
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

May 1990 

Natural Language Generation as an Intelligent Activity (Proposal Natural Language Generation as an Intelligent Activity (Proposal 

for Dissertation Research) for Dissertation Research) 

Robert Rubinoff 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Robert Rubinoff, "Natural Language Generation as an Intelligent Activity (Proposal for Dissertation 
Research)", . May 1990. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-32. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/556 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/556
mailto:repository@pobox.upenn.edu


Natural Language Generation as an Intelligent Activity (Proposal for Dissertation Natural Language Generation as an Intelligent Activity (Proposal for Dissertation 
Research) Research) 

Abstract Abstract 
In this proposal, I outline a generator conceived of as part of a general intelligent agent. The generator's 
task is to provide the overall system with the ability to use communication in language to serve its 
purposes, rather than to simply encode information in language. This requires that generation be viewed 
as a kind of goal-directed action that is planned and executed in a dynamically changing environment. In 
addition, the generator must not be dependent on domain or problem-specific information but rather on a 
general knowledge base .that it shares with the overall system. These requirements have specific 
consequences for the design of the generator and the representation it uses. In particular, the text planner 
and the low-level linguistic component must be able to interact and negotiate over decisions that involve 
both high-level and low-level constraints. Also, the knowledge representation must allow for the varying 
perspective that an intelligent agent will have on the things it talks about; the generator must be able to 
appropriately vary how it describes things as the system's perspective on them changes. The generator 
described here will demonstrate how these ideas work in practice and develop them further. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-32. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/556 

https://repository.upenn.edu/cis_reports/556


Natural Language Generation 
As An Intelligent Activity 

Proposal For Dissertation Research 

MS-CIS-90-32 
LINC LAB 173 

Robert Rubinoff 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104 

May 1990 





Natural Language Generation 
as an Intelligent Activity 

Proposal for Dissertation Research 

Robert ~ubinoffl 

May 23, 1990 

lThis research was partially supported by NSF grant DCR84-10413, Ben Franklin Part- 
nership grants 07.317RUE and 06-312RV. DARPA grant N00014-85-K0018, and ARO 
grant DAAL03-89-C-003 IPRI. 





Contents 

1 Generation and Intelligent Systems 1 
. . . . . . . . . . . . . . . . . . . . . . .  1.1 Goals and Motivations 1 

1.2 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 
. . . . . . . . . . . . . . . . . . . . . . . .  1.3 Meeting the Criteria 10 

2 Architecture 11 
. . . . . . . . . . . . . . . .  2.1 The Standard Model of Generation 12 

. . . . . . .  2.1.1 Linguistic Limitations of the Standard Model 15 
. . . . . . . . .  2.1.2 Self-corrections and the Standard Model 18 

. . . . . . . . . . . . . .  2.1.3 Limitations in Existing Systems 21 
. . . . . . . . . . . . .  2.1.4 Variations on the Standard Model 22 

. . . . . . . . . . . . . . . . . . .  2.2 Revising the Standard Model 25 
. . . . . . . . . . . . . . . . . . . . . .  2.3 Outline of the Generator 27 

. . . . . . . . . . . . . . . . . . . .  2.4 The Communicative Planner 32 
2.4.1 Building a Plan . . . . . . . . . . . . . . . . . . . . . .  35 
2.4.2 Responding to Linguistic Options . . . . . . . . . . . . .  37 

2.5 The Linguistic Specialists . . . . . . . . . . . . . . . . . . . . .  39 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.6 The Utterer 41 

2.7 The Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 
2.8 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

3 Representation 47 
3.1 Representing Linguistic and Conceptual Knowledge . . . . . . .  47 
3.2 Requirements on the Representational Framework . . . . . . . .  55 
3.3 Sketch of the Representational Framework . . . . . . . . . . . .  60 

. . . . . . . . . . . . . . . . . . . . . .  3.4 Thesemantic Network 65 

. . . . . . . . . . . . . . . . . . . . . .  3.4.1 Nodes and Links 65 
. . . . . . . . . . . . . . . . . . . . . . .  3.4.2 Link Weights 67 

3.4.3 Individuals vs . Generic Concepts . . . . . . . . . . . . .  68 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4.4 Labels 69 

. . . . . . . . . . . . . . . . . . . . . .  3.5 The Perspective Weights 71 
3.5.1 Setting the Perspective Weights . . . . . . . . . . . . . .  73 

. . . . . . . . . . . . . . . .  3.6 Reasoning and the Inference Rules 76 
3.6.1 Inheritance Rules . . . . . . . . . . . . . . . . . . . . .  79 

. . . . . . . . . . . . . . . . . . .  3.6.2 Applying Descriptions 80 





3.6.3 Rules. Perspective. and Default Rules . . . . . . . . . . .  8 1 
. . . . . . . . . . . . . . . . . . . . . . .  3.6.4 Contradictions 82 

3.6.5 Using the Inference Rules . . . . . . . . . . . . . . . . .  84 
3.6.6 An Example: Is car-1 a sports-car? . . . . . . . . . . .  87 

3.7 Using the Representation to Support Generation . . . . . . . . .  87 
. . . . . . . . . . . . . . . . . . . . . . . . . .  3.7.1 Indexing 89 

. . . . . . . . . . . . . . . . . . . . . . . . .  3.7.2 Annotating 89 
3.7.3 An Example In Detail . . . . . . . . . . . . . . . . . . .  93 

4 Proposed Research 98 
4.1 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . .  98 
4.2 Areas of Investigation . . . . . . . . . . . . . . . . . . . . . . .  98 

. . . . . . . . . . . . . . . . . . . . . . .  4.3 Criteria for Evaluation 100 

A Focus of the Proposed Research 102 

B Additional Examples 105 





List of Figures 

. . . . . . . . . . . . . . . . . .  2.1 Architecture of Most Generators 13 
. . . . . . . . . . . . . . . . . . .  2.2 Architecture of the Generator 28 

. . . . . . . . . . . . . . . . . . . . .  2.3 Examples of Initial Plans 36 
. . . . . . . . . . . . . .  2.4 Linguistic Option Evaluation Algorithm 38 

Knowledge Underlying the Sports-Car Decision . . . . . . . . .  
Inheritance Without Labels . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  Example Inference Rules 
. . . . . . . . . . . . . .  An Inheritance Rule for Instance Links 

. . . . . . . . . . . .  Example Inference Rules with Perspective 
. . . . . . . . . . . . . . . .  The Sports-Car Decision Revisited 

Some Semantic Network Fragments Used by the Linguistic Spe- 
cialis ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
More Semantic Network Fragments Used by the Linguistic Spe- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  cialis ts 

. . .  B.l Semantic Network Fragments Used in Additional Examples 115 
B.2 More Semantic Network Fragments Used in Additional Examples 116 





Abstract 

In this proposal, I outline a generator conceived of as part of a general intelli- 
gent agent. The generator's task is to provide the overall system with the ability 
to use communication in language to serve its purposes, rather than to simply 
encode information in language. This requires that generation be viewed as a 
kind of goal-directed action that is planned and executed in a dynamically chang- 
ing environment. In addition, the generator must not be dependent on domain 
or problem-specific information but rather on a general knowledge base .that it 
shares with the overall system. These requirements have specific consequences 
for the design of the generator and the representation it uses. In particular, the 
text planner and the low-level linguistic component must be able to interact and 
negotiate over decisions that involve both high-level and low-level constraints. 
Also, the knowledge representation must allow for the varying perspective that an 
intelligent agent will have on the things it talks about; the generator must be able 
to appropriately vary how it describes things as the system's perspective on them 
changes. The generator described here will demonstrate how these ideas work in 
practice and develop them further. 





Chapter 1 

Generation and Intelligent Systems 

1 .  Goals and Motivations 

The principal aim of the work proposed here is to develop a natural language 
generator that is conceived of as an integral part of an intelligent system. 

That is, the task of the generator is to provide the overall system with the 
ability to use linguistic communication to serve its purposes. This contrasts with 
the more conventional view of the generator as an independent component whose 
task is to translate the information it is given into some natural language. This 
contrast can sometimes be subtle, but it leads to radical differences in the design 
of the generator and the knowledge representations that it uses. This proposal 
develops some of the consequences of the integrated intelligent system view and 
sketches out a proposed generator that embodies it. 

The contrast between the approach proposed here and the independent com- 
ponent view is not primarily over the organization of an intelligent system but 
rather over how the components of the system interact and work together in the 
course of generating utterances. The generator can still be a discrete component, 
but it must allow its work to be integrated with the rest of what the system is 
doing. In the conventional approach, the system simply hands over a request to 
the generator and then assumes that the generator will carry it out properly. The 
integrated approach, in contrast, provides for continued involvement of the overall 
system when needed. 

Designing the generator as an independent component restricts interaction 
between the system and the generator in two ways: it provides a fixed division 
of labor between the system and the generator, and it prevents the work done 
within the generator from depending on or affecting the rest of the system. If the 
generator is designed independently, it will have a fixed task (or set of tasks) that 
it can perform and a fixed interface for request from the system. In particular, 
this assumes that the generator can accomplish whatever the system wants, since 
the system would have no way to provide the generator with help (or even to 
understand what the problem was). Conversely, this approach also assumes that 
any way of carrying out the system's request is just as good, since the generator has 
no way to ask for additional information to choose between them. Furthermore, 



since the generator runs completely independently of the overall system, there can 
be no interactions between generation and other activities of the system. Language 
use will therefore be independent of the rest of the system; linguistic choice 
cannot depend on the system's current goals, beliefs, attitudes, or actions, since 
the generator has no way to find out what they are, and could not understand their 
representation even if it did have access to them.' Similarly, generation cannot be 
integrated with other actions of the system. For example, the system may be able 
to display pictures, but there is no way for the generator to coordinate its output 
with the display, since it can neither find out what is being shown nor bring about 
the display of a particular image. 

All of these restrictions are consequences of the view of the generator as an 
independent component with a narrow interface, designed to be driven by a wide 
variety of systems. This approach walls off language from the rest of the system; 
all of the planning, reasoning, and decision-making are done with representa- 
tions and mechanisms completely unconnected to the system's language-using 
components. The integrated approach proposed here, in contrast, removes these 
restrictions by closely integrating the generator with the rest of the system. The 
generator outlined here will share much of the representation and mechanisms 
used in planning, reasoning, and decision-making with the rest of the system. 
The generator's task is viewed not as expressing information in English (perhaps 
subject to some constraints), but rather as telling the system how it can use a 
particular kind of action to further its goals. 

There are a number of reasons to adopt this view. The obvious reason is the 
practical one: it leads to generators that work better. It provides solutions to var- 
ious limitations of current approaches to generation, as discussed below. Beyond 
the immediate practical advantages, however, there are theoretical advantages to 
this approach. Viewing generation as part of an intelligent system ties the devel- 
opment of a generator in with larger issues in both cognitive science and artificial 
intelligence. 

One of the long-term goals of cognitive science is to build artificial intelligent 
systems, i.e. computer systems that can act intelligently in pursuit of whatever 
purpose we give them. An intelligent system will, of course, have to be able to 
communicate in natural lang~age;~ thus an intelligent system will need to use a 
natural language generator. Furthermore, the generator will have to accommodate 

'The interface to the generator could be designed to provide this sort of information, but this 
doesn't necessarily help. The system has no way of knowing what may potentially be relevant, 
so it would have to essentially include everything it knows in the request. Not only would this 
be enormously unwieldy, but there's no way to guarantee that it would even be expressible in the 
interface formalism, since the formalism would be designed independently of the system. Even 
if this could all be made practical, the generator can't rely on the information, since the system's 
beliefs, etc. might change while the generator is working. 

21n theory, of course, one could imagine an intelligent system that can only communicate 
in some formal language. But this seems unlikely to be useful, particularly since it would put 
the burden of learning to communicate on the user, defeating one of the main purposes of an 
intelligent system. Furthermore, an intelligent system would need to use the tremendous body of 
information that already exists in natural language form. 



the needs of the overall system; the system must be able to control and monitor 
the generator so that it generates utterances that do what the system wants. The 
connections between the generator and the overall system must therefore be de- 
signed around how the system will use the generator. But designing a generator 
as an independent component leads to an interface based on the needs of the 
generator, i.e. derived from the design of the generator. There is no guarantee 
that such a generator will provide the services that an intelligent system will need. 
To ensure this, we must design the generator from the start as part of the overall 
system. 

Indeed, designing the generator this way can help with the design of the 
overall system. The construction of an intelligent system is, of course, an im- 
mensely difficult problem. Building a generator, however, can provide a window 
onto the solution of the larger problem. Studying how language is and can be 
used by intelligent agents (both people and artificial systems) indicates much of 
what the generator must be able to do. But intelligent systems must be able to 
support whatever the generator can do and however the generator can be used. 
That is, the system must provide whatever general resources the generator needs 
(e.g. world knowledge, models of the hearer's beliefs, situation models) and must 
be able to make whatever decisions and obtain whatever specific information is 
needed to use the generator. Thus the generator design can give some indica- 
tion of the knowledge representations and architecture of the overall system. In 
this way, knowledge about language can be used to help study broader issues in 
cognitive ~cience.~ In fact, there is a kind of design feedback here, since the intel- 
ligent system design deriving from (among other things) the generator design will 
undoubtedly suggest revisions to the generator design, perhaps cycling through 
numerous revisions. However this cycle can only get started if the generator is 
designed as part of an intelligent system; a generator designed as an independent 
component will neither suggest constraints on an intelligent system nor be able 
to incorporate revisions based on the design of such a system. 

Even if practical issues are the main concern, the most important applications 
for a generator will require that it be part of an intelligent system. It is often 
useful to have natural language output, of course, but that doesn't necessarily 
require a generator. Compilers, for example, have been managing for thirty years 
with canned text; unclear error messages are usually because the compiler can't 
figure out what's wrong, not because of inadequate linguistic abilities. Simple 
template-based approaches have been used successfully in expert systems and data 
bases (e.g. [Miller 83,Scott 841). In these systems, there is a fixed domain model 
encoded in the expert system or data base that can be used to drive the generation, 
and the kind of information the system needs to express can be determined in 
advance. Thus appropriate templates can be stored in the domain model; all the 
generator really has to do is smooth up the result of assembling the templates to 
make sure it's grammatical. This approach will only fail when the system is not 
limited to using a fixed model of a particular domain, i.e. when the information 

3This is not the only way that studying language contributes to cognitive science, of course. 



the system uses or the way it models it can vary in unpredictable ways. But 
this can only happen with an intelligent system, for only an intelligent system 
can deal with this unpredictability. Thus it is intelligent systems that really need 
full-fledged generators. Of course, it is possible to build a sophisticated generator 
for an unintelligent system, but such a system can't really take advantage of 
the increased flexibility the generator provides. In fact, attempts to improve 
explanations in expert systems have often required redesign of the system to make 
it more intelligent [Swartout 83,Clancey 811. Thus generators that go beyond 
simple template-filling approaches will really only be useful as part of intelligent 
systems, and should therefore be designed that way from the start. 

The linguistic knowledge that guides the generator design must include at least 
knowledge of what people do with language, i.e. of linguistic behavior. This is 
the whole point of natural language processing; to get computers to communicate 
in a way that is natural to people. It is also possible, though, to design the 
generator to mimic the organization of human language abilities (to the extent 
that they are understood). The question is whether the generator should merely 
do the same things that people do, or whether it should do them the same way. 
This correlates loosely with the distinction between cognitive modeling, which 
attempts to simulate and study human cognition via computers, and intelligent 
system design, which simply attempts to build systems that behave intelligently. 
Intelligent system design is generally concerned with how human cognition works 
only as an example of one possible design; if some particular human behavior 
is poorly understood or too complex, another design can be used. In the case 
of the generator design, however, the mechanisms of human linguistic behavior 
are relevant even if (as is the case here) cognitive modeling is not the goal. 
The problem is that the generator must be designed not just to mimic certain 
behavior, but to mimic that behavior as part of an overall system whose design is 
not fully defined. Human language production is an example not just of language 
production but of language production by an intelligent system. Thus to the extent 
that the generator is organized the same way as human linguistic apparatus, it will 
meet the goal of being (potentially) an integrated part of an intelligent system. 
The mechanisms of human language use are poorly understood, however, so the 
generator can hardly be designed to copy them precisely. Evidence from human 
behavior will simply be treated as strongly suggestive where it is available and 
its implications seem both clear and reasonable.* 

For all of these reasons, the generator design outlined here will be developed 
to be usable as a fully integrated part of an intelligent system. The details of this 
design are not always explicitly motivated by this concern. The generator's role in 
an overall system, however, is at least implicitly part of all the design decisions. It 
determines what sort of issues and evidence are relevant to the decisions. Indeed, 
it helps determine what design decisions must be made. Thus even when not 
explicitly invoked, this concep5nn of the generator as part of an overall system 
is a major design factor. 

4The generator will not, for example, attempt to generate phonetic errors or misspellings. 
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1.2 Design Criteria 

It's easy enough to say that generators should be designed as part of intelligent 
systems, of course, but it's not so easy to say what that means. After all, it's not 
as if we could simply open up a copy of a manual for intelligent system design and 
check the chapter on the generator interface. The organization and functioning 
of an intelligent system is a highly speculative subject at best. Nevertheless, we 
can get a general idea of some characteristics that such a system must have by 
considering what it will have to do. An intelligent system must be able to decide 
on a course of action that will best further its goals (even if, as is likely, those 
goals are constrained to something like "do whatever helps the user"), even when 
the decision can't be (or hasn't been) anticipated by the system's designers. This 
means it must be able to understand the effects of its actions in a general way, so 
that it can analyze how to deal with new situations. Thus the system must view 
itself as an agent, i.e. it must understand how it performs actions in the world 
(even if those actions are limited to communicating via a computer terminal or 
speech system). The system must also be able to understand a wide range of 
domains and how they interact, since these interactions may inform the effects of 
the system's actions. 

These considerations have specific consequences for the design of the gener- 
ator: 

1. The semantics and pragmatics underlying the generator's linguistic knowl- 
edge should be the same as for the system as a whole. In other words, the 
generator shouldn't have separate conceptual structures or world knowl- 
edge. If the generator is to be a resource for the overall system, then the 
system must be able to understand what the generator is doing. This re- 
quires that they have the same semantics, for otherwise the system could 
not be sure it really understood the concepts the generator was expressing. 
Indeed, it's hard to see what advantage there could possibly be to having 
separate semantics or pragmatics for the generator. This would mean either 
that the generator would disagree with the system over the meaning of the 
utterances it produces, or that one part of the system would not have access 
to knowledge about the world that the other had5 

Admittedly, some of this information is particularly connected to language. 
The knowledge that profanities have to have certain euphemisms substi- 
tuted for them in polite company, for example, seems a particularly lin- 
guistic knowledge. The Gricean principles of cooperative communication 
[Grice 751 also seem closely connected to language use. But even this sort 
of knowledge is dependent on more general knowledge. The generator's 
understanding of linguistic profanity and euphemism must be grounded in 

'Of course, if the goal is to build a generator as a portable "back end" for a wide range of 
systems, then it makes sense to give it its own semantics and pragmatics, because the systems it 
must work with may have very limited semantics and pragmatics of their own. But I am here 
concerned with general intelligent systems, which will have broad semantics and pragmatics. 



general notions of politeness, rudeness, and offense. Similarly, Grice's 
Maxim of Quantity, which states that a (cooperative) comment should in- 
clude as much information as necessary, and no more; this presupposes an 
ability to determine what information is necessary in particular situations. 
Indeed, much of what Grice says could apply to any form of communication. 
For example a traffic light displaying a green right arrow is interpreted, in 
line with the Maxim of Quantity, as meaning that turning right is allowed, 
but not going straight or turning left. The Maxim of Relation ("Be Rele- 
vant" [Grice 75, p. 461) can only be interpreted with an understanding of 
the whole range of reasoning available to intelligent  agent^.^ 

Nevertheless, there is a purely linguistic aspect to much of this knowledge. 
Which words are profanities, and which are euphemistic alternatives, seems 
to be an arbitrary fact of the language. Some of the implicatures that arise 
from Grice's maxims (the "conventional" implicatures) are tied to particular 
words; the difference between "and" and "but", for example. So there will 
be some knowledge that is local to the generator (and the interpreter). It's 
only the purely linguistic knowledge, though, that is local. Whatever general 
knowledge or reasoning the generator needs to use must be the same as that 
used by the overall system. 

2. Generation must be viewed as a kind of action, not just as a process of 
encoding information into natural language. The system invokes the gener- 
ator because it's trying to accomplish something, not just because it had an 
urge to emit some information. The system's goal may indeed be simply 
to communicate certain information, but this is generally done in order to 
accomplish some larger goal. If this were not the case, the system would 
merely be "talking to hear its own voice". 

The notion of generation as action is widely endorsed in principle. Indeed, 
speech act theory is devoted to studying how language is used to perform 
acts beyond simply transmitting information. But the focus has been on 
what sorts of effects different utterances can have, not on how speech pro- 
duction can be organized to use these effects. Furthermore, research in 
generation has made only limited use of this view. The major focus has 
been on inferring h e  user's plan from his or her query in order to figure 
out what to say, which is really a matter of viewing the user's generation as 
action, not the system's. "Text planning" is usually concerned with organiz- 
ing information into a coherent text, not with using speech acts to achieve 
goals. Even when the generation as action view has been taken seriously, 
as in KAMP [Appelt 851 and (to some extent) UCEgo [Chin 881, the con- 
cern has been on deciding what information to include, not on the actual 
generation. Once the information has been assembled, the generator simply 
turns it into English, with no concern about how the choices it makes may 

. -- 
6Grice, of course, is only concerned with communication between people; but the ideas apply 

equally well to artificial systems. 



affect the plan the system is carrying out. 

In an intelligent system, generation must be viewed as action at all levels 
of the system. The fact that it involves encoding information into language 
is actually not very important, in the same way that it's not very important 
that moving your hand involves sending electrical signals along your nerves 
and contracting various muscles. The important thing is how speech acts 
can achieve certain effects (one of which, of course, is the transmission of 
information) that the system might find useful. This means that speech is an 
action available to the system, but driven by the overall system, for which it 
is simply one option. Furthermore, speech must be a planned action down 
to the lowest levels, with goal-based choices at all levels, since all of these 
choices can alter the effects of an utterance. 

3. The system's linguistic knowledge must not be tied to a specific domain 
or task. The system's knowledge of the meaning of a particular word or 
a particular syntactic construction cannot assume that it is being used in 
any particular domain or for any particular task. Of course, many terms 
have meanings that are associated with particular domains. For example 
"magnetic flux density" is generally only discussed as part of physics. Fur- 
thermore, there may be domain-specific indexing of expressions, so that 
they can be produced more readily when the system is working in a partic- 
ular domain. But the system may need to discuss topics that cross domain 
boundaries, or that lie in domains it has never encountered before. It may 
not even know what domain, if any, the discussion is within. 

In addition, an intelligent agent must be able to cope with extensions of 
terms from one domain to another. A system that knows it can call 100°F a 
"hot" day, and a 500°F degree oven a "hot" oven, and that has appropriate 
domain knowledge about stars, should know it can call a 20,000°C star 
"hot" but not a 1000°C one. People can talk about things they've never 
experienced before, so domain-specificity of language can at best be a matter 
of efficiency or fluency. 

4. Generation (like all activities of an intelligent agent) is a real-time activity 
carried out in a dynamic environment. The system must be aware of other 
things happening in the world that may affect what it wants to say and of 
the consequences of how long it's taking to say it. At its crudest, this means 
that the system should stop talking if the user leaves; similarly, the system 
shouldn't spend five minutes coming up with an eloquent way to tell the 
user his train leaves in thirty seconds. More generally, an intelligent agent 
can't assume that the things it is talking about are static; it must be prepared 
to revise what it's in the middle of saying if what it's talking about changes. 
The train that leaves in thirty seconds may suddenly be delayed for some 
reason; the system shouldn't continue on blithely advising the user to rush to 
the platform. Furthermore, the amount of time the system takes to generate 
utterances can itself have consequences; "don't do that" uttered rapidly is a 



warning of danger, whereas uttered slowly it's just advice. Thus the system 
must be able to adjust to the consequences of its speed. At the very least, 
it must have a sense of how long it can go without saying anything without 
undesirable conseq~ences.~ 

Generating in a dynamic environment thus requires being sensitive to how 
the environment can change and to how pressure to generate something 
builds up with time. The changing environment means that the generator 
must be able to patch plans as they are running, and the time pressure 
means that it must be able to start uttering before it has finished planning the 
utterance. Thus the generator must be dynamic in two ways: it must be able 
to alter the goals it is planning for in the middle of planning, and it must be 
able to produce possible (although not necessarily optimal) utterances before 
it is done planning the entire utterance. It can't simply start from scratch 
when changes in the environment cause revisions to its goals, because it 
may never finish constructing an utterance before the environment changes. 
Similarly, the utterance cannot emerge all at once, fully formed, because it 
could take arbitrarily long to form it, and the generator may be operating 
under time pressure. 

Combining these criteria yields a novel characterization of the generator. The 
generator cannot simply apply a set of concept-to-language mappings, perhaps 
augmented by some structuring algorithms and by special-purpose domain and/or 
user models. Instead, the generator must solve the problem of how to use lan- 
guage, in combination with the system's other abilities, to achieve goals, drawing 
on a body of general knowledge that is shared with the rest of the system and that 
spans multiple  domain^.^ Instead of being an "encoder" that takes some input, 
works to produce a corresponding linguistic output, and then stops; the generator 
must be able to run constantly as both its input and the environment in which it 
runs change, and it must be able to produce output without having completed all 
of its work. This is how a generator must work if it is to be fully integrated into 
an intelligent system. 

Existing generators, of course, are (explicitly or implicitly) designed as in- 
dependent components, and thus do not fit in with this characterization. In fact, 
existing generators by and large do not meet any of the criteria outlined here: 

1. Generators usually don't have any semantics or pragmatics, just a lexicon 
and a grammar. Their main concern is the mapping from concepts to lan- 
guage and the well-formedness of the utterances they produce. They rarely 
do any reasoning about what to say in order to achieve particular goals, so 
they don't really need any semantics or pragmatics. Even generators that 

7This depends on various aspects of the social and discourse situation and the task the system 
is performing; the PAULINE generator [Hovy 871 investigates some of these factors. 

'~uilding such a knowledge base is, of course, a very difficult problem. But it will be 
a necessary step in building an intelligent system anyway, so allowing the generator to use it 
doesn't make the task any harder. 



do reason about what to say generally use a private knowledge base to sup- 
port that rea~oning.~ TEXT, for example, selects and organizes information 
using a special-purpose domain model designed specifically for it, not the 
actual database it is supposedly talking about. This is not surprising, since 
very few (if any) systems have an adequate knowledge base for generation. 
Even when generators do look directly at the driving system's knowledge 
base, it is usually just to look up "translations" of concepts; the knowledge 
base is not actually used in any of the generator's reasoning about what to 
say or how to say it [Sondheirner 86,McDonald 791. 

2. As already discussed, the only real attempt to take the notion of generation 
as action seriously is Appelt's work on KAMP. And even KAMP is mainly 
concerned with selecting information for inclusion. In fact, most of its 
effort is devoted to making sure that the utterance doesn't refer to concepts 
the hearer doesn't understand. It has no general notion of the effects of 
utterances; thus KAMP could not handle a goal of "make the user happy" 
or "reassure the user", and it must assume that the user will always attempt 
to carry out any requests that KAMP makes. The UCEgo system also plans 
what to say based its own goals; however it also doesn't really have any 
model of the effects of speech acts. In fact, UCEgo leaves much of the 
work of generation, including some of the decisions about what information 
to express, to an ad-hoc generator built specifically for this purpose. 

3. Most work on generation has been limited to a specific domain. Systems 
that have been applied to multiple domains have usually required com- 
pletely redoing the linguistic knowledge to port the system. In fact, porting 
MUMBLE to TEXT [Rubinoff 861 required changing not just the lexicon 
but almost all of the grammar! Of course, there are generators that can 
work in various domains, e.g. PennmanINIGEL [Mann 83,Sondheimer 861. 
But the information for one domain will conflict with or disrupt the infor- 
mation for other domains, so the generator can't really be used as part of a 
general-purpose system. 

4. Virtually all work on generation assumes implicitly that the generator can 
simply take as long as it needs (although there has been much concern about 
speeding up the generator). One exception is the incremental generation 
work of DeSmedt and Kempen [Smedt 871. Their work, however, is more 
concerned with modeling human behavior than building a useful generator, 
and they are concerned only with the design of the tactical level of the 
generator (their "lexico-syntactic" module). They do not investigate how or 
when incremental generation might be useful; their work implicitly assumes 
that each component in the generator sends off its output as soon as it is 
ready. Thus the generator isn't really responding to a dynamic environment; 

'Some recent work on text planning involving Rhetorical Structure Theory does do some 
reasoning that uses domain knowledge [Hovy 88bI. The knowledge is encoded in a very domain- 
dependent fashion, though, and is only used to support high-level structuring of the text. 



it's just that the low-level components can get ahead of the high-level ones 
and produce output before they have all the relevant input. PAULINE 
[Hovy 88a] can determine and respond to time pressure, but only in an 
abstract sense. It can't respond to the actual time passing, only to the 
simulated time it is reasoning about. 

1.3 Meeting the Criteria 

The rest of this proposal outlines a design that aims to meet these criteria. While 
it won't fully satisfy all of them, it is a step towards a fully intelligent generator. 

Chapter 2 discusses the architecture of the generator. Here the primary criteria 
are the need to view generation as action and as a dynamic, real-time activity. The 
former criterion will prove to require a mechanism for feedback from the "realiza- 
tion" component to the "planning" component in order for low-level decisions to 
be sensitive to the goals driving the generator. The latter criterion will necessitate 
an additional component (the "utterer") that can respond to time pressure. 

Chapter 3 discusses the representations used by the generator. Here the pri- 
mary criteria are the need for the world knowledge used by the generator to be 
shared with the overall system and to be independent of any pdcular  domain 
or task. This amounts to requiring the representation to be suitable for the full 
range of reasoning, planning, and learning that an intelligent agent is capable of. 
Satisfying this requirement would be far beyond the scope of the current work, 
so the focus will be narrowed to building a representation that allows the gen- 
erator to work within or across a variety of domains. The crucial feature of the 
representation will be a notion of perspective that allows the generator to focus 
on some information and ignore other information and to rearrange its knowledge 
when it shifts domains. 

