failures or by anticipated communication shut- 

downs. To keep the exposition simple, fet us assume that the network is "cleanly' partitioned, 

that is, any two sites in the m e  jmrtitioo can communicate and any two sites in different par- 

titions can not conimunicate. Let us assume for n w  the traditional cartctnesa criterion- 

onecopy serializability. 

During the time the system is partitioned, each partition must determine which transac- 

tions can be executed in that partition without vioIating the correctnear criteria. Actually, 



this can be thought of as two problems: the fint is that each partition must maintain correct- 

ness within the part of the database stored at the s i ta  comprising the partition, and the 

second is that each partition must make sure that its actions do not conflict with the actions of ' 

other partitions so that the database is correct across aIl partitions. 

If we make the assumption that each site in the netpork is capable of detecting partition 

failures, then comctness within a partition can be maintained by adapting one of the standard 

replica control protocols for nonpartitioned systems. For example, the sites in a partit' 1011 can 

implement a write operation on a logical object by writing all owpies in the partition. This, 

along with a standard concurrency control protocol, ensuns one-copy serializability in the par- 

tition. 

The really difficult problem is ensuring one-copy seriakability ucross partitions. For 

this, it is not sufficient to run just a correct replica control algorithm in each partition, as the 

examples in' Figures I and 2 illustrate, where transaction execution within each partition is 

one-copy serializable, but the werall executioa is not, because of the execution of conflicting 

operations in different partitions. 

Numerous solutions have been proposed for keeping data globally consistent, and most 

of the remainder of the survey is devoted to discussing these solutions. Many of these solu- 

tions are based on the simple observation that a sufficient (but not necessary) condition for 

correctness is that no two partitions execute conflicting data operations. However, not all par- 

tition processing solutions use one-copy serializability as their correctness criteria, nor do all 

attempt to maintain correctness across partitions. We discuss these alternatives in the next 

section. 

Although a partition processing strategy can be thought of as being composed of two 

algorithms: an algorithm to ensure correctness globally across partitions, and an replica control 

algorithm to ensure one-copy behavior, in practice, many strategies are composed of a single 

algorithm that solves both problems. Most "single" algorithms do not require partitions to be 

detected and tolerate more than just '%leanm network failures Such algorithms are attractive 



for their additional fault tolerance. In the next sections, we present these "single algorithms', 

along with "partition control" algorithms. However, h both, we e m p h w  the partition control 

aspect. a 

In addition to solving the problem of global correctness, a partition processing strategy 

must solve two other problems of a different sort. First, when the partitioning occurs, the 

database is faced with the problem of atomically committing ongoing transactions. The cum- 

plication is that the sites executing the traasaction may find thtmselva in different partitions, 

and thus unable to communicate a decision regarding whether to complete the transaction 

(commit) or to undo it (abort). Note that the problem of atomic commitment in muItipIe par- 

titions does not arise for a transaction submitted after the partitioning occurs, since such a 

transaction will be executed in only one partition. Note also that this problem arises in any 

partitioned database system whether the database is replicated or not. 

Second, when partitions are reconnected, rnutuar consistencg between copies in 

different partitions must be reestablished. That is, the updates made to a logical data object 

in one partition must be propagated to its copies in the other partitions. ConceptuaIly, this 

problem can be solved in a straightforward manner by extra bookkeeping whenever the system 

partitions. For example, each update applied in a partition can be logged, and this log can be 

sent to other partitions upon reconnection. (Such a log may be integrated with the "rccwery 

log" that is already kept by many systems.) In practice, an efficient solution to this problem is 

likely to be intricate and very dependent on the normal recovery mechanisms employed in the 

database system. For this reason, we do not discuss it further. 

2.4. CI.sdLftrtioa or Strrt4e.s 

Partition processing strategies can be c l d c d  dong two orthogonal dimensions. 

The first dimension concerns the tradeoff between consistency and availability. At one 

extreme lies the pessimistic straegies, which prevent inconsistencies by limiting availability. 

2As before. by "mutual condsmcy" we that the cogdo ~oat.io the amc d o c .  



Each partition makes worst casc assumptions about what other partitions are doing. Hence, 

each partition operates under the pessimistic assumption that if an inconsistency can occur, it 

wilt occur. These strategies differ primarily in the policy used to restrict transaction process- 
0 

ing. Since they ensure consistency, it is straightforward to merge the results of individual par- 

titions at reconnection time: Updates are aurely propagated from copies in one partition to 

their counterparts in the other partitions. 

At the other extreme lie the optimistic strmegie3, which do not limit availability. Any 

transaction may be executed in any partition containing copies of the items read and written 

by the transaction. Hence, inconsistencies may be introduced. These strategies operate 

under the optimistic assumption that inconsistencies, wen if possible, rarely occur. During 

reconnection, the system must first detect inconsistencies and then resolve them. Although 

optimistic policies allow global inconsistences, transaction processing within each partition is 

consistent. Thus, no user staying within a single partition wuId detect an inconsiste~cy. 

Optimistic strategies differ primarily in how they detect and resolve inconsistencies. In 

section 1 we have already discussed several different ways that can be used to resolve conflicts. 

These range from simply undoing a set of the transactions that have generated no significant 

external actions, to running compensating transactions to nullify the effects of transactions 

generating external actions, to running corrective transactions that transform the database to 

a "correct ," but not necessarily stridizable, state. Obviously, the latter approach requires 

finding a suitable correctness criteria in lieu of one-copy stridizability. 

The second dimension in the classification concerns the type of information uscd in 

determining correctness. Syntactic approaches usc one-copy serializability as their sole correct- 

ness criteria and check serializability by examining readsets and writ- of the executed tran- 

sactions. Hence neither the semantics of the transactions (is. how the read items are used to 

generate the result) nor the semantics of the data items are used in ascertaining correctness. . 
Syntactic approaches are implemented using general-purpose concurrency control algorithms. 

such as two-phase locking PGLT761. 



Semantic crpproacha use either the semantics of the transactions or the semantics of the 

database in defining correctness. Atthough this is wmewhat of a "catch-all" category, there 

are two discernible subcategories. The first uses serializability as the correctness criteria but 

also uses the semantics of the transactions in testing serializability. The second abandons seri- 

alizability altogether and instead d e 5 e r  correctnea in tmnr of the contents of the database 

itself; the correctness criteria is intended to capture the semantics of the data stored in the 

database. Such semantic constraints fall outside of the traditional model of transaction pro- 

cessing. 

3. SYNTACTIC APPROACHES 

A11 approaches in this section use serializability as the correctness criteria and check serializa- 

bility by comparing transactions' readsets and writesets. We assume that a correct con- 

currency control mechanism coordinates transaction execution within a partition; hence, tran- 

saction execution within a partitiori is acrializabie. We also assume that at the time of the par- 

titioning all copies are mutually consistent and there are no in-progress transactions. Note 

that this assumption is not realistic and is made to simplify the presentation. In general, 

copies of data items may not be consistent at partition time because some have processed 

updates of a committed transaction while others have not. H w  the system resolves these 

"blocked" transactions will be discussed in the section dealing with atomic commitment (stc- 

tion 5). Transactions at earlier stages of processing can be aborted and rerun in the partition 

containing their site of origin. 

