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ABSTRACT

Recently, scveral strategics for transaction processing in partitioned dis-.
tributed database systems with replicated data ixave been proposed. We survey
these strategies in light of the competing goals of maintaining correctness and
achieving high availability. Extensions and combinations are then discussed,
and guidelines for the seclection of a strategy for a particular application are

presented.

INTRODUCTION

In a distributed database system, data is often replicated to improve performance and

—
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availability. By storing copics of shared data on processors where it is frequently accessed, the
need for expensive, remote read accesses is decreased. By storing copies of critical data on
processers with independent failure mcdes, the probability that at lcast one copy of the data is
accessible increases. Through replication, it is possible, in theory, to provide arbitrarily high
data availability.

In practice, realizing the benefits of data replication is difficult since the correctness of
data must be maintained. One important aspect of correctness with replicated data is that of
mutual consistency. all copies of the same logical data-item must agree on exactly one “current
value” for the data-item. Furthermore, this value should “make sense” in tcrmi‘ot the transac-
tives =xecuted on copies of the data-item. This agrcement process is obviously complicated
when communication between sites containing copies of the same logical data-item fails. The
most disruptive of these failures are partition failures, communication failures that fragment
the network iﬁto isolated subnetworks, called partitions. Unless detected and recognized by
all affected processors, such failures provide the opportunity for independent, uncoordinated
updates to be applied to different copics of the data, thereby compromising the correctness of
data. Consider, for cxample,‘ an Airline Reservation System implemented by a distributed
database that splits into two partitions as the result of a failure in the communication net-
work. If at the time of the failure all the nodes have one scat remaining for PAN AM 537,
and rescrvations are made in both partitions, correctness has been violated: who should get
the last scat? There should not be more seats reserved for a flight than physically exist on the

plane. (Some airlines do not implement this constraint and allow overbookings.)

The design of a replicated data management algorithm tolerating partition failures is a
notoriously hard problem. Typically, the cause or extent of a partition failure can not be dis-
cerned by the processors themselves. At best, a processor may be able to identify the other
processors in its partition; but, for the processors outside of its partiticn, it will not be able to
distinguish between the case where those processors are simply isolated from it and the case

where those processors arc down. In addition, slow responses from certain processors can
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cause the network to appear partitioned even when it is not, further complicating the design

of a fault-tolerant algorithm.

As far back as 1977, Rothnic and Goodman in their well-known survey paper [ROGO77]
identified partitioned opcta_tion as one of the important and challenging open issues in distri-
buted data management. Since then our understanding of the problem has increased dramati-
cally, while numerous and diverse solutions have been proposed. In this paper, we survey

several of the more general solutions, and discuss current research trends in this still young

and active research area.

Although our discussion is couched within a database context, most results have more
general applications. In fact, the only essential notion in many cases is that of a transaction.
Hence, these strategies are immediately applicable to mail systems, calendar systems, cbject-

oriented systems—applications using transactions as their underlying model of processing.

The remaining sections of the survey arc organized as follows. Section 1 discusses the
principal consideration in the design of a processing strategy for a partitioned system, the
trade-off between correctness and availability. Section 2 discusses the notion of correctness in
a replicated databasc system, and introduces a taxonomy of partition processing algorithms.
Sections 3 and 4 survey the current solutions for transaction procésm'ng while the system is
partitioned, and suggest cxtensions and combinations. Section 5 discusses a somewhat
different problem: how to complete transactions in progress at the time of a partition failure.
Guidelines for the selection of a partition strategy are presented in section 6, along with

suggestions for future rescarch.

1. CORRECTNESS VERSUS AVAILABILITY

When designing a system which is to operate in the presence of partitioning, the two compet-
ing goals of availability—the normal function of thc system should be disrupted as little as
possible—and correctness—data must be correct when recovery is complecte—must somechow

be met. These goals are not independent; hence, trade-offs are involved.
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Correctness can be achieved simply by suspending operation in all but one of the parti-
tion groups and forwarding updates at recovery; however availability has been severely
compromised. In some applications, this is got acceptable. Typically in these applications
either partitions occur frequently or occur at critical moments when access to the data is
imperative. For example, in the Airline Reservation System it may be too expensive to have a
high connectivity network and partitions may occasionally occur. Many transactions are cxe-
cuted cach seccond (TWA's centralized reservations system [GISP84] estimates 170 transactions
per second at peak time), and cach transaction that is not executed may represent the loss of a
customer. In a military command and control application, a partition can occur because of an
enemy attack, and it is precisely at this time that we do not want transaction processing

halted.

On the other hand, availability can be achicved simply by allowing all nodes to process
transactions “as usual” (note that transactions can only exccute if the data they reference is
accessible). However, correctness may now be compromised. Transactions may produce
“incorrect” results (¢.g., reserving more seats than physically available) and the databases in
each group may diverge. In some applications, such “incorrect”™ results may be acceptable in
light of the higher availability achieved: when partitions are reconnected, the problems may be
corrected by executing transactions missed by a partition, and by choosing certain transactions
to “undo.” If the chosen transactions have had no real worlds effects, they can be undone
using standard database recovery methods. If, on the other hand, they have had real world
cffects, then appropriate compensating transactions must be run, transactions that not only
rstot;cv the values of the changed database items but also issue real world actions to nullify
the effects of the chosen transactions (¢.8., by canceling certain rescrvations and sending mes-
sages to affected users). Alternatively, correcting transactions can be run, transforming the
database from an incorrect state to a correct state without undoing the effects of any previ-
ously ran transactions. For instance, in a banking application the correction for overdrawing a

checking account during a partitioning is the application of an overdraft charge. Cf course, in"
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some applications incorrect results are either unacceptable or incorrectable. For example,
it may not be possible to undo or correct a transaction that effectively hands $1,0600,000 to a

customer. .

Since it is clearly impossible to satisfy both goals simulfmcously, one or both must be
relaxed to some extent depending on the application’s requirements. Relaxing availability is
fairly straightforward; onc simply disallows certain transactions at certain sites. Relaxing
correctness, on the other hand, usually requires extensive knowledge about what the informa-
tion in che database represents, how applications manipulate the information, and how much
undoing/correcting/compensating inconsistencies costs, The first step in choosing a partition
processing strategy is to determine which is more important--correctness or availability; the
second step is to try understand the trade-offs between the two properties for the database at

hand.

2. THE NOTION OF CORRECTNESS

What does correct processing mean in a database system? Informally, a database is correct if
it correctly describes the external objects and pfocmes that it is intended to model. In
theory, such a vague notion of correctness could be formalized by a set of static constraints on
objects and their attributes and a set of dynamic constraints on how objects can interact and
evolve. In practice, the complete specification of the constraints governing even a small data-
base is impractical (besides, even if it were practical, the enforcement of the constraints would
not be). Conscquently, database systems enforce a less ambitious, very general notion of
correctness based on the order of transaction execution and on a small set of static data con-

straints, known as integrity constraints.

In this section, we examine the notion of correctness, beginning informally with exam-
ples illustrating incorrect behavior, followed by a more formal definition of correctness in the
traditional database system. When referring to the state of the database, we use the terms

“correct” and “consistent” interchangeably.



2.1. Anomalles

Consider a banking database that contains a checking account and a savings account for
a certain customer, with a copy of cach accouht stored at both Site A and Site B. Suppose a
communications failure isolates the two sites. Figure 1 shows the result of executing a check-

ing withdrawal at A (for $100) and two checking withdrawals at B (totaling $100).

SITE A SITEB
Checking: $160 Checking: $100
Savings: $200 Savings: $200

Checking := Checking — 325
Checking := Checking — $100
Chectking := Checking — $75

Checking: $ 0 Checking: $ 0
Savings: $200 Savings: $200

Fig. 1 An anomaly due to concurrent write operations
on the same data item in separate partitions.
Although the resulting copies of the checking account contain the same value, we know intui-
tively that the actions of the system are incorrect—the account owncr extracted $200 from a
checking account containing only $100. The anomaly is caused by a conflicting write opera-

tions issued in parallel by transactions executing in different partitions.

An interesting aspect of this example is that in the resulting database all copies are
mutually consistent’, i.c., all copies of a data item contain the same value. Mutual consistency
is not a sufficient condition for correctness in a (transaction-oriented) database system,
although it commonly used the correctness criterion for replicated file systems and for infor-
mation databascs, such as telephone directories. It is also not a necessary condition: consider
the example where A executes the $100 withdrawal while B does nothing. Although the
resulting copies of the checking account contain different values, the resulting database is

Y This is the narrowest interpretation of scveral uses of the term “mutual consistency” that appear in the
literature. Some authors use mutual consistency synonymously with one-copy equivalence (defined in the
next section).
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correct if the system recognizes that the value in A’s copy is the most recent one.

