
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

February 1994

Massively Parallel Simulation of Structured Connectionist Massively Parallel Simulation of Structured Connectionist

Networks: An Interim Report Networks: An Interim Report

D. R. Mani
University of Pennsylvania

Lokendra Shastri
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
D. R. Mani and Lokendra Shastri, "Massively Parallel Simulation of Structured Connectionist Networks: An
Interim Report", . February 1994.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-10.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/492
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76359696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F492&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/492
mailto:repository@pobox.upenn.edu

Massively Parallel Simulation of Structured Connectionist Networks: An Interim Massively Parallel Simulation of Structured Connectionist Networks: An Interim
Report Report

Abstract Abstract
We map structured connectionist models of knowledge representation and reasoning onto existing
general purpose massively parallel architectures with the objective of developing and implementing
practical, real-time knowledge base systems. Shruti, a connectionist knowledge representation and
reasoning system which attempts to model reflexive reasoning, will serve as our representative
connectionist model. Efficient simulation systems for shruti are developed on the Connection Machine
CM-2 - an SIMD architecture - and on the Connection Machine CM-5 - an MIMD architecture. The resulting
simulators are evaluated and tested using large, random knowledge bases with up to half a million rules
and facts. Though SIMD simulations on the CM-2 are reasonably fast - requiring a few seconds to tens of
seconds for answering simple queries - experiments indicate that MIMD simulations are vastly superior to
SIMD simulations and offer hundred- to thousand-fold speedups. This work provides new insights into the
simulation of structured connectionist networks on massively parallel machines and is a step toward
developing large yet efficient knowledge representation and reasoning systems.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-94-10.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/492

https://repository.upenn.edu/cis_reports/492

Massively Parallel Simulation of Structured
Connectionist Networks:

An Interim Report

MS-CIS-94-10
LINC LAB 264

D. R. Mani
Lokendra Shastri

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

February 1994

Massively Parallel Real-Time Reasoning
with Very Large Knowledge Bases:

An Interim Report

D. R. Mani and Lokendra Shastri

International Computer Science Institute
1947 Center Street Berkeley, CA 94704

and
Department of Cornputer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Abstract

We map struct,ured connectionist models of knowledge representation and reasoning onto exist,ing
general purpose massively parallel architectures with the object,ive of developing and implementing prac-
tical, real-time reasoning systems. SHRUTI, a connectionist knowledge representation and reasoning
system which attempts to model reflexive reasoning, serves as our representative connectionist model.
Realizations of SHRUTI are developed on the Connection Machine CM-2--an SIMD architecture-and on
the Connection Machine CM-5-an MIMD architecture.

Though SIMD implementations on the CM-2 are reasonably fast-requiring a few seconds t o tens
of seconds for answering queries-experiments indicate that SPMD message passing systems are vastly
superior t o SIMD systems and offer hundred-fold speedups. The CM-5 implementation can encode large
knowledge bases with several hundred thousand (randomly generated) rules and facts, and respond in
under 500 milliseconds to a range of queries requiring inference depths of up t o eight.

This work provides some new insights into the simulation of structured connectionist networks on
massively parallel machines and is a step toward developing large yet efficient knowledge representation
and reasoning systems.

1 Introduction

Connectionist models are fast developing into widely explored architectures for cognition and intelligence.
These models use a large number of simple nodes which are profusely int,erconnected by direct hard wired
links, carrying simple, scalar messages. Massive parallelism is an important feature of any connectionist
model. Since any system that purports to model human cognition must use some form of massive paral-
lelism if it has to react in real-time (Feldman and Ballard, 1982; Shastri, 1991; Newell, 1992), structured
connectionist models-with their inherent parallelism and t,heir ability to represent structured knowledge-
seem to be promising architectures for high-level--or symbolic-processing. Several structured ~onnect~ionist
models have been proposed for rule-based reasoning, language processing, planning and other high-level cog-
nitive processes (Barnden and Pollack, 1991). From a practical standpoint, if such systems have t,o be fast,
efficient and usable, we will need to be a.ble to simulate or emulate them on massively parallel platforms.
From a cognitive standpoint, where our concern is to design, test and prototype connectionist models of
cognition, we would require suitable platforms for implementing and experimentsing with these highly par-
allel models. Hence mapping connectionist systems onto currently existing massively parallel architechres
appears to be an avenue worth exploring.