Version Vecrorr [PPRSl] 

Version vectors, proposed for use in the distributed aperating system LOCUS [POPE81], 

detect write-write conflicts between copies of 6lu Each copy of a file f has associated with 

it a version vector which counts the number of updates to f originating at each site at which 

it is stored. That is, the vector consists of a sequence of r pairs, where r is the number of 



sites at which f is stored; the ia vector entry (Styd)  counts the number v, of updates to f 

originating at site S,. Conflicts occur when more than one partition updates the file, and can 

be detected by comparing version vectors. . 
Vector r is said to dominate vector rJ if r and r* arc version vectors for the same He and 

v, z v, . for i =I, ,n . Intuitively, if r dominates rr, the copy with veaor r has seen a super- 

set of the updates seen by the copy with vector r'. Two vectors are said to conflict if neither 

dominates. In this case, the copies have seen different updates. For example, < A3, B:4, 

C2> dominates < A2, B:l, C3> since 3> 2, 4> 1 and 2=2, but < A3, B:l, C2> and < A2, 

B:4, C2> conflict since 3> 2 but 1< 4. 

When ;wo sites discover that their version vectors for f conflict, an inconsistency has 

been detected. How to resolve the inconsistency is left up to the system administrator. 

EXAMPLE: Consider the foIIowing partition graph for file f. Sites A, B and C initially 
have the same version of f. The system then partitions into groups AB and C, and A u p  
dates f twice. Hence both A and B have version vectors of < A2, B9, CO> , while C is 
< A9, 8 9 ,  C9>.  Site B then splits off from site A and joins site C. Since C did not 
update f and B has the current version, there is no conflict (< A3, B10, CD> dominates 
<Ail, B9, CAI>). and B's version (and vector) is adopted for the new group BC. Dur- 
ing this new partition failure, A updates its version of f once, making group A's version 
vector < A3, BO, CO> , and C updates its version of f once, making group BCs version 
vectors < A:2, BO, C:l> . When groups A and BC now combine, there is a conact and 
neither of < A2, BO, C:l> or < A9, BO, CO> dominates the other. 

A B C  < AO, Bfl, C1)> 

c A:2, B9, Cil> A B < Ad), Bd), CAI> 

CA3, BD, C9> A B C < A2, B.O, C:l> 
A updates f once. \ / NO CONFLICT: B's version adopted. 

C updates f once. 

CONFLICT: 3> 2,0=0, but 0c 1. 
ManuaI assistance required. 

Version vectors detect write-write amflicts only. Read-write conflicts can not be 



detected because the files read by a transaction are not recorded. Hence, the apgroach wurks 

we11 for transactions accessing a single file, which are typical in many file systems, but not for 

multi-file transactions, which are common in d?tabase systems. 

EXAMPLE: Consider applying version vcctors to the banking example of Figure 1, 
where communication between sites A and B fails. During the failure, the transaction 
executed at A updates the checking balance based on the value of the saving balance; 
the transaction executed at B updates the savings balance based on the value of the 
checking balance. No conflict will be detected, even though the abwe is clearly not seri- 
alizable. 

' 5 0  CONFLICT detected 
A's version adopted. 

< A:l, BD> 

NO CONFUCT detected 
B's version adopted. 

< AD, B:l> 

To extend the vemion vectors algorithm so that read-write conficts arc detectable, read- 

set and writes of transactions must be logged. This leads to an algorithm very similar to the 

one presented in the next section. 3 

The Optimistic Protocol [DAVIS21 

The optimistic protocol detects inconsistencies by using a precedence graph, which 

models the necessary ordering between transactions. Precedence graphs, used to checking 

serializability across partitions, arc adapted from serialization graphs [PAPA79], which are 

used to check serializability within a site. In the following we assume that the readset of a 

transaction contains its writeset. (The reamon for this assumption is to avoid certain NP- 

complete problems in checking serializability.) 

In order to construct the precedence graph, each partition maintains a log, which 

3Historical note: such an extenaim was pmpcsd in [PARA82]. Their cooilia detection dgoiithm, howcv- 
a, is incorrect: it d o a  not detect all i n c o ~ a a  and f d d y  detects incoalistcaeics. 



records the order of reads and writes on the data items. From this log, the readsets and wri- 

texts  of the transactions and a serialization order on the transactions can be deduced. (A 

serialization order exists since, by assumption, transaction execution within a partition is seri- 

alizoble.) Fur partition i , let Ti . . Jlr be the set of transactions, in serialization order, 

executed in I .  

The nodes of the precedence graph represent transactions; the edges, interactions 

between transactions. The first step in the construction of the graph is to model interactions 

between transactions in the same partition. Two typu of edges (interactions) are identified: 

(a) (Data) Dependency ~ d g t v ~  (Ty - - 3 Tu ): these edges represent the fact that one transac- 

tion Ta read a value produced by another transaction Ti] in the same partition 

(WRITESET (Ti) ) n READSET (Tu )# 0, j < k ) 

(b) Precedence Edges (TI, -T&): thcse edges represent the fact that one transaction Tlj 

read a value that was later changed by another transaction Tn in the ,same partition 

(READSET (Ti] )n WRITESET (Ta)# 0, j < k ) 

A dependency edge from Ttj to Tn indicates that the output of Ttj iduenced the execution 

of Tu, hence the "existence" of Tu deptnds on the 'existence" of Ti]. The meaning of a pre- 

cedence edge Ti, from Tu is more subtle: Tn does not influence Tij only because Tl, executed 

before it. In this case the "existence" of Tu does not depend on the existence of Ti]. In both 

cases, an edge from Ti]  to Ti& indicates that the order of execution of the two transactions is 

reflected in the resulting database state. Note that the graph constructed so far must be acy- 

clic since the orientation of an edge is always consistent with the serialization order. 

To cornpletc the precedence graph, conflicts between transactions ia different partitions 

must be represented. A new type of edge is defined for this purpose: 

(c) Interf srence Edges (Ti] + Ttk , i + 1 ): these edges indicate that T,, read an item that is 

written by Ttk in another partition (READSET (Tlj)n WRITESET (Tic)# 0). 



The meaning of interference edge is the same am a precedence edge: an interference edge from 

T,, to Tu indicates that TI, l o g i d y  "executed beforen TL since it did not read the value 

written by Tlk . An inttrference edge signals a read-write confict between the two transac- 

tions. (A write-write conflict manifests as a pau of read-write since each transaction's readset 

contains its writact.) 

EXAMPLE: Suppose the serial history of transactions executed in P I  is 
{Tl1, Tn, T13, and that of Pz is {Tzl, Tp). The precedence graph for this execu- 
tion is given below, where the r~Eidkt of a transaction is given above the Line'and 
the writeset below the line. (Thus, transaction T reads b ,c and writes c .) 

PARTITION 1 PARTITION 2 

Intuitively, cycles in the precedence graph are bad: if T and T /are in a cycle then the 

database reflects the results of T executing before T'and of ?/executing before T-a con- 

tradiction. Conversely, the absence of cycles is good: the precedence gruph for a set of pcuti- 

tions Is acyclic if and only Y t k  resulting databare srate is conristenf [DAVI82]. An acyclic pre- 

cedence graph indicates that the transactions from both groups can be represented by a single 

serial history, and the last updated copy of each datr-item is the correct value. A serialization 

order for the transactions can be obtained by topologically sorting the precedence graph. 

Inconsistencies are resolved by rolling back (undoing) tnnsactions until the resulting 

subgraph is acyclic. When a transaction is rolled back, transactions connected to it by dtptn- 

dency edges must also be roUcd back, since these transactions read the values produced by the 



selected transaction. Hence rolling back one transaction may precipitate the rolling back of 

many, a problem known as cascadin~ rollbacks. Transactions connected to a rolled back tran- 

saction by precedena edges are not rolled bck since they did not read the results of the 

rolled back transaction. In the above example, if Tll is selected, then Tn and T u  must also be 

selected. However, simply selecting Tu, Tzl, or Tp also breaks the cycle and involves only 

one transaction. Note that transactions must be rolled back in reverse order of execution; 

that is, within each partition, the value of a data item that is updated by one or more rolled 

back transactions from that group will be restored to the value read by the earliest rolled back 

transaction. To merge the partitioned databases, the final value of each updated data item in 

each partition group can 'simply be forwarded to the other group (a data item can- 

not be updated by both groups after transactions have been rolled back since the resulting 

precedence graph is acyclic). 