Chapter 4 describes the additional work that will be done to refine and imple- 
ment the proposed generator and lays out some criteria for evaluating the work. 



Chapter 2 

Architecture 

Designing the generator as part of an intelligent agent will obviously have con- 
sequences for the interface between the generator and the rest of the system. In 
particular, since the generator's task is to use language to further the aims of the 
overall system, the generator's input must consist of goals the generator must 
satisfy, not just information to be structured and encoded in language, and the 
generator must be able to let the system know how well it has accomplished 
those goals. It might seem, though, that the internal structure of the generator 
needn't be affected by this view, since it isn't visible to the overall system. Any 
architecture that can support the necessary behavior will do. 

Strictly speaking this is true; the generator's role within the overall system 
doesn't directly determine anything about its internal structure. In practical terms, 
though, the requirements this role places on the generator do place significant 
constraints on its architecture. The architecture of the generator (or indeed of any 
computational system) determines what kinds of decisions it will (or can) make, 
which decisions will depend on which other decisions, and what information it can 
use to make those decisions. The architecture must reflect the kinds of decisions 
the overall intelligent system needs it to make and the kinds of information the 
system considers relevant to those decisions. Thus the design criteria laid out in 
Section 1.2 imply specific characteristics for the generator's architecture: 

Requiring the generator to use the same semantics and pragmatics as the 
whole system is of course already an architectural constraint. Since the 
generator proposed here won't actually be embedded in a complete system, 
this constraint isn't directly relevant. It does imply, though, that within the 
generator, the different components must share a common body of world 
knowledge. Also, the input to the generator must be expressed using the 
same knowledge representation that the generator uses internally. 

This doesn't mean that the generator can't have any specialized knowledge 
or representation schemes. Information which is specifically linguistic, such 
as the syntactic knowledge of the system, can be specific to the generator or 
even to particular components of the generator.' This kind of information, 

'Presumably, at least some of this information should be shared with the language interpreter. 



though, is by its very nature not directly accessible to the rest of the system. 
What isn't permissible is a specialized representation of (some or all of) the 
conceptual and factual knowledge available to the entire system. 

If generation is a kind of action directed towards one or more goals, then 
decisions at all levels must be made in light of how they affect those goals. 
It's not enough to just pick out some relevant information and find any co- 
herent, grammatical, and comprehensible way to express it. The generator's 
job isn't just to express information, or even to find the appropriate infor- 
mation and express it. The generator's job is to use language to achieve 
the system's goals. Therefore decisions about any aspect of an utterance 
must potentially be sensitive to how well the result furthers those goals. A 
factor such as grammaticality or coherence can never be the sole constraint 
guiding the work of the generator. 

Since generation is a real-time activity, the generator must be capable of 
working incrementally. That is, it must be able to start producing output 
before it has constructed a complete utterance or set of utterances that 
achieve its input goal. The generator can't always take as long as it needs 
to construct an utterance; it always operates under some amount of time 
pressure. While the generator is working, the world can change in ways 
that invalidate its work, or perhaps even alter its goals. Furthermore, the 
amount of time it takes the generator to start uttering can itself affect the 
system's interactions with the user. So the generator must be able to produce 
parts of unfinished utterances when further delay would cause problems. 

As we shall see, (most of) the architectures used in work on generation do not 
fit this description. In fact, the architectural limitations tend to cause problems 
even for generators intended simply as tools for encoding information into lan- 
guage, because language inevitably reflects the way it is used by people. Some 
attempts have been made to devise architectures that can overcome these problems, 
but none of them really satisfy the requirements of a generator for an intelligent 
system. 

The Standard Model of Generation 

Most generators use an architecture roughly like the one in Figure 2.1. An 
information component collects all the appropriate information to be expressed, 
usually in response to a request by the user, using some simple criterion of rele- 
vance to the request. This information is then passed on to a strategic component, 
which arranges it into a coherent ordered list of messages using some model of 
discourse structure. Finally, the ordered messages are sent off to a tactical com- 
ponent that turns each message into an appropriate sentence in English (or some 
other natural language). 





There are some common variations; the strategic component is often com- 
bined with one of the other components, or the information component is simply 
left out of the generator, its work done by some other system before the gener- 
ator is invoked. The components are also sometimes given different names: the 
"strategic" and "tactical" components were cal.led that in some older work (e.g. 
[McKeown 85,Thompson 77,Danlos 8712, but are also called "planning" and "re- 
alization" (e.g. [McDonald 83,Hovy 88al) or simply the "what to say" vs. "how 
to say it" (e.g. [Reithinger 90,Danlos 871). The precise allocation of work to 
the various components can also vary; the strategiclplanning component, for ex- 
ample, can produce "ordered messages" that are very close to language, leaving 
the tacticalhalization component with little to do, or "messages" that are simply 
pieces of the information in an appropriate order, forcing the tacticaVrealization 
component to do a lot more work. Some version of the standard model, though, 
continues to underly much of the work in generation. For example, DIOGENES 
[Nirenburg 881, EPICURE [Dale 891, SPOKESMAN [Meteer 891, Sibun's work 
on local organization of text [Sibun 901 and COMET [?I all follow the standard 
model. McDonald has even argued for extending the model to a large number of 
components [McDonald 881. 

No version of the standard model, though, has the architectural characteristics 
needed by a generator that is part of an intelligent system. This kind of generator 
must be incremental, use a single shared knowledge base, and be able to consider 
how decisions at all levels affect the achievement of its goals. The standard 
model does allow for incremental generation, but only in a limited sense: the 
low-level component can put out parts of utterances as it finishes them. There is 
no way, though, to make this incrementality sensitive to the current time pressure, 
so that the generator can spend more or less time constructing utterances when it 
has more or less time avaiIable. Similarly, although there is no a priori reason 
the components can't share a body of world knowledge, in practice the complete 
independence of the components leads to separate knowledge bases, even when the 
information they contain overlaps. Furthermore, since the generator is independent 
of whatever system it is generating for, the generator's knowledge base(s) end up 
being separate from the driving system's. More fundamentally, the standard model 
doesn't allow the generator's goals to be considered in making decisions at lower 
levels, since only the highest-level component can see those goals. The goals 
can only influence lower-level decisions in ways that the highest-level component 
can anticipate. Since the high-level component can't know what the low-level 
component(s) will do, this influence is very limited. 

The basic flaw of the standard model arises from its basic characteristic: in- 
formation flows in one direction, from the high-level component to the low-level 
one. This means that each component must operate independently, without ac- 
cess to the decisions and decision criteria of the other components. The low-level 
component(s), of course, can see the output of the higher-level component(s), but 

2Although Danlos uses "syntactic" rather than "tactical", and her use of "strategic" is following 
McKeown; see the note on [Danlos 87, p. 1221. 



that can include only the information the higher-level component(s) can anticipate 
a need for. Even in a generator that is not intended to be part of an intelligent 
system, this restriction is problematic; this kind of architecture will work only 
under two assumptions: the output of the high-level component is always fully 
specified for the low-level component's needs, and the low-level component can 
successfully process anything the higher-level component sends it. That is, the 
low-level component is never either unable to decide between options on the basis 
of its input or unable to find any acceptable choices; it can always find a unique 
best ~ h o i c e . ~  As we shall see, this is not the case with generation; the "tactical" 
component cannot always produce a single best way of expressing a particular 
piece of information. Decisions at every level must be sensitive to the high-level 
goals driving the generator, so the goals cannot be encapsulated in a high-level 
component; there must be a way to detect and handle decisions that seem appro- 
priate by low-level criteria but conflict with goals. The lack of this sensitivity 
to interactions between low-level and high-level factors is the real problem; even 
modifications to the architecture that eliminate some of the practical difficulties 
don't eliminate this fundamental limitation. 

2.1.1 Linguistic Limitations of the Standard Model 

(1) a. John killed him with a gun. 
b. John shot him dead. 

(2) a. John infected him with a virus. 
b. **John virused him sick.(?) 

(3) a. **John homed him with an order.(?) 
b. John ordered him home. 

The standard model of generation assumes that the low-level component's 
decisions never matter to the high-level component. This is not the case, though, 
as can be seen from the alternation in (1). The sentences (1)a and (1)b express 
essentially the same information, so if the generator is attempting to express 
this information, it must choose between them at some point. In the standard 
model, though, there's no point at which the decision can be made.4 It can't 

30ne way to relax these assumptions would be to leave the output of the high-level component 
sufficiently underspecified that the low-level component always has at least one option and to pick 
one option at random when there is no other way to choose. This approach assumes that these 
"random" low-level decisions don't matter, which is not the case for linguistic decisions. Some 
generators do in fact deal with multiple valid options by choosing at random (or taking the first 
in an arbitrary order). They can do this without causing problems because the criteria that should 
affect the choice are beyond the sophistication of the generator, the necessary information doesn't 
exist anywhere in the generator. 

4This depends, of course, on precisely where the division between high-level and low-level 
is made, and on whether there are two or more than two components. The discussion here 
assumes only that the component concerned with ensuring that the generated utterance achieves 
the generator's goals is different than the one that knows the specific details of the language 
being generated. If this is not me, then it's hard to see how there is any meaningful division 
into components at all, since there would be one component handling the entire range of the 



be in the high-level component, because the availability of the choice depends 
on the particular linguistic resources available in English. This can be seen by 
comparison with (2) and (3), in which only one alternative is available. In fact, 
a different alternative is available in each case. Since the high-level component 
doesn't know which alternative(s) islare available, it can't choose between them; 
the low-level component must make the choice. 

On the other hand, the decision has to be made by the high-level component, 
since it can depend on and affect the goals the generator is trying to achieve. The 
choice between (1)a and (1)b should depend (in part) on what the generator is 
primarily trying to talk about. (1)a is more appropriate if the generator is going 
to continue talking about the gun, whereas (1)b is more appropriate if the main 
concern is the ramifications of the victim's death. Since the high-level component 
is the one that deals with this information, it must choose between the alternatives. 
Also, the choice between (1)a and (1)b determines what information can be easily 
omitted, cutting off the end of the sentence leaves out mention of the use of a 
gun in (1)a and the death of the victim in (1)b. Since the high-level component 
knows the consequences of omitting information, it must make the choice of which 
alternative to use and whether to abbreviate it. It might seem that the high-level 
component could simply indicate exactly what information it wants included in 
the utterance. But why should the generator always assume a strategy of saying as 
little as possible? Furthermore, decisions about what information to include may 
interact with other decisions. For example, the generator may want to emphasize 
the victim's death but not care about the means of death; it might then choose 
(1)b for the emphasis even though (1)a would let it skip mention of the gun. This 
kind of decision-making can only be done by the high-level component. 

The decis:..rns in (I), (2), and (3) involve lexical choice and dividing up 
information between different element of the sentence. So it might seem that this 
is where the problem really lies, that there could still be some way to organize 
the components of the standard model generator to deal with these decisions. The 
same problem occurs, though, in (4), (5), (6), where the choice is purely syntactic; 
the same lexical items are used in each alternative: 

(4) a. I shut the box with a nail. 
b. I nailed the box shut. 

(5) a. I covered the box with a tarpaulin. 
b. **I tarpaulined the box covered.(?) 

(6) a. **I evened the edge with a trim(?) 
b. I trimmed the edge even. 

As before, we can see from (5) and (6) that the available alternative(s) depend 
on the particular resources of English. Hence the choice must be made by the 
low-level component. Yet the choice also depends on and affects the concerns of 
the high-level component. The first alternative (when available) lets the generator 
leave out the instrument or means of the action; the second alternative allows 

generator's tasks. 



omission of the r e ~ u l t . ~  Thus the dilemma is repeated here: the decision between 
(4)a and (4)b can't be assigned to any single component. Yet the standard model 
of generation provides no way for the task of making that decision to be shared 
between the two components. 

This problem recurs when we try to see where to handle lexical choice. It 
seems that lexical choice has to be handled by the high-level component, since it 
depends very much on what the generator is trying to accomplish. For example, 
the choice of describing someone as either "firm", "obstinate", or "stubborn" 
should depend on what else the generator wants to say about him, as should 
the choice between "meek" and "wimpy". Or the generator might describe how 
justice was served by an "execution" rather than how the prisoner was "murdered" 
by the state. Similarly, the generator might deride the comments of a "dreamer", 
but praise the insights of a "visionary". These kinds of lexical choices can only 
be made by the component that handles the generator's goals. 

On the other hand, there are a number of reasons why lexical choice has to 
be handled by the low-level component: 

1. Lexical choice is very dependent on the particular linguistic vocabulary 
of the language being generated. Thus French, for example, distinguishes 
"connaitre" (for knowing people) and "savoir" (for knowing information), 
but English just uses "know" for both. Or, in English, there is a word 
"giant" meaning "large man", but no corresponding word meaning "large 
car". 

2. There is no guarantee, in general, that there will be any lexical item to 
express a given concept. For example, there is no word in English for the 
concept of a car with a removable door. There's no inherent reason why 
there couldn't be; after all, there's a word for a car with a removable roof. 
This is just a particular fact about English. 

3. Since lexical choice interacts with syntactic decisions, it cannot be done in 
advance of choosing syntactic structures. For example, a generator cannot 
decide to use "probable" instead of "likely" without knowing if the com- 
pleted utterance could be the ungrammatical "he is probable to be early". 
Similarly, the verb "drink" can't be chosen without knowing whether the 
clause will have a direct object; "he drinks apple juice" and "he drinks" 
actually have quite different meanings. 

So here too it is impossible to assign the decision to a single component; the 
decision must be made by both components. The standard model provides no 
way to do this. 

The problem is not merely that allowing the high-level component to make 
the decision could leave the low-level component with no available choices. That 
problem can be handled by some simple modifications of the standard model (as 

5There are probably also pragmatic differences between (4)a and (4)b that the generator should 
care about, but they are too subtle to easily identify, so I won't discuss the question here. 



discussed in Section 2.1.4). The real problem is that both components must be 
aware of and approve the decision; this requires eliminating the one-way flow of 
information that is the central feature of the standard model. 

2.1.2 Self-Corrections and the Standard Model 

Examining the mechanisms of human language production can be helpful in the 
design of a generator even though the goal here is not specifically to replicate 
those mechanisms. In general, whatever we can learn about those mechanisms 
suggests possible ways to organize the generator. Furthermore, human production 
provides an instance of mechanisms that clearly do work. Thus in particular, 
if human language production is organized according to the standard model of 
generation, then that model must be a viable one. On the other hand, if observed 
human behavior isn't in accordance with the standard model, then it suggests 
ways that the model should be modified. 

The inadequacy of the standard model for describing human language pro- 
duction can be seen in examples of self-corrections, i.e. cases where the speaker 
interrupts himherself and restarts some portion of the utterance. Consider the 
following examples (taken from [Kroch 8 11): 

(7) "used to have a sss- a match stick, a wooden match stick" 
(8) "but aaa, bands like am- ma- am- em- like groups - groups, not 

bands, groups, you know what I mean like aaa." 
(9) "oh, but it's aaa- it's am- is it a doctor or is it midwife." 

In each of these utterances, the low-level component runs into a problem that 
can only be solved by the high-level component. In (7), the speaker decides to 
describe the object with just a noun, but then isn't able to find an adequate one. So 
he decides to add a modifier to the noun, but again is unable to find an adequate 
one and must add a second modifier. In (8), the speaker discovers two words, each 
of which comes close to the intended meaning, and has difficulty deciding which 
is the most suitable. It is the existence of this near synonym pair in English that 
allows this indecision; if only one of the words were available in the speaker's 
vocabulary, then there would be no decision to make. In (9), we see a case where 
the speaker didn't feel a need to determine the precise role of the person being 
mentioned until a gap in the available vocabulary forced it. Had there been a 
(common) English word available meaning "generic medical service person" or 
the like, then the speaker could have used it and never considered whether the 
person was a doctor or a midwife. In all three of these examples, the speaker 
has decided what to say and organized the information without any trouble. The 
difficulty only arises when the speaker tries to find particular linguistic elements 
to include in the utterance that there is a problem. Thus the low-level component 
has been given a request it can't fulfill without further help from the high-level 
component. 



These examples all involve lexical choice. The same kind of alteration occurs 
with structural  decision^:^ 

(10) "I mean it was generally - you generally shied away from him" 
(1 1) "and I really enjoyed the full spectrum I - of my training there" 
(12) "I used to - there was a black guy that I was really good friends with" 

In (lo), the speaker switches from an impersonal passive construction to an active 
construction using the generic "you", possibly because the first attempt was be- 
coming awkward. In (1 I), the original version was replaced with a structure that 
focuses more attention on the training and less on the speaker. In (12), the clause 
structure is rearranged to allow the euphemism "really good friends" to replace 
the original statment the the speaker dated a black man (which is indicated by the 
surrounding context). The precise difference in effect between alternatives, (and 
hence the reason for choosing one over the other) depends on the details of the 
pragmatics of English and is not important here. The relevant point is that the 
speaker is choosing between different ways of expressing the same infomation. 

Self-correction, of course, is a kind of breakdown in the generation process; the 
speaker "decides" that the utterance so far is not right and alters it. This raises two 
questions: how is the breakdown detected, and how is corrective action taken; that 
is, where in the generation process is it decided that the current utterance should be 
changed, and how is the change made? Broadly speaking, there are two possible 
answers to the first question. A separate "monitoring" process might examine 
the utterance as it's being said; when it detects something it doesn't like it could 
stop the generator and modify the input the generator is working on to avoid the 
problem. Alternatively, the generator itself might be organized in such a way that 
it can change its decisions even after it has (partially) produced output affected 
by those decisions. The examples here seem to indicate that both alternatives 
are true. In (7), (8), and (12), for example, the speaker seems to decide that the 
utterance is not acceptable as it is, either because it doesn't adequately describe 
the object or because it involves a statement the speaker is uncomfortable with (in 
this situation). These both seem like the result of monitoring, i.e. interpreting the 
utterance and evaluating its effect. In other examples, the decision to change the 
utterance seems to come from within the generation process. In (10) and (1 I), the 
generator is continuing an utterance that has already been partially expressed when 
it decides to use a different construction, because the current one is either awkward 
or has the wrong pragmatic consequences. In (9), the speaker is simply unable to 
find an appropriate lexical item to finish the NP he has begun; thus the generation 
process is interrupted to try to deal with the problem. Thus there are several 
examples of self-correction triggered by the generator itself, in addition to the 

'This sort of example is harder to find and to interpret than lexical examples, because it's 
usually very difficult to tell how the rejected alternative would have continued. For lexical 
examples, it is usually simple to determine the rejected word, since part or all of it is actually 
spoken. Nevertheless, it is possible to find a few examples or structural alteration where it's clear 
what is going on. 



examples which seem to be the result of independent monitoring of the utterance.' 
Indeed, self-correction seems to be triggerable by several of the components within 
the generator. In (lo), the decision is a purely low-level one: the construction is 
becoming awkward. In (1 I), the problem is detected at the interface between the 
components; the original version encodes the right information, but the alternate 
version has pragmatics that better fit in with the overall discourse structure. It's 
difficult to tell exactly what's going on in (9), but there seem to be two breakdowns 
(note that the speaker self-corrects twice, although this is very common and thus 
may not be significant here): first the low-level component is unable to find an 
appropriate lexical item, and then the high-level component is unable to further 
specify the concept. 

The really important issue, though, is how the correction gets done, i.e. which 
component(s) are involved, how does information flow between them, and which 
one controls the process. One possibility, of course, is that the entire utterance is 
abandoned and the speaker simply starts the generation process over again. This 
does seem to happen sometimes, but it's not very interesting. It certainly doesn't 
explain examples where only a small part of an utterance is corrected; and it 
also doesn't explain why the speaker doesn't simply generate the same utterance 
over again, complete with the same self-correction, ad infinitum (or until he gives 
up entirely). So presumably at least some cases of self-correction involve some 
part of the generation process reconsidering a previous decision and proposing an 
alternative. In the standard model, since each component works independently, 
only one component can be involved in this reconsideration process. Of course, 
the results of the reconsideration can be passed on to lower-level components, but 
they then simply respond to this new input; they can't affect the reconsideration it- 
self. The examples here, though, show self-corrections which involve a combined 
response by both high-level and low-level components. These are not simply low- 
level mistakes (e.g. phonetic or grammatical errors) or high-level mistakes (e.g. 
mentioning the wrong object, or giving information in the wrong order). The 
examples here involve low-level decisions that cause problems for the high-level 
component; thus the high-level component must reconsider its decisions on the 
basis of what the low-level component's options are. This is only possible if the 
low-level component can pass back to the high-level component a description of 
what it's done and what the problem is. For example, in (7) the low-level com- 
ponent needs to tell the high-level component that it left out information so the 
high-level component can decide what else needs to be added. Similarly, in (8) 
the low-level component has to "pass up" the need for information to distinguish 
between "group" and "band". This kind of "backward" information flow from 
lower to higher components is precisely what the standard model of generation 
forbids. 

7 ~ e r e  are also many apparent seli-zorrections where the speaker abandons the entire utterance 
and goes on to say something entirely different. These examples are presumably independent of 
the entire generation process, just as, say, an analysis of human vision need not account for 
situations where people turn around and look at something entirely different from what they had 
previously been looking at. 



2.1.3 Limitations in Existing Systems 

The division of the generator into separate components is intended to simplify the 
overall design. Each component can work on a particular part of the problem; no 
component ever has to deal yith the full complexity of generation. If the generator 
is inappropriately organized, though, this division will tend to break down, because 
the components will have to make decisions without all the necessary information. 
The standard model of generation provides no way to make decisions that involve 
both low-level and high-level issues. The effects of this limitation can be seen 
in existing systems, which have had to violate their intended organization when 
faced with such decisions. 

The TEXT system, for example, the strategic component is supposed to make 
"all decisions about what to include in the text" [McKeown 85, p. 51; the tac- 
tical component merely "uses a grammar to translate the message into English" 
[McKeown 85, p. 51. Yet some decisions about what information to include are in 
fact encoded into the tactical component. The attribute value "WATER" is used 
in TEXT to indicate that some object travels in or under the water. When included 
in a message in a context where it is appropriate to translate it as an adjective, it 
is simply omitted. This is because the only available adjective is the somewhat 
awkward "water-going", and it turns out that the cases where "WATER" appears 
in an adjective context don't include any where it's important to say it. Thus this 
strategic decision (that "WATER" can be omitted) is encoded permanently into 
the tactical component; there is no way for the strategic component to control this 
decision. 

In MUMBLE McDonald 831, in contrast, the interactions have pushed low- 
level information into the text planner. For example, MUMBLE can take the 
already constructed phrase "Fluffy, Floyd's dog, buries bones" and modify it with 
the information that this was reported by Helga to produce "Helga reported that 
Fluffy, Floyd's dog, buries bones". But in order to do this, it has to mark the 
information about Helga with the "new-main-clause" feature. So the planner 
has to know what clauses are, know that the earlier information was turned into 
a clause, and know that making "Helga reports" a new main clause is a useful 
thing to do. Many of the low-level decisions are thus actually being made by the 
planner. 

The limitations of the standard model have not only affected the design of the 
generator, but in at least one case they have even affected the the design of the 
formalism the generator uses. TEXT has two different forms of propositions that 
describe subclasses of an object type. One of them is used when there is only one 
set of subclasses; a second form, which includes less detail, is used when there is 
more than one independent set of subclasses "in order to avoid putting too much 
information into a single sentence."[McKeown 85, p. 2331 Of course, this only 
makes sense under the assumption that every instance of this type of proposition 
will be expressed as a single sentence; there isn't even a way for the strategic 
component to sometimes defer the decision to the tactical component. Doing this 
properly would require the tactical component telling the strategic component how 



it had realized the proposition so the strategic component could detect sentences 
with too much information. The standard model provides no way to do this, 
though. 

2.1.4 Variations on the Standard Model 

There have been some attempts to modify the standard model of generation in 
order to alleviate some of its limitations. These modified architectures have indeed 
overcome some of the symptoms of the problem, but none of them have addressed 
the heart of the problem: the inability of high-level components to monitor and 
react to the actions of low-level comp~nents .~  

2.1.4.1 Interleaving of components: MUMBLE and TELEGRAM 

One variation involves interleaving the work of the components. The high-level 
component passes partial results on to the low-level component; when the low- 
level component encounters an unspecified part of its input, it sends it back to 
the high-level component to be fleshed out. For example, MUMBLE allows 
interleaving of planning and realization [McDonald 8319 and TELEGRAM allows 
interleaving of the planner and the grammar [Appelt 831. 

This technique does allow the surrounding linguistic context to have some 
effect on the choice of what to say (and when to say it). It is limited, though, 
to situations where there are pieces obviously missing from the high-level com- 
ponent's output. It doesn't handle cases where the low-level component needs a 
better description of a piece of its input, or where it can't find any appropriate 
options, or where it comes up with an option that seems appropriate but causes 
other problems for the high-level component. 

2.1.4.2 Backtracking on failure: KAMP and Kalipsos 

A few generators deal with deadlock in the low-level component by simply back- 
tracking and reconsidering previous decisions when confronted with a decision 
with no acceptable choice. KAMP, for example, has a hierarchical planner in 
which failure to find a low-level plan causes a backup to redo higher-level plan- 
ning [Appelt 851; in a generator built for the Kalipsos system, the syntactic com- 
ponent backtracks to the linguistic component when it can't find a grammatical 
way of expressing its input [Nogier 89].1° This approach guarantees that if there 
is a way to accomplish the generator's aims, it will be found; the generator will 
never get stuck and give up. 

On the other hand, this approach only helps in cases where the low-level 
component has no options. It doesn't help when the low-level component has 

"The one exception is discussed in Section 2.1.4.5. 
'It's not clear, though, whether this facility was ever actually used. 

''In theory, the Am-based strategic component in TEXT could backtrack if it got stuck, but 
in practice the use of a limited lookahead eliminated any need for backtracking. 



multiple options it can't choose between, or when an option that seems fine to 
the low-level component is unacceptable for higher-level reasons. Even in the 
cases where it does help, it's only recourse is to back up the entire generator a 
bit and try a different option. Yet the low-level component might only need a 
slight change in its input to.proceed. There is simply no way for the components 
to work together to correct the problem. 

2.1.4.3 Enlarging scope of strategic component (Danlos) 

Laurence Danlos has argued for an enlarged strategic component that makes deci- 
sions regarding order of information, syntactic structure, and lexical choice.ll Her 
argument is based on the interdependence of all of these decisions; since none of 
them can be given priority over the other, they must all be decided together. It's 
certainly true that these decisions are all interdependent, but that doesn't mean 
that they must all be made at the same time. The interdependencies could also 
be handled by backtracking when a desired option is ruled out by a previous 
decision; the architecture proposed below provides another way to handle them. 

Nevertheless, Danlos's approach is a legitimate way to cope with interdepen- 
dencies between different kinds of decisions. Combining several different kinds 
of decisions, though, makes the decision process very complicated. In order to 
be able to handle this complicated process, Danlos has to lay out all the possi- 
ble decisions in advance and indicate which combinations are acceptable. The 
net result is that the decisions are all made either by arbitrary domain-specific 
decision trees (lexical choice) or by checking a list of possible combinations 
of decisions and picking any acceptable one (ordering information and syntactic 
choice). Choosing words by an arbitrary and domain-specific procedure is not 
acceptable for a general-purpose generator; the system must know, for example, 
that the same word "high" is being used in "her temperature was very high" and 
"the plane was flying high". Listing and rating all possible combinations of deci- 
sions becomes increasingly difficult as the range and flexibility of the generator 
increases. If the generator were also to decide what information to include, it 
would become prohibitively difficult. Also, there is no way to choose between 
the acceptable options; any acceptable option is as good as any other, even though 
there might be differences that matter. So Danlos's approach limits the flexibility 
of the generator. 

2.1.4.4 Interrogation by Low-Level Component: Penman and POPEL 

Some generators allow the low-level component to ask the high-level component 
for further information. In Penman, for example, the grammar (NIGEL) can use 
its "choosers" to get additional information from the planner when it has to make 
decisions [Mann 83,Sondheimer 861. In POPEL the "how to say it" component 

llNote that she assumes explicitly that the generator is given a complete specification of the 
information to go in the message, so she is still using the standard model for part of her generator. 



(POPEL-HOW) can ask the "what to say" component (POPEL-WHAT) for ad- 
ditional information if it finds its input underspecified [Reithinger 901. It might 
seem that this kind of backward interrogation fundamentally repudiates the stan- 
dard model. The high-level component is free to incorporate whatever high-level 
issues it wants into its response to the interrogation; it can even remember what 
it was asked and let that affect its subsequent decisions. The problem, though, is 
that the high-level component has no way to tell why it is being queried or how 
its response will be used. Since the query is triggered by low-level concerns, the 
high-level component cannot understand the relevance of the query and response 
without understanding the details of what the low-level component is doing. For 
example, suppose NIGEL queries whether some expression is a process in order 
to decide what tense to use in a sentence. The planner doesn't know anything 
about tense, so it can't understand why it's being queried. The planner also can't 
assume that the resulting sentence indicates that (the referent of) the expression 
is (or isn't) a process, since it has no way to tell what, if anything, NIGEL has 
done with the response. The interrogation remains entirely under the control of 
the low-level component, and the high-level component has no way to use the 
queries to adjust its own work. 

2.1.4.5 Restrictive Planning: PAULINE 

Hovy's PAULINE generator [Hovy 88a,Hovy 88c] is perhaps the closest in spirit 
to the current work. PAULINE is intended to capture how generation can be 
affected by pragmatic issues such as the knowledge, opinions, emotional state, 
and goals of the participants in a conversation and by their relationship and the 
physical and social setting of the conversation. These kinds of issues, of course, 
only make sense in terms of an intelligent system; an unintelligent database can't 
have opinions or an emotional state and can't have a relationship with a person. 
It's not surprising, then, that the demands of the task forced PAULINE to use an 
architecture that differs significantly from the standard model. 

PAULINE does in fact allow information to flow back from low-level to 
high-level components by means of what Hovy calls "restrictive planning". In 
restrictive planning, the planner doesn't build up a detailed plan and send it off 
to an execution or realization component to be carried out. Instead, the low-level 
component presents several options to the planner, which simply chooses the one 
that is best for its purposes. This kind of combined operation allows the planner 
to be sensitive to low-level issues without requiring it to understand all the factors 
that might be relevant. Thus restrictive planning appears to solve the problems 
of the standard model. 