In this report we investigate the mapping of structured connectionist models of knowledge representation
and reasoning onto existing general purpose massively parallel architectures with the objective of developing
and implementing practical, real-time reasoning systems. We define rapid or real-tame reasoning to be
reasoning that is fast enough to support real-time language understanding. We can understand written
language at the rate of about 150-400 words per minute-i.e., we can understand a typical sentence in a
second or two (Carpenter and Just. 1977).

SHRUT~, a connectionist knowledge representation and reasoning system which attempts to model reflexive
reasoning (Shastri and Ajjanagadde, 1993), will serve as our representative connectionist model. Efficient
realizations of SHRUTI are developed on the Connection Machine CM-2-an SIMD architecture-and on the
Connection Machine CM-5-an MIMD architecture.' We shall use the term parallel rapid reasoning system
to designate t,hese SHRUTI-based, massively parallel systems that can handle very large knowledge bases and
perform a large yet limited class of reasoning in real-time.

Though SIMD implementations on the CM-2 are reasonably fast-requiring a few seconds to tens of
seconds for answering simple queries-experiments indicate that SPMD message passing systems are vastly
superior to SIMD systems and offer hundred-fold speedups. The CM-5 implementation can encode large
knowledge bases with several hundred thousand (randomly generated) rules and facts, and respond in under
500 n~illiseconds to a range of queries requiring inference depths of up to eight.

In addition to developing viable technology for supporting large-scale knowledge base systems, this work
provides some new insights into the simulation of structured connect,ionist networks on nlassively parallel
machines and is a step toward developing large yet efficient knowledge representation and reasoning syst,ems.

Section 2 is an overview of the system described in the rest of this report. Section 3 provides a brief
description of SHRUTI, our representative structured connectionist knowledge representation and reasoning
system. Section 4 is a general discussion of the issues irivolved in mapping SHRuTI onto massively parallel
machines. Section 5 deals with t,he design, implementation and characteristics of the SPMD parallel rapid
reasoning system on the CM-5. Similar issues for the SIMD CM-2 architecture are considered in Appendix A.

2 Overview of the System

The parallel rapid reasoning system supports the encoding of very large knowledge bases and their use for
real-time inference and retrieval. Toward this end, the system includes the following suite of programs and

'Though the CM-5 is a n MIMD architecture, it can only be used in SPMD (Single Program Multiple Data) mode with
current software. See Section 5.

A parser for accepting knowledge-base items expressed in a human readable illput language. The
language's syntax is similar to that of first-order logic (see Appendix D).

A preprocessor for mapping a knowledge base onto the underlying parallel machine. This involves
mapping the knowledge base to an inferential dependency network whose structure is analogous to
that of SHRUTI, and partitioning this network among the processors of the parallel machine.

A reasoning algorithm for answering queries. This runs on t,he parallel machine and efficiently mimics
the reasoning process of our connectionist models.

Procedures for collecting a number of statistics about the knowledge base and the reasoning process.
These include the distribution of knowledge base items anlong processors, the processor load and
message traffic during query answering, and a count of knowledge base itenis of each type (rules, facts,
concepts, etc.) activated during processing.

A utility for generating large psuedo-random knowledge bases given a specification of broad structural
constraints. Examples of such constraints are: the number of knowledge base items of each type, any
subdivision of the knowledge base int,o domains, the ratio of inter- and intra-domain rules, and the
depth of the type hierarchy.

Several tools for analyzing and visualizing the knowledge base and the statistics gathered during query
answering.

This collection of programs and tools facilitates automatic loading of large knowledge bases, incremental
addition of items t o an existing knowledge base, posing of queries and recording of answers, and off-line
visualization and analysis of system behavior. It also allows a user to construct large artificial knowledge
bases for experimentation.

The system is interactive and allows the user to load and browse knowledge bases, and process queries
by issuing commands at a prompt. At the same time it is also possible to process command files and use
the system in an unattended batch processing mode.