Note that the notion of "committinf a transaction has been somewhat violated. A tran- 

saction T is "committed' during a faiiure subject to confirmation at recwery. If all actions 

performed by T are recoverable, rolling back is not a problem; one merely replaces the values 

updated by T by the values read by T. However, some unrecwerable actions may also have 

been performed. For example, an automatic teller may have handed money to a customer, 

results may have been reported to a user, or a missile may have been firtd. Some such actions 

may be compensated for, that is, there could be some T* that can bc executed to nullify the 

effect of T. For example, the bank could charge the account of the customer who acciden- 

tally received cash from the automatic teller, or the reporting procedure gould inform the user 

that the reported results were inaccurate due to system failure (hopefully the user would have 

been made aware of this possibility from the start). Other actiorw such as the firing of a 

missile- may have no compensation. Such actions s h d d  not be permitted during failure since 

there can be no guarantee that the transaction will not be rolled back. 

The algorithm used to select which transactions to roll back should strive to mini- 

ssme cost function, for example, the number of rolled-back transactions, or the sum of the 



weights of the rolled-back tramactions (where the assignment of weights can be application 

dependent). Unfortunately minimizing either the number of transactions or  the sum of their 

weights is an NP-Complete problem (DAVI82I; Hence, heuristics must be used. 

The most promising heuristics use the following observation: breaking all two-cycles in a 

precedence graph tends to break almost aIl cydcr. A two-cycle is a cycle consisting of two 

transactions connected by a pair of interference edga in opposite directions. These cycles 

tend to represent write-write conflicts on data-items. Two cycles can be broken optimally 

using a polynomial algorithm. After the two-cycles have been broken, the few remaining 

cycles can be broken by a greedy algorithm, one that repetitively selects the lowest weight 

transaction involved in a cycle. Simuliition studies have shown that such heuristics work very 

well, out-performing all other strategies tested [DAVI82]. 

The performance of the optimistic protocol is studied in [DAVL82]: A probabilistic 

model is developed that yields a formula for estimating rollback rate given the number of 

transactions, a model of the average transaction, and the size of the database. Simulation 

results in the same paper yield additiond insight into rollback rates. These studies indiate 

that the optimistic protocol performs best when: 

(1) a small percentage of items are updated during the partitioning, and 

(2) few transaction have large writesets. 

Whenever (1) holds, the probability that a given transaction will be rolled back depends more 

on the size of its writeset than its readset. Regarding (2). not only is the occasional large tran- 

saction more likely to conflict with another transaction, but in addition its rollback is IikeIy to 

awe other rollbacks. Consequently, the rollback rate is quite sensitive to variance in transac- 

tion size. 

32. PesdmtrLLc Approaches 

The first group of pessimistic strategies, primary site (copy), tokens, and voting, were initially 

proposed as distributed concurrency control mechanisms. Hwever, they can also be used to 



prevent wntiicts between transactions when the network partitions. Missing writes is an adap  

tive voting strategy which improves performance when t h e n  are no failures in the system. 

Thc last approach, designed spccificaIIy for paftitioned networks, strives to increase availabil- 

ity by exploiting known characteristics of the workload. 

Primary Site, Copy (ALDA761, [STON791 

Originally presented as a resilient technique for sharing distributed resources, this approach 

suggests that one copy of an item be designated the primary and as such be responsible for 

that item's activity. All reads for a data item mud be performed at the primary site for that 

data irem.5 Updates are propagated to a11 copies. In the case of a partition failure, only the 

partition containing the primary copy can access the data-i temupdata are simply forwarded 

at recovery to regain consistency. 

This approach works well only if site failures are distinguishable from network failures. 

If this is the case and the primary site for a data-item fails, a new primary can be elected (for 

a discussion of eIection protocoIs, see [GARC83bD. However, if it is uncertain whether the 

primary faiIed or the network failed, the assumption must be that the network failed and no 

new primary can Ee elected. 

Tokens [hlIT%'Im] 

This approach is very simi1a.r to that abwe except that the primary copy of an item can 

change for reasons other than site failure. Each item has a token associated with it, permit- 

ting the bearer to access the item. In the event of a network panition, only the group con- 

taining the token will be able to access the item. 

The major weakness with this scheme is that accessibility is lost if the token is lost due 

to site or communication medium failure. 

3~ormllly only the lock for a data item must be acquired at the prinury ate: tbe actual rsad may be per- 
formed on any copy once the Iock has ken gmtcd. 



Voting [GIFF79] 

The first voting approach was the majority consensus algorithm described in ~ 0 M 7 8 1 .  

What we now describe is the generalization of that algorithm proposed by Gifford [GIFF79]. 

In this approach, every copy of a repficated itcm is assigned some number of votcs. 

Every transaction must collect a read quorum of r votcs to  read an item, ,and a write quorum 

of w votes to  write an itcm. Quorums must satisfy two constraints: 

(1) r +w exceeds the total number of votes v assigned to the item, and 

v 
(2) w > - 

2 ' 

The first constraint ensures that there is a non-null intersection between every read 

quorum and every write quorum. Any read quorum is therefore guaranteed to have a current 

-%;y cf $lie item. (Version numbers are used to  identify the most recent cupy.) In a parti- 

ti;,. .. . . 1. a, this constraint guarantees that an item can not be read in one partition and 

wr:'tc~. ; .: .. ;,{her. Hence, read-write confficts can not occur between partitions. 

...". 
: .r,: -and constraint ensures that two writes can not happen in parallel or, if the s p  

t rr i  .; ;nctitioned, that writes can not occur in two different partitions. Hence, write-write 

cro~flicis can not occur between partitions. 

EXAMPLE: Suppose sites S S2 and S all contain copies of items f and g, and that a 
partition P 1 occurs, isolating S 1 and S2 from S3. Initially, f =g=O, each site has 1 vote for 
each of f and g, and r-=w=2 fot both f and g. 

During the partitioning, transaction T 1 wishes to update g based on vdues read for f and 
g. AIthough it cannot be executed at S3 since it cannot obtain a read quorum for f, or  
read and write quorums for g, it can be executed at S1, and the new value g=l is pre  
pagated to S2. 



Now suppose P I  is repaired, and a new failure P2 isolates S1 and S 3  from Sz. During 
this new failure, transaction T1 wish- to  update f based on values read for f and g. It 
cannot be executed at S2 sina it cannot obtain a read quorum for g, or read and write 
quorums for f. However, it can be executed at S3. Using the most recent copy of g=l  
(obtained by reading copier at both S1 and S3 and taking the latest version) T2 computes 
the new value f = l  and propagates the new value t o  S1. 

Notice tkat the above example reduces to a majority vote [THOM78] since each copy has 

exactly one vote and r and w are a simple pajority 

Varying the weight of a vote can be used t o  reflect the needed accessibility-level of an 

item. For example, in a banking amlication, a customer may use certain branches more fre- 

quently than other branches. Suppose there are 5 branches of the bank, and that the custo- 

mer uses branches 1, 2, and 3 with q u a 1  frequency, but never goes to  branches 4 o r  5. 

Assigning r=w=2 and his account at branches 1, 2 and 3 a vote of 1 but 0 elsewhere would 

reflect this usage pattern. 

The quorum algorithm differs from those previously discussed in two important ways. 

First, by choosing r < v / 2 ,  it is possible for an item to be read-accessible in more than one par- 

tition, in which case it will be write-accessible in none. Read-accessibility can be given a high 

priority by choosing r small. Second, the algorithm does not distinguish between cwrmunica- 

tion failures, site failures, or just slow response. A serious weakness of the prev-ious schemes 

is that availability is severely compromised if a distinction can not be made. 