A different type of anomaly on the same database is illustrated in Figure 2. Here, we
assume that the semantics of the checking withdrawal allow the account to be overdrawn as

allowed as long as the overdraft is covered by funds in the savings account (i.c.,

checking +savings = 0).
SITE A SITEB
Checking: $100 Checking: $100
Savings: $200 Savings: $200
If checking+savings> $200 If checking+savings> $2C0
then checking := checking — $200 then savings := savings — $200
Checking: $—-100 Checking: $100
Savings: $209 Savings: $ O

Flg. 2 An anomaly due to concurrent read and write operations
in different partitions.
In the execution illustrated, however, these semantics are violated: $400 is withdrawn, whereas
the accounts together contain only $300. The anomaly was not caused by conflicting writes
(none existed sirce the transactions updated different accounts), but instead because accounts

are allowed to be read in one partition and updated in another.

Concurrent reads and writes in different partitions are not the only sources of incon-
sistencies in a partitioned system—more will be identified shortly. Nor do they always cause
inconsistencies: for example, if the savings withdrawal in Figure 2 is changed to a deposit, the
intended semantics of the database would not be violated. However, the above are typical

anomalies that can occur if conflicting transactions are executed in different partitions.

2.2. Database Model

A database is a set of logical data items that support the basic operations read and wrize.

The granularity of these items is not important: they could be records, files, relations, etc.



The state of the database is an assignment of values to the logical data items. For brevity, log- .

ical data items are subsequently called data items or, more simply, items.

A transaction is a program that issues read eand write operations on the data items. In
addition, a transaction may have cffects that arc external to the database, such as dispensing
money or displaying results on a. user’s terminal. The items read by a transaction constitute its
readset; the items written, its writeset. A readonly transaction ncither issues write requests nor
has external effects. Transactions are assumed to be correct. More precisely, a transaction,
when executed alone, transforms an initially correct database state into another correct state

[TGGLS2].

Transactions interact with one another indirectly by reading and writing the same data
items. Two operations on the same item are said to conflict if at lcast one of them is a write.
Conflicts are often labeled either read-write, write-read, or write-write depending on the types
of data operations involved and their order of execution [BEGO81]. Conflicting operations

are significant because their order of execution affects the final database state.

A generally accepted notion of correctness for a database system is that it executes tran-
sactions so taat they appear to users as indivisible, isolated actions on the aatabasc. This pro-

perty, referred to as atomic execution, is achieved by guaranteeing the following propertiu:

(1) The exccution of each transaction is an “all or nothing™: either all of the transaction’s
writes and external operations are performed or none are performed. In the former case
the transaction is said to be commirted; in the latter case, aborred. The property is often

refered to as atomic commitment.

(2) The exccution of several transactions concurrently produces the same database state as
some serial execution of the same transactions. The execution is then said to be serializ-

able.

The first property is established by the commit and recovery algorithms of the database sys-

tem; the second, by the concurrency control algorithm.
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Atomic transaction execution together with the aforementioned correctness-preserving
assumption imply that the execution of any set of transactions transforms an initially correct
database state into a new, correct state. (This follows from a simple induction argument on
the number of transactions.) Of course, atomic cxecution is mot always necessary to preserve
correctness (we explore this more later on). Nonetheless, most real database system imple-
ment it as their sole correctness criteria because of its simplicity and generality. Atomic exe-
cution can be enforced by very general mechanisms that carefully order the execution of
conflicting data operations, mechanisms that are independent of the semantics of the data
being stored and of the transactions manipulating it. Moreover, atomic execution corresponds

to most users’ intuitive model of processing—that of sequential processing.

Some systems allow additional correctness criteria to be expressed in the form of
integrity cons.raints. Unlike atomicity, these are semantic constraints. They may range from
simple constraints—e.g. the balance of checking accounts must be nonnegative—to elaborate
ones thar relate the values of many data items. In systems enforcing integrity constraints, a
transacticn i¢ allowed only if its execution is atomic and its results satisfy the integrity con-
straints. Tc simplify the discussion, throughout the rest of the paper we will assume that

integrity constraints are checked as part of the normal processing of a transaction.

Notice that we have not specified whether we were discussing a centralized or a distri-
buted database system—it has not been necessary to do so since the definitions, the propertics
of transaction processing, and the correctness criteria are the same in both. Of course, the
algorithms for achieving correct transaction processing differ markedly between the two types

of implementations.

In a replicated database, the value of cach logical item x is stored in one or more physical
data items, which are referred to as the copies of x. Each read and write operation issued by a
transaction on some logical data item must be mapped by the database system to correspond-
ing operations on physical copics. To be correct, the mapping must cnsure that the concurrens

execution of transactions on replicated data is equivalent to a serial execuzion on nonreplicated
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data, a property known as one-copy serializability. The logic that is responsible for performing

this mapping is called the replica control algorithm.

As a correctness criterion, one-copy serializability is attractive for the same reasons that
(normal) serializability is: it is intuitive, and it can be enforced using general-purpose mechan-
isms that are independent of the semantics of the database and of the transactions executed.

The literature on the model and problems discussed above is extensive. The transaction
concept was first introduced in [EGLT76]. A single-site recovery algorithm is presented in
[GMBLLS81]. Single-site concurrency control algorithms are too numerous to list, but three
influential proposals are two-phase locking [EGLT76], timestamp ordering [BEGOS80], and
optimistic concurrency control [KUROS1]. The seminal paper on serializability theory is
[PAPA79]. [BLAUS81] discusses the enforcement of integrity constraints. {GRAY78] containi

an in-depth treatment of many issues in the implementation of a database system.

For nonpartitioned distributed database systems, concurrency control algorithms are sur-
veyed in [BEGOS81] and [KOHLS1]. bAtomic commitment protocols are discussed in
[GRAY78], [HASHS80], and [SKEES82b]. Replica control algorithms are contained in [GIFF79],
[STON79], and [GSCDFRS83]. A good discussion of the requirements for maintaining one-

copy serializability in the presence of failures can be found in [BEGOS3).

2.3. Partitloned Operation

Let us now consider transaction processing in a partitioned network, where the commun-
ication connectivity of the system is broken by failures or by anticipated communication shut-
downs. To keep the exposition simple, let us assume that the network is "cleanly” partitioned, |
that is, any two sites in the same partition can communicate and any two sites in different par-
titions can not communicate. Let us assume for now the traditional correctness criterion—
one-copy scrializability.

During the time the system is partitioned, cach partition must determine which transac-

tions can be executed in that partition without violating the correctness criteria. Actually,
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this can be thought of as two problems: the first is that ecach partition must maintain correct-
ness within the part of the database stored at the sites comprising the partition, and the
second is that each partition must make sure that its actions do not conflict with the actions of '

other partitions so that the database is correct across all partitions.

If we make the assumption that each site in the network is capable of detecting partition
failures, then correctness wirhin a partition can be maintained by adapting one of the standard
replica control protocols for nonpartitioned systems. For example, the sites in a partition can
implement & write operation on a logical object by writing all copies in the partition. This,
along with a standard concurrency control protocol, ensures one-copy serializability in the par-
tition.

The really difficult problem is ensuring one-copy serializability across partitions. For
this, it is not sufficient to run just a correct replica control algorithm in each partition, as the
examples in Figures lrand 2 illustrate, where transaction exccution within each partition is
one-copy scrializablc, but the overall execution is not, because of the execution of conflicting

operations in different partitions.

Numerous solutions have been proposed for keeping data globally consistent, and most
of the remainder of the survey is devoted to discussing these solutions. Many of these solu-
tions are based on the simple observation that a sufficient (but not necessary) condition for
correctness is that no two partitions execute conflicting data operations. However, not all par-
tition processing solutions use one-copy serializability as their correctness criteria, nor do all
attempt to maintain correctness across partitions. We discuss these alternatives in the next

section.

Although a partition processing stratezy can be thought of as being composed of two
algorithms: an algorithm to ensure correctness globally across partitions, and an replica control
algorithm to ensure one-copy behavior, in practice, many strategies are composed of a single
algorithm that solves both problems. Most “single” algorithms do not require partitions to be

detected and tolerate more than just “clean™ network failures. Such algorithms are attractive
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for their additional fault tolerance. In the next sections, we present these “single algorithms®,
along with "partition control” algorithms. However, in both, we emphasis the partition control

aspect.

ﬁ addition to solving the problem of global correctness, a partition processing strategy
must solve two other problems of a different sort. First, when the partitioning occurs, the
database is faced with the problem of atomically committing ongoing transactions. The com-
plication is that the sites executing the transaction may find themselves in different partitions,
and thus unable to communicate a decision regarding whether to complete the transaction
(commit) or to undo it (abort). Note that the problem of atomic commitment in multiple par-
titions does not arise for a transaction submitted after the partitioning occurs, since such a
transaction will be executed in only one partition. Note also that this j:moblcm arises in any

partitioned database system whether the database is replicated or not.

Second, when partitions are reconnected, mutual cousistc:ncy2 between copies in
different partitions must be rcestablished. That is, the updates made to a logical data object
in one partition must be propagated to its copies in the other partitions. Conceptually, this
problem can be solved in a straightforward manner by extra bookkeeping whenever the system
partitions. For cxample, each update applied in a partition can be logged, and this log can be
sent to other partitions upon reconnection. (Such a log may be integrated with the “recovery
log” that is alrcady kept by many systems.) In practice, an efficient solution to this problem is
likely to be intricate and very dependent on the normal recovery mechanisms employed in the

database system. For this reason, we do not discuss it further.