3 SHRUTI-A Connectionist Reasoning System

SHRUTI, a connectionist reasoning system t,hat can represent systematic knowledge involving n-ary predicates
and variables, has been proposed by Shastri and Ajjanagadde (Shastri and Ajjanagadde, 1993; Ajjanagadde
and Shastri, 1991). SHRUTI can perform a broad class of reasoning with extreme efficiency. In principle,
the time taken by the reasoning system to draw an inference is only proportional to the length of the chain
of inference and is independent of the number of rules and facts encoded by the system. The reasoning
system maint,ains and propagates variable bindings using temporally synchroi~ous-i.e., in-phase--firing of
appropriate nodes. This allows the system to maintain and propagate a large number of variable bindings
simultaneously as long as the number of distinct entities participating in the bindings during any given
episode of reasoning remains bounded. Reasoning in the system is the transient but systematic flow of
rhyth,mic patterns of activation, where each phase in the rhythmic pattern corresponds to a distinct en.tity
involved in the reasoning process and where variable bindings are represented as the synchroilous firing of
appropriate role and filler nodes. A fact behaves as a temporal pattern matcher that becomes 'active' when
it detects that the bindings corresponding to the fact are present in the system's pattern of activity. Finally,
rules are interconnection patt.erns that propagate and transform rhythmic patterns of activity.

SHRUTI attempts to model reflexive reasoning over a large body of knowledge. SHRUTI has been extended
in (Mani and Shast,ri, 1993) to effectively reason with a less restricted set of rules and facts a.nd enhance the
system's ability to model common-sense reflexive reasoning.

give

own

can-sell J-I
\ p-seller fl

0
John

John

e : g i i r~
g-obj LLLLLn
recip

e:buv

b - ~ b ~

buver

n IUUUUI
~n n rt-n fl

- . -
0-obj

owner
e:can-sell

 BOO^^

input to e:can-sell

f l n n n r ~ ~ n n
n n LI-LIUAL

n r u l r u n n n n
CS-obi

M ~ V

input to pseller

input to Bookl

input to Mary

n n n n n n u
n n n n r u n n n

Figure 1: (a) An example encoding of rules and facts. (b) Activation trace for the query can-
sell(Mary, Bookl)?.

o-seller

3.1 Terminology

We clarify some terlninology before proceeding with a description of knowledge representation and reasoning
in SHRUTI.

A predicate is a relation. For example, give(x,y,z) is a predicate which represents the relation: x gives
y to z . Here x, y and z const,itute the arguments or roles of the give predicate. A fact is a. partially
or completely instantiated predicat,e-like giue(John,Mary,Bookl). Entities which are bound to predicate
arguments are fillers. A rule specifies the systematic correspondence between predicate arguments. The rule
Qx,y,z [give(x,y,z) a own(y,z)] states that "if x gives y to z , then y owns z".

The term entity or concept is used to collectively refer to types (or categories) and instances (or individ-
uals). An is-a relation or is-a fact captures the superconcept-subconcept relation between types, and the
instance-of relation between types and inst,ances.

Predicates, along with associated rules and facts, constitute the rule-base while concepts and their associ-
ated is-a relations constitute t,he type-hierarchy. Predicates, concepts, facts, rules and is-a relations together
constitute k11,owledge-base elements.

3.2 Encoding Knowledge

We briefly describe the reasoning system using an example. Figure l a illustrates how long-term knowledge
is encoded in the rule-based reasoning syst,em. The network encodes the following rules and facts:

V X , Y , ~ 1 give(x,y,z) =+ own(y,z) I ,
V ~ , Y [buy(z.,y) * o w n l z . , ~) I ,
V x , y [own(2, y) J can-sell(x, y) 1:

0 and 0 can fire with any ieriod in the
interval [%i,,lm,l

always fires with period sax

Figure 2: Behavior of p-btu, r-and and r-or nodes in the reasoning system.

give(John, Mary, Bookl),
buy(John,x), and
own(Mary, Balll).