A weakness of the quorum scheme is that reading an item is fairly expensive. A read 

quorum of copies must be read in this scheme, whereas a single copy suffices for all other 

schemes. 



Missing Writes [EASE831 

Eager and Sevcik's algorithm ([EASE83]; see also (BEG083D is based on the observation 

that requiring a quorum for items in the readsct as well as for those in the writeset is a 

sufficient restriction to guarantee correct or scriaIizable execution during partition failures; 

however, it is not necessary. Performance is umeccssariIy degraded by requiring a readset 

quorum when there are no failures; however, the requirement is necessary when there are 

failures. Thus transactions run in two modes, nonial and failure. When in normal mode, 

transaction T reads one copy of each data-item in its readset, and updates all copies in its wri- 

teset. If some wpy cannot be updated, T becomes 'awarem of a missing update, and must run 

in failure mode, which is very similar to the majority consensus algorithm alluded to above: 

quorum must now bc obtained for each data-item in the readset and writeset! This 'missing 

update information' is then passed along to all foUowing transactions that need the informa- 

tion, i.e. all transactions connected to T by a path of dependency and precedence edges ori- 

ginating at T .  These transactions also become aware of missing updates, and must run in 

failure mode. Since T cannot see the future and does not kaow what transactions these will 

be, the missing update information is posted at sites as a level of indirection. When the 

faiIurc is repaired, the missing update information will eventually be posted at the sites that 

"caused" the missing updates, i s .  those that did not receive the updates. The updates can 

then be applied, and postings removed from other sites throughout the system. 

The algorithm hinges on the ability to recognize "missing writes', and to propagate the 

information to later transactions so that cycles in the precedence graph of committed transac- 

tions are avoided. Note, however, that certain transactions may be able to execute without 

restriction even if there arc partition failurea present in the system; there is no harm in dow-  

ing readonIy transactions to "run in the past' during a failure, ia. read an old value of a data- 

item, as long as no cycles result in the precedence graph of committed transactions. This 

6~ quo- can - t i d y  be thought of r tbe 'w > Go from coaditioa 2 in tk previ- stion; it ir a 
L 

r t  of (polsibly weighted) -a from sites cootaiohq copies of the d.crtitcm a u h  that m y  two quommm for 
that dua-itcm intersect. 



ability to run in the past allows a site that has become isolated from the rest of the network to 

execute readonly transactions even if updates are being performed on reinote c+es of the 

data-items stored at that site. 
0 

EXAMPLE: Suppose that there are four sites in the system S Sf,  S3  and S1. Sites S1, 
Sz and S3 contain copies of data-item a ;  site S1, S3 and S4 contain copies of data-item b. 
Now suppose a failure occurs, isolating mtu S1 and S2 from site S3 and S4; transactions 
TI, Tz, T3 are initiated at site S1 (in that order), while transaction T4 is initiated at SI. 
The readsets, writesets and precedence graph u e  depicted below. (The precedence 
graph shown is of nncommirred transactions since cycles in the precedence graph of com- 
mitred transactions will obviou~~ly be avoided.) 

- - 
T1 is unaware of the failure, since it can obtain a copy of a and b at S1; it can happily 
run in the past. Tz becomes aware of the failure when it is unsuccessful at updating the 
copy of a at S3; it is allowed to commit, however, since it can receive a quorum for each 
data-item in its read and write sets (assuming that each wpy has a weight of 1). Tt is 
then required to pass all of its missing update information to transactions that are 
incoming nodes for outgoing edges from T2, such as T3 in this example. IE T3 were to 
successfully commit, it would also be required to  pass on the missing update information. 
However, in this example, T3 is not allowed to  commit; since it is aware of missing 
updates, it is required to obtain a quorum for data-items in its readset, which it cannot 
for b .  Transaction T4 would also not be allowed to commit since although it can obtain 
a quorum for b ,  it finds that it cannot update the copy o t  b at S2, and must then run in 
failure mode. Since it cannot obtain a quorum for a ,  it cannot complete succtssfully. 
Thus in this example (as well in a11 others), there are no cycles in the precedence graph 
of committed transactions. Note that the restriction that T2 and T4 be rerun in failure 
mode is necessary: suppose that T2 and T4 both read a and b ,  but T2 updated a white 
T4 updated b. If they both executed in normal mode and did not switch to failure mode 
when they became aware of missing updates, a cycle would mult in the precedence 
graph of committed transactions. 

In order to  implement this method, regardless of the concurrency control mechanism 

being used, several files must be kept at each site. They include: 



(a) A file for posted missing updates, with indications of which transactions need to be 

informed about the missing updates. 

@) A file containing the values of missiig updates, to be applied to the appropriate copies 

when recovery occurs. 

(c) A file indicating the transaction restarts, aborts, or commits of which the site is aware, 

used to resolve the "blockedg transactions alluded to in the introduction to section 3. 

(d) A record of the missing updates that have been applied at the site. 

Although these files can grow very rapidly if the system is active during failures, they must 

only be maintained when failures are present in the system, and thus do not impact perfor- 

mance in the absence of failures. Furthermore, since quorums are only required when 'a tran- 

saction is aware of a missing update, when there are no failures or the transaction is not 

required to know about the failure, reading an item incurs no additional overhead. The 

method is eiso very flexible: it requires no 'detection' of failure other than the inabiIity to 

perform updates, no special 'global' action or temporary cessation of activity to propagate 

updates when the faiIure is repaired. 

Improvements on this algorithm can also be found in (HERUM]. Better availability is 

provided by exploiting type-specific properties of the data. Necessary and sufficient con- 

straints on avaiIability are derived from the data type specification. For example, Enqueue 

and Dequeue operations for a replicated FIFO queue arc allowed to execute concurrently in 

distinct partitions; however, in Eager and Sevcik'r venion, this could only execute in oae par- 

tition since the operations would be treated as writes. 

Clms Conflict Analyst [SKWRW] 

The pessimistic strategies discussed so far strive to make each data record available for 

reading and writing in some partition by arbitrary transactions. These strategiu, then, 

emphasize the general availability of individual records. An alternate strategy, Class Conflict 

Analysis, strives to ensure the capability of performing important high-levd operotions on the 



data. Hence, this strategy emphasizes the adabi l i ty  of high-level data operations, possibly at 

the expense of the general availability of recorda 
% 

To illustrate the difference between tqe two approaches consider again the banking 

example discussed in Section 1, where a customer can overdraw his checking account as long 

as the overdraft is covered by funds in his saving account. If the system partitions, none of 

the discussed pessimistic strategies would d o w  a checking withdrawd (which requires reading 

the balance of both accounts) to occur in one partition and allow a savings deposit to occur in 

another partition. However, executing these transactions in parallel in different partitions 

violates neither the bank's policy nor the one-copy seriaIizability. Hence, these transactions 

should be alIowsd. 

The approach assumes that transactions are divided into classes as proposed in [BSR80]. 

A class may be a well-defined transaction type, such as the "savings withdrawal," or it may be 

syntactica!Iy defined, e.g., the class containing all transactions reading and writing a subset of 

items a ,  b ,  and c .  

Like transactions, classes are characterized by their readset and writesets. The readsct 

(resp. writeset) of a class is the union of the readsets ( r q .  writesets) of all of its member 

transactions. As before, it is assumed that a class's readsct contains its writeset, so that cer- 

tain NP-complete problems are avoided. Two classes conflict if one's readset intersects the 

other's writext. A class conflict indicates a potmrid read-write conflict between member tran- 

sactions of the classes. (A conflict may not actually occur because the transactions' readsets 

and writesets may be proper subsets of the classes' readsets and writesets.) 