2.4. Classification of Strategies

Partition processing strategics can be classified along two orthogonal dimensions.

The first dimension concerns the tradeoff between consistency and availability. At one
extreme lies the pessimistic strategies, which prevent inconsistencies by limiting availability.

2 ttore e e . )
'As before, by “mutual consistency” we that the copies contain the same value.
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Each partition makes worst casc assumptions about what other partitions are doing. Hence,
each partition operates under the pessimistic assumption that if an inconsistency can occur, it
will occur. These strategics differ primarily n: the policy used to restrict transaction process-
ing. Since they ensure consistency, it is straightforward to merge the results of individual par-
titions at reconnection time: Updates are merely propagated from copics in one partition to

their counterparts in the other partitions.

At the other extreme lic the optimistic strategies, which do not limit availability. Any
transaction may be executed in any partition containing copies of the items read and written
by the transaction. Hence, inconsistencies may be .introduced. These strategies operate
under the optimistic assumption that inconsistencies, even if possible, rarely occur. During
reconnection, the system must first derecz inconsistencies and then resolve them. Although
optimisiic policies allow global inconsistences, transaction ﬁrocesing within each partition is

consistent. Thus, no user staying within a single partition could detect an inconsistency.

Optimistic strategies differ primarily in how they detect and resolve inconsistencies. In
section 1 ﬁc have already discussed several different ways that can be used to resolve conflicts.
These range from simply undoing a set of the transactions that have generated no significant
external actions, to running compensating transactions to nullify the effects of transactions
generating external actions, to running corrective transactions that transform the database to
a “correct,” but not necessarily serializable, state. Obviously, the latter approach requires

finding a suitable correctness criteria in lieu of one-copy serializability.

The secpnd dimension in the classification concerns the type of information used in
determining correctness. Syntactic approaches use one-copy serializability as their sole correct-
ness criteria and check serializability by examining readsets and writesets of the executed tran-
sactions. Hence neither the semantics of the transactions (i.c. how the read items are used to
generate the result) nor the semantics of the data items are used in ascertaining correctness.

Syntactic approaches are implemented using general-purpose concurrency control algorithms,

such as two-phase locking [EGLT76].
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Semantic approaches use cither the semantics of the transactions or the semantics of the
database in defining correctness. Although this is soméwhat of a “catch-all” category, there
are two discernible subcategories. The first uses serializability as the correctness criteria but
also uses the semantics of the transactions in testing serializability. The second abandons seri-
alizability altogether and instead defines correctness in terms of the contents of the database
itself; the correctness criteria is intended to capture the semantics of the data stored in the
database. Such semantic constraints fall outside of the traditional model of transaction pro-

cessiig.

3. SYNTACTIC APPROACHES

All approaches in this section use serializability as the correctness criteria and check serializa-
bility ty comparing transactions’ readsets and writescts. We assume that a correct con-
currency control mechanism coordihatcs transaction execution within a partition; hence, tran-
saction cxecutién within a partition is scrializable. We also assume that at the time of the par-
titioning all copies are mutually consistent and there are no in-progress transactions. Note
that this assumption is not realistic and is made to simplify the presentation. In general,
copies of data items may not be consistent at partition time because some have processed
updates of a committed transaction while others have no-t. How the system resolves these
"blocked” transactions will be discussed in the section dealing with atomic commitment (sec-
tion 5). Transactions at earlier stages of processing can be aborted and rerun in the partition

containing their site of origin.
3.1. Optimistic Strategies

Version Vectors [PPR81]

Version vectors, proposed for use in the distributed operating system LOCUS [POPES1],
detect write-write conflicts between copies of files. Each copy of a file f has associated with
it a version vector which counts the number of updates to f originating at each site at which

it is stored. That is, the vector consists of a sequence of » pairs, where » is the number of
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sites at which f is stored; the i vector entry (S;) counts the number v, of updates to f
originating at site §;. Conflicts occur when more than one partition updates tke file, and can

be detected by comparing version vectors.

Vector v is said to dominate vector v/if v andAv'are version vectors for the same file and
vy=v;- for i =1, - - - ,;n. Intuitively, if v dominates v/, the copy with vector v has seen a super-
set of the updates scen by the copy with vector v.. Two vectors are said to conflict if neither
dominates. In this case, the copies have scen different updates. For example, < A:3, B4,
C2> dominates < A2, B:1, C:2> since 3>2, 4>1 and 2=2, but < A3, B:1, C2> and <A2,

B:4, C22> conflict since 3> 2 but 1< 4,

When i{wo sites discaver that their version vectors for f conflict, an inconsistency has

been detected. How to resolve the inconsistency is left up to the system administrator.

EXAMPLE: Consider the following partition graph for file f. Sites A, B and C initially
have the same version of f. The system then partitions into groups AB and C, and A up-
dates f twice. Hence both A and B have version vectors of < A2, BO, CO0>, while C is
< AQD, B0, C.0>. Site B then splits off from site A and joins site C. Since C did not
update f and B has the current version, there is no conflict (< A:2, B0, C0> dominates
<A, B0, C0>), and B’s version (and vector) is adopted for the new group BC. Dur-
ing this new partition failure, A updates its version of f once, making group A’s version
vector <A:3, B0, C0>, and C updates its version of f once, making group BC’s version
vectors < A:2, BO, C:1>. When groups A and BC now combine, there is a conflict and
neither of <A2, B, C:1> or <A3, B, C0> dominates the other.

/A BC <A9,B0,C0>
<A2,B0,C0> AB C <AY0,B0,Co0>
A updates f twice. l
<A3,B0,C0> A BC <A2,B0,C1>
A updates f once. NO CONFLICT: B’s version adopted.
C updates f once.
ABC

CONFLICT: 3> 2, 0=0, but 0<1.
Manual assistance required.

Version vectors detect write-write conflicts only. Read-write conflicts can not be
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detccted because the files read by a transaction are not recorded. Hence, the approach works
well for transactions accessing a single file, which are typical in many file systems, but not for

multi-file transactions, which are common in database systems.

EXAMPLE: Consider applying version vectors to the banking example of Figure 1,
where communication between sites A and B fails. During the failure, the transaction
executed at A updates the checking balance based on the value of the savings balance;
the transaction executed at B updates the savings balance based on the value of the
checking balance. No conflict will be detected, even though the above is clearly not seri-

alizable.
checking balance savings balance
AB < A9, B0> AB <A9,BO>
<A:1l,BO> A B <AL, BO> <A0,BO> A B <A®, B:1>
AB AB
0 CONFLICT detected NO CONFLICT dctected
A’s version adopted. B’s version adopted.
<A:l, B0> <A9, B:1>

To extend the version vectors algorithm so that read-write conflicts are detectable, read-
set and writes of transactions must be logged. This leads to an algorithm very similar to the

one presented in the next section.>

The Optimistic Protocol [DAVIS2]

The optimistic protocol .detects inconsistencies by using a precedence graph, which
models the necessary ordering between transactions. Precedence graphs, used to checking
serializability across partitions, are adapted from serialization graphs [PAPA79], which are
used to check serializability within a site. In the following we assume that the readset of a
transaction contains its writesct. (The reason for this assumption is to avoid certain NP-
complete problems in checking serializability.)

In order to construct the precedence graph, each partition maintains a leg, which

Historical note: such an extension was proposed in [PARA82]. Their conflict detection algofithm, howev-
er, is incorrect: it does not detect all inconsistencies and falsely detects inconsistencics.
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records the order of recads and writes on the data items. From this log, the readsets and wri-
tesets of the transactions and a serialization order on the transactions can be deduced. (A
serialization order ciists since, by assumption, .transaction exccution within a partition is seri-
alizable.) For partition i, let T;;,T,, - - T, be the sct of transactions, in serialization order,

executed in i.

The nodes of the precedence graph represent transactions; the edges, interactions
between transactions. The first step in the construction of the graph is to model interactions

between transactions in the same partition. Two types of edges (interactions) are identified:

(a) (Data) Dependency Edges‘ (Ty——>Ta): these cdges represent the fact that one transac-
tion T, read a value produced by another transaction T, in the same partition

(WRITESET (T,;)(") READSET (T )# @, j <k)

(b) Precedence Edges (T;—>Ty): these edges represent the fact that one transaction T
read a value that was later changed by another transaction T, in the same partition

(READSET (T,;)(") WRITESET (T, )# @, j <k)

A dependency edge from T; to T, indicates that the output of T, influenced the execution
of Ty, hence the 'éxistence" of T, depends on the “existence” of T;;. The meaning of a pre-
cedence edge Tj; from Ty, is more subtle: Ty does not influence T; only because T;; executed
before it. In this case the "cxistence” of T, does not depend on the existence of T;;. In both
cases, an edge from T, to T, indicates that the order of exe_cution of the two transactions is
refiected in the resulting database state. Note that the graph constructed so far must be acy-

clic since the orientation of an edge is always consistent with the serialization order.

To complete the precedence graph, conflicts between transactions in different partitions

must be represented. A new type of edge is defined for this purpose:

(¢} Interference Edges (T;; —> Ty, i #1): these edges indicate that T,; read an item that is

written by T, in another partition (READSET (T,;)() WRITESET (T ;. )+ ).