Rule and fact encoding makes use of several types of nodes (see Figure 2): pbtu nodes (depicted as circles),
T-and nodes (depicted as pentagons) and ?-or nodes (depicted as triangles). These nodes have the following
idealized behavior: On receiving a spike train, a p-btu node produces a spike train that is synchronous (i.e.,
in-phase) with the driving input. We assume tha.t p-btu nodes can respond in this manner as long as the
inter-spike distance, n , lies in the interval [nmin, T,,,]. Here rmin and T,,, are the minimum and maximum
inter-spike gaps for which the system can sustain synchronous activity (Shastri and Ajjanagadde, 1993). A
r-and node behaves like a temporal A N D node, and becomes active on receiving an uninterrupted pulse train.
On becoming active, a T-and node produces a pulse train comparable to the input pulse train. A T-or node
on the other hand becomes active on receiving any activation; its output is a pulse whose width and period
equal n,,,. Figure 2 summarizes node behavior. The encoding also makes use of inhibitory modifiers-links
that impinge upon and inhibit other links. A pulse propagating along an inhibitory modifier will block a
pulse propagating along the link it impinges upon. In Figure l a , inhibitory modifiers are shown as links
ending in dark blobs.

Each entity in t,he domain is encoded by a p-btu node. An n-ary predicate P is encoded by a pair of
r-and nodes and n pb t8u nodes, one for each of the n arguments. One of the T-and nodes is referred to as the
enabler, e:P, and the other as the collector, c:P. In Figure l a , enablers point upward while collectors point
downward. The enabler e:P becomes active whenever the system is being queried about P. On the other
hand, the system activates the collector c:P of a predicate P whenever the system wants to assert that the
current dynamic bindings of the arguments of P follow from the knowledge encoded in the system. A rule is
encoded by connecting the collector of the antecedent predicate to the collector of the consequent predicate,
the enabler of the consequent predicate to the enabler of the antecedent predicate, and the arguments of the
consequent predicate to the arguments of the antecedent predicate in accordance with t,he correspondence
between these arguments specified in the rule. A fact is encoded using a r-and node that receives an input
from the enabler of the associated predicate. This input is modified by inhibitory modifiers from the argument
nodes of the associated predicat,e. If an argument is bound to an entity in the fact then the modifier from
such an a.rgument node is in t,urn modified by an inhibitory modifier from the appropriate entity node. The
output of the r-and node is connected to t.he collector of the associated predicate. Figure l a shows the
encoding of the facts giue(John, Mary, Bookl) and buy(John,x). The fact give(John,Afary, Bookl) states that
'John gave Mary Bookl' while buy(John,x) implies that 'John bought something'.

3.3 The Inference Process

Posing a query t o the system involves specifying the query predicate and i ts argument bindings. T h e query
predicate is specified by activating its enabler with a pulse train of width and periodicity T . Argument
bindings are specified by activating each entity, and the argument nodes bound t o tha t entity, in a distinct
phase, phases being non-overlapping t ime intervals within a period of oscillation.

We illustrate the reasoning process with the help of an example. Consider the query can-sell(Mary,
Bookl)? (i.e., Can Mary sell Bookl?) The query is posed by (i) Activating the enabler e:can-sell; (ii)
Activating Mary and p-seller in the same phase (say, p l) , and (iii) Activating Bookl and cs-obj in some other
phase (say, p2). AS a result of these inputs, Mary and p-seller fire synchronously in phase p l of every period
of oscillation, while Bookl and cs-obj fire synchronously in phase pz. See Figure Ib . The activat,ion from the
can-sell predicate propagates t o the own, give and buy predicates via the links encoding the rules. Eventually,
as shown in Figure l b , Mary, p-seller, owner, buyer and recap will all be active in phase p l , while Bookl,
cs-obj, o-obj, g-obj and b-obj would be active in phase pa. The activation of e:can-sell causes the enablers of
all other predicates t o go active. In effect, the system is asking itself three more queries--own(Mary, Bookl)?,
give(x,Mary,Bookl)? (i.e., Did so7i~eone give Mary Bookl?), a.nd buy(Mary,Bookl)?. The T-and node F1,
associated with the fact give(John,Mary,Bookl) becomes active as a result of the uninterrupted activa.tion it
receives from e:give, thereby answering give(x, Mary, Bookl) ? affirmatively. The activation from F l spreads
downward t o c:give, c:ouin and c:can-sell. Activation of c:can-sellsignals an affirmative answer t o the original
query can-sell(Mary, Bookl)?.