This appearance is illusory, though. Restrictive planning is primarily intended 
to avoid spending a lot of effort on top-down planning in situations where it's not 
very useful. If the realizer only has a few options available for some message, 
it's simpler and faster to just let the planner check which of these it likes best 
instead of working out a plan in great detail. The final result, though, is the 
same as what prescriptive planning would have produced. PAULINE simply uses 



top-down planning in some situations and bottom-up planning in other cases for 
efficiency. Either way, the final result has to meet the criteria of both the planner 
and the realizer; there is no way for either component to insist on something that 
the other doesn't accept. 

The model proposed below, in contrast, provides for information to flow back 
and forth between the two components, allowing them to negotiate over what will 
be said. Each component can over-rule the other's rejection of an expression if 
the alternatives are inadequate from its point of view. The goal is not efficiency 
but rather ensuring that relevant criteria at all levels are applied. In contrast to 
PAULINE, the "planner" here will be able to reject all the options the "realizer" 
proposes if none of them are acceptable and insist on additional options to choose 
from; conversely the "realizer" will be able to report that there is no way to 
realize exactly what the planner wants and suggest alternative messages to realize. 
Neither component will have priority over the other; in fact, there will have to 
be a third component (the "utterer") that will resolve the conflicts between them 
(see Section 2.6). In restrictive planning, the low-level component can only help 
the planner narrow the focus of its work; in the architecture here, the low-level 
component can also help the planner broaden its focus. 

A second difference between PAULINE and the current work lies in how 
the low-level components construct and describe the options for the planner.12 
PAULINE'S realizer consists of a large number of small "specialists" that handle 
specific tasks, e.g. SAY-EVENT-SENT or SAY-PRONOUN. These specialists can 
be arbitrary procedures, so the realizer doesn't have any overall theoretical or 
linguistic basis. Of course, individual specialists may be designed according to 
various linguistic principles, but this is irrelevant to the nature of the realizer as 
a whole. Crucially, there is no overall common basis for the specialists; they 
are essentially ad hoc. The linguistic component here, in contrast, is grounded 
in a general knowledge representation designed specifically to meet the needs 
of an intelligent generator (see Chapter 3 for details). The linguistic component 
uses general techniques to derive options from this representation and specific 
linguistic knowledge. Thus, unlike PAULINE'S realizer, it does have a general 
theoretical basis underlying its work. The linguistic component is independent of 
the specific domain and task the generator is talking about; it reflects a general 
model of how to use language to realize the planner's requests. 

2.2 Revising the Standard Model 

If the standard model isn't good enough, then what is? One possibility would 
be to just have one big component that simultaneously considers all aspects of 
the generation process. This would complicate the generator enormously, though. 
Furthermore, it seems counterintuitive to suggest that deciding whether to use a 
pronoun, say, is done in the same way and at the same time as deciding what to 

''Of course, this isn't really an architectural difference, but it does reflect whether the generator 
is viewed as part of an overall intelligent agent or simply deals with issues related to intelligence. 



talk about. There does seem to be a natural distinction between different levels 
of decisions in the generator, and it would be nice to take advantage of that 
distinction. 

What is needed is a way to have separate components that deal with different 
levels of decision-making while allowing them to co-operate on decisions de- 
pending on more than one level. The natural way to provide this co-operation 
is to allow the components to talk to each other. The standard model only al- 
lows for one-way communication; to achieve true co-operation we need two-way 
communication, i.e . there must be feedback from the low-level component(s) 
to the high-level one(s). The high-level component can then add to or modify 
what it passed on to the low-level component on the basis of how the low-level 
component responded to its original input. 

The model suggested here has the following characteristics:13 

Each component will only deal with a particular level of the generation 
process. All of its decisions will be at its own level, and it will only be 
able to consider information from other levels when that information has 
been explicitly provided by another component. This will rule out the kinds 
of compromises seen in Section 2.1.3. 

Each component will treat the output it sends to a lower-level component 
not simply as a message to be further refined and translated but rather as 
a specification of what it wants the lower-level component to do. The 
difference is that the lower-level component might not follow the speci- 
fication precisely; the higher-level component must be able to respond to 
differences between what it wanted and what was actually done. This is 
necessary because the low-level component can't guarantee it will always 
be able to follow the high-level component's requests, as can be seen from 
the self-correction examples (e.g. (7) and (9)). 

Feedback from the low-level component(s) will inform the high-level com- 
ponent(~) when the low-level component either has no available options, has 
multiple options it can't decide between, or when it has made a choice with 
consequences at a higher level that weren't anticipated by the high-level 
component. This will allow the high-level component to deal with these 
problems by adding to or modifying its output to the low-level compo- 
nent. Decisions that involve multiple levels, such as the decision in TEXT 
of whether to include the word "water-going" (see Section 2.1.3) can be 
made in a principled manner, without violating the separation of levels of 
processing. 

- - 

131'rn not assuming any specific division into components here. The specific architecture pro- 
posed below will, of course, have a particular set of components. But the characterization here is 
independent of how many components there are or precisely what each one does. 



2.3 Outline of the Generator 

The &sign of the generator must meet the criteria laid out at the beginning of 
this chapter. It must be incremental: the generator must be able to produce 
partial output befwe it has completely decided what to utter. It must share a 
single knowledge base with the rest of the system: the input goals and all the 
components of the generator must be grounded in the same world model. Most 
importantly, it must be deeply goal-sensitive: decisions at all levels must be 
sensitive to how they affect the generator's achievement of its goals. The standard 
model of generation makes this impossible, as detailed in Section 2.1, because 
the interface between the different components hides the low-level decisions from 
the high-level component. The generator proposed here will instead follow the 
revised model of Section 2.2; the interface between the components will allow 
for appropriate kinds of interaction between the them. 

The crucial property of this interface is that the low-level component can hand 
back linguistic expressions with descriptions of what they do, rather than simply 
assuring the high-level component that whatever it has produced is absolutely 
(or adequately) correct. When the low-level component is unable to accomplish 
exactly what it is asked, or when it has no basis to choose between several 
acceptable expressions, it can simply describe the available options to the high- 
level component. The high-level component can then decide whether to make do 
with one of the available options (and which one), or to reformulate the request 
and try again. The low-level component can remain ignorant of the concerns 
that underly this decision. Similarly, the high-level component need not worry 
about whether its requests to the low-level component are achievable; if there is 
a problem, the low-level component will let it know. This interface allows the 
generator to maintain a clean separation of different levels of its work despite the 
need for interaction between the levels. 

The interface, of course, is just part of an overall architecture, which is laid 
out in Figure 2.2. The communicative planner and the linguistic specialists are 
the "high-level" and "low-level" components of the system. The workspace is 
the interface between the planner and the specialists, where they put requests and 
results. The utterer is the part of the generator that actually ships off utterances 
to be spoken or written; the need for a separate component to do this will become 
clear. These components work together to build up and output utterances. The 
planner is the component that drives the rest of the system, since it knows when 
and why the system wants to produce an utterance. The various components 
run in parallel, however, because each one's task is largely independent of the 
others'; they are connected solely by means of working on the same enmes in 
the workspace. 

Each component of the generator handles a particular aspect of the genera- 
tion task, involving different kinds of knowledge and different constraints on the 
generator's work: 

Communicative Planner This is a special-purpose planner that accepts goals 



Figure 2.2: Architecture of the Generator 
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from the overall system and plans out ways to achieve them via com- 
munication. These can be "communicative" goals such as "transmit this 
information to the user" (or more precisely "get the user to believe this in- 
formation"), but they can also be social interaction goals such as "establish a 
deferential (or collegial, or superior) attitude toward the user" or cooperative 
behavior goals such as "be straightforward" or "transmit as little information 
as possible". These goals can also be either "foreground" or "background" 
goals. Foreground goals are the ones that the system specifically wants to 
achieve; these are the ones the planner must plan for. Background goals are 
persistent goals that the system would like to accomplish if and when possi- 
ble; the planner should prefer plans that achieve them, but not deliberately 
plan for them. 

The communicative planner draws on a set of specialized plans that capture 
how communication acts can achieve various goals. The planner must 
be a dynamic planner in two senses. First, it must be able to plan in a 
changing environment.14 In particular, the overall system in which the 
generator is embedded may decide to abandon some of its goals or to 
achieve them through some other means. In addition, when the planner 
starts building a plan, it cannot assume that it has a complete and accurate 
description of the effects of its "atomic" actions. The linguistic specialists 
cannot always produce an expression with the exact intended meaning. 
Thus the communicative planner must be able to revise its initial plan to 
accommodate any mismatches between its requests and the responses from 
the specialists. In other words, the planner has to cope with ,the limitations 
of the language being generated. 

uistic Specialists This is the part of the system that produces the actual bits 
of language that make up the utterance. The linguistic specialists act like 
"consultants" to the communicative planner, responding to its requests with 
linguistic expressions that attempt to capture part or all of the information 
the planner wants to express. There are several linguistic specialists be- 
cause there are several kinds of linguistic knowledge that come into play. 
For example, there are specialists that handle lexical choice, clause struc- 
ture, and phrases of various types. In a system producing speech, there 
would also be a specialist for intonational structure. Other specialists could 
be added if appropriate, e.g. a specialist for rhymes in a system to generate 
poetry. Also, some of these specialists may prove to need splitting up into 
several specialists; the precise division of labor among the specialists is 
an open question. This division does not, however, correspond to different 
kinds of requests from the planner or different kinds of information in those 
requests.15 Different specialists may suggest different ways of expressing 

14Actually, as discussed in Section 2.4.1, the implementation I intend to build will not deal 
with this problem. The architecture, however, can easily accommodate a revised planner with this 
ability. 

15Except, of course, when those differences are directly built into the structure of language. 



the same information or similar ways of expressing different kinds of infor- 
mation. From the planner's point of view, there is no way of telling which 
specialist suggested which expression. 

The specialists are primarily intelligent lookup components; they respond 
to the planner's requests by looking up linguistic expressions that capture 
the intended meaning. The results can be "lexical", i.e. words or phrases 
whose meaning corresponds to the planner's request; structural, i.e. specific 
syntactic structures that convey meaning;16 or possibly intonational in a 
speech generator.17 The linguistic specialists go beyond simple lookup in 
two ways. First, they actually produce a continual stream of options rather 
than simply returning a single option or list of options. This allows the ut- 
terer to respond to time pressure on the system (see Section 2.6), and it also 
prevents the specialists from spending a lot of time looking for alternatives 
when an adequate expression has already been found. Second, the special- 
ists attach annotations to the expressions that they look up. Some of ,these, 
such as those describing stylistic information, may be permanently attached 
to the expressions, but others must be constructed by the specialists because 
they describe dynamically determined information such as dependencies be- 
tween different expressions and mis-matches between the planner's request 
and the expression produced by the specialist. 

Workspace This is where the other components of the system work together to 
build up the utterance. It contains two types of entries: information that 
the planner wants to express, and linguistic options sc~gested by the spe- 
cialists to express them. The entries can be annotateG to indicate further 
constraints on how the information should be expressed or additional ef- 
fects of the options beyond what the planner requested; these annotations 
make it possible for the generator to cope with mismatches between the 
planner's requests and the resources of the language. The workspace in 
some ways resembles a blackboard [Nii 86b,Nii 86a]; it contains several 
possible utterances that are described at different levels of structure and are 
built up incrementally by various independent components. On the other 
hand, it doesn't have the strict hierarchical structure that usually character- 
izes blackboard systems; each request from the planner may correspond to 
several linguistic options, and the linguistic options may handle (parts of) 
more :han one request. Also, blackboard systems usually have sequential 
scheciuling of actions, whereas the planner, the utterer, and the specialists 
all run in parallel. 

The workspace is also the only channel of communication between the var- 

''Note that syntax can express both information about the topic being discussed and "discourse" 
information about how statements connect together. Of course, lexical choice can have this effect 
also. 

17~ven in a text generator, roughly comparable effects could be achieved using punctuation and 
typography, e.g. capital letters, boldface, etc. 



ious  component^.'^ Direct communication between the components, while 
apparently simpler, would actually limit the generator. The planner and the 
specialists will often need to incrementally modify their initial entries to 
achieve an adequate match between the planner's request and the special- 
ists' options; having them in a common workspace simplifies this process. 
More importantly, the planner and the specialists may split up the work in 
different ways; thus the specialists need to examine many requests simulta- 
neously, and conversely the planner may need to examine several responses 
together. 

The communicative planner places into the workspace descriptions of in- 
formation that it wants to express. These can include information in the 
normal sense, i.e. descriptions of objects, events, actions, and so on; but 
they can also include desired pragmatic or intersocial effects, e.g. placing 
a particular object in focus, or indicating respect for the hearer.lg These 
requests can be annotated with constraints on how the information should 
be expressed, for example requesting colloquial phrasing or emphasis on a 
particular aspect of an action. These annotations are not absolute constraints 
on the specialists, but they direct the specialists what to try first and affect 
the ratings of the options they produce. 

Linguistic options are placed into the workspace by the linguistic specialists 
in response to the requests from the planner. These consist of pieces of 
syntactic structure (including the words); they can range from a single word 
or syntactic node to a fully formed sentence. These options can have several 
different kinds of annotations. They all have at least two annotations: an 
indication of which pa.rt(s) of which request(s) they express,20 and a rating 
of how well they do so. In addition, each option may have annotations 
indicating parts of the requested meaning that they don't capture, additional 
implications beyond the requested meaning, and a description of the style 
and manner of the option, indicating for example if the option is formal 
or colloquial. These annotations are used by the planner to evaluate the 
options; they allow it to choose between the options on a principled basis 
without having any knowledge of the language they are expressed in. 

Utterer This component makes the final selection from the options developed by 
,the linguistic specialists, combines them and fixes up the syntax of the re- 
sulting utterance, and ships the result off to be written or spoken. Normally, 

''This is not strictly true; the planner does actually set certain parameters that determine the 
utter's preferences. But the workspace is the only channel for communicating informution 
between the components of the generator. 

IgIt's easier to see how the linguistic specialists could respond to this kind of intersocial request 
in a language like Japanese, where explicit honorific terms are common. Even in English, though, 
there are expressions such as "please" or "as you know" that seem to have primarily intersocial 
effects. 

20Note that a particular option may express only part of the information in a request, and may 
express information in more than one request. This is one of the ways that the workspace differs 
from blackboards, at least as they are usually organized. 



of course, the utterer follows the recommendations of the communicative 
planner; but it is still necessary to have it as a separate component. One 
reason for this is that while the annotations tell the planner the individual 
effects of each option, the planner has no way to anticipate the effects of 
combining various options into an utterance. For example, will combining 
two slightly awkward expressions reinforce their awkwardness to make an 
unacceptable utterance, or will the result also be just slight awkward? This 
sort of question involves specific linguistic knowledge that the planner has 
no access to; thus the utterer must make these decisions. The utterer must 
balance the planner's preferences against the need to minimize awkwardness 
and redundancy and maximize consistency of tone. 

The utterer also captures the effects of time pressure on the generator. 
Since there is always a better way of saying something (or at least another 
way), the system could spend forever refining its output. The utterer ships 
off some expressions whenever the balance of time pressure and current 
ranking of candidates indicates that the disadvantage of waiting any longer 
outweighs the imperfections of the best available option so far. The amount 
of time pressure, and the importance of speaking carefully, can of course 
be varied. Thus the generator can be set to speak quickly and carelessly or 
slowly and carefully depending on the situation in which it is being used. 

2.4 The Communicative Planner 

The communicative planner is the part of the generator responsible for ensuring 
that the generated utterance achieves the intended goals. It draws on knowledge 
of the effects of communication to plan out how to achieve various kinds of goals 
by expressing various kinds of information. The planner depends on the linguistic 
specialists to tell it how to express the information in language, and it must adjust 
its plan based on how closely the specialists succeed in doing so. This is not an 
entirely negative situation, however; the recommendations of the specialists may 
sometimes suggest revisions to the plan that actually improve it. 

The communicative planner is similar to the "strategic component" or "text 
planner" of many generators, but it actually has less responsibility than these 
components usually have. The planner is not the final authority on what will 
be produced. The goals driving the generator are only one of the constraints 
on the generator's output. Of course, normally they will be the most important 
constraints, but in some circumstances the goals can be overruled by the need to 
maintain fluency or consistency of tone or the pressure to generate q~ickly.~' Thus 
the planner must strongly guide but not completely determine the construction of 
the utterance. 

On the other hand, the communicative planner in some ways has wider re- 
sponsibilities than most "strategic components". Most generators are designed to 

=lThese issues are handled primarily by the utterer, see Section 2.6. 
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let the rest of the system decide what needs to be said; the strategic component 
simply organizes the information presented to it, or perhaps selects a subset of the 
information that it can assemble into a coherent text. The communicative plan- 
ner, however, can in principle include anything in the system's general body of 
knowledge and belief that might support the goals it is given. Even if the planner 
has only been charged with transmitting some specific information, it may decide 
to include additional information that will make the resulting text clearer. Thus 
the division between the planner and the system driving the generator is less sharp 
than in most generators. 

The planner is invoked when the overall system decides to accomplish some 
goals by cornmuni~ation.~~ There are several types of goals that can be accom- 
plished via language. The obvious one, of course, is to communicate information. 
But the generator can also respond to social interaction goals such as "be defer- 
ential" or "establish a dominant (or subservient) status with respect to the user" 
either by varying the tone of an utterance expressing some other information or 
by generating an utterance specifically for that purpose (e.g. "Excuse me" or "you 
insolent slob!"). In addition, the generator can deal with goals concerning how 
co-operative the system should be, and in what ways. These might indicate that 
the system should simplify things if the user is likely to be confused, or con- 
versely to be precise and detailed. The planner might even be given a goal "lie 
to the user" (although this generator is intended to be ethical, and will thus have 
no plans that achieve this goal)! The distinction between these kinds of goals is 
not a sharp one, but since the planner responds to all of them in the same way 
(given that the plans for different kinds of goals will likely have different kinds 
of actions), there is no need to sharpen it. 

More important is the distinction between foreground and background goals, 
which the planner does handle differently. Foreground goals are goals the planner 
explicitly tries to achieve. Background goals, on the other hand, are goals that the 
system considers useful but not essential. The planner therefore includes them in 
the plan if convenient but doesn't deliberately plan to achieve them. Generally 
foreground goals are communicative (e.g. "tell the user this information") and 
background goals are intersocial or co-operative (e.g. "be polite" or "be direct"), 
but this is not always the case. The system might be given background com- 
municative goals such as "mention this object if it can be conveniently worked 
into an utterance" or foreground intersocial goals such as "say something defer- 
ential"). The foreground/background distinction is a distinction between reasons 
for adopting goals, not between the kind of actions in the goals. 

This notion of foreground and background goals is similar to the one used 
by UCEgo [Chin 881. There, however, the distinction is only captured in the 
way goals become active. Foreground goals are always active and hence always 
being worked on. Background goals are dormant until the system independently 
notices a plan for achieving one, at which point the background goal becomes 

2 2 H o ~  the system decides to use communication rather than some other action is an important 
question, but it lies outside the scope of this proposal. 



(effectively) a foreground goal. The communicative planner here handles back- 
ground goals similarly; it doesn't explicitly plan for them, but it prefers plans that 
achieve them. There is a crucial difference, though, when a plan (or sub-plan) 
that achieved a background goal has to be abandoned. In UCEgo, the background 
goal remains active even if there is no longer any plan for it under considera- 
tion. The communicative planner simply continues to prefer plans that achieve 
the background goal when it encounters them, since the importance of the goal 
to the overall system hasn't changed. 

At heart, the communicative planner is a planner in the traditional A1 sense. It 
is given one or more goals to achieve, and it consults a library of possible actions 
and plans, assembling a complete plan that achieves the goal(s) by searching 
through the space of possible plans. The planner's task is complicated, however, 
by several factors. The planner is operating in an active environment, so the 
situation may change in ways that invalidate the plan before it is carried out. 
The user may say something, thus changing the discourse context. The physical 
environment may change in ways that affect the c o n ~ e r s a t i o n . ~ ~  Furthermore, the 
goals given to the planner may be changed or withdrawn, either in response to a 
changing environment or  because the overall system modified its intentions. 

The communicative planner must also cope with the fact that the linguistic 
specialists can't always fulfill its requests precisely. From a traditional planning 
perspective, this amounts to not having complete descriptions of the actions avail- 
able to be built into plans. The planner must be able to modify its plans when 
the specialists return expressions that only approximate the intended meaning. In 
some cases, of course, the deviations will not prevent the expression from achiev- 
ing its intended goal, so the planner can ignore them. In other cases, though, the 
deviations will sabotage the plan, so the planner must either modify the plan (with 
as little disruption as possible) or push the specialists towards an alternative that 
will support the existing plan. This kind of interaction is not entirely negative, 
though; the specialists may sometimes propose expressions that suggest ways of 
improving or simplifying the plan. Ideally, the communicative planner should be 
able to take advantage of this. 

To handle all of these difficulties, the planner must be a fully dynamic one; 
it must be able to cope with changes in its task, i.e. changing goals and envi- 
ronment, and limits on its knowledge of the available actions. The focus of this 
work, however, is on the generator and its internal structure. I therefore intend to 
ignore the problem of changing goals and environment and concentrate on getting 
the planner to respond to the options presented by the linguistic specialists. Thus 
the communicative planner will build an initial plan assuming it can unproblem- 
atically express whatever it wants to. The planner will then place requests for the 
information it wants to express into the workspace for the specialists and respond 
appropriately to the options they produce. The options may adequately express 
the requested information, in which case the planner need merely verify this and 

230f c o m e  this assumes that the system could detect such changes; this is generally not true 
now, but will presumably become more common as computer vision and other sensory devices 
become more sophisticated. 



approve them. If the options turn out to differ from the planner's requests in 
ways that sabotage the plan, the planner must revise its plan or reformulate its 
request to push the specialists in the right direction (or both). This revision by the 
planner is a special case of the general need for dynamic planning, but it at least 
constrains the task to a particular kind of "environmental" change, and it seems to 
mostly require only localized changes in the plan. It is also the minimum dynamic 
planning behavior needed for the overall architecture to work, and is thus crucial 
in building the planner.24 

2.4.1 Building a Plan 

The communicative planner starts off by building an initial plan to achieve the 
goals it is given. Since the method the planner uses to do this is not a major 
focus of this work, I intend to use either some version of a standard A1 planning 
algorithm (as in, for example, [Nilsson 801) or a text planner from an existing 
generator such as TEXT or Penman, modified slightly to prefer plans that achieve 
background goals as well. The planner will draw on a library of text plans, which 
will probably be fairly ad hoc; the main point is to be able to construct a plan, 
not to worry about constructing it in a principled or general fashion.25 

What is crucial is the form of the resulting plan. It cannot be just a sketch of 
the information to go into the text and its order. The plan must indicate what each 
piece of information in the plan is intended to accomplish and how it supports 
the purpose of the larger text containing it. Often the purpose for including some 
information is just to express that information, but not always; larger chunks of 
text almost always have some purpose beyond mere expressions. Examples of the 
type of plan the planner must build can be seen in Figure 2.3. This model of text 
plans meshes well with the model of discourse structure developed by Grosz and 
Sidner [Grosz 85,Grosz 86b], in which the purpose of each discourse segment 
is an important part of the structure. The text planner in Penman [Hovy 88b] 
produces plans along these lines and may be an appropriate model for this part 
of the planner. 

24This division might suggest that the generator could be reorganized to eliminate feedback by 
letting the "planning submodule" of the planner send its plans to the linguistic specialists, and 
letting the "response submodule" just operate on the specialists' output. The division, though, 
is a simplification of the architecture for implementation purposes; in principle, "planning" and 
"evaluatingn are not separable. More immediately, this reorganization will not work because the 
"response submodule" will sometimes need to modify the plan, and thus change the input to the 
linguistic specialists. So there is no escaping the need for a feedback cycle. 

251 am implicitly assuming here that the communicative planner is separate from other planning 
facilities in the overall system, which is questionable. This separation seems necessary as a 
working assumption; building a general intelligent agent to integrate the planner with would be a 
much harder task than building the generator. Furthermore, text (or speech) plans do seem to be 
largely distinct from other plans; non-linguistic acts are only occasionally integrated into them. 
Still, such integration is possible, so the separation of the communicative planner from other kinds 
of planners must eventually be weakened. 



1. Overall Goal: clarify concept S H I P  

2. (identification S H I P  WATER-VEHICLE , . . ) :  directly fulfill 
(1) 

3. (evidence S H I P  . . . ) : support (2) by evidence 

4. (attributive S H I P  . . . ) : fulfill (1) by 
extending (2) 

5. (particular-illustration) : support (2) by example 

1. Overall Goal: Transmit weather information for next few days 

2. Support (1) by sequencing information in day-by-day frame 

3. Support (2) with first day's information 

4. Support (2) with second day's information 

N Support (2) with last day's information 

Figure 2.3: Examples of Initial Plans 



2.4.2 Responding to Linguistic Options 

Once the communicative planner has built up an initial plan of what it wants to say, 
it puts requests for the individual bits of information it wants to express into the 
workspace for the linguistic specialist to respond to. These requests can contain 
both the actual information to be expressed and annotations indicating preferred 
properties of the expressions. These annotations can indicate such things as part 
of the information to be mentioned explicitly, or implicitly, or to be downplayed 
as much as possible; a framework within which objects should be portrayed, or 
an entity to be (or not to be) placed in focus. The annotations are part of the text 
plan, indicating how to express the information to best support the goals of the 
plan. They will be used by the linguistic specialists to alter their evaluation of 
different options, preferring ones that follow the annotations. 

The planner, however, cannot assume that the annotations, or indeed the pre- 
scribed information, will be followed precisely; the linguistic specialists may not 
be able to find a way of completely satisfying the planner's requests. Further- 
more, different options may support or conflict with background goals that were 
not considered when forming requests. The planner must therefore examine and 
evaluate the responses that the specialists put in the workspace. These responses 
consist of annotated linguistic structures; the annotations can include all the types 
of annotations that the planner can use; they can also indicate which parts of 
which requests the option covers, extra information the option expresses, parts 
of the information the option leaves out, and variations in tone or style.26 The 
planner looks at these annotations (since it has no way to analyze the linguistic 
options themselves) to see how well they fit into the plan. Options that achieve 
their intended goals have their rating adjusted according to how well they do so. 
Options that help achieve background goals get a higher rating than they other- 
wise would Options that don't achieve all their goals, or that interfere with other 
parts of the plan, can dealt with in two ways: the planner can just give them a 
low rating, or it can adjust the plan to achieve the unmet goals some other way. 

The algorithm for all this is summarized in Figure 2.4. When the planner 
encounters an option that requires modifying the plan, it doesn't immediately 
adopt the modified plan, because it doesn't know yet whether the option will 
actually be used. Instead it simply places requests into the workspace for all the 
modified steps in the plan, and adds an annotation to the option indicating the 
plan modifications it induces. Subsequently, the utterer will decide whether or not 
to use the option, forcing the adoption of the corresponding version of the plan; 
it will then remove the requests and options pertaining to the other version(s). In 
the meantime, the planner and the specialists can work on producing options for 
both versions of the plan, allowing the overall suitability of each version to affect 
the decision of which one to use. 

26The content of the annotations is one of the main foci of this research; this description should 
be considered a minimum list of what the annotations should include. Also, there are some 
annotations not mentioned here because the planner doesn't pay attention to them; see Sections 
2.5 and 3.7.2. 



The planner examines the annotations for each option, responding based on the 
type of the annotation: 

For extra information expressed: 

- if contained later (elsewhere?) in plan, then improve rating. 

- if tied into any current background goals, adjust it based on whether 
it supports or undercuts goal. 

- if not contained elsewhere in plan, then adjust based on system's 
interest in general in expressing this info. 

a For missing info: 

- if can be added elsewhere to plan without disruption, do so and 
ignore. 

- if important and doesn't fit elsewhere, decrease rating 

- if not important, leave rating alone. 

For concepts activated in the context: 

- if contained later (elsewhere?) in plan, then improve rating. 

- if conflicting with something in plan, then decrease rating. 

- if not contained elsewhere in plan, then adjust based on system's 
interest in general in expressing this info. 

For things like tone, awkwardness, etc. adjust rating based on how they 
fit in with background goals. 

Figure 2.4: Linguistic Option Evaluation Algorithm 



2.5 The Linguistic Specialists 

The linguistic specialists are the part of the system that actually uses linguistic 
knowledge to construct the expressions that will go into the utterance. They 
constantly watch the workspace, looking for requests from the planner, to which 
they respond by suggesting linguistic expressions that capture some or all of the 
information in the request. These expressions are placed in the workspace as 
options for the planner to evaluate, and are eventually either uttered or flushed by 
the utterer. The specialists continue suggesting options for a request as long as 
that request remains in the workspace. The options are pieces of surface structure 
(or perhaps phonetic structure in a speech system), and they can be at any level of 
structure and be only partially specified. Thus an option could be a full sentence, 
phrase, or word, or it could be a particular clause structure (e.g. a topicalization 
or it-cleft) with no further detail filled in, or a noun phrase with a determiner but 
with the head noun left unspecified. The wide range of types of expressions the 
specialists can produce is the main reason for splitting this component up into 
several pieces. It seems likely that different kinds of linguistic knowledge will be 
most naturally organized in different ways; thus there will be a different linguistic 
specialist for each kind of linguistic knowledge.27 

The details of how the specialists work depends on how the knowledge they 
use is organized. There are, however, some common features. The linguistic 
specialists are primarily intelligent lookup components. What this means is that 
they don't do a lot of computation to construct the expressions they produce; they 
simply have a set of possible expressions, indexed in some fashion, in which they 
check for expressions matching the planner's request. They do have to verify that 
the expressions they find are really appropriate; the indexing is intended to speed 
up the lookup but not to guarantee finding a useful express i~n .~~ The linguistic 
information, however, is intended to be in a declarative form, so the specialists 
should be able to use it fairly straightforwardly. 

The specialists, however, do not simply look up each individual request from 
the planner. They can decide to look up only part of a request, or to look for 
expressions that capture several requests. Each specialist has criteria for deciding 
when to broaden or narrow the scope of the request(s) it is responding to. In 
addition, the specialists always check to see if an expression they have looked 
up corresponds to a larger or smaller piece of the request(s) it was responding 
to. If so, they continue trying to look up the enlarged or reduced request as well 
as the previous request, and they tell all the other specialists to do so also. The 
reasoning behind this is that finding an expression for a collection of information 
indicates that the information seems to fit well into the structure of the language, 
and thus that .there are likely to be other expressions that capture it. 