Iin [DAVI32], these edges are called ripple edges.
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The meaning of intcrference edge is the same as a precedence edge: an interference edge from
T, to T, indicates that T, logically “exccuted before™ T since it did not read the value
written by T;. An interference edge signals.a read-write conflict between the two transac-
tions. (A write-write conflict manifests as a pair of read-write since each transaction’s recadset

contains its writeset.)

EXAMPLE: Suppose the serial history of transactions executed in P, is
{T 11, T 12, T 13}, and that of P, is {T3;, T}. The precedence graph for this execu-
tion is given below, where the readset of a transaction is given above the line and
the writeset below the line. (Thus, transaction T ;; reads b c and writes c.)

PARTITION 1 PARTITION 2
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Intuitively, cycles in the precedence graph are bad: if T and T “are in a cycle then the
database reflects the results of T executing before T7and of T/ executinbg before T—a con-
tradiction. Conversely, the absence of cycles is good: the precedence graph for a set of parti-
tions is acyclic if and only if the resulting database state is consistent [DAVI82]. An acyclic pre-
cedence graph indicates that the transactions from both groups can be represented by a single
serial history, and the last updated copy of each data-item is the correct value. A serialization

order for the transactions can be obtained by topologically sorting the precedence graph.

Inconsistencics are resolved by rolling back (undoing) transactions until the resulting
subgraph is acyclic. When a transaction is rolled back, transactions connected to it by depen-

dency edges must also be rolled back, since these transactions read the values produced by the
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sclected transaction. Hence rolling back onc transaction may precipitate the rolling back of
many, a problem known as cascading rollbacks. Transactions connected to a rolled back tran-
saction by precedence edges are not rolled back since they did not read the results of the
rolled back transaction. In the above example, if Ty is selected, then Ty and 7' y3 must also be
selected. However, simply sf:lccting T3, T3, or T, also breaks the cycle and involves only
one transaction. Note that transactions must be rolled back in reverse order of exccution;
that is, within each partition, the value of a data item that is updated by one or more rolled
back transactions from that group will be restored to the value read by the earliest rolled back
transaction. To merge the partitioned databases, the final value of each updated data item in
each partition group can simply be forwarded to the other group (a data item can-
not be updated by both groups after transactions have been rolled back since the resulting
precedence graph is acyclic).

Note that the notion of "committing” a transaction has been somewhat violated. A tran-
saction T is "committed” during a failure subject to confirmation at recovery. If all actions
performed by T are recoverable, rolling back is not a problem; one merely replaces the values
updated by T by the values read by T. However, some unrecoverable actions may also have
been performed. For example, an automatic teller may have handed money to a customer,
results may have been reported to a user, or a missile may have been fired. Some such actions
may be compensated for, that is, there could be some T° that can be exccuted to nullify the
effect of T. For example, the bank could charge the account of the customer who acciden-
tally received cash from the automatic teller, or the reporting procedure gould inform the user
that the reported results were inaccurate due to system failure (hopefully the user would have
been made aware of this possibility from the start). Other actions- such as the firing of a
missile- may have no compensation. Such actions should not be permitted during failure since

there can be no guarantee that the transaction will not be rolled back.

The algorithm used to sclect which transactions to roll back should strive to minimize

some cost function, for example, the number of rolled-back transactions, or the sum of the
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weights of the rolled-back transactions (where the assignment of weights can be application
dependent). Unfortunately minimizing cither the number of transactions or the sum of their

weights is an NP-Complete problem [DAVIS82]. Hence, heuristics must be used.

The most promising heuristics use the following observation: breaking all twé-cycla in a
precedence graph tends to break almost all cycles. A two-cycle is a cycle consisting of two
transactions connected by a pair of interference edges in opposite directions. These cycles
tend to represent write-write conflicts on data-items. Two cycles can be broken optimally
using a polynomial algorithm. After the two-cycles have been broken, the few remaining
cycles can be broken by a greedy algorithm, one that rcixtitivcly sclects the lowest weight
_ transaction involved in a cycle. Simulation studies have shown that such heuristics work very
well, out-performing all other strategies tested [DAVIS2].

The performance of the optimistic protocol is studied in [DAVIS2]." A probabilistic
model is developed that yiclds a formula for estimating rollback rate given the number of
transactions, a model of the average transaction, and the size of the database. Simulation
resuits in the same papef yield additional insight into rolll?ack rates. These studies indicate

that the optimistic protocol performs best when:
(1) a small percentage of items are updated during the partitioning, and
(2) few transaction have large writesets.

Whenever (1) holds, the probability that a given transaction will be rolled back depends more
on the size of its writeset than its readset. Regarding (2), not only is the occasional large tran-
saction more likely to conflict with another transaction, but in addi‘tion its rollback is likely to
cause other rollbacks. Consequently, the rollback rate is quite sensitive to variance in transac-

tion size.

3.2. Pessimistic Approaches

The first group of pessimistic strategies, primary site (copy), tokens, and voting, were initially

proposed as distributed concurrency control mechanisms. However, they can also be used to
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prevent conflicts between transactions when the network partitions. Missing writes is an adap-
tive voting strategy which improves performance when there are no failures in the system.
The last approach, designed specifically for pagtitioncd networks, strives to increase availabil-

ity by exploiting known characteristics of the workload.

Primary Site, Copy [ALDA76], [STON79]

Originally presented as a resilient technique for sharing distributed resources, this approach
suggests that one copy of an item be designated the primary and as such be responsible for
that item’s activity. All reads for a data item must be performed at the primnry4sitc for that
data item.’ Updates are propagated to all copies. In the case of a partition failure, only the
partition containing the primary copy can access the data-item.Updates are simply forwarded

at recovery to regain consistency.

This approach works well only if site failures are distinguishable from network failures.
If this is the case and the primary site for a data-item fails, a new primary can be clected (for
a discussion of election protocols, see [GARCS83b]). However, if it is uncertain whether the
primary failed or the network faifed, the asﬁmptim must be that the network failed and no

new primary can te elected.

Tokens [MIWIS2)

This approach is very similar to that above except that the primary copy of an item can
change for reasons other than site failure. Each item has a token associated with it, permit-
ting the bearer to access the item. In the event of a network partition, only the group con-

taining the token will be able to access the item.

The major weakness with this scheme is that accessibility is lost if the token is lost due

to site or communication medium failure.

3 . . . .
Normally only the lock for a data item must be acquired at the primary site: the actual read may be per-
formed on any copy once the lock has been granted.



Voting [GIFF79]

The first voting approach was the majority consensus algorithm described in [THOM?78].

What we now describe is the generalization of that algorithm proposed by Gifford [GIFF79].

In this approach, every copy of a replicated item is assigned some number of votes.
Every transaction must collect a read quorum of r votes to read an item, and a write quorum

of w votes to write an item. Quorums must satisfy two constraints:

(1) r+w exceeds the total number of votes v assigned to the item, and

r

2 w> >

The first constraint ensures tha.t there is a non-null intcrsectién between every read
quorum and every write quorum. Any read quorum is therefore guaranteed to have a current
sepy of the item. (Version numbers are used to identify the most recent copy.) In a parti-

tion. . .¢im, this constraint guarantees that an item can not be read in one partition and

writi: . : oither. Hence, read-write conflicts can not occur between partitions.

pE

fze wcond constraint ensures that two writes can not happen in parallel or, if the sys-
troy i3 partitioned, that writes can not occur in two different partitions. Hence, write-write

conflicts can not occur between partitions.

EXAMPLE: Suppose sites §1, §; and S, all contain copies of items f and g, and that a
partition P, occurs, isolating §; and §, from §,. Initially, f=g=0, cach site has 1 vote for
each of f and g, and r=w=2 for both f and g.

si 3 || G3) ss

s: §3)

During the partitioning, transaction T ; wishes to update g based on values read for f and
g. Although it cannot be executed at S, since it cannot obtain a read quorum for f, or
read and write quorums for g, it can be executed at §;, and the new value g=1 is pro-
pagated to §,.
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Now suppose P, is repaired, and a new failure P, isolates S; and S4 from S,. During
this new failure, transaction T, wishes to update f based on values read for f and g. It
cannot be executed at S, since it cannot obtain a read quorum for g, or read and write
quorums for f. However, it can be executed at §;. Using the most recent copy of g=1
(obtained by reading copies at both §; and S, and taking the latest version) T'; computes
the new value f=1 and propagates the new value to §,.

Notice fhat the above example reduces to a majority vote [THOM78] since each copy has

exactly one vote and r and w are a simple majority

Varying the weight of a vote can be used to reflect the needed accessibility-level of an
item. For example, in a banking application, a customer may use certain branches more fre-
quently than other branches. Suppose there are 5 branches of the bank, and that the custo-
mer uses branches 1, 2, and 3 with equal frequency, but never goes to branches 4 or 5.
Assigning r=§r=2 and his account at branches 1, 2 and 3 a vote of Vl but 0 clsewhere would

reflect this usage pattern.