When a failure occurs, each partition group must decide what classes of transactions it 

will extcutc so as to avoid potential con!licts with transactions executed in other partitions. 

As a first step, it must decide what c l a w  arc 'assigned* to its partition as weU as those that 

are assigned to the other partitions. For example, if classes are executable at specific sites, the 

classes assigned to a partition would be those executabb at sites within the partition. Note 

that classes may be assigned to more than one partition, and there may be conflicts between 



classes in different partitions. 

The second step for each partition is to analyze the assignment and discover the class 

conflicts that can lead to nonscrializable aecutioab. The analysis uses a graph model that is 

'dmilar to the one used in the optimistic protocol. Whereas the prcccdena graphs used in 

that protoco1 give the octual orderinp between conflicting transactions, clam codict graphs 

give all potential orderinp between conflicting classes. Defined below is a simplified version of 

the model presented in [SKWRM]. 

A node of the clars conflict graph represents the occurrence of a given class in a given 

partition. Edges are drawn between occurrences of conflicting classes according to the rules 

given below. Let C, and CI be classes such that redse t  ( C l ) n  writeser (C,) is not empty. 

(1) If C, and C, arc in the same partition, then a pair of edges pointing in opposite 

directions connects them. 

(2) If C, and CI are in different partitions, then a directed edge extends from C, to 

Cl - 
The direction of the edges indicate the possible logical orderings of transactions from 

conflicting classes. In particular, in the case of classes C1 and CI in rule (2). the transactions 

of C, can not logically succeed those of C1 because Cl 's transactions can not read the updates 

of Cl's transactions. Therefore, the only order possible is that all transactions of C, precede 

all transactions of Cl, as indicated by the single directed edge. 



EXAMPLE: Below is a class conflict graph for the banking example for two partitions. 
Boxes denote classes. Readsets are shown above the h e ;  writtsets, below. Data items 
s, c ,  and i are the savings account, the checking account, and the interest rate, r-c- 
tively. Classes C, and C, include the saving deposit transadions and checking with- 
drawal transactions discussed in section 1. Class Ct transactions change the interest rate, 
class C, transactions add an interest payinent to the savings account, and class C, tran- 
sactions are readonly. 

PARTITION 1 PARTITION 2 

The third step in the analysis is to identify those assignments that could lead to nonseri- 

alizable executions. Cycles play a key role here, but not ail cycles are bad. Among class 

occurrences in the same partition, cycles are both common and harmless, since the con- 

currency control algorithm operating in the partition wi l l  prevent nonserializable executions. 

On the other hand, cycles spanning multiple (> 1) partitions ate not harmless, since there is no 

mechanism preventing them in an execution. Hence, mnlriparririon cycles indicate rhe porenricrl 

for nonserializable execurioru. In the example, if transactions from classea C, , C, , and C, exc- 

cute in that order in partition 1 and a transaction from C, cxecutw in partition 2, the resrrlt is 

nonstrializable. (This can be checked by constructing the precedence graph for the execu- 

tion .) . 
Whenever the preliminary class assignment yields a (multipartition) cyclic graph, further 

constraints on transaction processing must be imposed. The most straightforward approach is 

to delete classes from partitions until the class conffict graph is rendered multipartition acy- 

clic. In the above example, one of Ct, C,, C,, or C, must be deleted. For availability 



reasons, it is desirable to delete a minimum set of classes. Not surprisingly, this is an NP- 

complete problem. 

Although this discussion has asnrmed that the complete state of the network is known to 

all partitions, this assumption is not required in applying class confiict analysis. [SKWW] 

discusses some modifications to the basic algorithm that work with incomplete knowledge of 

the network status. In addition, the paper discussea refinement8 that affords more availability 

than the the analysis presented here. 

Optimistic versus Pessimistic 

One basis for comparing the two types of approaches is in terms of an appropriate cost 

model. The model should include overhed, the cost of repiring inconsistencies, and the cost 

of lost opporruniries. In the following, custs common to all approaches, such as the propaga- 

tion of updated values, are omitted. 

Optimistic policies have two sources of overhead. The first is the log, which must be 

maintained while the system is partitioned, recording the readset and writestt of each transac- 

tion in order to construct the precedence graph and recording sufficient information to roll- 

back transactions. Many database systems already maintain a log, called an undo log, for rol- 

ling back transactions in case of site failures or transaction failures (e-g., deadbcks) 

[GMBLLSl]. This same log can be used to roll back conflicting transactions in a partitioned 

system. However, in order to construct the gaph, undo logs must be augmented with records 

of transactions' readsets (which are normally not recorded since they are not needed to roll 

back a transaction). This increases the complexity ot the losginfi algorithm, but it does not 

significantly increase the cost of logging in mast systems. 

The second and most significant source of overhead is the c d i c t  detection algorithm, 

which constructs the graph, checks the graph for cycles, and then selects transactions to roll 

back. Graph construction requires a single pass over the entire log, which can be quite 



expensive for a partition of long duration. The selection algorithm can be made arbitrariIy 

expensive, depending on the quality of heuristics used. The best heuristics require time 

O ( N ~ ~ ' )  where N is the number of transactions ((DAVEZ], minimalty breaking all two-cycles). 

However, linear t h e  heuristics often yield acceptable solutions. 

The cost of repair in an optimistic approach is simply the rollback rate times the coat of 

rolling back a transaction. We have atready discussed rollback rate. The rollback cost is 

often a significant fraction of the transaction's execution cost, and may, in fact, exceed the 

execution zost if the transaction has external sideeffects (e.g., a customer may be entitled to 

compensation if her reservation is cancelled, or a series of transactions may need to be exe- 

cuted to compensate for a single rolled back transaction). Consequently, the rollback rate 

must be kept reasonable small (certainly less than 20%) if optimistic approaches are to be 

cost -effective. 

The; goal of optimistic approaches is to minimize lost opportunity, the cost associated 

with needlessly delaying a transaction. These costs can bt substantial when user satisfaction is 

impoeant as, for example, in a banking application. Lost opportunities still occur in these 

approaches because of the allocation of resources to transactions that are destined to be rolled 

back. Such transactions may displace valid transactions during the partitioning, and rolling 

them back may cause further delays after the partitions are reconnected. Still, for most appli- 

cations, we speculate that other costs dominate. 

Pessimistic approaches have no repair costs and, except for conflict class analysis, almost 

no overhead. Even in class conflict analysis, the overhead is likely to be substantially less than 

in an optimistic strategy, because aIthough conflict analysis and conflict detection are pro- 

ccdurally similar, the number of predeclared closser in codlict analysir is likely to be substan- 

tially less than the number of transactions in conflict detection. 

The major cost of a pessimistic approach is, of course, the cost of tost opportunities. 

Included in this wst are not only opportunities lost to real partitioning but atso opportunities 

lost to "apparent" partitionings, for example, site f ailurts tbat are indistinguishable from real 



partitioninlp. In many systems, apparent partitionings occur more frequently than red parti- 

tioning~; therefore they must be included in any cost analysis. 

In summary, the cost of an optimistic strntegy is the overhead of conflict detection plus 

the repair cost,. whereas the cost of a pessimistic strategy is the cost of opportunities lost to 

real and apparent partitionings. Unfortunately, except for repair costs, informed estimates for 

these costs are not easily obtained. No one ham measured the overhead associated with any of 

the strategies, and the cost of lost opportunities is hard to quantify (although one component 

in a pessimistic strategy is the coat of underutilization of processing resources). 

Combining Straregies. 