The linguistic specialists are also responsible for annotating the options they 

27~ossibly more, if it turns out that there is more than one useful way of organizing a particular 
kind of linguistic knowledge. 

2aThis is similar to the indexing scheme in PHRED [Jacobs 851, where the fetching of pattern- 
concept pairs uses a hashing scheme that directs it towards likely possibilities. 



put into the workspace. These annotations allow the other components in the 
system to evaluate the options without having any linguistic knowledge of their 
own. (The annotations are discussed further in Section 3.7.2.) From the specialists 
point of view, there are several kinds of annotations: 

Some annotations are inherent parts of expressions. These include things 
like tone, style, fluency. The specialists simply notice these annotations 
when they look up the expression and include them in the entry on the 
workspace; they don't need to understand or manipulate them at all." 

Some annotations indicate connections to other entries in the workspace. 
These indicate either which quest(s) the option expresses or other options 
that the annotated option is dependent on. The former is trivial for the 
specialists to provide, and the latter reflects cases where a specialist has 
produced an option that needs the other option(s) in order to have the 
expected meaning. 

Some annotations indicate ways in which the information expressed by the 
option differs from the information in the request(s) it is responding to. 
These need to be computed by the specialists; there is no way to compute 
them in advance, because the request(s) the option is applied to may be 
different than the one(s) it was looked up for. The details of how this is 
done depend on the representation of meaning the generator is using, but a 
reasonable first approach is to compare the meaning representations simply 
list all the differences. These annotations are central to the planner's ability 
to evaluate the options; they are the heart of the connection between the 
planner and the specialists. 

Some annotations indicate additional effects that an option has beyond what 
it directly expresses. In particular, annotations may indicate that use of an 
option will add certain other objects or concepts to the current discourse 
context. These kinds of annotations may in some cases be directly associ- 
ated with the option, but in general they will have to be computed by the 
specialists, because they depend on how the option relates to and affects 
other concepts in the system's world model. 

The design of the linguistic specialists has strong implications for the organi- 
zation of the linguistic knowledge they draw on. The specialists need to draw on 
kn,owledge of available linguistic structures and their contribution to the meaning 
of the utterance at all levels, so that they can provide the necessary annotations 
for the planner. This means that the meaning of expressions must be available; 
there can't simply be an opaque procedure that produces linguistic expressions 

29Actually, sometimes these annotations may need to be computed, but the method for comput- 
ing them will be part of the linguistic knowledge the specialists looks up. The specialists don't 
need to know how to compute them in advance. 



with no information as to how or why they are a~propriate.~' Furthermore, the 
representation must allow for integration of different levels and types of knowl- 
edge. A particular piece of information might be expressed via intonation, a 
word, a phrase, a syntactic construction, or even implicitly by the ordering of 
other inf~rmation.~' The generator's linguistic knowledge must thus be organized 
to allow expressions at different linguistic levels to have similar meaning repre- 
sentations, so that they can be recognized as alternative options for requests from 
the planner. 

The Utterer 

The utterer is responsible for the issues involved in the final assembly and output 
of the utterance. The main concern in outputting the utterance is time pressure 
to utter something.32 The system can't go too long without uttering something 
or it will lose its turn, because the user will either utter something else or get 
tired of waiting and leave. Also, when the utterer assembles utterances from 
the options in the workspace, it must wony about issues such as minimizing 
awkwardness, maximizing consistency of tone, and minimizing redundancy. Of 
course, these may conflict with each other and with the time pressure on the 
utterer, so the utterer must strike a balance among these criteria, according to the 
relative importance of each of them. 

These issues cannot be handled by the communicative planner, even though 
they do affect how well the utterance accomplishes the system's goals, because 
they involve non-local aspects of the construction of the utterance. ("Local" here 
means local to one linguistic option in the workspace, not necessarily local to 
one part of the utterance.) The planner can only deal with local aspects of the 
utterance because, having no linguistic knowledge itself, it cannot anticipate the 
consequences of combining several options, even though it has descriptions of 
the effects of each individual option.33 The utterer, on the other hand, does have 
access to the necessary knowledge to evaluate the combined options; indeed, that 
is its primary type of knowledge. This also allows it to judge when time pressure 
outweighs any deficiencies in the available options and assemble and send out an 
utterance. 

The actual work of the utterer is fairly straightforward. The utterer watches the 

30This is not quite the same as saying that the linguistic knowledge must be stored declaratively. 
There could very well be some opaque procedure that mediates access to the linguistic knowledge 
@erhaps compiled somehow from a declarative version) as long as it provides a declarative 
meaning representation, perhaps constructed on demand. 

31e.g. the implication of temporal or causal information in conjoined clauses; see [Grice 751 
32The utterer should probably also be responsible for not uttering something too soon and 

for controlling the rate of utterance; these issues seem less crucial, however, and are not being 
addressed here. 

33The planner can, of course, deal with non-local aspects of the text plan; it does so in evaluating 
the options and in deciding when and how to revise its plans. But what it understands are the 
global communicative effects, not the global linguistic effects. 



workspace to see what the planner and the specialists put there. As the specialists 
respond to each request from the planner, the utterer identifies the best option or 
set of options for the request. Normally the utterer will have time to wait for 
the planner to evaluate the options, but if the system is in a hurry, the initial 
ranking by the specialists may be used. As several requests are processed by 
the specialists, the utterer keeps track of the best set of options to handle all of 
the requests (which may not include the best option for each individual request). 
The utterer evaluates the options based on their individual rankings modified 
by the effects of combining them. The effects of the combination of options 
are determined based on three factors: redundancy (i.e. more than one option 
expressing the same requested information), consistency of tone, and awkwardness 
(combining two or  more awkward expressions magnifies the awkwardness of the 
individual expressions). The relative importance of these criteria is determined 
by parameters that can be set by either the communicative planner or the overall 
system.34 The accumulated time pressure establishes a minimum rating for an 
option to be considered acceptable; this rating gradually decreases, representing 
the increasing importance of uttering something, even if it is not very useful. The 
utterer looks for options for the next request from the planner whose rating, when 
combined with options for other requests in the workspace, exceeds the minimum 
rating established by time pressure. Assuming the communicative planner has in 
fact made a request (i.e. assuming the system has decided to communicate), the 
minimum will eventually fall below the rating of some option in the workspace, 
making that option a ~ c e p t a b l e . ~ ~  

When it finds one or more acceptable options, it outputs the highest rated one 
together with any other options that are needed to flesh it out syntactically (e.g. 
the subject, if the option is a verb whose subject has not yet been uttered).36 The 
utterer then removes from the workspace all the requests for which it has just 
uttered options, and all the options for those requests. It also resets the minimum 
rating for acceptable utterances to its original value. Finally, if any of the options 
were marked as inducing revisions in the text plan, the utterer tells the planner 
to commit to those revisions, and the planner abandons any alternative versions 
of the plan and removes from the workspace any associated requests and options. 
This sets the generator up to continue working on the rest of the text plan, with 
the entries for the uttered options removed, since they are no longer needed. 

34These seem to depend more on the situation than on the particular goals the generator is 
addressing; perhaps background goals are particularly relevant here. 

350f course, it may take a long time for this to happen, and the system may have abandoned 
its original goals in the meantime, or the user may have interrupted or quit. This is how this 
architecture would handle situations like Case 5 in Bovy  871, where the cost of saying something 
inappropriate is very high, and the conversation is fairly short, so the generator doesn't have time 
LO construct a highly rated utterance, and the minimum acceptable rating never falls very much. 

36Note that this means that utterances will usually express information in the order the planner 
requested it, but some (usually local) variation may occur. 



The Workspace 

The workspace is the central communication channel for the other components of 
the generator; the planner, the specialists, and the utterer coordinate their activities 
through the entries they read and write in it. Each entry consists of three parts: a 
request from the planner, a set of linguistic options from the specialists, and ratings 
of how well the responses fulfill the requests. The requests can be annotated to 
indicate constraints on the expressions that realize them; the linguistic options can 
be annotated to indicate how well they match the quests,  as well as to indicate 
certain other properties of the options (see Section 2.5 for more details and Section 
2.8 for some examples). The entries are kept in the order that the requests come 
in from the planner; this is the only way that the workspace directly affects the 
output of the generator. Entries are eventually removed from the workspace by 
the utterer when it selects options from them, or occasionally by the planner if 
it removes the original request while revising its plan. Thus all the manipulation 
of the data is handled by other components; the workspace only has to store the 
entries and modifications to them. 

Since the workspace can be modified by several components that run in paral- 
lel, it might seem that some sort of concurrency control is needed. Concurrency, 
however, is not a problem because of the way the different components use the 
workspace. The real dangers of unconstrained concurrency are that there might be 
contention for limited resources and that multiple simultaneous changes to shared 
data might cause some or all of the changes to be lost.37 There are no limited 
resources here, though, so there's no problem of contention. Of course, access 
to the workspace itself is a kind of limited resource, but this can be dealt with 
simply by having the workspace respond to requests in the order they come in. 

Furthermore, although there is multiple simultaneous access to the workspace, 
there are never simultaneous changes to the same piece of information. In fact, 
most of the modifications to the workspace are really adding new information, not 
changing what's already there. The only exception to this is the planner, which 
can change the ratings of options. The planner, though, is a single component, so 
it can only modify one rating a.t a time. Since there will never be two components 
trying to simultaneously modify the same data in the workspace, there is no need 
to protect against that possibility. There is, of course, the possibility of an attempt 
to modify or add to an entry that has been removed from the workspace; but this 
can be handled simply by throwing away any changes to deleted entries. This 
approach, along with responding to requests in the order they arrive, is the only 
concurrency control needed for the workspace. 

37The simplest solulion to the second problem, using some form of locking to control access to 
shared data, turns it into a case of the first problem. Since it turns out to be safe to make multiple 
simultaneous changes to the workspace, however, that's not a problem here. 



2.8 An Example 

A more detailed example of how the generator works will help indicate what 
the various components do and how they work together to generate an utterance. 
(The discussion here focuses on how the various components interact; Section 3.7 
discusses in more detail how the linguistic specialists produce the options in this 
example.) Consider a case where the planner is given a goal to inform the user 
about the weather over the next three days. The planner then constructs an initial 
plan indicating what information to include and how to structure it to achieve this 
goal: 

1. Overall Goal: Transmit weather information for next 3 days 

2. Support (1) by sequencing information in day-by-day frame 

3. Support (2) with information about the first day's weather 

4. Support (2) with information about the second day's weather 

5. Support (2) with information about the third day's weather 

Requests to express the information about each day's weather are then placed in 
the workspace; (part of) the information about the first day would describe the 
weather: 

(temperature within-range <60°F 80°F>) over-time-span 
<September 25 1987> 

Once this request is in the workspace, the linguistic specialists try to provide 
options to express it. From the specialists' point of view, the request has four 
parts to be expressed:= 

a) temperature within-range 

b) <60°F 80°F> 

c) over-time-span 

d) <September 25 1987> 

The specialists provide several options for temperature wit hin-range, 
annotated to indicate how well they express the inf~rmation:~' 

"The temperature be": (Makes-explicit temperature) 

"The weather be": (Indirectly-suggests temperature) 

"It be": Simple-construction, (Makes-implicit temperature) 

Once these options are placed on the workspace, the planner can examine them 
and evaluate how well they support the plan.40 In this case, the fact that the 

=This is not inherent in the request, it's just how the specialists happen to respond in this case. 
In theory, a specialist might come up with a response for more than one of these parts, or for 
a smaller piece within one of them. To keep the example simple, however, I am ignoring this 
possibility. 

3 9 ~ o t e  that only the relevant annotations are shown here. 
40Note that in this example the specialists find reasonable options for all of the requested 

information. so the planner need only evaluate the options and not revise the plan. 



system is talking about temperature is not an important part of the plan, so the 
planner prefers mentioning it implicitly. On the other hand, merely suggesting it 
i n k t l y  obscures the intended meaning, so the planner rates the three options 
medium, low, and high, re~pectively.~' 

The rest of the request is handled in the same way. The specialists respond 
to <60°F 80°F> with: 

"high": (Missing-info (scale <request> temperature-scale) ) 

"warm": no relevant annotations 

o ["warmer": (From-context <previous-temperature>) , 
(relates-to <previous-temperature>)] 

The third option would only come up if there were some cooler temperature 
already contextually available; since this is the first day's weather, that is not the 
case here, so this option doesn't go into the workspace. As before, the temperature 
scale is not very important, but it's part of the information, so the planner ranks 
the first option low and the second option high. 

Similarly, over-t ime-span gets the following options: 

tense=future: no relevant annotations 

"during": (Activates-in-context (instance <arg 2>42 linear-span) ) 

"over": (Activates-in-context (instance <arg 2> linear-span) ) 

"on": (Activates-in-context (instance <arg 2> linear-position)) 

These options affect how the system (and the hearer) perceive the time span being 
talked about. Since the central organizing principle of the plan is the seqliencing 
of the information by days, the planner wants to maintain the perception of the 
day as a point within the span of the next three days. Unfortunately, the middle 
two options activate the perception of the day as a span of time, so they are rated 
low. The first option leaves the question open, so it is rated medium. The last 
option reinforces the desired perception, so it gets a high rating. 

Finally, the specialists tackle <September 2 5 1 9 8 7 >, producing: 

"tomorrow": (Activates-in-context few-days-time-scale) 

"Monday": (Activates-in-context week-time-scale) 

"the 25th": (Activates-in-context month-time-scale) 

Here the planner's concern is to get the closest match to the time scale in the 
plan, so the three options are rated high, medium, and low respectively. 

41The rankings given here are just relative ones, since the details of how numeric rankings 
should be assigned haven't been worked out yet, and because the relative rankings are all that 
really matters for this example. 

42"<arg 2>" here means the second argument of the over-time-span relation in the plan- 
ner's request; see page 90. 



Now that the planner has ranked all the options for the request, the utterer 
tries to assemble an utterance from them.43 It first tries to assemble the highest 
rated option for each part of the request: 

b) warm 

d) tomorrow 

This, however has a problem: the combination "on tomorrow" is awkward (or 
maybe even ungrammatical). So the utterer tries to replace either "on" or "tomor- 
row" with the next-highest rated alternative. There are two ways it can do this: 
by using tense instead of "on" to express o v e r - t  ime-span, or by using "Mon- 
day" instead of "tomorrow" to express < S e p t e m b e r  25  1987>. The ratings 
used here provide no way to choose between them (although a more fine-grained 
rating system might), so the utterer will simply choose one at random. The final 
result is one of: 

"It will be warm tomorrow'' 

"It will be warm on Monday" 

either one of which is a reasonable way to express the planner's request. 
This example indicates how the architecture organizes and coordinates the 

generation of language. The communicative planner constructs an initial plan 
indicating what information needs to be expressed and why. It also selects from 
the linguistic options for that information based on how well each option supports 
the purpose for including the information in the plan. The linguistic specialists 
indicate what options the language provides for expressing information and the 
particular consequences of choosing each option. The utterer assembles options 
for multiple pieces of information, resolving conflicts between different options. 
These components work independently, using the entries in the workspace to 
coordinate their activity as they build up utterances in natural language. 

43Actually, the utterer starts trying to assemble an utterance as soon as any options get into the 
workspace. Assuming that time pressure is not serious, though, it will usually have time to wait 
until the entire request has options produced by the specialists and ranked by the planner. 



Chapter 3 

Representation 

3.1 Representing Linguistic and Conceptual Knowl- 
edge 

What does a generator need to know in order to choose appropriate linguistic 
structures? One obvious answer is that it needs to know the grammar of the 
language that it is using. The generator must be able to construct utterances that 
conform (more or less) to the constraints the language obeys. This includes, of 
course, syntactic constraints as well as constraints at lower levels (e.g. appropri- 
ate use of affixes and contractions) and higher levels (e.g. producing coherent 
sequences of utterances). Indeed, much of the work on generation is organized 
around the particular formalism used to enforce grammatical and other constraints. 
Thus, for example, the NIGEL generator is designed around systemic grammar, 
PHRAN and KING are designed around unification grammar, MUMBLE is de- 
signed around its own notion of grammar (integrated somewhat with TAGS). Of 
course, there is more to all of these generators than this; but there is a general 
implicit assumption that the main linguistic knowledge that the generator uses is 
simply knowledge of what is grammatically acceptable. 

This kind of grammatical knowledge is, of course, necessary; the generator 
has to be able to produce reasonably well-formed utterances. The precise nature 
of how this information is represented, though, is not really very important. There 
are currently a large number of grammatical formalisms available (e.g. unification 
grammar, systemic grammar, GPSG, HPSG, LFG, TAG, GB, DCG) that have 
been used to build computational grammars. They all have strengths and weak- 
nesses, and the bottom line is that none of them provide a complete solution to the 
problems of describing the grammar of English (or any other language). Thus the 
choice of a particular formalism for representing grammatical knowledge is not a 
critical one, particularly since a grammar for generation can safely be conserva- 
tively designed. If there is some doubt as to precisely when some construction 
is grammatical, the doubtful cases can be ruled out; the generator will simply 
not use the construction in some cases where it would have been acceptable.' 

'This contrasts with the case of an analysis grammar, which must be able to handle anything 



Thus any of the existing formalisms will do an adequate but not perfect job of 
representing the grammatical knowledge the generator needs. 

What is more important is the question of what the generator needs to know to 
choose the particular linguistic elements to make up its utterances. This is really a 
two-part question: what kinds of choices does the generator make, and what does it 
need to know in order to make them? In the broadest sense, the first answer is that 
it has to choose among the entire range of possible (i.e. grammatical) utterances. 
But this is too broad an answer, since the concern here is with what kind of 
linguistic choices the generator must make. In linguistic terms, the generator 
must choose between various words, phrases, syntactic constructions, discourse 
structures, etc., selecting the ones that do the best job of communicating what it 
is trying to express. 

The problem of linguistic choice has generally been treated as straightfor- 
ward, particularly in lexical choice. For example, the NIGEL grammar handles 
lexical choice by simply attaching words to the nodes in its semantic network 
[Sondheimer 861. If it wants to express a concept that doesn't have a word at- 
tached to it, NIGEL simply combines the words associated with the parent concept 
and distinguishing feature(s) into a phra~e.~ There is no real "choice" involved; 
every concept has a unique word or phrase associated with it in the network. A 
similar scheme was proposed for MUMBLE'S lexicon [McDonald 791 (although 
it doesn't seem to have ever been used). In general, MUMBLE handles linguistic 
choice by simply listing all possible realizations for each domain concept together 
with any linguistic constraints; the first option whose constraints are satisfied is 
used weteer 871. There is no real linguistic knowledge being applied here; what- 
ever linguistic knowledge the system has is compiled into ad hoc associations 
between domain terms and specific linguistic structures. 

This absence of general linguistic knowledge is shared by discrimination-net- 
based systems such as Danlos's [Danlos 871 or BABEL [Goldrnan 751. While the 
lexical choice in these systems may ultimately be based on sophisticated linguistic 
information, that information has been compiled out; the generator simply has a 
fixed set of decision criteria. The system can't apply the knowledge underlying 
the discrimination net to another situation, nor can it detect when other criteria 
ought to override the discrimination net. 

Even generators that do have and use a body of general linguistic knowl- 
edge are concerned more with finding an acceptable choice than with using their 
knowledge to support the generator's goals. The PHRED generator [Jacobs 851 
represents its linguistic knowledge as a set of pattern-concept pairs that provide 

the user produces. This is problematic, since ideally the same grammar will handle both analysis 
and generation. Ultimately, given a complete and accurate grammar for English, the problem 
will disappear. In the (no-doubt lengthy) interim, a reasonable approach would be to indicate 
uncertainties in the grammar and let the generator be conservative and the analyzer be liberal. 

'The NIGEL grammar does devote a lot of effort to dealing with syntactic choices. But 
the systemic approach centers mainly around organizing the various options and the connections 
between them. The issue of how to make the choices is pushed off into the "choosers", which 
appear to be essentially ad hoc. 



general connections between linguistic structures and domain concepts. Unlike 
MUMBLE, these PC pairs are not in any way tied to the specific structure or work- 
ings of the generator, in fact, the same PC pairs were also used in PHRAN to 
parse and interpret input from the user. This general representation was not used, 
though, to support a more flexible approach to constructing utterances; PHRED 
simply uses the first acceptable utterance it can find. PHRED doesn't use its 
representation to expand the kinds of reasoning it does about linguistic choices, 
but merely to give a more principled basis to the choices it makes. The same 
is true of KING, which builds on PHRED's approach to generation [Jacobs 871. 
KING uses a knowledge representation formalism (ACE) that allows a concept 
to be viewed as an instance of another concept, e.g. "John kissed Mary" could be 
viewed as an instance of transfer from John to Mary, allowing "John gave Mary a 
kiss" to be generated. As in PHRED, though, this representational sophistication 
expands the range of linguistic choice, but not the criteria for choice. KING sim- 
ply finds the most specific acceptable way of viewing a concept, and then selects 
and instantiates a pattern in a fashion similar to PHRED. Similarly, COMET uses 
information about collocations to guide lexical choice; whenever a lexical item 
is chosen, all the words it frequently co-occurs with are immediately brought out 
for consideration [Smadja 901. This is an automatic procedure, though; COMET 
has no awareness of the consequence of using (or not using) a collocational pair. 
In fact, if a sentence contains two collocations that enforce conflicting constraints 
on a particular word choice, the system has no way to recover. In none of these 
systems is there any reasoning about which choices would better serve the overall 
task of the generator. All linguistic choices not ruled out are considered equally 
suitable, and if all the choices are unsuitable, the generator has no way to choose 
a "least bad" option. 

All of these systems work, of course, in the sense that they produce compre- 
hensible output that says the right thing. In fact, some of them can generate quite 
sophisticated and fluent text. Yet they miss an important aspect of how language 
is used. In natural speech and writing, linguistic choices serve not just to transmit 
information in acceptable (i.e. grammatical) form, but also to support the speaker's 
or writer's aims in more subtle ways. The sensitivity of linguistic choice to more 
than just the literal information being expressed can be seen in some examples 
from a (randomly chosen) newspaper article [Rossi 871. The article discusses an 
Indian chief who is leading opposition to a highway project because it will dis- 
turb Indian graves. While it's not possible to explore how particular choices were 
made in the construction of the article, since it was presumably revised and edited 
to some extent, the way that particular linguistic choices support larger goals is 
apparent. 

Consider the following examples: (all italics added)3 

3The discussion of these examples will occasionally refer to Indian beliefs. I make no claim 
that these references are at all correct; they are intended rather to reflect the popular conception 
of what Indians believe. I assume that, like most things, Indian tradition is more complex and 
more varied than the popular conception. 



(13) He [Roy Crazy Horse] is one of three chiefs the state routinely deals 
with. [p. 441 

(14) If you talk to Wyandaga, it's pretty obvious there's bad blood between 
them. [p. 441 

(15) On a Sunday afternoon in late spring, a small group of Indians waits 
for something to happen. Wyandaga sits quietly at a picnic table. 
[P. 451 

Why is the word "routinely" used in (13) rather than, say "normally" or "usu- 
ally"? The article contrasts Wynadaga (its main subject) with Chief Crazy Horse; 
Wyandaga is rebellious and outside the system, whereas Crazy Horse co-operates 
and works within the system. Using "routinely" supports this contrast by suggest- 
ing that Crazy Horse is part of the "routine" of the state government; "normally" 
or "usually" would not have this connotation, even though they would convey the 
basic intended meaning at least as well. In (14), "bad blood" conjures up images 
of blood feuds and primitive tribal conflict that draws on and reinforces an image 
of "primitive" Indian life in a way that alternatives such as "a lot of anger" or "a 
long history" wouldn't. "Late spring", in (15), is a vague term. Why not give the 
actual date, or if the author doesn't want to suggest that the particular date has 
some significance, at least the month? The term "late spring", though, ties the 
time to the season, reflecting Indian concern for nature and the flow of the natural 
world, and setting up the subsequent description of an Indian ceremony in the 
woods. In all of these examples, the what makes the actual choice superior to the 
alternatives isn't that it expresses the intended meaning better, the alternatives do 
that just as well. Rather, the actual choice's advantage is that it better reinforces 
some other aspect of what the article is trying to portray. 

This can be seen more directly in cases where the article describes the same 
thing in more than one way: 

(16) a. If the archaeologists suspect there is a burial site, . . . [p. 441 
b. He added that "if it were a burial ground, I would be there." [p. 441 

(17) a. . . . he [Wyandaga] is forced by his religion to oppose them [p. 441 
b. "he mixes a touch of myth, a touch of tradition, maybe a touch of 

archaeology, and it's sort of a mixture of everything." [p. 441 
(18) The chiefs voice echoes in the trees; a dozen voices follow. About 

a hundred yards off, on the main road, there is a sound. At first it is 
a distant roar, impossible to identify, but as it closes in, it becomes 
obvious: It is the cry of a car without a muffler. [p. 451 

In (16)a, the term "burial site" is used when discussing the actions of archaeolo- 
gists, reflecting the clinical, professional attitude they have towards the graves. On 
the other hand, Chief Crazy Horse describes the same place as a (purported) "burial 
ground", reflecting the more nature-centered Indian view. An even stronger con- 
trast is seen in (17)a, where what Wyandaga sees as his "religion" is viewed by 
an archaeologist as merely "myth"; what one sees as a true way of approaching 
spirituality the other sees as merely an interesting collection of stories. What's 



at issue here isn't what's being talked about; after all, the graves are the same 
whether they're called a "site" or a "ground", and Wyandaga's beliefs are the 
same regardless of whether they are called "myth" or "religion". The issue is 
how the reader is going to conceive of the referent and relate it to other things 
discussed in the article. Thus it is even possible to use several different terms 
to describe the same thing in rapid succession, as in (18). Here several terms 
are used in two consecutive sentences to describe the same noise. First it is a 
"sound", leaving it uncertain and mysterious. Next it is a "roar", making it seem 
ominous and perhaps a little frightening. Then it becomes a "cry", making it 
identifiable as the call of an animal. This succession of terms turns the car, a 
machine, into a kind of stalking animal, more in keeping with the nature-oriented 
Indian view of the world adopted here. It also serves a more local function of 
tying the sentences together into a complete little story, with the introduction of 
a mystery, rising tension, and a climax that relieves the tension and clears up the 
mystery. This dramatic structure would still work without the varied terminology, 
but the choice of words reflects and supports that structure. This use of linguistic 
choice to support the local discourse structure can also be seen in the first sentence 
in (18), where the choice of "echoes" and "follows" suggests that the other voices 
are also "echoes". 

The kind of choice in these examples is beyond the capability of most genera- 
tors because of their assumption that linguistic (especially lexical) choice involves 
locating the most appropriate option in a static space of possibilities. The only 
relevant factors are the information to be expressed by the choice and the set of 
available options. But in fact, as these examples show, the generator needs to 
consider many other factors, such as the purpose(s) driving the generation, other 
things being talked about, how the current choice fits into the overall structure 
of the utterances being generated, the knowledge, attitudes and beliefs that the 
system holds regarding the subject under discussion, and what the system knows 
about the hearer's knowledge, beliefs, and attitudes. The set of factors relevant to 
the generator's decisions about how to talk about comprise the system's perspec- 
tive ; i.e. the way it currently perceives the world. The notion of perspective is 
a kind of extension of the common notion of a "discourse context" as including 
everything directly mentioned or associated with something directly mentioned in 
the discourse. The perspective includes not just the discourse context but also 
whatever ideas and beliefs the system currently has about whatever is being dis- 
cussed. Only by being sensitive to the entire perspective will a generator be able 
to make the kinds of choices shown here. 

There is, in fact, at least one generator that does seem to be sensitive to 
perspective. PAULINE [Hovy 88a] explicitly considers pragmatic issues such as 
formality, social interaction, and time pressure in constructing its utterances. For 
example, when generating a description of an anti-apartheid protest, PAULINE 
can say "officials removed the shantytown" if it supports the officials, and "the 
shantytown was destroyed by officials" when it supports the protesters [Hovy 88~1. 
But PAULINE doesn't provide any guidance on how to design a representation 
for a generator, because its realization component is essentially ad hoc; it consists 



of a set of independent specialists that are not constrained in any way. While 
PAULINE does use Conceptual Dependency [Schank 751 as an underlying rep- 
resentation, the information that it uses to realize pragmatic effects is encoded 
separately. Thus we are still confronted with the problem of designing a repre- 
sentation that can provide the generator with everything it needs to know. 

The obvious solution would be to simply incorporate all the factors making 
up the system's perspective into the structure of the space of available choices. 
Every element of the representation could be marked to indicate what the system's 
current attitude was towards it, whether it was currently being talked about, how 
it relates to the system's current goals, etc. This isn't possible, though. The range 
of relevant factors is unbounded, and thus cannot be compiled out in advance of 
the need to use them. The examples discussed above demonstrate that linguistic 
choice is potentially dependent on a particular system of understanding and de- 
scribing the world. The terms "burial site" and "burial ground", for example, are 
equally good for explaining what sort of place is being discussed; the difference 
is in what role such places are to play in the world. Similarly, "late spring" is 
actually less useful than "May" in describing the time of the Indian meeting. But 
it encourages the reader to think of the passage of time in natural terms, as the 
Indians do, rather than in terms of an artificially structured calendar, as Western 
civilization does. The particular view of the world from which the system is 
speaking can affect any of the choices it has to make, in arbitrary ways, because 
it determines which aspects of the things the system is talking about are important 
and which are unimportant. But these determinations are not absolute; if precision 
is very important, then "May 6th" is a better choice than "late spring". Further- 
more, the system must be able to adapt to different world views as it deals with 
different situations and different pe~p l e .~  So there is no way to arbitrarily select 
a fixed set of possible relevant factors; the generator must be able to consider the 
effects of various different perspectives, and also be able to override them when 
appropriate. 

Even if it were possible to figure out all the different ways the system might 
need to view the world, it still wouldn't be possible to work out all the rele- 
vant factors in advance. First, the amount of information involved would be 
overwhelming; every bit of knowledge that the system has could potentially be 
relevant to every linguistic choice. The more serious problem, though, would be 
that the system would still need to take on other points of view besides its own. 
There are two reasons for this: the system may need to talk about other people's 
views, and it may need to adapt to the needs of the person it is communicating 
with. Note that the phrases "burial ground" and "burial site" both occur in the 
same article. The different phrases are used because the writer is presenting the 
views of different people, and thus writes from their perspective. A generator 
that is part of an intelligent system will need to be able to produce descriptions of 
the reasoning, beliefs, and desires of other people; to do this properly, it must be 

4 0 f  course, a special-purpose system might be fine with just one world view encoded into its 
linguistic and conceptual knowledge. But a generator that is part of a truly intelligent system must 
be more flexible and general. 



able to adopt their perspective. Similarly, the generator may need to work from 
the user's perspective in order to successfully achieve the goals it is working on. 
Referring to the user's religious beliefs, for example, as "myths" or "fables" could 
lead to trouble. Thus the linguistic choices the generator makes must be capable 
of being sensitive to any possible perspective. 