3.4 The Type Hierarchy

Integrating a type hierarchy with the reasoning system (Mani and Shastri, 1993) allows the use of types
(categories) as well as instances in rules, facts, and queries. This has the following consequences:

The reasoning system can combine rule-based reasoning with inheritance and classification. For exam-
ple, such a system can infer tha t 'Tweety is scared of Sylvester', based on the generic fact 'cats prey
on birds', the rule 'if x preys on y then y is scared of x' and the is-a relations 'Sylvester is a cat ' and
'Tweet,y is a bird'.

T h e integrated system can use category information to qualify rules by specifying restrictions on the
type of argument fillers. An example of such a rule is:

which specifies tha t the rule is applicable only if the t,wo arguments of 'walk-into' are of the type
'animate' and 'solid-object', respectively.

Each entity is now represented as a cluster of nodes and is associated with two type-hierarchy switches-a
top-down T-switch and a bottom-up T-switch. Any entity can now accommodate up t o kl dynamic instantia-
t.ions, kl being the multiple instantiation constant for concepts. The T-switches regulate the flow of activation
t o bring about efficient and automatic dynamic allocation of concept. banks t o ensure tha t :

Any concept represents a t ~ l los t k1 instantiations.

A given instantiation is repre~ent~ed a t most once; in other words, no t,wo banks represent the same
instantiation.

3.5 Multiple Dynamic Instantiation of Predicates

Extending the reasoning system t o incorporate multiple instantiation of predicates (Mani and Shastri, 1993)
provides SHRUTI with the ability t o siii~ultaneously represent multiple dynamic facts involving a predicate.

For example, the dynamic facts loves(John, Mary) and loves(Mary, Tom) can now be represented at the same
t ime. As a result, we can represent and reason using a set of rules which cause a predicate to be instantiated
more than once. We can now encode rules like:

Q x , y [sibling(x, y) 3 sibling(y,x)] and
Vx, y, 2 [greater-than(x, y) A greater-than(y,z) + greater-than(x,z)]

thereby introducing the capability to handle bounded symmetry, transitivity and recursion.

Introduction of multiple dynamic instantiation of predicates relies on the assumption that, during an
episode of reflexive reasoning, any given predicate need only be instantiated a bout~ded number of times. In
(Shastri and Ajjanagadde, 1993), it is argued tha.t a reasonable value for this bound is around three. We
shall refer to this bound as the mult,iple instantiation constant for predicates, k2 .2

Predicate representations are augmented so that each predicate can represent up to lea dynamic instanti-
ations. Each predicate also has an associated multiple instflntiation switch (or M-switch) through which all
inputs to the predicat,e nodes are routed. The switch arbitrates inputs and brings about efficient and auto-
matic dynamic allocat,ion of predicate banks to ensure that predicates represent a t most k z instantiations,
no two of which are identical.

4 Mapping SHRUTI onto Massively Parallel Machines

When mapping SHRUTI onto any massively parallel machine, several issues need to be considered in order to
obtain effective performance and to strike a compromise between resource usage and response time. Several
of these issues are discussed here. The discussion here is applicable when mapping SHRUTI onto any massively
parallel machine. Later sections bring out how these issues are resolved in actual implementations on the
CM-2 and CM-5. The CM-2 is an SIMD machine while the CM-5 is an MIMD machine. We have chosen the
CM-2 and CM-5 as our target machines since they are representatives of their class and offer similar user
interfaces and program development environments.

4.1 Exploiting Constraints Imposed by SHRUTI

As brought out in the previous sections, SHRUTI is a limited inference system, and imposes several psycho-
logically and/or biologically motivat,ed constraints in order to make reasoning tractable:

The form of rules and facts that can be encoded is constrained. SHRUTI attains its tractability from
this fundamental constraint (Shastri, 1993; Dietz et al., 1993), which implicitly influences the resulting
network encoding the knowledge base.

The number of dist,inct entities that can participate in an episode of reasoning is bounded. This restricts
the number of active entities and hence the amount of information contained in an instantiation.

Entities and predicates can only represent a limited number of dynamic instantiations. Entities and
predicat,es therefore have a bounded number of banks which constrains both the space and time re-
quirements.