Instead of using one strategy d u ~ g  a partitioning. strategies can be combined vertically 

over time; the system could start out using one strategy and switch to anothcr as  cir- 

cumstances dictate. For example, the number of transactions rolled back in the optimistic 

protocol has been observed to increase roughly quadratically with time. In fact, the expected 

number of transactions backed out can be estimated with a formula involving the number of 

transactions processed within the partition, the number of data-items in the databast and cer- 

tain other parameters modelling the type of transactions being executed (see [DAVI82n. 

Since it is usually impossible to predict how long a partitioning will last, the database adminis- 

tator could then set a ceiling on the rollback rate (say 10%) and request that the optimistic 

protocol be used only until this ceiling was reached. If this ceiling was reached, the system 

could switch to a more pessimistic approach, such as primary site, for the remainder of the 

failure. Of course, there is no gusrantce that these future transactions would not also be 

backed out since they could be connected to transactions that had already executed by depen- 

dency edges; these transactions would still have to be included in the construction of the pra 

ctdence graph and hence considered for possible backout in order to guarantee dalizability. 

However, the backout rate would be held at a more acceptable level. 

Strategies can also be combined horizmtally wer  time [SKEE82c]. One approach is to 

assign items different levels of consistency. Items in level 0 (the highest level) are immutable 



during a partitioning; items in level 1 are updated according to a pessimistic strategy; and 

items in level 2 are updated according to a optimistic strategy. Updates to level 1 items are 

globally consistent and guaranteed to persistl while updattr to level 2 iteins are consistent 

within the partition but may not be globally consistent and, hence, are subject to rollback. 

Althou& a transaction may update items in only one leiel, it may read items of the same 

IcveI and higher. 

Another way to combine approaches horizontally is to divide transactions, instead of 

item, into groups. For each partition, transactions are divided into two groups: high priority 

transactions that can not be rolled back, and low priority transactions that can. Class conflict 

anaIy~is ir uaed to determine a group of high priority transactions for each partition. The low 

priority group for a partition consists of afl transactions not writing an item read by a high 

priority transaction in the same partition. (A low priority transaction, though, can write an 

item read by a high priority transaction in a diflctent partition.) When partitions are recon- 

nected, the optimistic protocol is used to construct a precedence graph containing all transac- 

tions executed; however, only low priority transactions are liable to rolIback. (An approach 

similar to this is used in [APWI84].) 

4. SEMANTIC APPROACHES 

The first three approaches presented in this section illustrate three different ways of using 

semantics to increase availability. The first approach, log transformations, uses the standard 

notion of correctness, namely serializability, but uses the semantics of transactions in checking 

serializability. The second approach relaxes slightly the standard notion of serializabiIity in 

order to enrich the set of transactions allowed in a partitioned system. The semantics of the 

application determine when serializability can be relaxed. The third approach, Data-Patch, 

abandons serializability as a correctness criterion altogether, using instead an application- 

specific definition of correctness. AU three approaches are optimistic. As a matter of fact, to 

our knowledge, no one has suggested a pessimistic, semantic strategy, probably because seman- 

tics are usually introduced to increase avaiIability, not to ensure correctness. 



This section ends with a brief discussion of some other proposed ideas for increasing 

availability. 

- 
Log Trmf  ormatwnr (BGRCK831 

- .  

This approach is similar to the optimistic protocol. During the partitioning, logs are kept of 

which transactions were executed and in what order. After reconnection, a rerun log is con- 

structed which indicates what should be reflected as having happened during the failure. To 

achievc this, transactions in each group may have to be backed out and rerun. It differs in 

that transactions are pre-defined, and semantic properties of pairs of transactions are declared 

to avoid needlessly backing out and re-executing transactions. The= properties can include 

commutativity (?,TI = TIT,) and overwriting (TIT, = T,). There is also a notion of "absolute 

time" in each group during the failure so that transactions can be merged based on the time at 

which they were executed. 

EXAMPLE: Suppose that during a partition, P I  has executed T2J4 J6 and that P2 has 
executed T1,T3J5, where the subscripts indicate the absolute timing of the transactions. 
The rerun log would be T1,?2?3J43536. If we ignored any sc~iantic propertics of 
transactions, merging the database at P 1 would involve backing out transactioas T2T1J6 
and reexecuting the rerun log. If we assume that backing out transaction T can be 
achieved by running an inverse transaction T", then the entire merging operation at P1 
can be represented by the backout (or rollback) log T;' ,T i1  , T t l  followed by the redo 
log. Similarly, the merge operation at P 2  involves executing the backout log 

,T;' ,T 1' followed by the redo log. Let us call the combined backout, redo log the 
merge log. 

If we know that Tl commutes with T2, then the merge log at P I  can be reduced to 

7';' ?I' ?1?3rT4?~?6 

To see that the result of executing PI'$ merge log is equivalent to the result of executing 
Tl,T2,T3,T4,T5,T6 in order, consider the entire sequence of transactions executed by P1 
(that is, the original execution followed by the merge log): 

Since T6 and  tihat hate equivalent to the null transadion, the above is equivalent 
to 

T2?1?3?4J~J6. 

And, by the commutativity of T1 and T2, this is equivalent to the desired sequence. 

If in addition we know that TI  and T3 commute with T4 and T1, and that T6 overwrites 
T5, then the P 1 merge log can be further reduced to 

TlJ3 



(that is, after the partition we only have to  run T1J3 without backing out any transac- 
tions). At PZ, this same semantic information only reduces the merge log to 

The process of reducing in size the merge log is called log transformation. The process 

can be automated with the aid of a graph formalism presented in [BGRCKS]. With it, merge 

logs are represented as graphs, and each log transformation is represented as a graph transfor- 

mation. 

One advantage of the log transformation approach is that the merge processes at the 

sites are independent of each other. That is, as each site finds out about transactions that ex* 

cuted elsewhere, it can proceed to  integrate them locally, regardless of what the other sites 

are doing. Thus, this approach may be useful in an environment where failures are common 

and communications unreliable. 

Weak Consistency [GAWESZ] 

Garcia and Wciderhold argue in [GAWESZ] that convtntionaI correctness criteria-in particu- 

lar, serializability-may be stronger than needed for many readonly transactions. Since such 

transactiws do not change the database state, their execution under a weaker correctness cri- 

terion c ~ a  not generate an inconsistent state. Relaxing the serializability constraint is espe- 

cially attractive for partitioned systems since it would allow a richer mix of readonly transac- 

tions. (The original motivation for a weaker correctness criterion was to speed up the process- 

ing of readonly transactions in a distributed system.) Since readonly transactions occur frc- 

quently in most systems, allowing a richer mix of them often substantially increases the 

number of transactions executed while partitioned. 

In [GAWESZ], readoaly transactions are divided into two classes: those requiring strong 

consistency and those requiring weak consistency. A strongly consistent transaction is pro- 

cessed in the norma1 fashion: its execution must be serializable with respect to update transac- 

tions and other strongIy consistent transactions. A weakly consistent transaction must see a 

consistent database state (the result of a serializable execution of update transactions), but its 



execution need not be serializable with resptct to other readonly transactions. (Weak serial- 

izability is stronger than degree 2 or 1 consistency as defined in [GLPT76]. Specifically, with 

degree 2 or 1 consistency, a readonly transact&m can obtain an inconsistent view of the data- 

base.) The following example illustrates. 

EXAMPLE: Consider again the banking database of the first section with Sites A and B 
partitioned. The following sequence of transactions occur: 

SITE A SITE B 

C : checking deposit of SSO D : savings deposit of $200 

AA: r e d  checking and AD : read checking and 
savings accounts savings accounts 

Notice that the two update transactions, considered alone, are serializable. In fact, since 
they access different items, both C ;D and D f a n  valid serialization orders. Howev- 
er, when the accounting transactions AA and A, are included, the execution is not serial- 
izable. The database state read by AA is possible only if C executes before D,  while the 
state read by AD is possible only if D executes before C . (Both AA and AB see a valid 
serialization order of the updates; the problem is that they see different orders.) 