The inherent fuzziness and inconsistency of an intelligent agent's model of the 
world also prevents the perspective from being compiled out in advance. It has 
often been noted that many concepts have "fuzzy" edges; it's not possible to pre- 
cisely delimit their meanings (see, for example, [Labov 73,Rosch 75,Lakoff 721). 
How big does a rock have to be to be "large", for example? Or what is a "toy"? 
A doll house is presumably a toy, even if it's part of an adult's collection of 
doll houses, and a computer presumably isn't, even if a child plays games on it. 
But what about a baseball? Is it a toy if a child uses it, but not if it's used in 
a professional baseball game? What if it's used in a professional game and then 
given to a child to play with? No matter how well-specified a concept may seem, 
there are always cases where its applicability is uncertain. Thus it is impossible to 
compile out in advance a complete specification of the concept in every possible 
perspective; there would always be further perspectives to consider that differed 
in relevant ways. 

Similarly, an intelligent agent's world model will be inherently inconsistent. 
This problem has often been noted in the case of inheritance networks with ex- 
ceptions (e.g. [Brachman 851). For example, if we know Clyde is an elephant, 
and we know that elephants are gray, then we can infer that Clyde is gray; if we 
also know that albino elephants are elephants, and that albino elephants are white, 
and that Clyde is an albino elephant, then we can also infer that Clyde is white, 
producing a contradiction. This kind of inconsistency is not limited to property 
inheritance, though. For example, a hypothetical Mitch Marcus might know that 
the fastest way to get to work is to take Wissahickon Drive. But he might hear on 
the radio one morning that there's been a temble accident and Wissahickon Drive 
has a two hour backup, from which he would hopefully infer that Wissahickon 
Drive is not the best way to get to work today. Inconsistencies like these run 
rampant through the world model; it would be impossible to resolve them all in 
advance. 

In fact, it would be a mistake to try to compile out the fuzziness and in- 
consistency of the world model, because the system can take advantage of them 
to be more flexible and expressive. For example, strongly connotative words 
such as "jerk" or "blunder" work by being extended over ,the person or action 
described, they are used primarily for the implications they make, not for clas- 
sification. Their fuzziness is what makes them useful; if they had sharp edges, 
they could only be used in cases where their connotation was already clear. Sim- 
ilarly, the inconsistencies in the world model allow for ignoring irrelevant details; 
the system need only believe that "elephants are gray" or "Wissahickon Drive is 
the best route" rather than "elephants that aren't albino elephants are gray" or 
"Wissahickon Drive is the best route unless there is an accident or it's closed for 
construction or...". People generally only worry about the inconsistencies in their 



knowledge when they bump into them explicitly, and then they just &a1 with 
the immediate consequences. Furthermore, inconsistencies can be handled just as 
easily by revising the categories and inference principles involved as by detecting 
a mistaken inference or an invalid piece of evidence; or the inconsistency may 
just be left intact if it's not important enough to worry about. The appropriate re- 
sponse depends on how the inconsistency came up, what the implications of each 
possible resolution are, what the system is planning to do with the information, 
etc.; in other words, the appropriate response to the detection of an inconsistency 
depends on the perspective. Thus it's not possible to build a complete map of the 
system's conceptual space to use to look up the options in, because the conceptual 
space is fluid and incoherent. 

On the other hand, a map is just what is needed. If all the generator needed to 
do was look through some options and find one that matched its intentions, then 
it would be sufficient to simply evaluate each option and get a yes or no answer. 
Unfortunately, as discussed in Section 2.1, the generator can't assume there will be 
any options that precisely match its intentions. In order to choose between options, 
the generator must be able to determine how well the options match its intentions, 
and precisely how they differ. This would be simple if each linguistic choice 
were positioned at a particular point in a fixed map of semantic space, as (for 
example) in N ;EL [Sondheimer 861; then the difference between the option and 
the system's intention would simply be the path between them indicated by this 
map. For example, if the generator wanted an expression for the concept "house", 
the map of conceptual space would indicate that the word "house" was an exact 
match and that the word "cottage" added the information that the house is small. 
This could be simply read off the semantic map, in which "cottage" would be a 
sub-concept of "house" with the additional attribute "small". The generator could 
then decide whether it wanted to include the additional information, and choose 
between the options on that basis. Similarly, options that leave out information 
or overlap with the intended meaning would be simple to detect; "house" is just 
"cottage" without the indication of smallness, and "mansion" is like "cottage" 
except that it's large instead of small. All of this can be determined immediately 
from a map of semantic space; without some sort of map it becomes difficult 
or impossible. It's not enough to have a reasoning system that can tell whether 
the intended meaning follows from the proposed expression; the system would 
also have to determine what else follows from the proposed expression, and, 
if the intended meaning doesn't follow, why it doesn't. This would require a 
meta-reasoning system, a notoriously difficult problem. 

Thus we are confronted with a dilemma: the generator needs a conceptual 
representation that it can read like a map, yet this can't be provided without 
compromising the flexibility the generator needs. The resolution of this dilemma 
is clear, what is needed is a representational framework that can indicate the 
differences between concepts that a map would show without actually containing 
a fixed map of the conceptual space. Unfortunately, the construction of such a 
representation is beyond the scope of this work. The best that can be done is to 
sketch out what would be required for a representation to be a solution to this 



dilemma, and then try to build a representation that captures enough of this for the 
generator to work properly. The representation's design will sacrifice efficiency 
and adequacy for other tasks such as general reasoning and learning in order to 
fulfill the generator's needs. Thus the generator will work as if it could really 
on a truly general representation, even though the representation will simplify 
or ignore many of the important issues involved in representing knowledge for 
general use. 

3.2 Requirements on the Representational Frame- 
work 

The principal difficulty in designing a representational framework is that it must 
be sensitive to perspective; that is, the linguistic and conceptual representations 
must be able to "represent" different views of the world. A change in perspective 
can, in effect, change both the meanings of words and the state of the world. The 
representational framework must therefore be able to shift automatically between 
various partially overlapping models of the the world. Furthermore, these models 
must be created and updated dynamically, because the system may adopt new 
perspectives that couldn't be anticipated. 

The system's perspective on an object or concept can be affected by almost 
anything, but most of the relevant factors fall within a few categories: 

a "Properties" of objects and concepts, i.e. what the system knows about 
them. There's nothing very surprising or exciting about the fact that this 
affects how the system views things, but it's important not to overlook it. 

Other related objects and concepts. Anything that an object or concept might 
be connected with or compared with can affect how the system views it. 
This could involve simple local changes such as whether a person is "tall" 
depending on who they are standing next to; or it could involve large-scale 
effects such as different domains using completely different vocabulary to 
describe the same object. 

a Purposes and attitude of the system with regard to the object or concept. If 
an object has no connection to what the system is currently doing, and has no 
intrinsic importance, very little information about it will be in perspective; 
in fact, the object may not be visible at all to the system. Similarly, the 
system's perspective on an object that it needs to perform some task will 
change significantly if the system finds a better way to do the task; the 
object may change from being desirable to being a nuisance (e.g. if it is 
bulky and in the way). 

Perspective controls how much of the system's knowledge about an object 
is visible at any given time; it can change both the amount and the choice of 
information that is available. The effects of perspective show up in a number of 
ways: 



Specificity Objects and concepts can be thought of and talked about at differing 
levels of detail. This shows up in "basic level" effects, in which there is a 
basic level of detail which people will naturally tend to choose [Rosch 761. 
For example, if a person sees a dog running down the street, they're more 
likely to call it a "dog" than to refer to it as an "animal" or a "beagle"; and 
they're very unlikely to call it a "creature" or a "long-haired beagle-terrier 
mix". It's not that the person doesn't know that the dog is a beagle; rather 
the concept "dog" is a more basic descriptive term. The information that 
it's a beagle is simply further &tail describing the object. What constitutes 
a "basic" level of description varies with the perspective, though. When 
talking to a breeder at a dog show, for example, the same dog would be 
more likely described as a "beagle7' rather than as just a "dog". Thus the 
perspective affects which concepts are focused on as the most basic ones. 

Perspective also affects whether details are visible or "forgotten" temporar- 
ily. Thus, for example, I might think that my local convenience store is 
always open, even though I know it's closed on Christmas and New Year's; 
those details are just not relevant if I'm just trying to decide where to get a 
newspaper. Or a financial advising system might know that municipal bonds 
are a good investment in certain cases, oblivious to the fact that they're not 
very good for non-U.S. citizens who won't get the tax exemption on them.5 
Hopefully these details will be brought into perspective if it is New Year's 
or if the user is a foreigner; in the normal case, though, they can be safely 
filtered out by the perspective. 

Domain Different domains will view things in different ways, and hence will 
use different concepts to describe and reason about them. For example, 
the same building might be thought of as "home" when planning leisure 
activities, a "property" when considering real estate taxes, an "investment" 
or a "tax shelter" when considering financial planning, or an "eyesore" when 
considering aesthetics. The range of concerns relevant to the domain affect 
which properties of the object are relevant; thus a change in the domain can 
change the range of conceptual vocabulary that makes useful distinctions. 
For example, when thinking or talking about kitchen supplies, if the concern 
is for household expenses, the various items might be characterized on the 
basis of how they were obtained, using concepts such as gift, purchase, 
prize, reward, or loan. On the other hand, if the concern is for what to use 
at different kinds of meals, they might be characterized as junk, disposable, 
utility, fancy, or elegant items. And if the concern is just to find the 
right implement for a particular task, they might be characterized simply 
as plates, cups, bowls, knives, forks, spoons, trays, and so on. This kind 
of sensitivity to the domain-related perspectives is essential to working in 
multiple domains, because otherwise the knowledge used in each domain 
has to be kept completely separate; there is no way to keep the irrelevant 

5This is only an illustration; don't take it as actual useful advice! 



aspects of other domains from appearing and distracting the ~ y s t e m . ~  

"Lexical" Presuppositions Words and concepts include implicit background as- 
sumptions; if these don't hold, then it's generally not possible to apply the 
concept. For example, the concept of a "lie" presumes a whole theory of 
basic cooperative behavior [Sweetser 831. An utterance can be considered 
a lie only if it's in a situation where that theory applies; thus someone 
acting in a play, or reading a story, or making a joke wouldn't be lying, 
even if what they said was false and was believed by the hearer. Similarly, 
"steal" presumes notions of property (otherwise the objects are merely being 
"taken"); "tax" assumes that the organization is a government (otherwise 
it's "extortion" or "theft"); "bachelor" implies that the person is subject to 
the normal process of courting and marriage (and hence isn't, say, a priest). 
The presuppositions are implied even if the term is being denied. Thus the 
perspective must support the presuppositions in order for the concepts to be 
available. When reasoning or talking about actors in a play, the concept of 
a "lie" shouldn't be available; when talking about the Pope, the concept of 
"bachelor" shouldn't be available. 

Reinforcing Factors If some concept is of questionable applicability, it can be 
reinforced (or invalidated) by the presence (or absence) of independent 
factors commonly associated with the concept. For example, eating a bagel 
may not count as "breakfast" if I'm by myself, but if my wife is sitting 
with me and having a bagel, eggs, and some cereal, then it probably is 
"breakfast". This distinction is entirely independent of anything I do. And 
this is a real distinction, because I'm likely to respond differently in each 
case if someone asks me if I've had breakfast today. Similarly, if I go to 
a conference for 3 days, skip all the sessions except one, and spend the 
whole time sightseeing, it's still not a "vacation", while if I go to the same 
city on my own, and attend a linguistics talk at the local university that 
I happened to hear about, and spend the rest of the time sightseeing, it 
is a "vacation". The distinction is not in what I did, but rather in how I 
fit it into the overall pattern of my life. Thus "vacations" are part of my 
personal life, and "conferences" are part of my professional life, and this is 
the determining factor. 

If the meaning of concepts can change with the system's perspective, then 
what happens to the notion of the definition of a word or concept? The answer 
is simple: it disappears. There cannot be any distinction between "definitional" 
knowledge and "factual" knowledge; there is neither a coherent way to make 
the distinction nor a difference in how the two kinds of knowledge are used by 
the system. Of course, the representation will still contain the information that 
makes up the "definition" of its concepts; it could hardly function without it. 

'McCoy's ROMPER system WcCoy 851 uses a notion of "object perspective" to focus on 
the most salient parts of its domain model; see Section 3.5 for a comparison of the notions of 
perspective in ROMPER and the current work. 



There should even be a representation of the concept of a "definition". But this 
information will have the same status and be represented in the same way as the 
"factual" information that isn't considered part of a definition. 

The reason for this is, paradoxically, that separating definitional and factual 
knowledge makes it impossible to modify the definition of a concept indepen- 
dently of what the system knows about the concept. This can be seen in the 
attempts to give a rigorous interpretation to the concept taxonomy in KRYPTON 
[Brachman 831. Brachman, Fikes, and Levesque argue that concepts should be 
replaced with new concepts rather than modifying their definitions. For example, 
they argue against correcting the (mistaken) notion that whales are fish by simply 
detaching the whale concept from the fish concept and attaching it to the mammal 
concept. Since definitions simply equate terms with combinations of primitive 
predicates, changing the definition would amount to changing the combination 
of predicates to some other combination. "In reality what has been achieved is 
a change in the structure of the Concept of a fish with properties a, b, and c 
to that of the Concept of a mammal with properties a, b ,  and c-not a terribly 
well-motivated move."[Brachman 83, p. 41 

So how could the system correct its mistake? The only possibility in KRYP- 
TON would be to create a new whale concept with the correct definition. The 
problem with this approach is that there is no way to relate the new and old 
concepts. Any previous inferences about whales used the old whale concept. 
Thus there are only two options: throw out everything the system knows about 
whales except the definition, or assume that anything inferred using the old con- 
cept applies to the new one as well. The former option throws out a lot of useful 
information (e.g that whales are the largest animals, or that whales are in danger 
of extinction); this doesn't seem reasonable. Why should correcting a misconcep- 
tion about whales make the system forget everything else it knows about them? 
The latter option, though, would maintain the belief that whales are fish, since 
that's something the system could infer, thus making it impossible to get rid of 
the misconception at all! What the system really needs is not to replace its whale 
concept at all; it really does need to modify it from "a fish with properties a ,  b, 
and c" to " a mammal with properties a ,  b, and c". 

As Brachman et. al. point out, though, modifying concepts in this way is 
incompatible with a definitional knowledge representation. So the notion of a 
definitional representation will have to be abandoned This shouldn't really be 
surprising, though; after all, what can be known about concepts independent of 
knowledge about the world is essentially nothing. The only knowledge that is 
independent of facts about the world is tautological, i.e. vacuous. Definitions, 
as used in mathematics and in KRYPTON, are not really a kind of knowledge 
at all; they are merely convenient abbreviations for complex expressions. Thus 
the attempt to separate the howledge representation into definitional and factual 
components is unworkable. 

The attempted distinction between between definitional and factual knowledge 
is very similar to the traditional philosophical distinction between analytic and 
synthetic statements (see, for example, [Carnap 37,Carnap 471); Brachman et. al. 



even describe the terminological component of KRYPTON as able to "answer 
question about analytical relationships among [its] terms."[Brachman 83, p. 61 
The problems with the analyticlsynthetic distinction have been shown by Quine 
(among others, see for example [Quine 531 and [Quine 601). In fact, Quine's 
critique of analytic philosophy underlies much of the approach taken here in 
analyzing intelligent behavior; in particular, the representation developed here has 
been modeled after some of the ideas in The Web of Belief [Quine 701 (although 
the emphasis and the details are quite different). Quine's critique proceeds on 
theoretical grounds; the basic problem (oversimplified) is that there is no way to 
define analyticity without having a metalanguage to discuss ordinary language in, 
and there is no such metalanguage. The problem with the definitiondfactual split 
here is a more practical one; there is no way to maintain the split and still allow 
the kind of knowledge revision that the system needs. 

This criticism only applies if the terminological component is interpreted def- 
initionally; if it is taken as merely asserting certain specific kinds of relations be- 
tween concepts, then the problems with modifying definitions go away. Such an 
assertional terminological component might still be useful as a convenient and/or 
efficient way of representing "definitional" information. Even this approach won't 
work, though, because the information that is considered definitional varies with 
the perspective. "Spring", for example, might be the time between the vernal 
equinox and the summer solstice to an astronomer, the time when the trees and 
flowers bloom to a botanist; and the time when the weather gets nicer to a layman; 
or it might be all three to the same person at different times. Similarly, "water" 
might be a compound of hydrogen and oxygen to a chemist, and a clear, tasteless 
beverage to a waiter. Which information goes in the (assertional) terminological 
component and which in the factual component would have to change to reflect 
these differences. Thus there can be no fixed division into these two components. 

This doesn't mean the representation must be completely uniform, though; 
in fact, the representation proposed below will be built with several different 
kinds of pieces. What is important is that the knowledge base present a uniform 
interface to the rest of the system. The internal organization of the knowledge 
base can't reflect fundamentally different kinds of knowledge, because perspective 
shifts can change which category information fits into. A particular piece of 
information could be considered a definition in one perspective, a fact in another, 
and a reasoning principle in yet another. Thus the representation can't have those 
distinctions built into it. 

Instead, the knowledge base must use perspective as a kind of filter to present 
the current view of (part of) the world. As the system looks up information in 
the knowledge base, the perspective helps pick out which parts of the fuzzy and 
inconsistent model will be visible to the system. Thus the knowledge represen- 
tation provides the illusion of a coherent and consistent world model, a kind of 
dynamically varying, on-demand partial map of semantic and conceptual space; 
which is just what the generator needs. At least, it would in an ideal world; the 
representation developed below will only partially meet these goals. 



Sketch of the Representational Framework 

The representational framework used in this work will not fully meet the require- 
ments laid out in the previous section. Building a representation that did satisfy 
them completely would be a difficult task, beyond the scope of the current work's 
focus on the generator. Instead, the goal will be to construct a representational 
framework that adequately supports the generator's needs; in particular, the han- 
dling of perspective will be somewhat oversimplified compared to what a full 
intelligent system would need. The generator, however, will get the same kind of 
information that it would get from a more sophisticated representational frame- 
work, so it will still be able to provide the services an intelligent agent would 
need. 

The representational framework will be kept fairly simple, since the aim is to 
merely meet the needs of the generator. More complex mechanisms that might 
be needed to support a complete system's needs can be left out, making the 
construction and use of the representation simpler and more straightforward. In 
addition to its practical advantages, keeping the representation simple will allow 
for complexity to emerge only where it is needed. As the generator is built, it 
may prove necessary to augment the representational framework; thus the repre- 
sentation arrived at in the completed system will indicate the simplest possible 
framework that can do the job. Furthermore, a simple representation framework 
will also improve the system's flexibility; anything built into the representation 
framework is fixed for all time. Things merely represented using the framework, 
on the other hand, are easily modified as needed. 

In line with this approach, as little information and reasoning as possible will 
be built into the framework; instead it will be simply represented as part of the 
system's knowledge whenever possible. For example, property inheritance will 
not be explicitly built into the system. Instead, there will be an "isa" link marking 
subconcept relations and an inference rule saying that when two concepts have 
an "isa" link, one of them can share the properties of the other.7 Many other 
things that might plausibly be built into a knowledge representation (e.g. the 
figurelground distinction, spatial position and motion, and quite a few other things) 
will also be handled by explicit modeling, at least initially. The only information 
that will be hard-wired into the system is the idea that there are concepts and 
relations between concepts; all other information can be modified as the system 
changes its perspective. The reluctance to build in special-purpose mechanisms to 
handle these might seem surprising, given that the representation is admittedly not 
expected to meet the ideal requirements. Avoiding special-purpose mechanisms 
is extremely important, though, because it will allow the system's knowledge to 
be sensitive to its perspective. This also allows almost anything to be learned by 
the system (although this won't be taken advantage of here). Since almost all of 
the system's knowledge is represented using the framework, it can all potentially 

7This is an oversimplification; there will actually be several kinds of links marking relations 
such as subconcept, subset, and subpart that will have inheritance rules. See section 3.6.1 for 
more details. 



be learned by the system; any knowledge built into the framework would have to 
be "innate", i.e. present in the system from the beginning. This doesn't mean that 
that the system has to start off not knowing anything, of course; it just means that 
whatever "innate" knowledge the system has is encoded by the representation, not 
built into it. 

The prospect of adding machinery as it seems necessary raises the specter of 
the representational framework becoming completely ad hoc, particularly since it 
is already designed around the specific needs of the generator. This is important 
in both the evaluation of the completed system and the process of building it. 
Assessing the generality of a system is often problematic when there's no clear 
underlying theory to judge it against. It's possible, of course, to just try adapting 
it to a new problem or domain. But this may require a lot of work, perhaps 
as much as building the original system, and if it doesn't work, is the problem 
with the system or the adaptation? If it does work, did the adaptation really 
differ enough from the original? Nevertheless, a combination of inspection and 
appropriate testing of the system can at least detect obviously ad hoc features; 
this problem is discussed further in Section 4.3. More difficult still is the problem 
of preventing ad hoc features from creeping in as the representational framework 
is modified. The only apparent remedy for this, aside from caution and good 
intentions, is that any change to the representational framework will be applied 
consistently throughout the system. Thus, for example, if a special mechanism is 
added to handle figurelground distinctions because it's needed to properly annotate 
a particular linguistic option, it will be used wherever figurelground distinctions 
occur. This will keep the mechanism a general one, rather than one used just for 
a particular case. Sticking to this principle while building the system will help 
ensure ,that the representational framework doesn't become a collection of ad hoc 
machinery. 

The representational framework consists of three elements: a semantic network 
representing the system's world knowledge, perspective weights on the elements 
of the network representing the system's current perspective, and inference rules 
over the network that the system uses to reason about the world. The generator 
uses the semantic network, filtered by the perspective, as a map of its conceptual 
space that indicates differences in meaning between linguistic options and the 
planner's requests. The inference rules are used to help locate requests and options 
on the map. Thus the representational framework lets the generator compare an 
option with the corresponding request and determine how their meanings are 
related (in the current perspective), which is precisely what the generator needs 
to know.8 

%e entire framework is also used by the communicative planner to suppoR constructing plans 
and evaluating the consequences of particular actions. This use of the representation, however, is 
less central to the focus of this work, since it's really a matter of general issues of reasoning and 
representation. This will limit the power of the planner, of course, but the planner has already 
been limited in order to concentrate on the internal workings of the generator (see Section 2.4). 
This further limitation just means that it won't work as well as it should, not that it will work 
differently. 





For example, suppose the generator is trying to decide whether a particular 
car car-1 can be described as a "sports car". Figure 3.1 shows (some of) the 
knowledge used to figure this out; the shaded nodes and links are not in the 
current perspective. The system will use general principles of inference to decide 
that car-1 does in fact fit in ,the category "sports car"; more precisely, it will 
deduce that there is an isa relation between car-1 and sports-car. The knowledge 
about engine size and speed would block this inference, of course, but it's not 
in perspective, and is therefore not noticed If the concepts of engine size or 
speed should come up either in the conversation with the user or in the system's 
reasoning (which is likely to happen if there is a continued discussion of cars) then 
these concepts will be brought into perspective. Once this happens, the system 
will no longer consider car-1 to be a sports-car; instead it would have to find 
some other way to describe it. Thus the perspective shift leads the generator to 
produce a different utterance; this is precisely what ,the generator needs from the 
representational framework. 

The various parts of the representation, in more detail, are organized as fol- 
lows: 

Semantic Network The basis of the representational framework proposed for the 
generator is a semantic network, in the original sense of representing various 
relations between concepts [Quillian 671, rather than providing definitions 
of terms as in KL-ONE or KRYPTON [Moser 83,Brachman 831. In the 
traditional fashion, the network will be contain nodes representing concepts 
and individualsg and links representing relations between them. The links 
can connect an arbitrary number of nodes, although presumably most will 
connect two nodes, as is the case in most semantic networks. In addition, 
each node and link has a label; these labels are used to identify two nodes 
or links as representing (instances of) the same concept. For convenience, 
the label will generally be an English word or phrase corresponding to the 
(intended) meaning of the node or link, but the labels have no meaning 
to the system itself; the system can simply tell whether two labels are the 
same.'' The links will also have weights associated with each node they 
connect; these weights are used in reasoning to control how strongly the 
link can be followed from the node. For example, the reasoning "if x is 
a fire engine, then it's probably red" is more likely and more reliable than 
the reasoning "if x is red, then it's probably (or possibly) a fire engine", 
both because it's more likely to be true and because it's more likely to be 
useful. 

'The distinction between concept and individuals, and how to represent it, is discussed in 
Section 3.4.3. 

10Actually, it would be better to use the labels simply as conveniences for the system designer 
that are invisible to the system itself. Unfortunately, they are needed for technical reasons; see 
Section 3.4.4. This is the first instance we've encountered of being forced to add machinery to 
the representational framework, since we could avoid the need for labels if we didn't need to have 
property inheritance. 



Perspective Weights Each node and link in the network has a weight (in addition 
to the permanent weights on the links) representing its visibility in the 
current perspective. Nodes and links with higher weights are noticed sooner 
when the system is scanning through its knowledge to either follow chains 
of reasoning or look up information. Thus, for example, if the system is 
looking for properties to describe a f i e  engine, it will come up with "red" 
long before it comes up with "75 feet long". Sufficiently low perspective 
weights can ensure that a concept or relation will never be noticed (un.less 
the perspective changes); thus the fire engine would never be described as 
"having Delco spark plugs" in most perspectives. 

Variable weights, of course, raise the question of how they are varied. That 
is one of the issues to be explored in building the generator, but part of the 
answer seems clear already. Any time a concept or relation is accessed, 
that is, reasoned with or noticed by the system, its perspective weight must 
be increased (by how much is unclear). Also, nodes and links can have 
perspective activations associated with them, so that when they are accessed 
they can automatically alter the perspective of other nodes and links. This is 
clearly not enough though: the massive shifts in perspective that accompany 
a change in domain need to be handled somehow. Also, there must be some 
way that things can fall out of perspective if they're not accessed for a while; 
perhaps the perspective weights should gradually decay if the node or link 
is not accessed. 

Inference Rules The semantic network only represents the static knowledge of 
the system. In order to reason about what it knows, the system must have 
some sort of inference mechanism; this is what the inference rules are for. 
Inference rules can be associated with particular nodes or links that they 
reason about, in which case they are only used when the nodes or links are 
accessed, or they can be generally available. Inference rules are subject to 
perspective because they are available only if the node they are attached to 
is accessible. In addition, it may prove necessary to put perspective weights 
on the general rules; this will not be done initially, though.'' Furthermore, 
inference rules can have simplified versions that are activated when the 
details involve concepts that aren't in the current perspective. This allows 
for certain kinds of default reasoning; the simpler but less accurate version 
of the rule is used unless a concept involved in an exception is active. 

The rules consist of an antecedent and a consequent, each of which is 
a small piece of semantic network. The rules operate by matching the 
antecedent against the system's knowledge base; if a match is found, the 
consequent is then added to the system. The consequent may already be 
there, of course, in which case the rule's effect is merely to increase its 

''One alternative might be to not allow general rules but instead attach them to appropriate 
nodes or links that are almost always in perspective. The rule for property inheritance, for example, 
might be attached to the "subconcept" node. 



perspective weights. The rule may also have nodes or links with variable 
labels; these are treated as universally quantified, and thus match anything. 
Variables in the consequent must also be in the antecedent, so the= will 
never be a problem of trying to add variable-labeled nodes or links to the 
knowledge base. Arranging to use these rules in an efficient and useful 
fashion is a difficult problem which, fortunately, doesn't need to be solved 
here. The main rule that is needed for the generator is one allowing property 
inheritance, which is constrained to following "isa" links. Rules that are 
attached to particular nodes or links will, of course, be used only when 
those nodes or links are accessed. If the reasoning becomes too unwieldy, 
a simple time-limited breadth-first search can be used. 

The Semantic Network 

The semantic network is the base that the whole representational system is built 
upon. It records the system's beliefs about the world, indicating both the con- 
ceptual categories that the system uses to describe the world and the particular 
information about the world that the system believes to be true. With the perspec- 
tive fixed, it resembles the usual kinds of semantic networks such as KL-ONE or 
KRYPTON [Moser 83,Brachman 83,Sondheimer 861. 

There is a significant difference, though, between the semantic network here 
and KL-ONE or KRYPTON with regard to the intended interpretation of the net- 
work. In both KL-ONE and KRYPTON, the network is merely "terminological", 
that is, the nodes and links in the network merely serve to dejine concepts in terms 
of an fixed set of primitive concepts and relations [Moser 83,Brachman 83].12 AS 
discussed in Section 3.2, though, this approach will not work for an intelligent 
system. Instead, the structures in the network should be interpreted as making 
assertions about the system's beliefs about the world. The presence of a node for 
a concept means that the system believes that such a concept is a meaningful and 
useful way of categorizing things in the world; the presence of an individual node 
means that the system believes that such an object exists in the world.13 

3.4.1 Nodes and Links 

In knowledge representation systems such as KLONE and KRYPTON, the nodes 
and links represent concepts, individuals, and relations (or properties) in the world. 
Thus a "corporate stock" node represents the concept of corporate stock, and a 
"Mitch Marcus" node represents an actual person named Mitch Marcus. Here, in 
contrast, the nodes and links are the loci of the system's knowledge and belief 

120ther systems may have different intended interpretations, of course, but it's often not clear 
what the intention is. KL-ONE and KRYPTON are noteworthy for being explicit about this. Also, 
KRYPTON'S framework is actually defined in terms of these definitional relations, although these 
correspond in straightforward ways to elements of a network representation. 

13See Section 3.4.3 for a discussion of individual vs. generic concepts. 



about concepts and relations. Thus a "corporate stock" node or a "Mitch Marcus" 
node would simply be hooks where everything the system knows about corporate 
stock or Mitch Marcus is stored. In a sense, it's a misnomer to call the semantic 
network (et. al.) a "representation" framework, because it doesn't inherently rep- 
resent anything. Rather, the network actually embodies the system's knowledge 
and belief. Thus the system's knowledge about the "corporate stock" concept 
consists of the various links that connect it to the rest of the net (together with 
any inference rules that mention it), and the presence of the "corporate stock" 
node in the network means that the system has a concept of "corporate stock" 
available for reasoning. This distinction isn't actually important for the genera- 
tor's workings, but it is necessary to make sense of the notion of perspective in 
general and the handling of contradictions in particular. 