The depth of inference is bounded. This constrains the spread of activation in the network and therefore
directly affects time and resource usage.

The motivation for these constraints and their impact are discussed in (Shastri and Ajjanagadde, 1993). In
terms of mapping SHRUTI onto parallel machines, it would be to our advantage to exploit these constraints

'This is the factor that limits symmetry, transitivity and recursion, since each predicate can accommodate at most kz
dynamic instantiations.

to the fullest extent to achieve efficient resource usage and rapid response with large knowledge bases. Of
course, if any of these constra.ints can be relaxed without paying a severe performance penalty, we would
like to obtain a more powerful system by relaxing these constraints.

4.2 Granularity

For effective mapping, the SHRUTI network encoding a knowledge base must be partitioned among the
processors in the machine. The network partitioning can be specified at different levels of granularity. At
the fine-grained network-level, the partitioning would be at the level of the basic nodes and links constitut,ing
the network. A more coarse-grained knowledge-level mapping would partition the network at the level of
knowledge elements like predicates, concepts, facts, rules and is-a relat,ions.

The appropriate level of granularity for a given situation depends on several factors including the char-
acteristics of the network, the processing power of individual processors on the machine and interprocessor
communication mechanisms.

4.3 Network-Level Mapping

At this level of gra.nularity, the network is viewed as a collection of nodes and links. Factors that need to be
considered when using network-level partitioning include:

Processor Allocation Nodes and links in the network should be assigned to processors 011 the target
machine so as to minimize response time. Several options are possible: Each node and link could be
assigned to a separate processor; groups of nodes and/or links could be assigned to a single processor;
processors could be partitioned so that some ha.ndle only nodes and some handle only links; and so on.

Nodes The network which SHRUTI uses to encode a knowledge base consists of several different types of
nodes. A given processor could handle only one type of node or could simulate an assorted combination
of node types. The complexity of the node function should also be taken into consideration.

Links Like nodes, the links can also be of several types-including weighted, unweighted and inhibitory
links. Placement of the links (on processors) relative to the placement of the nodes they connect is
important since t,his is a major factor determining the volunle of interprocessor communication.

Communication and Computatio~l The partitioning scheme used to assign network components to pro-
cessing elements should take into account the balance of computation and conlmunication in the re-
sulting system. Coirlmunication between network nodes, and hence interprocessor communication,
is an essential aspect of connectionist network simulation. Trying to eliminate or unduly minimize
interprocessor comnlunication could lead to severe load imbalances whereby a few of the processing
elements are overburdened with computation. Trying to evenly spread the computational load among
the processing elements could result in increased communication and poor performance. A well de-
signed system should strike a compromise between communication and computation so as to achieve
effective performance.

4.4 Knowledge-Level Mapping

Knowledge-level mapping views the network at a relatively abstract level. At this granularity, knowledge
base elements like predicates, concepts, facts, rules and is-a relations form the primitives. As is evident from
Section 3, each primitive is constituted by a group of nodes and/or links. The behavior of these primitives
could be directly simulated without recourse to the underlying nodes and links constituting the primitive.
Issues at t,his level include:

Predicates Each predicate could be assigned to a separate processor, or a group of predicates could be
assigned to a single processor. In the latter case, predicates constituting a rule could all be placed on
the same processor or could be scattered on different processors. Grouping predicates on any given
processor could reduce the number of messages required to spread activation, but would make load
balancing more difficult. If the number of predicates is larger than the number of processors, grouping
predicates is unavoidable.

Facts Facts could be stored on the same processors to which the corresponding predicates have been as-
signed. An alternat.ive approach would be to have dedicated processors for encoding facts. Such
processors receive inputs from both the predicate and the type hierarchy, and signal fact matches
globally or by com~nunicating with the processor containing the predicate under consideration. In any
case, we may need some mechanism to circumvent the situation where processors run out of memory
since predicates could have a large number of associated facts.

Corlcepts Concept clusters are used in the type hierarchy to represent types and instances. Apart from
being linked up to form the type hierarchy, these clusters must also communicate with the rule base.
Careful choice of the mechanisms used to comn~unicate concept activations to the rule base could make
the system more effective and reduce the number of messages exchanged in the system.