If AA and A, required only weak consistency, the abwe execution would be 
"correct": the update transactions done are serializablc and each weakly consistent tran- 
saction sees the result of a serializable execution of update transactions. 

The lrse of different consistency levels can be integrated with any of the syntactic 

approaches discussed in the previous section. In a pessimistic strategy a transaction requiring 

only weak consistency can be executed at any time in any partition, as Iong as the partition 

contains copies of items read by the transaction. The transaction will always see a consistent 

database state sincc all update transactions are guaranteed to be (globally) consistent. In an 

optimistic strategy, such a transaction sees a consistent state only if it does not read the result 

of an update transaction that is eventually rolled back. 

The choice of a consistency level for a readonly transaction depends on how the infor- 

mation returned by the transaction is used. An accounting transaction reporting cash flow 

within a bank probably requires strong consistency. Inventory reporting and transactions com- 

puting summary statistics often need only weak consistency. 

Fischer and Michael give an important application of weak serializability in their algo- 

rithms for directory system@IM82]. A directory supports only three types of transactions: 



insert a uniqil.e item, h a  all items, and delete an item. Mail system, calendar systems, and 

other familiar applicai'ions can be cast as directories. Exploiting the propcrty that the list 

operation req~xires only weak consistency, t h q  give an algorithm allowing unrestricted tran- 

saction procbding in the presence of communication faiIures, including but not limited to 

failures partitioning the system. 

Data-Patch is a tool which aids the database administrator in the development of a program to 

autornatical!y integrate divergent databases. As in the previous optimistic stra?cgies, transac- 

tion:, Zic executed "normally" during the failure. At reconnection, the final database state is 

constructed according to an integration program. SeriaIizabiIity is no longer the correctness 

criterion; rather, the integration program defines the "correct" final database. This is based 

on the ~ r e ~ l i o i  h a t  usen may already have observed the effects of a non-serializable execu- 

tion, thus re-=i:ing the database to a serializable state may not be the most scnsibIe thing to 

do. For exatn:-;c, in an Airline R e m a t i o n  System, if a Bight becomes overbooked it may not 

be desirabie ro cancel reservations since a promist has been made to customers and normal 

panengr  c"-?ctIlations could take care of the problem. 

The major design principle involved is identifying image and plan relations. Image rela- 

tions are obervable entities or relationships, and must reflect that in the final database. For 

exampIe, in a database for Girard bank, the relation GIRARD(BRANCH, CASH, ...) might 

be used to record the amount of cash at each branch. The value of CASH in each tuple at 

recovery should reflect the actual amount of cash at that branch. This might be obtained as 

the latest value for CASH in each partition group. Plan relations do not represent observable 

entities and the DBA can therefore have more freedom in selecting the final values. In the 

next example, ACCOUNT is a plan relation. 



EXAMPLE: 
ACCOUNT (CUSTOMER, BALANCE, .,) 
DEPOSIT (CUSTOMER, AMOUNT, DATE, ...) 
WITHDRAWAL(CUSTOMER, AMOUNT, DATE, ,.) 

DEPOSIT and WITHDRAWAL are records of account activity. If during a parti- 
tion a customer werdraws his account according to the records from each group, 
he may be assessed a penalty charge. Thus BALANCE would reflect the sum of 
withdrawals and deposits to the account, plus the penalty charge. If, on the other 
hand, a customer is mistakenly assessed a penalty charge because a DEPOSIT did 
not appear during a failure, the penalty charge may be dropped. 

rhc abcre example shows that not only must a final database state be chosen, but comc-  

tive actions must be specified. That is, if integrity constraints arc violated after the image and 

plas :.kla.tions have been constructed, some sort of compensating or corrective action must be 

issued (cg. penalty for werdraft, as above). 

TBe Darqpatch integration program is defined through a set of rules that specify how the 

integrated da::Sase can be obtained from two databases that exist after a partition. Some 

rules specify z3w differing facts arc to be combined. For example, consider a field that 

represents t5e :cca:ion of a ship. In this case, the DBA can select a "latest value" rule: if the 

field has ri differen: value in each partition, in the integrated database use the value with the 

latest timestzzap. If the field represents the number of reservations for a flight, the "arith- 

metic rule" can be used: the iuttgrated value is the sum of the two partitioned values minus 

the value that existed when the p partition started. Other rules specify the corrective actions 

to be taken. For instance, a rule might specify that if the withdrawals exceed the deposits to 

an account (after the integrated database has been obtained), then a dunning letter shouId be 

sent to the customer. 

O t k r  Ideas. 

Numerous ad-hoc techniques for exploiting the semantics of an application to increase availa- 

bility have been proposed. Many of these can best be illustrated by examples. 

The first example illustrates the idea of splitting a data item. In an Airline Reservation 



System [HASHBO], let SEATS represent the number of scats available on a particular Bight. 

When a partition occurs, P 1 creates SEATS 1 containing 40% of the value of SEATS, and P 2  

creates SEATS2 containing 60% of the value of SEATS (or other percentages retiecting the 

relative booking rates for that Bight). At rccwery, 

SEATS = SEATS 1 + SEATS 
would restore SEATS t o  its correct value. Splitting can be used whenever the value of the 

data item represents a partial summation and each term in the summation is not dependent on 

the current value of the data item. 

The second example comes from Incomplete Information Systems ([DAVI82], (LIPS79D. 

Suppose we have a tuple representing John Doe's age as less than 30. During a partition, P I  

gathers more information and concludes that his age is between 20 and 30, while Pz concludes 

it to be bet~cen IS and 25. At recovery, the intersection of.thesc ranges, 20 to 25, may be 

taken as John Doe's age. 

The last ijranple illustrates the use of f u i l u r e - d e  integrity conrtraints. Recall the bank- 

ing cxamplc U: Figure 2, where overdrafts on the checking account were allowed as Iong as 

checking bcoiancc +saving balancer 0. That example dexribed a scenario where the this con- 

straint was violated during a partitioning. This anomaly could have been avoided by enforcing 

a failure-mode integrity constraint disallowing checking account overdrafts when the system is 

partitioned. 

Thest ideas can be used with a pessimistic approach such as primary copy to allow more 

transactions to  be executed: a portion of SEATS would be available in each group, although 

the actual or currcnt value for SEATS could not be obtained due to possible bookings in the 

other group. However, the ffight wodd never be overbooked if neither group sold more than 

their allotment of seats. It can also be used with more liberal approaches such as the Optimis- 

tic Rotocol and Data-Patch to avoid c o d i d  and possible transaction backouts. In the 

Optimistic Protocol, conflicts are mainly caused by updates to the same data-item. By splitting 

data-items and recombining at recovery, this can be avoided. In Data-Patch, integration 



becomes easier since the value for SEATS can simply be computed without canceling rcscrva- 

tions. 

- 
5. ATOMIC COMMITMENT 

A transaction on a distributed database typically executes at several sites. In order to ensure 

the "all or nothing" property of the transaction, the executing sites must unanimously agree to  

commit or to abort the transaction. Until now we have assumed that this agreement, k n m  

as atomic commitment, can be achieved in a partitioned system. Let us now examine how rea- 

sonable this assumption is. 

Viewed abstractly, in a commitment protocol each participant first votes to "accept" or 

"reject" the transaction based on its ability to process the transaction and then decides 

whether to commit or abort based on the voting. Commitment normaIIy requires unanimous 

acceptance? of course, all decisions must agree. 