The quorum algorithm differs from those previously discussed in two important ways.
First, by choosing r <v /2, it is possible for an item to be read-accessible in more than one par-
tition, in which case it will be write-accessible in none. Read-accessibility can be given a high
priority by choosing r small. Second, the algorithm does not distinguish between communica-
tion failures, site failures, or just slow response. A scrious weakness of the previous schemes

is that availability is severely compromised if a distinction can not be made.

A weakness of the quorum scheme is that reading an item is fairly expensive. A read
quorum of copies must be read in this scheme, whereas a single copy suffices for all other

schemes.



Missing Writes [EASE83]

Eager and Sevcik’s algorithm ([EASES3]; see also [BEGO83)) is based on the observation .
that requiring a quorum for items in the readset as well as for those in the writeset is a
.sufficient restriction to guarantee correct or scrializable execution during partition failures;
however, it is not necessary. Performance is unnecessarily degraded by requiring a readset
quorum when there are no failures; however, the requirement is necessary when there are
failures. Thus transactions run in two modes, normal and failure. When in normal mode,
transaction T reads one copy of each data-item in its readset, and updates all copies in its wri-
teset. If some copy cannot be updated, T becomes “aware” of a missing update, and must run
in failure mode, which is very similar to the majority consensus algorithm alluded to above:
quorums must now be obtained for each data-item in the readset and writeset.® This "missing
update information” is then passed along to all following transactions that necd the informa-
tion, i.e. all transactions connected to T by a path of dependency and precedence edges ori-
ginating at T. These transactions also become aware of missing updates, and must run in
failure mode. Since T cannot see the future and does not know what transactions these will
be, the missing update information is posted at sites as a level of indirection. When the
failure is repaired, the missing update information will eventually be posted at the sites that
"caused” the missing updates, i.c. those that did not reccive the updates. The updates can

then be applied, and postings removed from other sites throughout the system.

The algorithm hinges on the ability to recognize "missing writes”, and to propagate the
information to later transactions so that cycles in the precedence graph of committed transac-
tions are avoided. Note, however, that certain transactions may be able to execute without
restriction even if there are partition failures present in the system; there is no harm in allow-
ing readonly transactions to “run in the past® during a failure, i.c. read an old value of a data-
item, as long as no cycles result in the precedence graph of committed transactions. This
Sa quorum can essentially be thought of as the *w > -‘2L' from condition 2 in the previous section; it is a

sct of (possibly weighted) votes from sites containing copies of the data-item such that any two quorums for
that data-item intersect.
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ability to run in the past allows a site that has become isolated from the rest of the network to
execute readonly transactions even if updates are being performed on remote copies of the

data-items stored at that site.

EXAMPLE: Suppose that there are four sites in the system §,, §,, §; and S4. Sites S,
§, and S, contain copies of data-item a; site 5, S5 and 54 contain copies of data-item b.
Now suppose a failure occurs, isolating sites §; and 5, from site 5, and S transactions
Ty, T, T, are initiated at site S; (in that order), while transaction T, is initiated at S,
The readsets, writescts and precedence graph are depicted below. (The precedence
graph shown is of uncommirted transactions since cycles in the precedence graph of com-
mitted transactions will obviously be avoided.)

TI: Q

72: ‘;1 & T‘: 2‘2

Tg: iﬁ

T, is unaware of the failure, since it can obtain a copy of a and b at §,; it can happily
run in the past. T, becomes aware of the failure when it is unsuccessful at updating the
copy of a at §j; it is allowed to commit, however, since it can receive a quorum for each
data-item in its read and write sets (assuming that each copy has a weight of 1). T, is
then required to pass all of its missing update information to transactions that are
incoming nodes for outgoing edges from T,, such as T, in this example. If T4 were to
successfully commit, it would also be required to pass on the missing update information.
However, in this ecxample, T, is not allowed to commit; since it is aware of missing
updates, it is required to obtain a quorum for data-items in its readset, which it cannot
for . Transaction T4 would also not be allowed to commit since although it can obtain
a quorum for b, it finds that it cannot update the copy of b at §,, and must then run in
failure mode. Since it cannot obtain a quorum for a, it cannot complete successfully.
Thus in this example (as well in all others), there are no cycles in the precedence graph
of commirted transactions. Note that the restriction that T, and T, be rerun in failure
mode is necessary: suppose that T, and T, both read a and b, but T, updated a while
T, updated b. If they both executed in normal mode and did not switch to failure mode
when they became aware of missing updates, a cycle would result in the precedence
graph of committed transactions.

In order to implement this method, regardless of the concurrency control mechanism

being used, several files must be kept at each site. They include:
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(a) A file for posted missing updates, with indications of which transactions need to be

informed about the missing updates.

(b) A file containing the values of missing ypdates, to be applied to the appropriate copies

when recovery occurs.

(c) A file indicating the transaction restarts, aborts, cr commits of which the site is aware,

used to resolve the "blocked” transactions alluded to in the introduction to section 3.
(d) A record of the missing updates that have been applied at the site.

Although these files can grow very rapidly if the system is active during failures, they must
only be maintained when failures are present in the system, and thus do not impact perfor-
mance in the absence of failures. Furthermore, since quorums are only required when ‘a tran-
saction is aware of a missing update, when there are no failures or the transaction is not
required to know about the failure, reading an item incurs no additional overhead. The
method is ziso very flexible: it requires no “detection” of failure other than the inability to
perform updates, no special “global” action or temporary cessation of activity to propagate

updates when the failure is repaired.

Improvements on this algorithm can also be found in [HERL84). Better availability is
provided by exploiting type-specific properties of the data. Necessary and sufficient con-
straints on availability are derived from the data type specification. For example, Enqueuc
and Dequeue operations for a replicated FIFO queue are allowed to execute concurrently in
distinct partitions; however, in Eager and Sevcik’s version, this could only execute in one par-

tition since the operations would be treated as writes.

Class Conflict Analysis [SKWRS84]

The pessimistic strategies discussed so far strive to make cach data record available for
reading and writing in some partition by arbitrary transactions. These strategics, then,
emphasize the general availability of individual records. An alternate strategy, Class Conflict

Analysis, strives to ensure the capability of performing important high-level operations on the
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data. Hence, this strategy emphasizes the availability of high-level data operations, possibly at

the expense of the general availability of records.

:l'o illustrate the difference between the two approaches consider again the banking
example discussed in Section 1, where a customer can overdraw his checking account as long
as the overdraft is covered by funds in his saving account. If the system partitions, none of
the discussed pessimistic strategies would allow a checking withdrawal (which requires reading
the balance of both accounts) to occur in one partition and allow a savings deposit to occur in
another partition. However, executing these transactions in parallel in different partitions
violates neither the bank’s policy nor the one-copy serializability. Hence, these transactions

should be allowzd.

The approach assumes that transactions are divided into classes as proposed in [BSR80].
A class may be a well-defined transaction type, such as the “savings withdrawal,” or it may be
syntactically defined, e.g., the class conta{ning all transactions reading and writing a subset of

items a, b,and c.

Like transactions, classes are characterized by their readsct and writesets. The readset
(resp. writeset) of a class is the union of the readsets (resp. writescts) of all of its member
transactions. As before, it is assumed that a class’s readset contains its writeset, so that cer-
tain NP-complete problems are avoided. Two classes conflict if one’s readset intersects the
other’s writeset. A class conflict indicates a potential read-write conflict between member tran-
sactions of the classes. (A conflict may not actually occur because the transactions’ readscts

and writesets may be proper subsets of the classes’ readsets and writesets.)

" When a failure occurs, each partition group must decide what classes of transactions it
will execute so as to avoid potential conflicts with transactions executed in other partitions.
As a first step, it must decide what classes arc “assigned” to its partition as well as those that
are assigned to the other partitions. For example, if classes are executable at specific sites, the
classes assigned to a partition would be those executable at sites within the partition. Note

that classes may be assigned to more than one partition, and there may be conflicts between



classes in different partitions.

The second step for cach partition is to analyze the assignment and discover the class
conflicts that can lcad to nonserializable exccutions. The analysis uses a graph model that is
‘similar to the one used in the optimistic protocol. “fhcreas the precedence graphs used in
that protocol give the actual orderings between conflicting transactions, class conflict graphs
give all potential orderings between conflicting classes. Defined below is a simplified version of

the model presented in [SKWRS84).

A node of the class conflict graph represents the occurrence of a given class in a given
partition. Edges are drawn between occurrences of conflicting classes according to the rules

given below. Let C; and C; be classes such that readser (C;)(") writeser (C,) is not empty.

(1) If C, and C, arc in the same partition, then a pair of edges pointing in opposite
directions connects them.
(2) If C, and C; are in different partitions, then a directed edge extends from C; to
C.
The direction of the edges indicate the possible logical orderings of transactions from
conflicting classes. In particular, in the case of classes C; and C,; in rule (2), the transactions
of C; can not logically succeed those of C; because C,’s transactions can not read the updates
of C,’s transactions. Therefore, the only order possible is that all transactions of C; precede

all transactions of C;, as indicated by the single directed edge.



-29-

EXAMPLE: Below is a class conflict graph for the banking example for two partitions.
Boxes denote classes. Readsets are shown above the line; writesets, below. Data items
s, c, and i are the savings account, the checking account, and the interest rate, respec-
tively. Classes C, and C, include the saving deposit transactions and checking with-
drawal transactions discussed in section 1. Class C, transactions change the interest rate,
class C, transactions add an interest payment to the savings account, and class C, tran-
sactions are readonly.