The nodes and links, then, provide the basic vocabulary for the system's 
knowledge and belief about the world. Nodes are discrete, atomic entities. Links, 
on the other hand, connect nodes together. In general, links connect two nodes, 
but they can connect any number of nodes as appropriate. For example, a between 
link could connect three nodes together. As this suggests, ,there must be a way to 
distinguish which node is which for any given link. That is, of the three nodes 
connected by a between link, the system must be able to distinguish which node 
is between which other two nodes. This need arises even with two-node links; 
a greater-than link is useless without an indication of which node is greater 
than which.14 In practice, this becomes important when comparing two links; the 
system needs to know which nodes correspond to which. This will be handled 
by numbering the nodes connected by a link from 1 to n. These numbers will 
only be used to pair nodes when comparing links; they are not intended to have 
any inherent meaning, nor will they be directly accessible to the system. There 
will be no particular meaning to being the "first" or "second" node for a link. 
Thus, for example, the "first" node of a greater-than link might be the larger 
or the smaller item; what matters is just that all greater-than links use the same 
ordering. Furthermore, greater-than and smaller-than links might both make the 
"first" node larger, and larger-than links might make the "second" node larger 
without any problem. 

Actually, links can connect other links as well as nodes. These links provide 
the system with a way to reason about and generalize over relations. For example, 
there could be a same-relation link between two greater-than links, a similar 
link between a greater-than link and a larger-than link, or an opposite link 
between a larger-than link and a smaller-than link. Links can also connect a 
node to a link; in Figure 3.1, for example, there could be a describes-appearance 
link between the car-1 node and the styling link. In fact, there can be one or 
more links between any link and the nodes (or links) it connects that indicate 
the role(s) the node (or link) plays in the relatio~ indicated by the (main) link. 
This has the potential for infinite regress, of cours~.  out in practice this won't be 

14Note that in systems like KL-ONE and KRYPTON, the analogue of links (roles) are attached 
to particular concepts and this implicitly distinguishes between the two linked concepts. 



a problem. These links are only potentially there; in general the system won't 
be interested in pursuing the regress very far, so they won't ever be created.15 
These "role" links could be used to distinguish the various nodes connected by a 
link, eliminating the need for numbering them. This would require, though, that 
there be a full set of role links associated with every non-role link. (The two 
ends of a role link can be easily distinguished, since one is a node and the other 
is a link.) This would perhaps be reasonable in a full intelligent system, which 
would necessarily have a large, broad, detailed network. In the present system, 
though, the network will be much simpler, and the numbering will be used (at 
least initially) for simplicity and efficiency. 

Allowing links to connect both nodes and links, though, seems to weaken 
the distinction between nodes and links. And since links can connect a variable 
number of nodes or links, then perhaps nodes should simply be considered links 
of "arity" zero, i.e. that don't connect anything. The immediate objection to this 
suggestion is that nodes represent general concepts and links represent specific 
connections between concepts, but this is really a question of individual vs. generic 
concepts (as discussed below). In fact, there will be nodes for specific objects 
(e.g. the Mitch-Marcus node) and generic links that embody a relation abstracted 
away from any particular concepts it relates. There is a real question, in fact, of 
whether it is useful or meaningful to have all three of a concept red, a single- 
node link for the property is-red, and the concept of a red-object. Resolving this 
question, however, is not crucial for the workings of the generator, so the issue 
will not be tackled here. Nodes and links will simply be considered different 
kinds of objects (whenever it matters), and the nature and existence of zero-node 
links will be postponed to some later project. 

3.4.2 Link Weights 

Each link has a weight (between 0 and 1) associated with each node (or link) 
that it connects. These weights are intended to represent the directionality of 
connections between concepts. For example, the fact that fire engines are red 
is more about fire engines than about the color red. So the color link between 
fire-engine and red would have a much higher value for fire-engine than for red. 

The link weights help control the running of inference rules; rules depending 
on links with high weights are more likely to be run, and the conclusions of the 
rules will be given more attention. This is in contrast to the perspective weights, 
which control whether the system even sees a link (or node) at all. The details 
of how this will work are discussed in Section 3.6 (although they are far from 
clear). 

The link weights are not really motivated by any need of the generator. The 
inferences needed by the generator will usually be driven by the need to compare 
two concepts, and thus will be fairly well focused already. It seemed unreasonable, 

''See Page 69 for a discussion of how to deal with a case where the infinite regress does cause 
problems. 



though, not to provide some way to distinguish between properties or relations that 
are very central to an object (e.g. a fire engine being red, or an elephant having 
a trunk) and those that are incidental (e.g. red being the color of a particular 
house, or Knuth's The Art of Computer Programming being the first book I 
read as a child.16). A full intelligent system, of course, would have to make such 
distinctions. Still, since the generator doesn't really need them, the link weights 
will be eliminated if they prove to be difficult to implement and use reasonably. 

3.4.3 Individuals vs. Generic Concepts 

The discussion so far has glossed over the distinction between individual objects 
and generic concepts. The discussion of Figure 3.1, for example, ignored the 
distinction between car-1, a particular object, and sports-car, a generic concept. 
This distinction is an important one, since it affects what kinds of reasoning and 
belief about the concept are possible, and it affects how the concepts are used. The 
distinction has been made explicit in many (if not most) knowledge representation 
schemes. In KL-ONE, for example, there are two different kinds of nodes for 
generic and individual concepts [Moser 831. In KRYPTON, the TBox (which 
is the semantic network-like part of KRYPTON) contains only generic concepts; 
individuals appear only within the ABox [Brachman 831. 

It would be possible to build the notion of individuals into the system. This 
would require adding a second type of node (and link) that would be used for 
individual objects and relations. Then the car-1 node in Figure 3.1 would actually 
be an individual node, and most of the links would be individual links. There 
would presumably have to be some adjustment of other parts of the system to 
accommodate this change. Link weights might work differently with individuals; 
inference rule antecedents might indicate whether they match only individual 
nodes, only generic nodes, or both; and so on. All of this would complicate the 
representational framework even further. 

Instead, the genericlindividual distinction will be represented within the net- 
work. There will be an individual node that will be connected by an instance 
link to each node that is an individual object.17 Any inferences which depend on 
whether a node is an individual or a generic node can simply check for this link 
to find out. 

The basis for this approach is the idea that the genericlindividual distinction, 
while real, is part of the perspective. That is, whether a particular concept is 
generic or individual can depend on the system's current perspective on that 
concept. For example, common-stock certainly seems like a generic concept; 
it can have subconcepts (e.g. IBM-common-stock or common-stock-that-pays- 
dividends), and there's no particular object in the world that can be pointed to as 
the common stock. On the other hand, statements such as "there are two kinds of 

16Not true. 
17~ndividual links will be instances of either this node or of a corresponding generic individual- 

link link. The question of whether there should be instance links between nodes and links, and 
what to make of such links, is as yet unexplored. 



stock: common and preferred" or "common stock was invented in the late Middle 
Ages " seem perfectly reasonable. In these statements, the concept of common 
stock is being treated either as a discrete entity within a set or as an object 
that has been created. Fortunately, the question of how to properly understand 
the genericlindividual distinction need not be settled here. The distinction will 
simply be treated as part of the perspective unless it proves to cause too many 
complications or inefficiencies, in which case it will be built into the framework 
as a fixed property of nodes and links. 

3.4.4 Labels 

Diagrams of semantic networks usually show the nodes and links with labels like 
"car" or "isa", and the diagrams here are no exception. This raises the question 
of what these labels. actually mean. There are basically four possibilities: 

1. The labels are just conveniences for the reader and don't exist in the system 
at all. 

2. The labels are purely atomic entities within the system; they have no mean- 
ing beyond being attached to particular nodes or links in the network. 

3. The labels are built from a base set of uninterpreted atomic labels, but they 
can be combined into various composite structures. 

4. The labels carry meaning that the system can understand and use. 

The last possibility, of course, just pushes the problem of how the labels come 
to have meaning off to another part of the system. In fact, this would imply 
that the semantic network isn't really serving as a representation formalism at 
all; instead whatever was providing the meanings for the labels would be the real 
repository of the system's beliefs. So this approach has to be rejected. The third 
possibility must be rejected for the same reason: there must be some other part 
of the system that provides an interpretation for the composite labels in terms 
of the atomic labels. Without such an interpretation, there would be no real 
connection between the composite labels and the atomic labels they contain, and 
the "composite" labels would effectively be atomic. 

The ideal approach would be the first one: the labels are simply for the con- 
venience of the reader (and designer), but have no role in the actual system. 
Only reasoning based entirely on the structure of the network would be legiti- 
mate. Any description, explanation, or justification of the system's behavior that 
relied on particular labels would be immediately seen as an instance of reading 
meaning into the network. Thus the kind of problems pointed out by McDermott 
[McDermott 811 could be avoided (or at least recognized) easily. 

Unfortunately, this approach puts severe limitations on the inference rules. In 
particular, it is impossible to write an inference rule for property inheritance. Such 
a rule should look something like Figure 3.2a. But consider trying to apply it to 





Figure 3.2b: the problems is how to recognize that the isa link between clyde and 
elephant is in fact an isa link. The only indication of this is the presence of an 
isa between the link and the generic isa link. But this just postpones the problem; 
now the new link must be recognized as an isa link. And thus we end up with an 
infinite regression of isa links which must be followed to its (non-existent) end 
before the rule can be applied. The only way out of this regress is to make the 
labels visible within the system, so that the isa links can be immediately identified 
by their labels. 

Thus the second approach is the one that will be adopted here: the labels will 
be visible to the system, but will have no structure or meaning to the system. The 
only thing the system can do with labels is compare them to see if two nodes 
(or links) have the same label. This makes the property inheritance rule tractable. 
The antecedent isa link can now be immediately matched with the link between 
clyde and elephant because it has the same label, and the rule can be run.'' But 
the labels still don't have any meaning to the system; the meaning of a node 
or link depends entirely on how it fits in with the rest of the network and the 
inference rules. 

The Perspective Weights 

Every node and link in the network will have a weight between 0 and 1 represent- 
ing its prominence in the system's current perspective. The higher the perspective 
weight on a node or link, the more likely the system is to notice it. A node with 
weight of 1 would be immediately noticed by the system; a node with a weight 
of 0 would never be noticed by the system (unless its weight changed). The 
collection of weights on all the nodes and links in the semantic network embod- 
ies the system's current perspective; that is, how the system currently conceives 
of all the objects and relations it hows  about. for example, the difference in 
perspective that allows a particular house to be described as either a hovel or 
a cottage could be modeled by differing perspective weights on instance links 
to hovel and cottage nodes. More importantly, this perspective difference could 
result from different perspective weights on related nodes such as size, location, 
or state-of-repair. If the location and size nodes has a high perspective weight 
but the state-of-repair node has a low weight, then the system might infer that 
cottage appropriately describes the house, since the factor that might block the 
description is not noticed. If the weights were reversed, on the other hand, the 
opposite conclusion would be reached. 

The perspective weights control the "noticing" of nodes and links by order- 
ing the system's search through the network. The system searches the semantic 

' '~ote that it's still possible to allow individual isa links to have other labels without under- 
cutting inheritance. All that would be needed is an inference rule that says: any two nodes joined 
by a link that isa isa link also have an isa link between them. This amounts to following up 
the (infinite) chain of isa links far enough to identify it. This technique won't be needed in the 
current system, though; all the isa links will be appropriately labeled. 



network in three ways: it can simply scan the network to see what elements are 
connected to a particular node or link (e.g. to construct a description, or to search 
for information to help with some other goal it is working on); it can compare 
nodes or links; and it can check for matches to inference rule antecedents (see 
Section 3.6). In each of these cases, the perspective weights determine which 
nodes and links the system examines and in what order. Thus when scanning the 
network the system looks first at the connections with the highest weights; con- 
nections with low weights will usually never be reached at all. When comparing 
nodes or links, the system will look first at the connections that have the high- 
est weights; connections that are completely out of perspective will be ignored. 
Finally, when running an inference rule, the system will try potential antecedent 
matches with the highest perspective weights first.lg In all three cases, nodes and 
links with high perspective weights are "noticed", i.e. used by the system, sooner 
than nodes with low weights. 

There are a couple of difficulties with this model of perspective. The first is 
with the notion that the perspective weights order the search through the network. 
Since the system's perspective varies constantly, there is no way to pre-compute a 
list of (say) links connected to a node, ordered by perspective. Instead the system 
has to compute how perspective orders network elements on demand whenever 
the system needs to search the network. This means that the system has to actually 
scan through all the links, including the ones that aren't in perspective, in order 
to determine which ones to "notice". Ultimately, this paradox suggests that a 
massively parallel implementation of the network is needed; this is, of course, 
a natural approach for a large network anyway (given appropriate hardware). 
Even with a sequential implementation, though, it's important to remember that 
perspective is a central part of the representation design, not just some sort of 
feature of the implementation. So even if the implementation is forced to check 
nodes and links that are out of perspective, the system will still see the search as 
guided by the perspective; the low-level details of the search are not visible. 

The other difficulty is with the notion of being "out of perspective". A node or 
link with a low perspective weight should not be noticed by the system, but how 
is this to be arranged? A node or link with zero weight can simply be ignored, 
but small non-zero weights are a problem. In some cases the normal ordering of 
search by the perspective weights will ensure that nodes with low weights will 
never be reached; in constructing a description, for example, the system will often 
find enough information from nodes and links with high weights. This cannot be 
guaranteed, however; in particular, a search for potential rule antecedents could 
easily find a match with a low perspective weight if there are no matching nodes 
currently in perspective. What is needed is some sort of cut-off value below 
which nodes and links are ignored just as if they had zero weights. Unfortunately, 
the choice of a cut-off value is completely arbitrary, and the consequences of a 
particular choice are unclear. Ultimately, there should probably be a variable cut- 

lgThe perspective also affects the order in which rules are tried and the content of the rules; 
see Sections 3.6.3 and 3.6.5. 



off range depending on how hard the system is looking (a notion which would 
also need to be made more precise, but see Section 3.6.5). For the current project, 
a fixed cut-off will be used, and the effect of setting it at various values will be 
explored. 

The model of perspective described here is similar to the one in the ROMPER 
system [McCoy 851, in which a perspective consists of salience values for object 
attributes in a KL-ONE-like concept network. "It is these salience values which 
dictate which attributes are highlighted and which are suppressed"[McCoy 85, p. 
681 Thus the salience values function much like the perspective weights. There 
are, however, a number of differences: 

1. In ROMPER, there is one (current) set of salience values for the entire 
network; two concepts cannot have different salience values for the same 
attribute. In contrast, two nodes can have different weights for the same 
relation (i.e. for links that are instances of the same generic link); there is 
no particular connection between them. 

2. ROMPER allows a small fixed set of precomputed perspectives, in contrast 
with the unbounded set of dynamically computed perspectives possible here. 

3. ROMPER only uses perspective when judging the relative similarity of 
object classes; perspective here is integrated with every operation of the 
knowledge representation. 

4. ROMPER'S perspectives control how much weight is given to each attribute 
when making comparisons. The perspective weights here are used only to 
control whether the system notices a node or link; once noticed, a node or 
link is given equal importance regardless of its perspective weight.*O 

3.5.1 Setting the Perspective Weights 

The perspective weights must initially be set to model the system's current per- 
spective and subsequently be modified as ,the system's perspective shifts. De- 
termining initial values for the perspective weights will be tedious but poses no 
major difficulties. Since the system will be starting off with no particular idea of 
what it is expected to do, the perspective should include high weights on fairly 
general concepts and on concepts related to helping the user (assuming the seman- 
tic network is sophisticated enough to include such concepts, which is unlikely in 
the present project). Medium weights should be put on basic concepts in whatever 
domain(s) the system knows about, and low weights should be put on everything 
else. If there are a small number of particular domains or problems the system is 
expected to be used for, then concepts relevant to them can have their perspective 
weights increased. Experience in building and testing the system will undoubtedly 

20This is a slight overstatement, since reasoning is directed towards nodes and links with higher 
weights. Any operation such as comparison that depends on the presence or absence of a node or 
link, though, gives equal importance to all in-perspective nodes and links. 



suggest ways to improve this general outline. The basic idea, though, is that the 
system's initial perspective should focus on its general knowledge without too 
much detail, on helping the user, and possibly on the likely domain(s) it will be 
working in. 

A more complicated issue is how the weights are modified to reflect shifts in 
the system's perspective. The perspective shifts can't be worked out in advance 
by experimentation like the initial weights since they depend on the particular cir- 
cumstances and situations the system finds itself in. The knowledge representation 
must be able to detect when the system's perspective should shift and respond by 
modifying the weights appropriately. Thus the weights will dynamically model 
the system's perspective as it develops and changes. 

One trigger for perspective shift is external effects such as perception. For 
example, seeing a red object will bring the color red into perspective. Similarly, 
touching something that's very hot will bring the concept of heat (and pain as 
well) into perspective. Even a computer system without any perception of this 
sort can still receive input from the user, which will have similar effects on its 
perspective. Any concepts that the user mentions would of course be "noticed" 
by the system and should therefore be brought into perspective. This is precisely 
how the system can focus on whatever questions or problems the user is interested 
in. Since the current project is primarily concerned with the generator, though, 
there won't be any opportunity for this kind of perspective shift. A full intelligent 
system, though, would need to handle it. 

Perspective shift more often arises from the workings of the system itself. 
As the system reasons with and explores its body of knowledge, it will tend 
to bring into perspective concepts related to the ones it is using. In the most 
extreme case, using a concept in a new domain can bring the whole body of 
knowledge the system has about that domain into perspective. The shift can be 
much less dramatic, however. Thinking about a rainbow, for example, might 
bring into perspective the various colors of the spectrum; it might also suggest 
related concepts such as prisms, or rain, or even romantic feelings. Or if the 
system were thinking about a car and noticed that the door was long, it might 
bring into perspective concepts such as the distinction between two-door and four- 
door cars, the ease of getting into the back seat of a car, and the amount of leg 
room in the back seat. These are cases of shifting a whole body of concepts and 
knowledge into perspective, but on a much smaller scale than the usual notion 
of domain, which involves a reasonably complete and self-contained body of 
knowledge. Perspective shift can involve even smaller effects than this, though, 
down to altering weights on only one or two nodes or links. Thinking about 
"today", for example, brings into perspective a time scale of a few days centered 
on the current day; this would involve only the node for the time scale and the 
link between it and the today node. Thus the normal use of the representation by 
the system must be able to trigger perspective shift on any scale from an entire 
domain down to just a few nodes and links. 

This kind of perspective shift will be handled by associating with each node 
and link a set of perspective weight adjustments to be made when the node or link 



is used by the system. These adjustments indicate which other nodes and links 
should be brought into perspective, and how much they should be shifted, i.e. 
what their new perspective weights should be. It might also make sense to have 
the new weights depend on the old weights and the weight of the node or link 
inducing the adjustment, but it's not clear what the dependence should be. The 
new weights will therefore just be set to the values indicated in the adjustments, 
except that if the old weight is higher than the adjustment value it won't be 
changed, because that means the node or link was already in perspective. 

Whenever the system uses a node or link, it will carry out any associated 
adjustments, thus effecting the appropriate perspective shift. "Using" a node or 
link means one of: 

Using it as part of a triggering match of a rule antecedent. 

Asserting it as part of a rule consequent. 

Comparing it to some other node or link. 

Checking its connections while scanning through the network. 

Any of these events will trigger the associated perspective weight adjustments. In 
addition, using a node or link (in this sense) will cause the node or link itself to be 
brought into perspective if it isn't already, since it has certainly been noticed by 
the system. Similarly, using a link will bring the nodes or links it connects into 
perspective, since thinking about a relation naturally brings the related concepts 
(or individuals) to mind. It might seem reasonable to extend this to activating 
every network element connected to a used node or link. This would eliminate the 
entire effect of perspective, though, since it would mean that whenever the system 
looked at a node or link, it would see everything connected to it regardless of the 
current perspective. So this extension will not be made. Using a node or link will 
bring into perspective only the node or link itself, the nodes or links it connects 
(for links), and the nodes and links indicated by the adjustments associated with 
it. 

Managing the system of perspective weights poses some difficulties. Any 
use of the knowledge representation can shift many perspective weights, so there 
is a danger of spending more time adjusting weights than actually using the 
representation. More critically, bringing too many concepts into perspective can 
overwhelm the system. There are really two problems here: how to constrain 
bringing things into perspective, and how to move things back out of perspective 
so that everything doesn't end up with a high weight. The problem of shifting 
concepts out of perspective is very important, but I don't currently have any 
welldeveloped insight into its solution (hence its conspicuous absence from the 
discussion above). There are some obvious possibilities, such as having weights 
decay over time, or having downward as well as upward adjustments associated 
with nodes and links, but there are problems with these approaches. Fortunately, 
the generator will not depend on a solution to this problem, as it will operate over 



relatively short time spans in which concepts would rarely fall out of perspective 
anyway. 

The problem of constraining bringink concepts into perspective is important, 
though, because the generator depends on the perspective to guide its reasoning 
and search and to evaluate particular linguistic options. The solution is simple, 
though: perspective shift will be induced only when the system uses a node or 
link with a low perspective weight, Since the majority of the nodes the system 
uses will have high weights, perspective shift will occur only a fraction of the 
time, and the set of nodes and links currently in perspective will expand slowly. 
This is a reasonable constraint even independent of these efficiency concerns. If 
a node or link has a high perspective weight, that means the system is already 
aware of it; actually using it in reasoning or thinking won't bring anything further 
to mind. Only when the system uses a concept it was only slightly aware of will 
the system also bring into perspective other related concepts. Thus nodes and 
links with high perspective weights will not induce perspective shifts.21 

This constraint presumes a well-defined distinction between high and low 
weights; it's not clear how that distinction should be drawn. It must be different 
from the one used to determine whether concepts are completely out of perspec- 
tive; nodes and links with weights below that cut-off point will never be noticed, 
so they can't induce any perspective shift. There are still many questions; should 
it be a single cut-off point? Should it depend on precisely how the node or link 
is being used? Should different kinds of perspective shift be handled differently? 
Should there be different sets of adjustments depending on the node or link's 
weight? Since I don't have answers for these questions, the simplest approach 
will be taken: a single fixed value will distinguish "high" weights from "low" 
ones. As with the cut-off for being in or out of perspective, the effects of choosing 
particular values will be explored as the generator is implemented. 

3.6 Reasoning and the Inference Rules 

In addition to merely having a set of current beliefs, an intelligent agent must 
be able to reason with those beliefs to figure out new information that it needs 
to accomplish its current goals. The inference rules provide the mechanism that 
supports this reasoning. The inference rules can vary from very general ones such 
as the property inheritance rules to very specific ones such as "if the jewelry box 
is on the Pnor, then the cat must have jumped on the dresser". The rules provide 
mappings irom existing information (i-e. a set of nodes and links currently in 
the network) to new information (i.e. new nodes and links). They can be used 
in both backward-chaining and forward-chaining fashion, i.e. in attempting to 
deduce a particular piece of information or to see what follows from the system's 
current beliefs. This corresponds respectively to the system trying to determine 

''One exception: using a link with a high weight will still bring the nodes it connects into 
perspective, because they are really part oi the relation the link represents. For activating the node 
or link itself the question is moot if it has a high weight, then it's already fully in perspective. 



if something is true or determine the details of some information, e.g. to find the 
particular color of some object, and to considering the consequences of something 
it believes is true. 

Instead of having explicit inference rules, there could simply be an acceptable- 
inference-pattern node for the concept of an inference that the system is willing 
to make. Each individual inference "rule" would then be an instance of this node. 
This would avoid the need for special representational machinery for the rules. 
It would also make the knowledge expressed in the inference rules themselves 
available to the system for introspection or reasoning. On the other hand, knowl- 
edge of acceptable inferences is used differently than other kinds of knowledge, 
so it seems reasonable to represent it differently. It would also be awkward and 
inefficient to represent inference rules within the semantic network; some mech- 
anism for picking out a subnetwork with "meta-nodes" and "meta-links" would 
be needed. Furthermore, there would still have to be special machinery to recog- 
nize and use the inference rules. Thus we might as well expand that machinery 
to include a special, efficient, representation for the rules. This does mean that 
the system will not have direct access to the information in the rules, a con- 
sequence with significant psychological and cognitive implications. None of its 
implications, though, seem relevant to the generator, so the issue will simply be 
ignored. 

The rules will consist of an antecedent and a consequent, each of which are 
small networks (perhaps as small as a single node or link). The rule is run by 
trying to match the antecedent against the main network; a match consists of a 
subset of the main network that has the same pattern of nodes and links as in 
the rule antecedent with all the labels matching. If a match is found, then the 
consequent can be asserted in the network also. This assertion can be temporary, 
i.e. available only for immediate subsequent inference, or permanent, in which 
case the consequent is actually added to the network.22 The antecedent and 
consequent may share nodes and links; this allows the rules to assert information 
about existing nodes. Any nodes or links in the consequent that are not in the 
antecedent are added to the network as new nodes or links. Rules can also contain 
nodes or links with variable labels. Variables in ,the antecedent can match any 
node or link (with the same number of connections); variables in the consequent 
(which must also occur in the antecedent) are filled in with their value from the 
antecedent. These variables allow rules to make generalizations; without them, 
rules could only apply to a fairly specific set of nodes and thus wouldn't be very 
useful. 

There are a number of possible variations on the rule structure, such as allow- 
ing variability in the network configurations or allowing restrictions on the range 
of the variables, that a full intelligent agent might need to support its reasoning. 
The primary goal here, though, is to support the expected needs of the generator. 
What the generator will need most is the ability to locate the relative positions of 

22Deciding whether to add the consequent to the network involves issues of memory and learning 
that will not be addressed here; all the reasoning done for the generator will be temporary. 
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Figure 3.3: Example Inference Rules 

various concepts within the system's belief space. This requires mainly rules for 
inheritance and simple rules to determine whether particular properties and rela- 
tions hold over particular objects and concepts, i.e. rules that build up complete 
descriptions that can then be compared. The current formalism appears adequate 
to meet this need (with one exception, discussed in Section 3.6.2). Thus variations 
on and extensions of the rule structure should not be necessary. 

Some examples of rules are given in Figure 3.3. Rule a represents the belief 
that rising interest rates lead to lower inflation. Rule b represents the belief that if 
the air pressure is at 30 inches and rising, it will rain soon. Rule c shows how the 
rule about jewelry boxes and cats mentioned above could be represented. These 
rules are intended just as illustrations of the formalism, of course; without a broad 
background of nodes, links, and rules within which to interpret them, they're not 
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Figure 3.4: An Inheritance Rule for Instance Links 

really very meaningful. 

3.6.1 Inheritance Rules 

One particularly important set of rules are the ones providing for property 
inheritance. These rules allow the system to apply general knowledge to more 
specific cases, and are thus crucial to the workings of the generator. There need 
to be several rules because there are actually several relations that license inher- 
itance. Many of the examples so far have used isa links for simplicity, but in 
the actual system, instance, subset, subconcept, and part links will each license 
inheritance, subject to appropriate  constraint^.^^ The constraints limit the inheri- 
tance to properties and relations that can appropriately be inherited. A color link 
would reasonably be inherited across an instance link or a subconcept link, for 
example; an invented-by link would not. Figure 3.4 shows an inheritance rule 
for instance links. The instance-inheritable link enforces the constraints on the 
rule; the system must believe (or infer) that the link has the property of being 
inheritable across instance links in order for the rule to run.24 In the actual sys- 
tem, these constraining links will be omitted, since the system will only be doing 
limited reasoning. If the system does use invalid inheritances, then constraints 
will be added. 

The rule in Figure 3.4 is actually only one of several rules to handle inheritance 
across instances. It will only handle inheritance of links that connect two nodes; 
it won't handle inheritance of links that connect a different number of nodes 

23The difference between the subset and subconcept links is that the former indicates an 
accidental relation, e.g. between taxi and yellow-car, while the latter indicates an inherent relation, 
e.g. between PhD-dissertation and document. If this distinction proves to be problematic, a 
contain link could be added that generalizes subconcept and subpart; this link would also 
require an inheritance rule. 

241nheritance on instance links also requires a way to inherit instance-inheritable links onto 
the particular links being inherited. This threatens to create an infinite regress similar to the one 
discussed in Section 3.4.4; fortunately, the solution only requires adding a rule saying that al l  
instance-inheritable links are themselves instance-inheritable. 



or inheritance of links connected to other links. The form of the rules forces 
there to be a different rule for each possible link configuration. In theory this 
would require an infinite number of rules (since links can connect arbitrarily 
many nodes), but in practice links are unlikely to ever connect more than a few 
nodes, so the inheritance rules can be safely limited to links of arity five or less, 
say. This multiplication of rules is a defect of the representational scheme; it is 
obviously missing a basic generalization. It could be eliminated by modifying the 
representation of the inference rules to allow for variable-arity links and elements 
in the antecedent that can match either a link or a node. At present, though, this 
complication will be avoided. Experience with the implementation, though, may 
indicate that other rules could take advantage of it; in that case it will be adopted, 
allowing for the combination of the inheritance rules into a single rule for each 
licensing relation. 

3.6.2 Applying Descriptions 

The rule formalism described so far is adequate for most of the rules the gen- 
erator will need. It can handle property inheritance and simple inferences. Un- 
fortunately, there is one other type of inference needed by the generator that the 
existing formalism cannot express; this is the inference that something that meets 
the description of some concept (i.e. that matches all the links connected to it) is 
an instance or subconcept of it. This is related to the process of "classification" in 
systems such as KLONE or KRYPTON [Lipkis 82,Schmolze 831, except that in 
classification the goal is to find the minimal concept that subsumes the new con- 
cept. Here the goal is just to determine whether a particular concept "subsumes" 
(i.e. describes) another concept. The representation needs to have this ability in 
order to match (the meaning of) linguistic expressions against the information the 
planner wants to express. The generator will need to know whether an expression 
describes a particular concept even if (as will generally be the case) there are no 
links already in the network indicating the relationship between them. 