Rules When encoding rules, effective placement of predicates constituting the rule can minimize commu-
nication costs. The arbitration mechanism for accommodating nlultiple instantiations of a predicate
also needs to be taken into account.

When encoding rules, there are several choices available for the placement of predicates consti-
tuting the rule:

- Depending on the processor allocation scheme used, we could allocate predicates occurring
in a rule to the same processor. This would reduce interprocessor communication since fewer
messages are required when the rule fires. This may not be easy to accomplish if predicates
present in the rule being encoded have already been assigned to different processors.

- A weaker form of the above scheme is to allocate predicates in a rule on n ~ a r b y processors.
This scheme is easier to execute but will require relatively more messages in order to fire a
rule.

- The other extreme is to scatter the predicates randomly. Though this would require more
messages, and messages would travel a longer average distance than for the previous two
schemes, there are indications that random allocation may distribute messages uniformly
over the entire machine instead of localizing it to "hot spots" where all the action happens,
and would therefore reduce the incidence of message collisions. Further, this scheme would
provide better load balancing when answering a query.

- Making copies of a given predicate on more than one processor is also an option, especially
when the predicate has a large number of rules and/or facts. In such a case, the rules
and/or facts would be partitioned among the copies of the predicate. Though this requires
extra resources and coinplicates book-keeping, it might be worthwhile since it could provide
increased parallelisin and improved load balancing.

Identifying suitable performance measures and attempt.ing to optimize these will aid in the ob-
jective placement of predicates when encoding rules. The performance measure could take into
account factors like load balancing, cost of computation and cornmui~ication, etc. It should be
easy to compute the measure-or at least approximate it-using only local information.

Predicate instance arbitration mechanisms ("switches") may need to be redesigned. When one or
more predicates are assigned to each processor, switches may be unnecessary. Space ("banks")
can be allocated for k2 inst,ances of each predicate. Incoming activation can be received in a buffer
and then allocated t,o an empty bank under program control.

QUERY DEPTH vs. RESPONSE TIME
10 1 I I I I I

simd / spmd version 05.1 / 07.3
32k, 16k, 8k pe cm-2 132 pe cm-5 .32 PE CM-5 x 100 +
kb size = 55000 .8K Processor CM-2 -t--
kb with special rules and type hierarchy (kbl) .16K Processor CM-2 -0 - - .

.32K Processor CM-2 --x-...

0 2 4 6 8 10 12 14
Query Depth

Figure 3: A comparison of S H R U T I - C M ~ running on 32Ii, 16K and 8K processor CM-2 machines and SHRUTI-

C M ~ running on a 32 PE CM-5. The same full-fledged, structured, random knowledge base with special
rules and a type hierarchy was used on all the machines. Note that the timing curve for the CM-5 has been
multiplied by 100. Queries used were not randomly generated.

Type Hierarchy Most of the issues raised above will also need to be reconsidered with respect to the
location and interaction of concepts in the type hierarchy. We would also need to streamline the
interaction between the type hierarchy and the rule base for enhanced efficiency and effectiveness.
Extending the scheme mentioned above for dealing with multiple instantiation, we might be able to do
away with the type hierarchy T-switch.

Most of the concerns addressed above are intertwined in that choosing one aspect will affect the choice
of other aspects of the mapping. On a global scale, our aim is to develop an efficient and effective mapping
by ensuring load balancing, minimizing interprocessor con~munication and by efficiently using resources
including processors and memory.

We believe that knowledge-level partitioning is the appropriate granularity for both the CM-2 and CM-5.
The processing elements on the CM-2 are reasonably powerful (Appendix A) while the processing elements
on the CM-5 (Section 5) are full-fledged SPARC processors. Thus, subnetworks corresponding to knowledge-
level primitives can be implemented using a.ppropriat,e data structures and associated procedures without
necessarily mimicking the detailed behavior of individual nodes and links in the subnetwork.

5 SHRUTI on the CM-5

In this section we describe the design and implementa,tion of the SPMD asynchronous message passing
parallel rapid reasoning s ~ s ~ ~ ~ - s H R u T I - c M ~ - ~ ~ ~ ~ ha,s been developed for the CM-5.