PARTITION 1 PARTITION 2
i

C, :

i i

¢ = &
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The third step in the analysis is to identify those assignments that could lead to nonseri-
alizable exccutlions. Cycles play a key role here, but not all cycles are bad. Among class
occurrences in the same partition, cycles are both common and harmless, since the con-
currency control algorithm operating in the partition w1ll prevent nonserializable executions.
On the other hand, cycles spanning multiple (> 1) partitions are not harmless, since there is no
mechanism preventing them in an execution. Hence, multipartition cycles indicate the potential
for nonserializable executions. In the example, if transactions from classes C;, C,, and C, exe-
cﬁtc in that order in partition 1 and a transaction from C, executes in partition 2, the result is
nonserializable. (This can be checked by constructing the precedence graph for the execu-
tion.)

Whenever the preliminary class assignment yields a (multipartition) cyclic graph, further
constraints on transaction processing must be imposed. The most straightforward approach is
to delete classes from partitions until the class conflict graph is rendered multipartition acy-

clic. In the above example, one of C;, C,, C,, or C, must be deleted. For availability
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reasons, it is desirable to delete a minimum set of classes. Not surprisingly, this is an NP-

complete problem.

Although this discussion has assumed that the compleic state of the network is known to
all partitions, this assumption is not required in applying class conflict analysis. [SKWkB-t]
discusses som;z modifications to the basic algorithm that work with incomplete knowledge of
the network status. In gddition, the paper discusses refinements that affords more availability

than the the analysis presented here.
3.3. Discussion

Optimistic versus Pessimistic

Gne basis for comparing the two types of approaches is in terms of an appropriate cost
model. The model should include overhead, the cost of repairing inconsistencies, and the cost
of lost opportunities. In the following, costs common to all approaches, such as the propaga-

tion of updated values, are omitted.

Optimistic policies have two sources of overhead. The first is the log, which must be
maintained while the system is partitioned, recording the readset and writeset of cach transac-
tion in order to construct the precedence graph and recording sufficient information to roll-
back transactions. Many database systems already maintain a log, called an undo log, for rol-
ling back transactions in case of site failures or transaction failures (e.g., dcadlocks)
[GMBLLS81]. This same log can be used to roll back conflicting transactions in a partitioned
system. However, in order to construct the graph, undo logs must be augmented with records
of transactions’ readsets (which are normally not recorded since they are not needed to roll
back a transaction). This increases the complexity of the logging algorithms, but it does not

significantly increase the cost of logging in most systems.

The second and most significant source of overhead is the conflict detection algorithm,
which constructs the graph, checks the graph for cycles, and then sclects transactions to roll

back. Graph construction requires a single pass over the entire log, which can be quite
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expensive for a partition of long duration. The selection algorithm can be made arbitrarily
expensive, depending on the quality of heuristics used. The best heuristics require time
O (N?*") where N is the number of transactions ([DAVI82], minimally breaking all two-cycles).

However, linear time heuristics often yield acceptable solutions.

The cost of repair in an optimistic approach is simply the rollback rate times the cost of
rolling back a transaction. We have already discussed roliback rate. The rollback cost is
often a significant fraction of the transaction’s cxccution cost, and may, in fact, exceed the
execution zost if the transaction has external side-cffects (c.8., a customer may be entitled to
compensation if her reservation is cancelled, or a series of transactions may need to be exe-
cuted to compeasate for a single rolled back transaction). Consequently, the rollback rate
must be kept reasonable small (certainly less than 20%) if optimistic approaches are to be

cost-effective.

The goal of optimistic approaches is to minimize lost opportunity, the cost associated
with needlessly delaying a transaction. These costs can be substantial when user satisfaction is
important as, for example, in a banking application. Lost opportunities still occur in these
approaches because of the allocation of resources to transactions that are destined to be rolled
back. Such transactions may displace valid transactions during the partitioning, and rolling
them back may cause further delays after the partitions are reconnected. Still, for most appli-

cations, we speculate that other costs dominate.

Pessimistic approaches have no repair costs and, except for conflict class analysis, almost
no overhead. Even in class conflict analysis, the overhead is likely to be substantially less than
in an optimistic strategy, because although conflict analysis and conflict detection are pro-
cedurally similar, the number of predeclared classes in conflict analysis is likely to be substan-

tially less than the number of transactions in conflict detection.

The major cost of a pessimistic approach is, of course, the cost of lost opportunities.
Included in this cost are not only opportunities lost to real partitioning but also opportunities

lost to “apparent™ partitionings, for example, site failures that are indistinguishable from real
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partitionings. In many systems, apparent partitionings occur more frequently than real parti-

tionings; therefore they must be included in any cost analysis.

In summary, the cost of an optimistic stzategy is the overhead of conflict detection plus
the repair cost, whereas the cost of a pessimistic strategy is the cost of opportunities lost to
real and apparent partitionings. Unfortunately, except for repair costs, informed estimates for
these costs are not casily obtained. No one has measured the overhead associated with any of
the strategies, and the cost of lost opportunitics is hard to quantify (although one component

in a pessimistic strategy is the cost of underutilization of processing resources).

Combining Strategies.

Instead of using one strategy during a partitioning, strategies can be combined vertically
over time; the system could start out using onc strategy and switch to anothcr as cir-
cumstances dii:tat;:. For example, the number of transactions rolled back in the optimistic
protocol has been observed to increase roughly quadratically with time. In fact, the éxpccted
number of transactions backed out can be estimated with a formula involving the number of
transactions processed within the partition, the number of data-items in the database and cer-
tain other parameters modeclling the type of transactions being executed (see [DAVIS2]).
Since it is usually impossible to predict how long a partitioning will last, the database adminis-
tator could then set a ceiling on the rollback rate (say 10%) and request that the optimistic
protocol be used only until this ceiling was reached. If this ceiling was reached, the system
could switch to a more pessimistic approach, such as primary site, for the remainder of the
failure. Of course, there is no guatantee that these future transactions would not also be
backed out since they could be connected to transactions that had already executed by depen-
dency edges; these transactions would still have to be included in the construction of the pre-
cedence graph and hence considered for possible ba;:kout in order to guarantee serializability.

However, the backout rate would be held at a more acceptable level.

Strategies can also be combined horizontally over time [SKEE82c]. One approach is to

assign items different levels of consistency. Items in level 0 (the highest level) are immutable
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during a partitioning; items in level 1 are updated according to a pessimistic strategy; and
items in level 2 are updated according to a optimistic strategy. Updates to level 1 items are
globally consistent and guaranteed to persist, while updates to level 2 items are consistent
within the partition but may not be globally consistent and, hence, are subject to rollback.
Although a transaction may update items in only one level, it may read items of the same

level and higher.

Another way to combine approaches horizontally is to divide transactions, instead of
items, into groups. For ecach partition, transactions are divided into two groups: high priority
transactions that can not be rolled back, and low priority transactions that can. Class conflict
analysis i3 used to determine a group of high priority transactions for each partition. The low
priority group for a partition consists of all transactions not writing an item read by a high
priority transaction in the same partition. (A low priority transaction, though, can write an
item read by a high priority transaction in a differens partition.) When partitions are recon-
nected, the optimistic protocol is used to construct a precedence graph containing all transac-
tions executed; however, only low priority transactions are liable to rollback. (An approach

similar to this is used in [APWI84].)

4. SEMANTIC APPROACHES

The first three approaches presented in this section illustrate three different ways of using
semantics to increase availability. The first approach, log transformations, uses the standard
notion of correctness, namely serializability, but uses the semantics of transactions in checking
serializability. The second approach relaxes slightly the standard notion of serializability in
order to enrich the set of transactions allowed in a partitioned system. The semantics of thé
application determine when serializability can be relaxed. The third approach, Data-Patch,
abandons serializability as a correctness criterion altogether, using instead an application-
specific definition of correctness. All three approaches arc optimistic. As a matter of fact, to
our knowledge, no one has suggested a pessimistic, semantic strategy, probably because seman-

tics are usually introduced to increase availability, not to ensure correctness.
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This section ends with a brief discussion of some other proposed ideas for increasing

availability.

Log Transformations [BGRCKS83]

This approach is similar to the optimistic protocol. During the partitioning, lo.gs are kept of
which transactions were executed and in what order. After reconnection, a rerun log is con-
structed which indicates what should be reflected as having happened during tﬁe failure. To
achieve this, transactions in ecach group may have to be backed out and rerun. It differs in
that transactions are pre-defined, and semantic properties of pairs of transactions are declared
to avoid needlessly backing out and re-executing transactions. These properties can include
commutativity (T,T; = T,T;) and overwriting (T,T; =T,). There is also a notion of “absolute
time” in each group during the failure so that transactions can be merged based on thc time at

which they were exccuted.