The two-phase convnit protocol [GRAY781 is a straightforward implementation of the 

above. In the first phase, a designated participant, the coordinator, solicits the votes from its 

cohorts. Is ?he second phase, it decides based on the votes and then sends the decision to aU 

participants. In the course of the protocol, each participant voting "acceptn goes though three 

distinct states: an nnconunitted state where it has not voted, an indoubt state where it has 

voted but does not know the result of the voting, and a decision state where it knows the 

commitlabort decision. (A participant voting "reject* does not occupy the in-doubt st ate since 

it knows the eventual outcome.) 

Consider the consequences of a partitioning occumng during the execution of the two- 

phase commit protocot. In each partition the participants, acting together, wiU attempt to 

decide the outcome based on their states. If the partition contains the coordinator, a decided 

participant, or  an uncommitted participant, a consistent decision can be reached (in the case 

of an uncommitted participant, abort will be chosen). However, a partition containing only 

protocols tor fully replicated databas  require only .cccptrace by r mapripy. 



in-doubt participadts and lacking the coordinator can not safely decide: the participants can 

not commit since they d o  not know the outcome of the voting, and they can not abort since 

they may contradict the decision of the coordinator. Hence, these sites must wait until recon- 
0 

nection b e h e  deciding, and the protocol (and associated transaction) is said to be blocked at 

those sites. 

Given that the two-phase commit protocol occasionally blacks, the interesting question 

then is: arc there any nonblocking protocols for partitionings? The answer is no: even under 

the tnszrt favorable, realistic assumptions, there exists no noriblocking protocols 

(SKEE82bI. The situation is even worse if sites can fail during a partitioning; in this case 

there is no protocol that guarantees that even a single site will be able to decide. 

Since it is impossible to  eliminate blocking, it is desirable to minimize it. Several proto- 

wls  have been proposed that, under appropriate partitioning assumptions, block less than the 

two-phase commit protocol. One protocol, the decentralized rwo-phe commit protocoi, 

reduces the l~kelihood of blocking by decreasing the time a site spends in the in-doubt state 

[SKEE82c]. '!%is is accomplished by having the participants send their votes directly to  each 

other, bypassing the coordinator. Another protocol, the quorum commit protocol. reduces the 

probability that a large partition (one consisting of many participants) will be blocked in the 

event of a partitioning, by introducing extra phases ([SKEE82.], [SKEES2bJ). Its principal 

advantage is that it is also resilient to site failures and (nonpartitioning) communication 

failures. However, both protocols have drawbacks. Although the decentralized protocol 

decreases the probability that a partitioning will occur ~ h i l e  sites are in the in-doubt state, it 

increases the expected number of blocked sites if a partitioning should occur. The quorum 

protocoI actually incre- the chance that some site will be blocked in the event of a parti- 

tioning (aIthough the expected number of blocked sites dccrtascs). 

How the partition strategies of the previous two sections treat blocked transactions 

depends on whether the strategy is pessimistic or optimistic. In a pessimistic strategy, the data 

items at undecided sites must be rendered inaccessible until reconnection. In an optimistic 



strategy more tlexiiility is possible. A partition can tentatively commit or abort a blocked 

transaction. If its decision is inconsistent with other decisions, it can resolve in the same way 

that it resolves other inconsistencies, by rolling back the offending transaction and a11 depen- 

dent ttansactions. Since rolling back is fairly expensive, a tentative decision should be made 

-;liy ;r' it has a high probability of being correct. 

6.1. Gddellner for the SeItctlon d r Strategy. 

Given an application, how should one choose a partition strategy? Caution should be used in 

answering this question. A criticism that has been Icvicd at research in the distributed data- 

base area in general [MOHA80] is that solutions are commonly viewed in isolation Erom other 

problems. b fact, different mechanisms may be so highly intertwined that changes proposed 

in one area affect many other parts of the system. In particular, with partition strategies one 

must pay artexron to the concurrency control mechanism being used. For example, the use of 

a voting or tc'.:z-psing concurrency control algorithm may dictate a corresponding partition 

algorithm uc:~;; one womes about restmcturing the vote or reassigning tokens (see also 

[DAVIm] fuc a discussion of the relationship between the optimistic protocol and common 

forms of concurrency control). In addition, very tittle attention has been given to the perfor- 

mance of proposed mechanisms. In some cases this is because it is diEcuIt to construct an 

appropriate model; in others it is because the mechanism is highly application dependent. 

With these cautions in mind, we group the factors that influence the choice of a strategy 

into three areas: 

Enviro~uru. Included here are the properties of the network and the nature of the par- 

titionings. An important consideration is whether partitimings are caused by failures or are 

the result of anticipated events. In the latter case. complete information about the charac- 

teristics of the partitioning, including duration and network topology, may be known, and this 

can be exploited in some strategies (in particular, class conflict analysis). 



However, most systems partition because of failures, and in this case the robustness of 

the strategy may be an important factor. For example, a primary site strategy would be a poor 

choice if sites failures can not be distinguished from communication failures. Also, class 

conflict analysis (as presented) can not be used if communication faiIures do not always result 

in cicariy delineated partitions. 

The duration of the partitioning is atso important. Long failures tend to generate many 

conflicts between transactions in different partitions; in this case, a pessimistic strategy is a 

better choict than an optimistic one. 

Wczkload. Two important workload characteristics are average transaction length and 

transaction variance. Optimistic policies work better when transactions are short and variance 

small. 

Another important workload factor is locality of reference: Do updates to data- 

items tend to occur at a certain site? If so, a primary site strategy wilI not prohibit many tran- 

sactions and availability will still be good. The backout rate in the optimistic protocol will 

also be reduced, but the transactions will still have to be tested for conflict. 

Applicnrion Specific. These factors fall into two groups. The first are requirements 

placed by the application on transaction processing. Two important questions are: 

(1) Can transaction prczessing be temporarily halted for recovery purposes? If not, a pes- 

simistic approach should be adopted which merely requires the forwarding of updates to 

merge the databases. 

(2) Can transaction processing be limited in parts of the database, or is availability a prem- 

ium? If the latter, a more optimistic approach should be used. 

The second group include semantic considerations. Relevant questions here are: 

(I) Can transactions be backed out? That is, do they have an inverse? If the latter, either 

conflict should be avoided totally, or the divergent databases should be patched up using 

compensating actions if necessary to achieve correctness. 



(2) Is seridizabilhy a concern, or is a more procedurd definition of "correctness" in the final 

database state acceptable? If not, a Data-Patch approach can be used. 

(3) Should a partitioned system be q t c t e d t o  behave exactIy as an unpartitioned system? 

Far example, even if serializability is the "normal" correctness criterion, under extenuat- 

ing circumstances (such as partition failures) a more lenient definition could be used. 

6.2. Future Dtnctfonr 

Partitioned operation is still very much an active research area. We comment briefly on 

several interesting research directions. 

One obvious deficiency in our current knowledge of partition strategies is the lack of any 

performance data on how we11 they work. Few strategies have been implemented and none 

tested on a representative application. Clearly, more experience with the proposed strategies 

is needed befo,e we can understand the performance tradtoffs between them. 

Another important area of research is the adaptation of these strategies to accommodate 

more general processing model, in particular, nested transactions (and the related concept of 

multilevel a tonicity (LYNCH83n. Nested transactions arise in general purpose distributed 

programming environnlents such as ARGUS [LISK83]. 

Algorithms for detecting and andyzing network partitions have also not been developed. 

Since several of the strategies require that the failure be initially recognized, this is an impor- 

tant area to address. 

Finally, the use of semantics in partitioned strategies has been onIy scantily explored. 

One interesting direction is to assume that data items arc instances of abstract data types and 

transactions are instances of operations on thost types. T y p e - e c  partition strategies can 

be derived from the formal properties of the types. (This is m extension of the notion of 

type-specific concurrency control proposed in [SCSP83].) 
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