This kind of inference cannot be represented with the machinery developed so 
far, because it requires quantifying over network elements. The necessary rule is 
something like "if all the links connected to $nl  have matching links connected 
to $n2 then $n2 is a subconcept of $nl" (with appropriate qualifications to dis- 
tinguish between subconcepts and instances). The antecedent of a rule, though, 
can only be a fixed subnetwork; there's no way to match against a varying set of 
links. One solution, of course, would be to expand the rule formalism enough to 
express this. This would be a significant extension, though; it would require not 
only quantification over links but also conditionals within the antecedent. Adding 
this much power to the rules would make them much more difficult and inefficient 
to use, in return for allowing one small class of rules to be expressed. 

Instead, the ability to apply descriptions will be built directly into the rule 
formalism. Any rule will be able to specify in its antecedent that one node 
must describe another node. The "class~cation" inference rule(s) will then be 
straightforward to write; the antecedent will simply contain $nl, $n2, and an 
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Figure 3.5: Example Inference Rules with Perspective 

indication that one describes the other. Other rules can also use this feature, 
although there's little reason to do so. Any rule that specifies description can 
be replaced by one indicating an instance link between the two nodes. Thus the 
ability to apply descriptions gives the rule formalism just enough added expressive 
power without requiring that the additional mechanism be restricted to specific 
cases. 

3.6.3 Rules, Perspective, and Default Rules 

Reasoning can be affected by the current perspective in two ways. The first is 
fairly simple: each inference rule will itself have a perspective weight. These 
weights will be used the same way as the weights on the nodes and links: rules 
with very low weights will be completely out of perspective and not used, and 
rules with higher weights will be used sooner. The detailed interaction between 
rules' perspective weights and the use of the rules is discussed in Section 3.6.5. 

A more subtle effect arises from the interaction of perspective and the rules' 
antecedents and consequents. Since a rule's antecedent and consequent are actu- 
ally small semantic networks, the nodes and links they contain all have perspective 
weights. These weights are used and manipulated in the same manner as the per- 
spective weights in the main network. In particular, nodes and links in the rules 
can be out of perspective, effectively changing the content of the rule. For ex- 
ample, the rule in Figure 3.5a would require only an L1 link to a V1 node in 



the current perspective; if the L2 link came into perspective, the rule would then 
require both links in order to fire. 

This effect provides a way to encode general rules with exceptions without 
the exceptions overwhelming the general rule. Consider the well-known problem 
of whether Tweety can fly. This involves a general rule that all birds can fly with 
the exception that penguins (which are birds) can't fly plus the knowledge that 
Tweety is a bird. The difficulty is how to encode both the general rule and the 
exception and still be able to infer that Tweety can fly. If the general rule and the 
exception are encoded separately, the system can infer both that penguins can't fly 
and (since they are birds) that they can, a c~ntradiction.~~ The alternative would 
be to encode as a rule that birds that are not penguins can fly. This, though, 
would make it impossible to infer that Tweety can fly, because there's no way 
to prove that Tweety isn't a penguin. This sort of dilemma has provided much 
of the motivation for non-monotonic reasoning systems such as default reasoning 
and circumscription [Reiter 80,McCarthy 801. 

The Tweety dilemma would not actually be handled by a "default rule" in 
the current framework, since it is a case of property inheritance. Similar sorts of 
default reasoning can be represented using rules and perspective, though, as in 
Figure 3.5b. The rule here captures the general notion that every citizen of the 
U.S. is eligible to vote. Children are an exception, of course, but normally in 
a political discussion that exception would be irrelevant and the age link would 
be out of perspective. If the system did start talking about a child or children, 
the age link would be shifted into perspective. Thus the system can normally 
conclude that anyone can vote without worrying about their age; when children 
are being discussed, the system will notice that age is relevant and check it. 

3.6.4 Contradictions 

One apparently troublesome consequence of the representation's design is that dif- 
fering perspective can lead the system to reach contradictory conclusions. Given 
the network in Figure 3.1, for example, the system can either conclude that car-1 
is or isn't an instance of sports-car, depending on the perspective. Perspective 
shift can also cause contradictory attributes to apply to the same object; for ex- 
ample, a grey sock might be "dark" in comparison to white socks but "light" in 
comparison to black socks, or a book might be "sophisticated" when considered 
as a children's book but "simple" when considered as adult reading matter. Even 
worse are properties such as "interesting", "entertaining", or "irritating", whose 
applicability can vary based on factors entirely independent of the object they are 
applied to or the situation in which it is being described. 

As long as the contradictions are between information in different perspectives, 
though, there's no real problem. The whole point of perspective is to make visible 
just the information that is relevant and useful for the system's current needs. So 

250f course, contradictions are not a serious problem for the representation here (see Section 
3.6.4). Still, it would be better to avoid them whenever possible, since resolving contradictions 
can take a lot of work and disrupt normal reasoning. 



when the system is thinking about how cars look, it should consider car-1 a 
sports-car, and when it's thinking about how cars drive, it should consider car-1 
not to be a sports-car. This doesn't cause any problems; the contradiction only 
comes up here because the shift in perspective has changed the system's concept 
of a sports-car (by changing the links attached to the sports-car node). 

The real difficulty comes up when contradictory information shows up within 
the current perspective. This can happen if the system decides to record the result 
of an inference permanently in the net.26 The system may then "remember" 
the information even after the perspective ha.s changed in a way that makes the 
inference no longer valid, For example, the system could infer an isa link between 
car-1 and sports-car while considering cars' appearances, and the link would 
remain even after a shift to considering how cars drive. In the new perspective, 
the system's beliefs imply that car-1 isn't a sports-car, contradicting the isa link. 
The system doesn't know what to believe! This could be avoided by putting the isa 
link only in the first perspective, but there's no way for the system to do that. The 
only way the system could know precisely what perspective(s) to limit inference 
results to would be to test the inference in every possible perspective. Since the 
set of perspectives is potentially unbounded, this is not possible. Even if it were 
possible, subsequent changes elsewhere in the network could change what's in 
a particular perspective. So there is no way in general to prevent information 
added to the system from causing contradictions with other information that's not 
currently in perspective. 

Why exactly is this a problem, and what can be done about it? In a system 
based on first-order logic (or most variants of it) contradictions are deadly, be- 
cause any statement follows from a contradiction. Since the inference system here 
is not intended to be sound or complete (if there's even any relevant notion of 
soundness or completeness), that won't happen. As long as there are no rules with 
contradictory antecedents, nothing will be inferred directly from a contradiction. 
On the other hand, both contradictory statements will be available for inference, 
and the results of these inferences will presumably often be contradictory them- 
selves. For example, the system might infer that car-1 is fun to drive and is worth 
buying since it's a sports-car, and also that it isn't fun to drive and isn't worth 
buying since it isn't a sports-car. Over time, the system would acquire more and 
more contradictions and be unable to reliably or consistently believe anything.27 

The real danger, then, is contradictions within a perspective that are used for 
inference over a period of time. Contradictions between perspectives, or within 
a perspective where at most one of the contradictory statements is noticed by 
the inference rules, are not a problem. These simply indicate that the system 

260f  course, this could also result from faulty inference or wrong information given to the 
system by users (or programmers). But this would be handled simply by trying to locate and 
correct the mistake or the wrong information. The issue here is with contradictions that should 
be kept in the system; the problem is just to keep them in separate perspectives. 

27Note that this isn't really a problem for the generator, since it won't be adding assertions 
to the network; but the theoretical problem must still be resolved if the framework is to have a 
meaningful interpretation. 



has contradictory beliefs, which is not an inherently problematic state.2g If the 
dangerous contradictions are the ones that drive inferences, though, then they are 
also the ones that the system is most likely to notice, since they involve links or 
nodes that the inference rules are explicitly looking for. So the ultimate solution 
to the problem (which will not be implemented in the current project) will involve 
dealing with contradictions when the system notices them. The system will have 
to examine how it came to hold the contradictory beliefs, what follows from each 
of them, and how well each is supported in the current perspective, and then either 
eliminate one of them from the current perspective or mark them as an unresolved 
contradiction and avoid using them in inferences. There are a lot of details to be 
resolved, of course (e.g. how broad a range of perspectives is the contradiction 
removed from, how is the reasoning leading to the contradiction traced, how does 
the system decide which belief to remove), but the general outline is clear: when 
the system notices it holds contradictory beliefs, it decides which belief it finds 
more compelling and settles on that one. 

3.6.5 Using the Inference Rules 

In order to use the inference rules, the system must decide when to run them and 
which ones to run. The simplest approach would be to always run any rule whose 
antecedent matches something in the network; then the system would always infer 
as much as possible. This process, though, would never terminate.2g Actually, 
that's not so bad, given that the system is functioning in real time; the inference 
rules could simply go on infening things while the rest of the system continued 
in parallel. The real problem is that it would infer things in the wrong order. The 
vast majority of inferences would be information the system had no need for or 
interest in, while inferences the system needed would often be put off for a long 
time, possibly forever. What is really needed is an inference strategy driven by 
the system's current needs and interests. 

The inference strategy used here is designed around two principles: inference 
is driven from particular nodes and links in the network and is guided by the 
current perspective. Inference could proceed by collecting all the rules that meet 
some criterion for potential runnability (e-g. all the non-variable nodes in the 
antecedent have matches in the network) and running them. This would spread 
the reasoning out over the entire network, though; instead, the reasoning will 
focus on particular nodes and links that the system wants to explore further. This 
will help ensure that the inference will be directed towards what the system needs 
to know. The perspective will provide further direction, concentrating inference 
on concepts that are currently within the system's notice. 

280f course, only one of the contradictory beliefs can be correct (in the current perspeclive), 
but that's beside the point. The network is only representing the system's beliefs, not the actual 
state of the world. 

2 9 ~ o r  example, the system would infer that 2 > 1, 3 > 2, and so on. Even without any 
mathematical knowledge, there would be many such infinite chains of nodes it would infer, e.g. 
Bill's son, Bill's son's son, etc. 



Inference is invoked when the system wants to know either what follows from 
a particular node or link or whether a particular node or link can be inferred. The 
first case occurs when the system decides that some concept or relation may 
be connected to other information it would find useful; the inference rules will 
then be invoked in a forward-chaining fashion to explore the implications of the 
concept. This kind of reasoning is normally invoked from outside the inference 
system itself. Automatic invocation of inference may be useful in some circum- 
stances, though, such as when a node or link is added to the network or shifted 
into perspective; the consequences of this idea will be explored as the system is 
implemented. The latter case of invoking inference occurs when the system wants 
information that isn't in the network (as filtered by the current perspective). The 
system could simply be looking for a particular node or link, or it could be trying 
to complete a partial subnetwork. The simplest (and probably most common) case 
of this is trying to find which nodes a link connects. For example, the system 
might want to know what color a particular car is; the question here is not whether 
there is a color link attached to the car's node, but rather what particular node the 
link connects the car's node to. When invoked this way, inference proceeds by 
backward-chaining, looking for rules whose consequent fills out the subnetwork 
the system is interested in. 

However inference is invoked, the general procedure is the same. The system 
first collects all candidate rules and then uses perspective to select and run one 
of them. If the rule succeeds, new candidate rules are added to the set; this 
procedure is repeated until either there are no more candidate rules (not likely 
to ever happen) or enough rules have been tried (see below). The details of 
how to implement all this differ somewhat for forward- and backward-chaining 
inference. Of particular importance, though, is that candidate rules need not 
actually be usable; that would require trying all the rules first to see which ones 
ran successfully. Instead, candidate rules are intended to be ones that might 
be usable; non-candidate rules are ones that can be immediately (and simply) 
dismissed as useless. 

For forward-chaining inference, a "candidate rule" is one whose antecedent 
contains nodes and/or links matching the piece of the network the system is 
reasoning forward from. For example, Rule c in Figure 3.3 would be a candidate 
when reasoning forward from the jewelry-box node. There needn't be a match 
for the entire antecedent; as long as the relevant part of the network is matched, 
the rule will be a candidate. Once all the candidates are collected, the rule with 
the highest combined weight will be chosen. This weight is formed by combining 
the perspective weights of the nodes and links in the rule's consequent, the weight 
of the rule itself, and the weight of the node or link the system is reasoning from. 
Precisely how to combine these weights is an open question; the simplest thing 
would be to add ,them all together, but that would probably undervalue the weight 
of the rule. The link weights might also be involved here; the various possibilities 
will be explored further as the system is implemented. 

Once a rule is selected, it will then be run by attempting to match its antecedent 
against the network. If the system can find a match that includes the node or link 



driving the reasoning, the rule will succeed and its consequent will be added to 
the network; if there is more than one such match, then all the instantiations of 
the consequent will be added. The nodes and links that are added to the network 
will also be able to drive inference, so additional candidate rules that match them 
will be collected and put in the candidate set. After the rule has been run, it 
will be removed from the candidate set (whether it succeeded or failed), and the 
system will select another rule to run. This process will repeat until the candidate 
set is used up or until otherwise stopped, as discussed below. 

With backward-chaining inference, the procedure is basically similar, except 
that the matching and running goes in the opposite direction (naturally). The 
candidate rules are those whose consequent contains nodes and links matching 
the ones in the subnetwork the system is trying to infer or fill in (the "goal"); 
that is, those rules that would answer the system's question if their antecedents 
matched against the network. Selecting a candidate rule is the same as in forward- 
chaining except that the perspective weights of the (non-variable) nodes and links 
in the antecedent rather than the consequent are considered. The selected rule is 
handled somewhat differently, though. First, the consequent is matched against the 
goal subnetwork. If it doesn't match, then the rule is removed from the candidate 
set and the system goes back and picks another rule (as in forward-chaining). If 
it does match, then the antecedent is filled in with any instantiations made during 
the match and is itself matched against the network. If a successful match is 
found, the result is propagated back up to the original goal, and the inference is 
complete. If no match is found, then the antecedent becomes an additional goal; 
the candidate set is expanded, and the process repeats. 

Unfortunately, the procedure outlined so far will not terminate except in the 
case where a backward-chaining inference finds a match with the network or in the 
unlikely case that all the candidate rules are used. The inference strategy must 
therefore also have a way to stop inference after a period of time. Whenever 
inference is invoked, therefore, the system will have to give an indication of 
how much effort to spend on the inference, based on how much importance the 
system attaches to the inference. For simplicity, this will be represented by an 
integer value representing (roughly) the number of inferences to make before 
quitting. Each driving node or link (for forward-chaining) or goal sub-network 
(for backward-chaining) will have an "effort" value associated with it. Whenever 
a rule is attempted, the effort value of its associated node, link, or goal will be 
decreased by one. If a rule succeeds, the new driving node(s) and/or link(s) or 
the new goal will take a portion of the old driving node, link, or goal's effort; the 
division of effort will depend on the relative perspective weights of the rule and 
the next highest candidate rule and the perspective of the new node(s), link(s), 
or goal. When the effort associated with a particular node, link, or goal reaches 
zero, it can no longer drive inference, and the rules collected because of it are 
removed from the candidate set. This approach ensures that inference will always 
terminate; that the amount of time spent will depend on the importance of the 
inference; and that the allocation of effort will concentrate on the concepts and 
rules that are most in perspective and are thus most easily noticed by the system. 



3.6.6 An Example: Is car-1 a sports-car? 

The example in Figure 3.1 is repeated here in Figure 3.6 in more detail. The 
generator wants to know whether car-1 can be described as a "sports-car", so 
it is searching for an instance link between the car-1 node and the sports-car 
node. Since the consequent of the "classification" rule in Figure 3.6 matches the 
goal sub-network, it will be included in the candidate set and (eventually) run. If 
the engine-size and speed links are out of perspective, the antecedent will match 
against the network and the rule will succeed; the result will then be propagated 
back to the goal, verifying the presence of the instance link in question. The 
generator will then go ahead and use "sports car" as a description of car-1. On 
the other hand, if the engine-size and speed links are in perspective, the antecedent 
won't match, so the system will continue trying other rules. Eventually the system 
will use up the allotted effort and fail, the instance link will remain unverified, 
and the generator will have to find some other description for car-1. 

3.7 Using the Representation to Support Generation 

The generator uses the knowledge representation in two different ways. The 
communicative planner uses the representation to support instantiation of and 
reasoning about actions, and the linguistic specialists use the representation to 
construct the linguistic options they present to the planner. The planner's use of 
the knowledge representation is fairly straightforward: checking for objects that 
meet some description, or whether a precondition is satisfied, or whether an effect 
of an action violates a goal, and so on. This kind of use of the representation 
is not specific to the generator; other components of the (hypothetical) intelligent 
agent would need to make similar requests. Furthermore, the planning aspects of 
the communicative planner have already been simplified in order to concentrate on 
the connection between the planner and the linguistic  specialist^.^' The planner's 
use of the representation is therefore not crucial to the current work and will be 
kept as simple and limited as possible. 

More interesting is the linguistic specialists' use of the representation. The 
specialists deal with the connection between language and meaning, that is, the 
connection between the (lexical, syntactic, and pragmatic) vocabulary of language 
and the elements of the representation. Thus they must (as we shall see) make 
use of the representation in a manner specific to the generator. The specialists use 
the representation not for reasoning but rather to find and characterize linguistic 
options for expressing particular information. Finding options depends primar- 
ily on how the linguistic knowledge is indexed, characterizing options involves 
computing annotations. Thus the central issues in using the representation are the 
nature of the indexing of linguistic knowledge and the nature and derivation of 
the annotations. 

30See Section 2.4 





3.7.1 Indexing 

The first job of the linguistic specialists is to find linguistic expressions that 
cornspond more or less to the information the planner wants to communicate. 
Each expression in the system's vocabulary (words, phrases, or constructions), 
wil have a link to some element in the semantic network.31 The obvious solution 
would be to simply pick an expression that's linked to whatever node or link the 
planner proposes. This will only work if the node or link has a linguistic option 
directly connected to it, though, and not all of them will. Also, the linguistic 
specialists must be able to suggest a single expression for planner requests that 
contain multiple nodes or links. Even in cases where there is an expression 
directly linked to the planner's request, the generator should have the flexibility 
to consider alternate expressions. So there must be a more flexible indexing 
scheme linking semantic elements to linguistic expressions. 

Fortunately, the indexing scheme doesn't have to be very precise, because 
inappropriate expressions will be filtered out later. Any indexing scheme that 
manages to include all (or most) of the reasonable options will do. The one used 
here will work as follows: the system will scan through the network, starting 
from the node(s) and/or link(s) in the planner's request, guided by the perspective 
weights as described in Section 3.5. Whenever the system scans through a node 
or link connected to a linguistic expression, that expression is added to the list 
of options. Many of these will be wildly inappropriate, of course, but the an- 
notations placed on them will reflect that, leading the planner to give them very 
low evaluations. The most appropriate options will generally be included, though, 
since the procedure will focus on ways of expressing concepts closely connected, 
in the current perspective, with the concepts in the planner's request. 

There are a number of ways that this procedure can be fine-tuned. For example, 
should the options be considered (and thus presented to the planner) in the order 
that they are encountered, or sorted according to perspective weight? Is it adequate 
to allow annotation and evaluation to filter out clearly inappropriate options, or 
should the linguistic specialists do some amount of pre-filtering of the options? 
(For that matter, what sort of options are "clearly inappropriate"?) The major 
problem, though, is that this procedure can be very inefficient, since it could 
involve a lot of searching through the network. The solution to this is to limit the 
search; experience will hopefully indicate a reasonable compromise that provides 
enough options without taking too long. Even in the (very efficient) limit of no 
search at all, this approach will simply reduce to using expressions directly linked 
to the planner's requests, so it would still be useful. 

3.7.2 Annotating 

Since the planner can't understand linguistic expressions themselves, the special- 
ists must provide the planner with descriptions of the options they build that it can 

31~hese lirks are distinct from the links within the semantic network; they are just simple fixed 
lirks connecting an expression to its meaning. 



understand. These descriptions consist of annotations that the specialists attach 
to the options placed in the workspace. The annotations are based on a small 
fixed set of predicates that describe the effects of using particular choices, both 
in terms of the information they express (or omit) and in terms of how they fit 
that information into the evolving discourse context. Some annotations are asso- 
ciated specifically with particular linguistic expressions such as idioms and some 
syntactic constructions. Others can be read directly off the network (as viewed 
from the current perspective). Annotations can also be derived from the effects on 
the perspective of using a particular expression; still other sources of annotations 
may arise as the system is implemented. Additional types of annotations may 
also prove necessary if the planner needs more information. 

The annotations consist of a predicate, possibly with one or more arguments, 
that describe the option in some way. The arguments will most often be nodes or 
links in the semantic network, taken either from the planner's request(s) or from 
parts of the network examined by the specialists. The arguments may also consist 
of pointers to nodes (or links) connected by links in the planner's request(s). For 
example, <arg over - t  ime-span 2 >  would indicate the number 2 argument 
of an over-time-span relation in the planner's request. (When the relation 
is clear from context, this will be written more simply as <arg 2>.) This kind 
of argument allows the annotations to describe effects related to pieces of the 
planner's request not covered by the current option. 

The annotations produced by the linguistic specialists will include:32 

3.7.2.1 Annotations Read off the Network 

makes-explicit Indicates what information is being expressed explicitly by the 
linguistic option. Thus "hit" expresses the notion of hitting something 
explicitly, whereas, say, "assaulted" doesn't. This information may seem 
trivial, but the planner still needs it because it can't interpret the linguistic 
expressions directly. Every option will therefore have a makes-explicit 
annotation indicating the node or link it is connected to. 

makes-implicit Indicates information that is not explicit in the linguistic option 
but is conveyed implicitly. Thus (as above) "assaulted" conveys implicitly 
the information that someone hit someone (or something), or "assassinate" 
conveys implicitly that someone was killed. A makes-implicit annotation 
annotation will be generated whenever there is a chain of instance and/or 
subconcept links33 connecting the planner's request and the node or link 
connected to the linguistic option. 

32For convenience, the annotations are classified here as they woulc! be computed by a simple 
specialist using only a fixed set of linguistic expressions. Other spdialists might compute the 
annotations differently. 

33Note that the other types of "isa" links (subset and part) cannot be used in these chains. The 
makes-implicit c- lotations indicate when the option actually describes the request, but implicitly. 
Although subser 3 part can license property inheritance, they don't indicate that the "parent" 
concept carries thc 'child" concept as part of its meaning. 



indirectly-suggests Indicates information that is not directly conveyed by the 
option but is still strongly suggested by it. For example, "assassination" 
doesn't actually say that someone was shot (as opposed to strangled or 
suffocated, say), but it suggests it. Similarly, "weather" suggests things 
like the temperature or precipitation. An indirectly-suggests annotation 
annotation will be generated whenever the planner's request has a direct 
connection in the network to the concept linked to the linguistic option 
unless the connection is an instance or subconcept link (in which case a 
makes-implicit annotation will be generated). 

missing-info Indicates information in the planner's request that is not conveyed 
at all by the option. If the request and the option's associated node or 
link are connected by a chain of isa links (of any type) then missing-info 
annotations will be generated for any links that occur only on the request. 

As described here, these annotations all simply indicate structural relation- 
ships within the network, and hence might better be called matches-request, 
isa-chained-to-request, and so on. The actual names, though are used because 
they reflect how the planner (which doesn't understand the network structure) uses 
the  annotation^.^^ Furthermore, as the system is developed, more sophisticated 
linguistic specialists may construct these annotations in different ways that don't 
directly reflect the network structure. 

Two potential modifications to the use of these annotations are immediately 
apparent. The distinction between the makes-implicit and the indirectly-suggests 
annotations is not entirely clear and may need to adjusted. Also, as described so 
far, the annotations will only refer to the planner's request and the node or link 
associated with the linguistic option (except for missing-info annotations). It 
might be useful to add annotations about other nodes. For example, if the planner 
requests options for shoot and "assassinate" is produced as an option, the system 
might add an (indirectly-suggests politically-motivated) annotation, even though 
the politically-motivated link isn't the actual request. 

3.7.2.2 Annotations Computed from Perspective and Discourse Context 

These annotations assume a notion of a "global focus space" or "attentional state" 
containing the concepts that are currently active in the discourse (as in, for ex- 
ample, [Grosz 81,Grosz 851). The generator doesn't currently have any such 
mechanism for tracking the discourse context, but it would be straightforward to 
add one. Thus these annotations will be used if and when such a mechanism 
is added. Actually, the from-context annotation is the only type that requires 
a context model to be useful; the others will be useful even if a context model 
is never developed. Furthermore, the planner's use of these annotations doesn't 

"what the annotations are called is, of course, irrelevant to how the system actually uses them. 
Nevertheless, the names indicate the annotations' intended role in the system, so it's important 
that they not be misleading. 



depend on there actually being a context model; it can still reason about how an 
option's effects on the context fit into its overall plan. Thus it may be possible to 
use these annotation types even without adding a context model. 

activates-in-context Indicates concepts that will be brought into the discourse 
context by the use of this option. These annotations are added for every 
concept that the node or link associated with the option shifts into perspec- 
tive. This assumes that the user's perspective shifts will mirror those of the 
system, which is of course not reasonable in general. It's a reasonable ap- 
proximation, though, for a system with no model of the user. This process 
also assumes that the concepts added to the context are (at least) the ones 
shifted into perspective, but this is a reasonable and natural ass~mption.~~ 

from-context Indicates an item in the discourse context that the option depends 
on, either as part of the reasoning that identified it as a valid option or (for 
options associated with links) as something connected by the link. This 
planner can use this information to evaluate whether it wants to reinforce 
the item already in the context. These annotations cannot be generated by 
the system as here described, because there is no model of the context. 

relates-to Used when an option describes a request in relation to some other 
concept, For example, comparatives (naturally) compare some property 
of the request to something else. Or a specialist might propose "next to 
the door" as an option for a particular physical location. This kind of 
relative description is most likely with something in the discourse context, 
but it's possible with any concept, so these kinds of annotations can be 
generated even without a context model. The question of when the linguistic 
specialists should generate relative descriptions is not yet clear, though, so 
these annotations will also not be generated initially. 

3.7.2.3 Other Annotation Types 

tone 
simple-construction 
awkward-construction These annotations all give the planner a sense of how the 

option will be perceived as a use of language; that is, what sort of language 
the use will see the system as using. Since there is no particular theoretical 
model of language style being used here, these annotations will simply be 
directly associated with particular expressions as seems appr~priate.~~ 

35That doesn't mean it's correct, of course, just that it's a reasonable way to build the initial 
system. Looking at anaphoric expressions in actual discourse to see what gets into the context 
could help refine the creation of these annotations. It could also suggest what sort of perspective 
shifts are appropriate. 

36"Awkwardness" often depends as much on how the options are combined as on the particular 
options; for this reason the utterer will have a rudimentary (ad hoc) model of awkwardness. 
Initially this will just amount to enforcing grammaticality as much as possible; see Section 2.6 
and Page 46. 



Linguistic Annotations There will have to be annotations to indicate how options 
affect the linguistic pragmatics of the utterance, i.e. issues such as the "local 
focus" or "center" [Grosz 83,Grosz 86a] or the distinction between given 
and new information [Chafe 761. 

Request Partitions There will have to be annotations that indicate which parts of 
which requests a particular option covers. For the simple type of specialist 
discussed here these are not needed, because the option exactly matches 
one request. In general, though, specialists can produce linguistic options 
that only cover part of a request, or that cover (parts of) more than one 
request. The planner (and utterer) will need to know when this happens. 

3.7.3 An Example In Detail 

With the machinery developed in this chapter, we can now see how the linguistic 
specialists produce the annotated options in the example in Section 2.8, where the 
planner has requested options for: 

a) temperature within-range37 

c) over-time-span 

The linguistic specialists respond to these requests using the information shown 
in Figures 3.7 and 3.8; each part of the figure is used for one part of the request. 
(Note that the hollow arrows are pointers from linguistic expressions into the net- 
work, not part of the network itself.) The system's semantic network will be much 
larger than what is in these figures, of course, but they show the portion of ,the 
network that the specialists will draw on for this example. The options discussed 
here will all be produced by the simple network search technique discussed in 
Section 3.7.1. In the actual system, there will presumably be other options (and 
other annotations), but these will be produced and used in the same way as the 
ones discussed here. 

For temperature within-range the options are: 

"The temperature be": This option is directly connected to the temperature 
node and the be-located link, so it will generate makes-explicit annotations 
for both of them. It will also generate a makes-implicit annotation for 
within-range, since it is in the request and connected by a sub-concept 
link to be-located. So the complete annotated option will be: 

"The temperature be": (makes-expl icit temperature) 

37These two pieces of the request are combined to simply the example; the options and annota- 
tions constructed by the linguistic specialists would be essentially the same if they were considered 
separately. 







(makes-explicit be-located) 

(makes-implicit within-range) 

"The weather be": This is similar to the previous option, except that it is 
connected to weather  ath her than temperature. Thus instead of the makes- 
explicit annotation for temperature there will be one for weather. Since 
temperature is connected to weather by a part link, there will also be 
an indirectly-suggests annotation for temperature, so the complete option 
will be: 

"The weather be": (makes-explicit weather) 

(indirectly-suggests temperature) 

(makes-explicit be-located) 

(makes-implicit within-range) 

"It be": This item is an idiom, so it has some special processing. It is 
annotated as if it were connected to a "weather-it" node that has sub- 
concept links to everything the construction can be used for. There isn't 
actually any such node, though; the specialist simply acts as if there were. 
Thus there will be a makes-implicit annotation for temperature without 
a corresponding makes-explicit annotation, since the "explicit" node is the 
"weather-it" pseudo-node. "Be" is still connected to the be-located link, 
though, so there will be annotations for both be-located and within-range. 
In addition, this expression has a simple-construction annotation associated 
with it. The resulting annotated option is thus: 

"It be": (makes-implicit temperature) 

(makes-explicit be-located) 

(makes-implicit within-range) 

simple-construction 

The specialists' response to <6 0°F 80°F> is similar. Here, though, verifying 
that these options do in fact describe the request depends on reasoning about 
positions within linear scales. (That's how the specialists know to suggest "warm" 
rather than, say, "cold".) This reasoning will be handled either by encoding 
a model of position in the network and inference rules or, if that proves too 
difficult, simply building it into the representation. Here, we simply assume the 
reasoning has been done in some way. The options include: 

"warm": Since there is an (inferred) instance link between the warm node 
and the request, the specialist simply generates a makes-explicit annotation 
for warm and a makes-implicit annotation for the request. 