EXAMPLE: Suppose that during a partition, P has executed T,,T,,T ¢ and that P, has
executed T,,T4,T s, where the subscripts indicate the absolute timing of the transactions.
The rerun log would be T4,T,,T3,T4,Ts,T¢. If we ignored any semantic properties of
transactions, merging the database at P; would involve backing out transactions T,,T 4,T ¢
and reexecuting the rerun log. If we assume that backing out transaction T can be
achicved by running an inverse transaction T !, then the entire merging operation at P,
can be represented by the backout (or rollback) log T¢!,7,1,T;! followed by the redo
log. Similarly, the merge operation at P, involves executing the backout log
Ts1,7571,T7! followed by the redo log. Let us call the combined backout, redo log the
merge log.

If we know that 7, commutes with T, then the merge log at P, can be reduced to

T T T ToT 0T 5T

To see that the result of executing P’s merge log is equivalent to the result of executing
T,T2,T1T4Ts,T¢in order, consider the entire sequence of transactions executed by P,
(that is, the original execution followed by the merge log):

T2l T 6T ¢ T T 1T 3T T 5T

Since T¢,T¢' and T,,T;* are equivalent to the null transaction, the above is equivalent
to

T2,T1,T3,T 4T 5,7 6.
And, by the commutativity of T, and T ,, this is equivalent to the desired sequence.

If in addition we know that T; and T 5 commute with T, and T, and that T4 overwrites
T s, then the Py merge log can be further reduced to

T,Ts
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(that is, after the partition we only have to run T,,T without backing out any transac-
tions). At P, this same semantic information only reduces the merge log to

T T3 ToT 3T T

The process of reducing in size the merge log is called log transformation. The process
can be automated with the aid of a graph formalism prmnte‘d in [BGRCKS83]. With it, merge
logs arc represented as graphs, and each log transformation is represented as a graph transfor-

mation.

One advantage of the log transformation approach is that the merge processes at the
sites arc independent of each other. _That is, as each site finds out about transactions that exe-
cuted eisewhere, it can proceed to integrate them locally, regardless of what the othér sites
are doing. Thus, this approach may be useful in an environment where failures are common

and communications unreliable.

Weak Consistency [GAWES2]

Garcia and Weiderhold a'rguc in [GAWES2] that conventional correctness criteria—in particu-
lar, serializability—may be stronger than needed for many readonly transactions. Since such
transactions Jdo not change the database state, their execution under a weaker correctness cri-
terion czn not generate an inconsistent state. Relaxing the serializability constraint is espe-
cially attractive for partitioned systems since it would allow a richer mix of readonly transac-
tions. (The original motivation for a weaker correctness criterion was to speed up the process-
ing of readonly transactions in a distributed system.) Since readonly transactions occur fre-
quently in most systems, allowing a richer mix of them often substantially increases the

number of transactions executed while partitioned.

In [GAWES?2], readonly transactions are.divided into two classes: those requiring strong
coasistency and those requiring weak consistency. A strongly consistent transaction is pro-
cessed~ in the normal fashion: its execution must be serializable with respect to update transac-
tions and other strongly consistent transactions. A weakly consistent transaction must scec a

consistent database state (the result of a serializable execution of update transactions), but its
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exccution nced not be serializable with respect to other readonly transactions. (Weak serial-
izability is stronger than degree 2 or 1 consistency as defined in [GLPT76). Specifically, with

degree 2 or 1 consistency, a readonly transaction can obtain an inconsistent view of the data-

base.) The foilowing example illustrates.

EXAMPLE: Consider again the banking database of the first section with Sites A and B
partitioned. The following scquence of transactions occur:

SITE A SITEB
C:  checking deposit of $50 D:  savings deposit of $100
A,: read checking and Ap: read checking and
savings accounts savings accounts

Notice that the two update transactions, considered alone, are serializable. In fact, since
they access different items, both C;D and D;C arc valid serialization orders. Howev-
er, when the accounting transactions A, and A, are included, the execution is not serial-
izable. The database state read by A, is possible only if C executes before D, while the
state read by Ap is possible only if D executes before C. (Both A, and A, seec a valid
serialization order of the updates; the problem is that they see different orders.)

If A, “and Ay required only weak consistency, the above execution would be
“correct”: the update transactions alone are serializable and each weakly consistent tran-
saction sees the result of a serializable execution of update transactions.

- The use of different consistency levels can be integrated with any of the syntactic
approaches discussed in the previous section. In a pessimistic strategy a transaction requiring
only weak consistency can be cxecuted at any time in any partition, as long as the partition
contains copies of items read by the transaction. The transaction will always see a consistent
database state since all update transactions are guaranteed to be (globally) consistent. In an

7 optimistic strategy, such a transaction secs a consistent state only if it does not read the result

of an update transaction that is eventually rolled back.

The choice of a consistency level for a readonly transaction depends on how the infor-
mation returned by the transaction is used. An accounting transaction reporting cash flow

within a bank probably requires strong consistency. Inventory reporting and transactions com-

puting summary statistics often need only weak consistency.

Fischer and Michael give an important application of weak scrializability in their aigo-

rithms for directory systems{FIMI82]. A directory supports only three types of transactions:
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insert a unigue item, List all items, and delete an item. Mail systems, calendar systems, and
other familiar applicaiions can be cast as directorics. Exploiting the property that the list
operation requires only weak consistency, thgy give an algorithm allowing unrestricted tran-
saction proccssing in the prmn;:c of communication failures, including but not limited to

failures partitioning the system.

Datz-T.r2ch [GABCRS82]

Data-Patch is a tool which aids the database administrator in the development of a program to
automatically integrate divergent databases. As in the previous optimistic stra*cgies, transac-
tion: arc executed “normally” during the failure. At reconnection, the final database state is
constructed according to an integration program. Serializability is no longer the correctness
criterion; rather, the integration program defines the “correct” final database. T‘ms is based
on the premi.c “hat users may already have observed the effects of a non-serializable execu-
tion, thus ressiiag th.c database to a serializable state m;ly not bc. the most scﬁsiblc thing to
do. For examiic, in an Airline Reservation System, if a flight becomes overbooked it may not
be desirabie 10 cancel reservations since a promise has been made to customers and normal

passenger cancellations could take care of the problem.

The major design principle involved is identifying image and plan relations. Image rela-
tions are obszrvable entities or relationships, and must reflect that in the final database. For
example, in a database for Girard bank, the relation GIRARD(BRANCH, CASH, ...) might
be used to record the amount of cash at ecach branch. The value of CASH in cach tuple at
recovery should reflect the actual amount of cash at that branch. This might be obtained as
the latest value for CASH in cach partition group. Plan relations do not represent observable
ventities and the DBA can therefore have more freedom in sclecting the final values. In the

next example, ACCOUNT is a plan relation.



EXAMPLE:
ACCOUNT (CUSTOMER, BALANCE, ..)
DEPOSIT (CUSTOMER, AMOUNT, DATE, ..)
WITHDRAWAL(CUSTOMER, AMOUNT, DATE, ..)

DEPOSIT and WITHDRAWAL are records of account activity. If during a parti-
tion a customer overdraws his account according to the records from each group,
he may be assessed a penalty charge. Thus BALANCE would reflect the sum of
withdrawals and deposits to the account, plus the penalty charge. If, on the other
hand, a customer is mistakenly assessed a penalty charge because a DEPOSIT did
not appear during a failure, the penalty charge may be dropped.

The abeve example shows that not only must a final database state be chosen, but correc-
tive actions must be specified. That is, if integrity constraints arc violated after the image and
plaa rzlations have been constructed, some sort of compensating or corrective action must be

issued (c.g. penalty for overdraft, as above).

The Darapatch integration program is defined through a set of rules that specify how the
integrated datzbase can be obtained from two databases that exist after a partition. Some
rules specify zow differing facts are to be combined. For cxamplé, consider a ficld that
represents the !ccation of a ship. In this case, the DBA can sclect a “latest value” rule: if the
field has a different value in each partition, in the integrated database use the value with the
latest timestemp. If the ficld represents the number of reservations for a flight, the “arith-
metic rule” can be used: the iutegrated value is the sum of the two partitioned values minus
the value thaf existed when the p partition started. Other rules specify the corrective actions
to be taken. For instance, a rule might specify that if the withdrawals exceed the deposits to
an accouns (after the integrated databm has been obtained), then a dunning letter should be

sent to the customer.

Other Ideas.

Numerous ad-hoc techniques for exploiting the scmantics of an application to increase availa-

bility have been proposed. Many of these can best be illustrated by examples.

The first example illustrates the idea of splitzing a data item. In an Airline Reservation
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System [HASHB80], let SEATS represent the number of seats available on a particular flight.
When a partition occurs, P, creates SEATS, containing 40% of the value of SEATS, and P,
creates SEATS , containing 60% of the value of SEATS (or other percentages reflecting the

relative booking rates for that flight). At recovery,

SEATS = SEATS 1+ SEATS,

would restore SEATS to its correct value. Splitting can be used whenever the value of the
data item represents a partial summation and cach term in the summation is not dependent on

the currert value of the data item.

The second example comes from Incomplete Information Systems ([DAVI82], [LIPS79]).
Suppose we have a tuple representing John Doe’s age as less than 30. During a partition, P
gathers more information and concludes that his age is between 20 and 30, while P, concludes
it to be betw:sen 15 and 25. At recovery, the intersection of these ranges, 20 to 25, may be

taken as Joiin Doe’s age.

The iasi cxample illustrates the use of failure-mode integrity constraints. Recall the bank-
ing example of Figure 2, where overdrafts on the checking account were allowed as long as
checking balance +saving balance=0. That example described a scenario where the this con-
straint was violated during a partitioning. This anomaly could have been avoided by enforcing
a failure-mode integrity constraint disallowing checking account overdrafts when the system is

partitioned.

These ideas can be used with a pmiﬁstic approach such as primary copy to allow more
transactions to be executed: a portion of SEATS would be available in each group, although
the actual or current value for SEATS could not be obtained due to possible bookings in the
other group. However, the flight would never be overbooked if neither group sold more than
their allotment of seats. It can also be used with more liberal approaches such as the Optimis-
tic Protocol and Data-Patch to avoid conflict and possible transaction backouts. In the
Optimistic Protocol, conflicts are mainly caused by updates to the same data-item. By splitting

data-items and recombining at recovery, this can be avoided. In Data-Patch, integration
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becomes easier since the vaiue for SEATS can simply be computed without canceling reserva-

tions.

5. ATOMIC COMMITMENT

A transaction on a distributed database typically executes at several sites. In order to ensure
the “all or nothing” property of the transaction, the executing sites must unanimously agree to
commit or to abort the transaction. Until now we have assumed that tl}is agreement, known
as atomic commitment, can be achicved in a partitioned system. Let us now examine how rea-

sonable this assumption is.

Viewed abstractly, in a commitment protocol cach participant first votes to “accept” or
“reject” the transaction based on its ability to process the transaction and then decides
whether to commit or abort bascd on the voting. Commitment normally requires unanimous

acccptancc.7 Of course, all decisions must agree.

The two-phase commit protocol [GRAY78] is a straightforward implementation of the
above. In the first phase, a designated participant, the coordinator, solicits the votes from its
cohorts. In the second phase, it decides based on the votes and then sends the decision to all
participants. In the course of the protocol, each participant voting “accept” goes though three
distinct states: an uncommitted state where it has not voted, an in-doubr state where it has
voted but does not know the result of the voting, and a decision state where it knows the
commit/abort decision. (A participant voting “reject” does not occupy the in-doubt state since

it knows the eventual outcome.)

Consider the consequences of a partitioning occurring during the execution of the two-
phase commit protocol. In each partition the participants, acting together, will attempt to
decide the outcome based on their states. If the partition contains the coordinator, a decided
participant, or an uncommitted participant, a consistent decision can be reached (in the case

of an uncommitted participant, abort will be chosen). However, a partition containing only

Te . . L
Some protocols for fully replicated databases require only acceptance by a majoricy.
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in-doubt participants and lacking the coordinator can not safely decide: the participants can
not commit since they do not know the outcome of the voting, and they can not abort since
they may contradict the decision of the coordinator. Hence, these sites must wait until recon-

nection before deciding, and the protocol (and associated transaction) is said to be blocked at

those sites.

Given that the two-phase commit protocol occasionally blocks, the interesting question
then is: are there any nonblocking protocols for partitionings? The answer is no: even under
the most favorable, realistic partitioning assumptions, there exists no nonblocking protocols
[SKEES82b]. The situation is even worse if sites can fail during a partitioning; in this case

there is no protocol that guarantees that even a single site will be able to decide.

Since it is impossible to climinate blocking, it is desirable to minimize it. Several proto-
cols have been proposed that, under appropriate partitioning assumptions, block less than the
two-phase commit protocol. One protocol, the decentralized two-phase commit protocol,
reduces the likelihood of blocking by decreasing the time a site spends in the in-doubt state
[SKEES82c]. This is accomplished by having the participants send their votes directly to each
other, bypassing the coordinator. Another protocol, the quorum commit protocol, reduces the
probability that a large partition (one consisting of many participants) will be blocked in the
event of a partitioning, by introducing extra phases ([SKEES82a}, [SKEES82b]). Its principal
advantage is that it is also resilient to site failures and (nonpartitioning) communication
failures. However, both protocols have drawbacks. Although the decentralized protocol
decreases the probability that a partitioning will occur while sites are in the in-doubt state, it
increases the expected number of blocked sites if a partitioning should occur. The quorum
protocol actually increases the chance that some site will be blocked in the event of a parti-

tioning (although the expected number of blocked sites decreases).

How the partition strategies of the previous two sections treat blocked transactions
depends on whether the strategy is pessimistic or optimistic. In a pessimistic strategy, the data

items at undecided sites must be rendered inaccessible until reconnection. In an optimistic
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strategy more flexibility is possible. A partition can tentatively commit or abort a blocked
transaction. If its decision is inconsistent with other decisions, it can resolve in the same way
that it resolves other inconsistencies, by rolling back the offending transaction and all depen-

dent trausactions. Since rolling back is fairly expensive, a tentative decision should be made

aiy if it has a high probability of being correct.
6. DISCUSSION

6.1. Guidelines for the Selection of a Strategy.

Given an application, how should one chéosc a partition strategy? Caution should be used in
answering this question. A criticism that has been levied at research in the distributed data-
base area in general [MOHARSO] is that solutions are commonly vicwed in isolation from other
problems. In fact, different mechanisms may be so highly intertwined that changes proposed
in one area affect many other pans of the system. In particular, with partition strategies one
must pay attenrion to the concurrency control mechanism being used. For example, the use of
a voting or *tclsn-passing concurrency control algorithm may dictate a corresponding partition
algorithm unlicss one worrics about restr.ucturing the vote or reassigning tokens (see also
[DAVI82] fu: a discussion of the relationship between the optimistic protocol and common

forms of concurrency control). In addition, very little attention has been given to the perfor-

mance of proposed mechanisms. In some cases this is because it is difficult to construct an

appropriate model; in others it is because the mechanism is highly application dependent.

With these cautions in mind, we group the factors that influence the choice of a strategy

into three areas:

Environmens. Included here arc the properties of the network and the nature of the par-
titionings. An important consideration is whether partitionings are caused by failures or are
the result of anticipated events. In the latter case, complete information about the charac-
teristics of the partitioning, including duration and aetwork topology, may be known, and this

can be exploited in some strategies (in particular, class conflict analysis).
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However, most systems partition because of failures, and in this case the robustness of
the strategy may be an important factor. For example, a primary site strategy would be a poor
choice if sites failures can not be distinguished from communication failures. Also, class
conflict analysis (as presented) can not be used if communication failures do not always result

in c:cariy delineated partitions.

The duration of the partitioning is also important. Long failurcs tend to generate many
conflicts between transactions in different partitions; in this case, a pessimistic strategy is a

better choice than an optimistic one.

Werkload. Two important workload characteristics are average transaction length and
transaction variance. Optimistic policies work better when transactions are short and variance

small.

Another important workload factor is locality of reference: Do updates to givén data-
items tend to occur at a certain site? If so, a primary site strategy will not prohibit many tran-
sactions and availability will still be good. The backout rate in the optimistic protocol will

" also be reduced, but the transactions will still have to be tested for conflict.

Apnlicarion Specific. These factors fall into two groups. The first are requircments

placed by the application on transaction processing. Two important questions are:

{1) Can transaction precessing be temporarily halted for recovery purposes? If not, a pes-
simistic approach should be adopted which merely requires the forwarding of updates to

merge the databases.

(2) Can transaction processing be limited in parts of the database, or is availability a prem-

ium? If the latter, a more optimistic approach should be used.
The second group include semantic considerations. Relevant questions here are:

(1) Can transactions be backed out? That is, do they have an inverse? If the latter, either
conflict should be avoided totaily, or the divergent databases should be patched up using

compensating actions if necessary to achieve correctness.
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2) Is serializability a concern, or is a more procedural definition of “correctness” in the final

database state aéccptablc? If not, a Data-Patch approach can be used.

(3) Should a partitioned system be expected.to behave exactly as an unpartitioned system?
For example, even if serializability is the “normal” correctness criterion, under extcnuat-

ing circumstances (such as partition failures) a more lenient definition could be used.

6.2. Foture Directions

Partitioned operation is still very much an active research arca. We comment bricfly on

several interesting research directions.

One obvious deficiency in our current knowledge of partition strategics is the lack of any
performance data on how well they work. Few strategies have been implemented and none
tested on a representative application. Clearly, more experience with the proposed strategies

is needed before we can understand the performance tradeoffs between them.

Another important arca of research is the adaptation of these strategies to accommodate
more general processing models, in particular, nested transactions (and the related concept of
multilevel atomicity [LYNCHS3]). Nested transactions arise in genecral purpose distributed

programming environments such as ARGUS [LISK83].

Algorithms for detecting and analyzing network partitions have also not been developed.
Since several of the strategies require that the failure be initially recognized, this is an impor-

tant arca to address.

Finally, the use of semantics .in partitioned strategies has been only scantily explored.
One interesting direction is to assume that data items are instances of abstract data types and
transactions are instances of operations on those types. Type-specific partition strategies can
be derived from the formal propertics of the types. (This is an extension of the nction of

type-specific concurrency control proposed in [SCSP83).)
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