"high": This will generate a makes-explicit annotation for high and a 
makes-implicit annotation for the request. Since the request has a scale 



link to temperature-scale and high doesn't, the option will also have a 
missing-info annotation for that link. 

o "warmer": This option would not be generated by the current machinery, 
as it depends on having an explicit context model and on specialists that 
can produce options relating the request to items in the context. If a context 
model and a specialist that can use it are developed, though, it would need 
to produce (in addition to appropriate makes-explicit and related annota- 
tions) a relates-to annotation annotation for the temperature item in the 
context it is comparing the request with. This should be straightforward, 
since the specialist will have to explicitly relate the two. Similarly, the spe- 
cialist should be able to construct from-context annotations for the cooler 
temperature item. 

For over-time-span, the options will be evaluated by the planner pri- 
marily on the basis of perspective-based annotations, so the discussion here will 
ignore the annotations like makes-explicit that are read off the network. (These 
annotations will still be generated, of course.) 

tense=future: Since tense is compatible with any time-scale of any size, it 
doesn't induce any perspective shift, so there won't be any annotations. 

"during": 

"over": Both of these options are connected to relations that locate some- 
thing within a span or range, as opposed to at a single position. Thus they 
shift into perspective an instance link between that argument and the generic 
linear-span node. Thus they will both generate (activates-in-context (in- 
stance <arg 2> linear-span)) annotations. 

"on": This option is connected to a relation that locates something at a 
particular position; this is just the opposite of the previous options. As with 
"over" and "during", it shifts into perspective an instance link connected to 
its position argument, but here the new link connects it the generic linear- 
position node rather than the linear-span node. The resulting annotation 
is therefore (activates-in-context (instance <arg 2> linear-position)). 

Finally, for <September 25 1 9 8 7 >, the options are all connected to nodes 
that shift into perspective the time-scale within which they are defined. Thus the 
options have the following perspective-based annotations: 

"tomorrow": (Ac t i va t e s - i n - con t ex t  few-days-t ime-scale)  

"Monday": (Ac t i va t e s - i n - con t ex t  week-t ime-scale)  

"the 25th": (Ac t i va t e s - i n - con t ex t  month-t ime-scale)  

As they are computed, these annotated options are placed in the workspace. 
Once there, they are used by the planner and the utterer as described in Section 
2.8 to produce an appropriate utterance. 



Chapter 4 

Proposed Research 

4.1 Proposed System 

The ideas presented in the preceding chapters will be tested and refined by building 
a generator that will talk about the weather. The generator will be driven by 
various kinds of goals, including not only presenting specific information but also 
cooperative goals such as "warn the user about the rain" and conversational goals 
such as "drag out the conversation" or "say something". The effects of varying 
the perspective will also be explored to see how the generator's output is sensitive 
to the system's perspective. If time allows, the generator will be extended to other 
domains and other kinds of motivations for producing utterances. The weather 
domain will be used initially because it provides a limited but useful amount 
of sensitivity to perspective. For example, the distinctions between "warm" and 
"hot" or between "drizzle" and "rain" are largely matters of perspective, as is the 
difference between "slightly cloudy" and "nearly clear skies". On the other hand, 
the weather domain avoids the need to model anything about human psychology or 
sensibilities, as would be required in domains such as art, politics, or economics, 
which are highly sensitive to perspective. 

4.2 Areas of Investigation 

While many of the details of the generator design have been worked out in the 
preceding chapters, there are still a few questions that must be resolved before a 
working generator can be built. The form of the initial plans must be made more 
precise, for example, as well as the mechanism for deciding when and how to 
revise the plan. The criteria that the utterer uses to balance time pressure against 
fluency and appropriateness of options need to be worked out. More generally, 
the basic semantic network and set of inference rules that the generator will use 
must be built. These problems don't seem particularly serious, though; they will 
be worked out as the generator is implemented. 

In addition, there are a number of areas where the effects of different choices 
can be explored. Examples include: 



What should the cutoff be for a node or link to be out of perspective? 

Should perspective shifts be sensitive to the old weight of the node or link 
being shifted and the weight of the node or link causing the shift? If so, 
how? 

How should nodes and links be shifted out of perspective? 

How low should a node or link's weight be in order for its use to induce 
perspective shift? 

How should reasoning effort be split when there are several possible paths 
to reason over? 

There are also possible extensions to the design that could be investigated: 

More sophisticated linguistic specialists. In particular, the specialists might 
be given more freedom to diverge from the planner's requests, given a 
sufficiently descriptive set of annotations. 

More flexible inference rules. The rules might be allowed to have variable 
structures in the antecedent, or to have variable nodes (or links) that are 
restricted to match some range of nodes. 

A way to resolve contradictions. The knowledge representation will some- 
times produce contradictory information (see Section 3.6.4). This should 
not be a problem for the generator, but if the representation is to be used for 
more general reasoning, there must be a way to revise the system's beliefs 
to eliminate contradictions (or at least to limit their consequences). 

New annotation types. The annotation types discussed in Section 3.7.2 are 
only an initial set; they are not expected to be adequate for everything the 
linguistic specialists will need to indicate. As .the linguistic specialists are 
improved, they will undoubtedly need a richer set of annotation types. 

Context model. Some of the annotation types discussed in Section 3.7.2.2 
assume some sort of model of the discourse context. The generator currently 
has no such model. Eventually, though, a context model will be necessary. 

Hearer model. It's not clear whether there should be a separate model of 
the hearer, or whether there should simply be information about the hearer 
within the general world knowledge. Either way, though, the generator will 
need to be able to take this information into account when constructing its 
utterances. 



Criteria for Evaluation 

The minimal goal of the proposed research is to develop a generator along these 
lines that works (or to understand why it won't work). Given that the design has 
made a number of compromises for practical reasons, and that further modifica- 
tions are likely during implementation, it's important to remember what it means 
for a generator to be "along these lines". What's important is that the genera- 
tor follow the general principles outlined in Chapter l. In particular the central 
constraint on the generator is that choices at all levels are (at least potentially) 
sensitive to the goals the generator is working towards. As long as the generator 
meets this constraint, it will be using language as a tool with which it can act, 
rather than a code into which it must encode messages. 

The extent to which the generator actually meets the criteria laid out in Chapter 
1 can be tested in a straightforward fashion. Simply run the generator on an 
example, remove some or all of the linguistic options used and run it again on 
the same input. The generator should still be able to produce a meaningful and 
appropriate utterance. This shows that it is really making choices on the basis 
of an understanding of what the language means and what the goals are, rather 
than on some kind of direct mapping between the generator's input and linguistic 
structures. If more and more linguistic options are removed from the generator, 
its output should become progressively less fluent but still appropriate given its 
goals. 

Another way to test the generator is to vary the system's perspective and see 
how the generator's output varies. The generator should tend to talk more about 
things that are more in perspective and to describe things as seen in the current 
perspective; but shifts in the perspective should not alter the generator's output 
so much that it no longer achieves its goals. The generator should demonstrate 
appropriate sensitivity to both the perspective and the goals it is working towards. 

Beyond the minimal goal, there are more ambitious possibilities. The gener- 
ator could be extended to work in other domains. If this were just a matter of 
building a new lexicon and modeling the new domain in the knowledge represen- 
tation formalism, it wouldn't really be very interesting. The intent here, though, 
is to have a single world model that can be used across all domains. Extending 
the generator to other domains would involve identifying the core of its world 
knowledge that is common to the domains and using perspective to filter out the 
information unique to each domain. Thus the generator would be able not just to 
work in several domains, but even to work across several domains, i.e. to deal 
with multiple domains in the same utterance. 

The generator might also be extended to handle a wider range of types of 
goals, particularly the kinds of interpersonal goals such as "be reassuring" or "be 
aggressive" that are usually background goals. This will also test the limits of 
what the representation and architecture can handle. 

These more ambitious goals will be pursued if time is available. Even the 
minimal goal, though, would establish the feasibility and utility of this work's 
principal aim: to develop a natural language generator that is conceived of as an 



integral part of an intelligent system. 



Appendix 

Focus of the Proposed Research 

This proposal, and this project, deal with a broad range of issues. The central 
focus, though, is the production and use of the annotations on the linguistic 
options. This can be seen by considering the basic argument underlying the 
proposal, which runs roughly as follows: A generator for an intelligent system 
will need to respond to a wide range of pragmatic concerns involving the situation 
in which and purpose for which it is generating utterances. Since the knowledge 
on which the generator depends must be sensitive to the widely and dynamically 
varying perspective, it's not possible to organize the generator's linguistic options 
in advance around the various pragmatic factors. Instead, the generator must be 
able to compare the effects of particular choices against the various pragmatic 
concerns underlying its current generation. This is only possible if there is a 
way to mediate between the generator's linguistic knowledge and its goals; this 
is what the annotations do. The annotations make it possible to separate out the 
work of planning the utterance from the detailed construction of the utterance; it 
is the central claim of this proposal that this can be done without sacrificing the 
generator's sensitivity to perspective and to high-level goals. 

The annotations are thus critical to the success of this work. The other parts 
of the generator can safely be simplified or compromised to some extent, because 
they are both less critical and less controversial than the annotations. The planner, 
for example, has been simplified in certain ways (see Section 2.4), but this is 
not a serious weakness because a more sophisticated planner would fit into the 
generator in the same way. Furthermore, the notion of planning in generation is 
widely (though not universally) accepted; so compromising on the implementation 
of the planner doesn't weaken the novel claims of the proposal. Similarly, the 
phenomena identified as effects of perspective will clearly have to be included 
somehow in the knowledge supporting generation, so the fact that the mechanism 
here is only a partial solution is not critical. On the other hand, developing 
a reasonable and practical set of annotation types is crucial, both because the 
annotations are a novel technique not used in other work and because if the 
annotations are not adequate, then the project as a whole will have failed to 
achieve its aims. 

The central focus of this proposal is thus to develop an adequate and appropri- 



ate set of annotation types. There are basically two constraints on the annotations: 
they must not include any purely linguistic information, and they must provide 
the planner with whatever information it needs to evaluate the options. That 
is, they must maintain the separation of the linguistic and planning components 
but provide enough of a bridge between the components to allow them to work 
together. 

Keeping purely linguistic information out of the annotations is fairly simple, 
assuming an appropriate definition of "linguistic" as opposed to "conceptual" 
knowledge. One can certainly quibble about this, but as a rough guideline I 
assume that anything that depends on the particular language used is "purely 
linguistic", while anything that is independent of the particular language is not. 
Thus the fact that "it be" can be used to talk about the weather is purely linguistic; 
whereas the concept of weather is not.' Aspects of discourse structure, such as the 
local focus or center of a sentence or the use of cue words to indicate discourse 
segmentation are more problematical. I will simply assume that, to the extent the 
planner needs to know about them, they are aspects of communication rather than 
purely linguistic phenomena; hopefully this assumption can be played out without 
becoming implausible. 

The main issue in designing the annotations is ensuring they provide enough 
information to the planner. The planner needs to know three things about the 
options: 

1. What information does it express (and omit), and how directly? Without 
this, the planner wouldn't know what it was saying. 

2. What other effects will the option have on the hearer? The planner needs 
to know how a particular option will affect the hearer's awareness of and 
beliefs about things beyond what's directly mentioned. The activates-in- 
context annotations, for example, serve this function. There might also 
be annotations indicating effects such as insulting, offending, or pleasing 
the hearer (to the extent that these effects are caused by purely linguistic 
factors, rather than by the information expressed by the option). 

3. How does this option interact with other things that have been or may be 
said? Using a particular option may conflict with, depend on, or change the 
meaning of another part of the utterance; the planner needs to know this in 
order to evaluate the option. 

The annotation types listed in Section 3.7.2 make a start at providing this 
information, but they are clearly not sufficient. The examples in Appendix B 
indicate a number of problems that will have to be solved, including: 

'This ignores the fact that different languages lexicalize different concepts, or different per- 
spectives on a concept. I am assuming here that since it is possible to explain, for example, 
how the Hebrew word "kadosh" differs from the English word "holyn, that there is such a thing 
as conceptual knowledge that is distinct from linguistic knowledge. Without this assumption, it 
would be harder to state what the constraint on the annotations should be, but the generator would 
still work the same way. 



The distinction between explicit and implicit information needs to be more 
subtle. Currently there are only two levels of "explicitness" (or three, if 
you count the indirectly-suggests annotation type). There must be finer 
distinctions to capture the fact that, for example, "be" is a much better 
option for consists - o f than "precipitation" is for rain. 

There must be a way to indicate interactions and constraints between differ- 
ent options. For example, "it be" can express temperature consist s-of 
if it's followed by "warm", but not if it's followed by "pleasant". Also, in 
Example 5 in Appendix B, the planner must know that the same option must 
be used for both instances of no-precipit at ion in order for repeat 
to be realized. 

There must be some way to appropriately control redundancy in the utter- 
ance. For example, it's okay to say "the temperature will be warm", but not 
"the temperature will be a high temperature". It's not immediately clear 
what the relevant constraints are, but they clearly involve the particular 
options chosen (e.g. "it's raining a little a little" is horrible but "it's only 
raining a little" is fine), so the annotations will have to express whatever 
information is relevant. 

There must be annotations describing how options affect discourse structure, 
indicating such things as which element will be the local focus and when 
options influence discourse segmentation. 

Extending the set of annotation types to deal with these sorts of problems will be 
the main focus of the work outlined in this proposal. 



Appendix B 

Additional Examples 

Example 1 

There is one further point raised by the example in Sections 2.8 and 3.7.3. Con- 
sider the option "it be", suggested for temperature wit hin-range. It gets 
a (makes-implicit temperature) annotation, which indicates that it using it will 
express the concept of temperature (although only implicitly). Unfortunately, 
whether it actually does this depends on what else gets said. In the present case, 
both "the temperature will be warm" and "it will be warm" express the notion of 
temperature. But suppose, instead, the choice is between "the temperature will 
be listed in the newspaper" and "it will be listed in the newspaper". Clearly "it 
be" isn't expressing the concept of temperature here. 

There are two problems here. The first is that the idiomatic use of "it be" 
has some constraints that haven't been captured here. This isn't so troubling; this 
idiom already gets special handling, so the constraints could presumably be built 
in somehow. The real problem is that the meaning of the expression depends in 
part on what other expressions are being used. Thus "it will be warm" is fine, 
whereas "it will be high" isn't. The problem isn't the use of the word "high"; 
"the temperature will be high" is fine. The problem is that the constraints on 
the use of "it be" involve choices made about other parts of the utterance. The 
annotation set doesn't currently have any way to indicate this; it will have to be 
augmented to do so. 

Example 2l 

Continuing the previous example, the planner might intend to talk next about the 
rain, producing: 

(precipitation consists-of rain) over-time-span 
<September 25 1987> 

For precipitation consists-of the options produced include: 

'These examples depend in part on the semantic network fragments in Figures B.l and B.2 



"The precipitation consist of ': 
(makes-explicit precipitation) 
(makes-explicit consists-of) 

"The precipitation be": , 

(makes-explicit precipitation) 
(makes-implicit consists-of) 

'It be": 
(makes-explicit precipitation) 
(makes-implicit consists-of) 
simple-construction 

The planner will rank the first option high, since it explicitly mentions everything 
the planner wants mentioned. The second option will receive a lower rating, since 
it only implicitly mentions cons i st s - o f . The third option is more problematic. 
On the one hand, it also only mentions consist s-o f implicitly; on the other 
hand, it is marked as being a simple construction. So its ranking relative to 
the first option depends on which factor predominates. Since I don't have any 
particular basis to decide this, I will assume it is given the same rating as the first 
option. 

For rain the options include: 

"rain": 
(makes-explicit rain) 

"precipitation": 
(makes-explicit precipitation) 
(makes-implicit rain) 
(missing-info (form rain liquid)) 

"rainy": 
(makes-explicit rain) 

"rains": 
(makes-explicit precipitation) 
(makes-explicit consists-of) 
(makes-explicit rain) 
(includes-other-request-part precipitation) 
(includes-other-request-part consists-of) 

6bsn~ws": 
(makes-explicit precipitation) 
(makes-explicit consists-of) 
(makes-explicit snow) 
(missing-info (form <request> liquid) ) 
(extra-info (form <request> solid) ) 



( i n c l u d e s - o t h e r - r e q u e s t - p a r t  p r e c i p i t a t i o n )  
( i n c l u d e s - o t h e r - r e q u e s t - p a r t  c o n s i s t s - o f )  

Here the highest rating goes to "rains", since it explicitly mentions the requested 
information, and also mentions some other information the planner wants to ex- 
press. Next come "rain" (as a noun) and "rainy", both of which explicitly mention 
the request. Lower still is "precipitation", which only mentions the request im- 
plicitly and leaves out some information, and least of all is "snows" which is 
farthest of all from the request. 

For o v e r - t i m e - s p a n  and < S e p t e m b e r  25 1987> the options are the 
same as in the previous example. 

Ignoring for a moment the "rains" option, the utterer will assemble several 
possible utterances: 

1. "The precipitation will consist of rain [over tomorrow]" 

2. *"The precipitation will consist of rainy ..." 
3. *"It will be rain ..." 
4. "It will be rainy ..." 

The second possibility is ruled out because it's ungrammatical ("of' needs a 
noun phrase, not an adjective). The third possibility can also be ruled out if we 
assume that the "it be" idiom requires an adjectival complement, which seems 
plausible. Even if that's not right, there must be some fairly specific criterion 
that distinguishes between the third and fourth option, which differ only in the 
syntactic category of the complement. The two remaining options have essentially 
the same ranking, so the utterer will choose either one. 

Actually, this doesn't seem right; the "It be" option seems much better, even 
though it only mentions c o n s i s t s  -of implicitly. It may just be that the idiom 
is strongly favored, and should automatically get a high ranking. There are two 
other possible relevant factors, though. First, using "be" for c o n s  i s t  s -o  f 
seems much less of a problem than, say, using "precipitation" for r a i n ,  even 
though they have the same structural relationship in the network. So perhaps there 
must be a finer-grained distinction than just the implicit/explicit one used here. 
Conversely, the issue may be that some parts of the request are more important 
than others. Here, for example, the most important concept seems to be r a i n  
(perhaps because p r e c i p i t a t i o n  c o n s i s t s - o f  can be inferred from it?); 
thus omitting it is more serious than omitting other parts of the request. Thus 
saying "it will be rainy" is much better than "the precipitation will consist of 
precipitation", even though the annotations suggest that it leaves out just as much 
information. 

In the current example, this problem is moot, because the utterer will actually 
select "rains", the highest ranked option for r a i n ;  since this option also covers 
p r e c i p i t a t i o n  c o n s i s t s - o f ,  it will be the only option selected. In this 
case, that works out fine, but there would be a problem if there were an option that 



covered one part of a request (or requests) well but another part badly. Should the 
option be rated for the sum of what it covers, or separately for each part, or both? 
The obvious approach would be to always rank options for everything they cover, 
but this doesn't always give the right answer. For example, "later" might be a 
high-ranked option for over-time-span that could also cover the particular 
time span (next -week, say), but express the particular time very poorly. Thus 
the overall rank might be low, even though the best utterance might be "later" 
plus some further specification of the time span, e.g. "later in the month". So the 
planner must evaluate the options in response to the (parts of) requests that they 
respond to; perhaps it should provide overall evaluations as well. 

The last two requests, over-time-span and <September 25 1987>, 
produce either "tomorrow" or "on Monday", as in the previous example. Here, 
though, this information is really redundant and should be omitted. This should 
probably be the responsibility of the planner, not the linguistic specialists or the 
utterer. It might be reasonable, though, for the specialists to be able to notice 
the repetition and suggest "and" as an option for these two pieces of the request. 
This would require some additional annotations to indicate that the effects of this 
option depend on which options are chosen for the previous request. 

Given the current machinery, the resulting utterance will be either "it will rain 
tomorrow" or "it will rain on Monday". 

Example 3 

The generator is given the goal "get the user to take his umbrella", and constructs 
the following plan: 

1. Goal: (take user umbrella) 

2. Cause(1)byachievingsub-goal: (want user (take user umbrella) ) 

3. Cause (2) by achieving sub-goal: (want user (protect user rain) ) 

4. Cause (3) by achieving sub-goal: (know user (precipitation consists-of 
rain) 

5. Achieve (4) by saying (precipitation consists-of rain) at-time 
now; this request is now placed in the workspace. 

The planner might also explicitly say "take your umbrella", and only use the 
information in (5) to motivate this, but that's irrelevant to the example. Note that 
the request placed into the workspace is similar to the one in Example 2, but it 
fits into a very different plan. 

The options for precipitation consists-of are the same as in the 
previous example, and again "It be" and "The precipitation consist of' get the 
highest rating. For "rain", all the options in the previous example show up, but 
some other options are also relevant: (These options will show up in Example 2, 
also, but they are down-rated straightforwardly there) 



"drizzle": 
(makes-implicit rain) 
(makes-explicit drizzle) 
(extra-info (strength <request> gentle) ) 

"drizzles": 
(makes-explicit precipitation) 
(makes-explicit consists-of) 
(makes-implicit rain) 
(makes-explicit drizzle) 
(extra-info (strength <request> gentle)) 
(includes-other-request-part precipitation) 
(includes-other-request-part consists-of) 

b b p ~ ~ r ~ " :  
(makes-explicit precipitation) 
(makes-explicit consists-of) 
(makes-implicit rain) 
(makes-explicit pour) 
(extra-info (strength <request> hard)) 
(includes-other-request-part precipitation) 
(includes-other-request-part consists-of) 

Since the planner is expressing this information to convince the user he needs 
protection from the rain, the option that suggests that the rain is heavy (and hence 
more of a problem) is preferred, and the planner selects "pours", even though it's 
not the best match to the information. 

The options for at-t ime include: 

tense 
(makes-implicit at-time) 
(makes-explicit <tense>) 
simple-construction 

tense=present 
(makes-implicit at-time) 
(makes-explicit <tense=present>) 
simple-construction 
(includes-other-request-part now) 

and for now: 

"today": 
(makes-implicit now) 
(makes-explicit today) 
(activates-in-context few-days-time-scale) 



(makes-explicit now) 
(activates-in-context time-scale-including-present) 

There are a couple of problems with these annotations. First, time-scale-including- 
present is a rather ad-hoc concept; there really needs to be a general model of 
temporal concepts that this fits into before this can be taken seriously. More im- 
portantly, the (makes-implicit now) annotation for "today" can't simply be read 
off the network the way the other makes-implicit annotations are. "Today" isn't 
a subconcept of "now", nor is "now" a subconcept of "today". Instead, it seems 
that the specialists need to draw on some sort of reasoning to determine the rela- 
tionship between the concepts. Perhaps this should be an effect of the perspective; 
if the system is only interested in what's currently going on, a subconcept link 
between now and today might shift into perspective. This one example doesn't 
seem strong enough motivation to make that move, though; as more cases of this 
problem turn up, the proper way to deal with it may become more apparent. 

The planner will prefer <tense=present > over <tense> since it covers more 
parts of the request. As for "now" and "today", since the planner isn't concerned 
with any particular time scale here, the activates-in-context annotations are ig- 
nored (in contrast to Examples 1 and 2). Instead, the choice depends on whether 
the planner wants to mention now explicitly. This in turn depends on whether 
the planner thinks that adding a sense of urgency will be useful: if so, it prefers 
"now"; if not, it prefers "today". In the latter case, though, the planner will prefer 
to have the <tense=present > option cover now, so both "now" and "today" will 
receive lower rankings. 

Finally, the utterer will assemble the highest ranking options, producing either: 

a "It's pouring" 
or 

a "It's pouring now" 

Example 4 

The generator is given the goal "make the user happy", and develops a plan to 
do so by discussing the weather: 

1. Goal: happy (user) 

2. Achieve (1) by: 

(a) Goal: Downplay unpleasant information 

(b) Goal: Emphasize pleasant information 

3. Achieve (2a) by saying: (minimal-signif icance (precipitation 
consists-of rain)) 



4. Achieve (2b) by saying: (temperature within-range <60°F 80°F>) 

5. Achieve (2b) by saying: (no-precipitation at-tiqe this-afternoon) 

There are a number of difficulties in constructing such a plan, of course. For 
example, how is the notion of "happy" being modeled, and how does the planner 
know what sort of information is pleasant or unpleasant? These questions don't 
have anything to do with generation specifically, so I will ignore them for now 
and just assume the plan has been built somehow. 

Starting with (3), the options for precipitation consists-of rain 
will be the same as in Examples 2 and 3, but they will be evaluated differently here. 
Here "it be" is clearly favored for precipitation consists-of, since it 
only mentions implicitly some of the information (which the planner is trying to 
downplay). For rain, the preferred options are now "precipitation", which omits 
some of the unpleasant information, and "drizzle" and "drizzles", which include 
extra information that mitigates the unpleasantness. When syntactic constraints 
are figured in, the utterer will choose "drizzles" to cover both parts of the request. 
(Another plausible option would be "there be precipitation", but I haven't figured 
out yet how to handle this construction.) 

Of course, the information could be even further downplayed by simply not 
mentioning it. The planner might, in fact, decide to do this, either in the initial 
plan or when it evaluates the options. In the present case, though, the planner 
has decided to mention the information in order to explicitly downplay it saying 
it has minimal-significance. The options for this concept are:2 

"a little": 
(makes-explicit little) 
(makes-implicit minimal-significance) 

''only": 
(makes-explicit only) 
(makes-implicit minimal-significance) 

Here there's no way to distinguish the two options, so the planner rates them both 
as high. 

The utterer will thus select either: 

"It's only drizzling" 
or 

"It's drizzling a little" 

'Handling these options properly would require a more careful analysis of the pragmatics of 
the expressions. "Only", for example, implicates that its argument is below some threshold in 
some scale, where the threshold and the scale are contextually determined (or perhaps inferred 
from the utterance). The present approach will suffice for this example, though. 



Actually, if the specialists were a little cleverer, they might have suggested "rains 
a little" or "a little rain" as possible options for rain. These would be given a 
high rating just like "drizzles" (although perhaps not quite as high, because they 
do mention rain explicitly), allowing the utterer to produce "it's only raining 
a little". The system would have to avoid saying "it's raining a little a little", 
though, so the utterer would have to be able to avoid repeated use of the same 
expression, unless explicitly approved by the planner. 

Going on to (4), the options and rating for (temperature wit hin-range 
<60°F 8 O°F>) will be the same as in Example 1, except that options such as 
"mild" or "pleasant" may be preferred over "warm", since they reinforce the 
planner's goal. Thus the utterer will produce either: 

"It's warm" 
or 

"It's mild" 
or 

"It's pleasant" 

The last of these options demonstrates the problem discussed above under Example 
1; the "it be" idiom for temperature requires a predicate that indicates temperature 
is being discussed. There's no way currently to indicate that constraint in the 
annotations. 

Finally, the specialists produce options for (5).3 I will just assume that "it 
be clear" is chosen for no-precipit at ion and that <tense > is chosen for 
at -t ime in a straightforward manner. This leaves this-af ternoon, for 
which the options include: 

"this afternoon": 
(makes-explicit this-afternoon) 

"later": 
(makes-explicit later) 
(makes-implicit this-afternoon) 
(missing-info (scale <request> one-day-time-scale)) 
(missing-info (between <request> noon six-pm)) 
(extra-inf o (after <request> now) ) 

"SOOn9': 

(makes-explicit soon) 
(makes-implicit this-afternoon) 
(missing-info (scale <request> one-day-time-scale)) 
(missing-info (between <request> noon six-pm)) 
(extra-info (close <request> now) ) 

3I haven't completely worked out the representation for all the concepts in this request, so 
some of the annotations here will be speculative. 



Here the planner prefers "soon", since it suggests that the pleasant event is not far 
away. Conversely, "later" gets the lowest rank, since it leaves the actual time of 
no-prec ipi t at ion unspecified. "This afternoon" gets an intermediate rank, 
since it does indicate when the event will occur but doesn't give any sense of 
immediacy to it. So the resulting utterance is "it will be clear soon". 

The final result is thus one of: 

It's drizzling a little. It's warm. It will be clear soon. 

It's only drizzling. It's warm. It will be clear soon. 

The major problem with these is that the individual sentences are disconnected. 
There needs to be some way to make them flow more smoothly. Some of this 
could be handled by the planner. For example, the planner could request an in- 
dication of the rhetorical opposition between the first sentence and the other two. 
The linguistic specialists might then propose "but" as a way of expressing the 
opposition, leading to "it's drizzling a little, but it's warm". Also, the special- 
ists might in general suggest conjoining sentences with a common element, and 
annotations might indicate the consequence of not doing so. This might make it 
possible to produce "It's drizzling a little, but it's warm and it will be clear soon", 
which is much better. 

Example 5 

Suppose the planner is trying to talk about the current drought, and its plan 
includes the following elements: 

n. Say: (continue drought) 

n+l. Support (n) by saying: (no-precipitation over-time-span <today1 s 
date>) 

n+2. Support (n) by saying: ( (repeat no-precipitation) over-time-span 
<tomorrow1 s date>) 

This is intended to produce something like: 

The drought is continuing. It's dry today, and it will be dry again 
tomorrow. 

Much of this would be produced straightforwardly along the lines of the previous 
examples. There are a few particular choices that are worth examining. 

First of all, note that no-precipitation needs to be expressed as "dry" 
here, whereas it was expressed as "clear" in the previous example. It's not too 
difficult to see how this would happen; "dry" would have a (makes-explicit dry) 
annotation, and the planner would presumably see how this reinforces the concept 
of a drought. This contrasts with Example 4, where the planner is trying to make 
the user happy. In that situation, the planner prefers "clear", which emphasizes 



the lack of rain over "dry", which emphasizes the (possibly unpleasant) lack of 
any we<sr. Thus the choice of particular words is affected by how they interact 
with the planner's high-level goals. 

In (n+2), r epea t  could be expressed in a number of ways other than "again", 
such as "also", "as well", or."too". "Again" seems to be preferable, though, partly 
because it suggests a potentially indefinite sequence of repetitions (as opposed 
to only two), and partly because it suggests that the repetition is identical (as 
opposed to merely similar or related). Both of these factors reinforce the sense of 
the drought continuing over a long period of time. The annotations will have to be 
able to capture these distinctions; while it's not immediately clear how precisely 
to do this, it doesn't seem beyond the capacity of the current annotations. 

It's important to note, though, that use of repeat  seems to require that 
no-prec ip i t  a t  ion  be realized the same way both times. That happens here, 
but only by coincidence; there's nothing in principle preventing the planner from 
trying to say "it's clear today, and it will be dry again tomorrow." Furthermore, 
the current machinery doesn't seem to provide any mechanism for expressing or 
enforcing this kind of constraint. This will need further work. 
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