5.1 SHRUTI on the CM-2

Initially we developed SHRUTI-CM~, a data parallel implemetltation of SHRUTI on the Connectmion Machine
CM-2 (TMC, 1991a). A detailed description of SHRUTI-CM~, including design, knowledge encoding, spreading
activation and performance characteristics can be found in Appendix A. However, due to the overwhelmingly
superior performance of SHRUTI -~~S- the SPMD implementation on the CM-5-the S H R U T I - C M ~ project
was abandoned. Figure 3 compares the performance of S H R U T I - C M ~ and SHRUTI -CM~. S H R U T I - C M ~ can also
be run on the CM-5 in data-parallel mode. Results of these experiments are described in Appendix B.

5.2 The Connection Machine CM-5

The Connection Machine model CM-5 (TMC, 1991b) is an MIMD machine consisting of anywhere from
32 to 1024 powerful processors.3 Each processing node is a general-purpose computer which can execute
instructions autonomously and perform interprocessor communication. Each processor can have up to 32
megabytes of local memory4 and optional vector processing hardware. The processors constitute the leaves
of a frrt tree interconnection network, where the bandwidth increases as one approaches the root of the tree.
Every CM-5 s y s t ~ m has one or more control processors which are similar to the processing nodes but are
specialized to perform managerial and diagnostic functions. A low-latency control network provides tightly
coupled communications including synchronization, broadcasting, global reduction and scan operations. A
high bandwidth data network provides loosely coupled interprocessor communication. A standard network
interface connects nodes and I / O units to the control and data networks. The virtual machine emerging from
a combination of the hardware and operating system collsists of a control processor acting as a partition
manager, a set of processing nodes, facilities for interprocessor commut~ication and a ~ ~ I x - l i k e programming
interface. A typical user task consists of a process running on the partition manager and a process run~ling
on each of the processing nodes.

Though the basic architecture of the CM-5 supports MIMD style programming, operating system and
other software constraints restrict users to SPMD (Single Program Multiple Data) style programs (TMC,
1994). In SPMD operation, a single program runs on all the processors, each acting on its share of data
items. Both data parallel (SIMD) and message-passing programming on t,he CM-5 use the SPMD model.
If the user program takes a primarily global view of the system-with a global address space and a single
thread of control-and processors run in synchrony, the operatmion is data parallel; if the program enforces a
local, node-level view of the system and processors function asynchronously, the ma.chine is used in a rrlore
MIMD fashion. We shall consistently use "SPMD" to be synonymous with the latter mode of operation. In
this mode, all communication, synchronization and data layout are under the programs' explicit control.

5.3 Design Considerations

Granularity of Mapping

The individual processing elements on the CM-5 are powerful processors and therefore a subnetwork in the
connectionist model can be impletnented on a processor using appropriate data structures and associated

31n principle, the CM-5 architecture can support up to 161< processors.
"he amount, of local memory is based on 4-Mbit DRAM technology and will increase as DRAM densities increase.

10

procedures without necessarily mimicking the detailed behavior of individual nodes and links in t,he subnet-
work. This suggests that knowledge-level part,itioning (Section 4) is the appropriate granularity for mapping
SHRUTl ont,o the CM-5.

Representing Synchrony

SHRUTI-CM~ represents temporal synchrony by using "markers"-integers with values ranging from 1 to the
maximum number of phases. Though temporal synchrony can be simulated on the CM-5 by using repeated
processor synchronization, we have opted against this approach since unnecessary processor synchronization
can slow down the system. Moreover, the use of markers makes S H R U T I - C M ~ flexible so that it can be
adapted to support other related marker-passing systems.

Temporal synchrony is one of the most distinguishing features of SHRUTI. In spite of not explicitly
using temporal synchrony, SHRUTI -CM~ retains it,s SHRUTI-like flavor by exploiting the characteristics and
constraints derived from SHRUTI'S temporal synchrony approach to reasoning.

Active Messages and Communication

SHRUTI-CM~ uses CMMD library functions (TMC, 1993) for broadcasting and synchronization, while almost
all interprocessor communication is achieved using CMAML (CM Act,ive Message Library) routines.

CMAML provides efficient, low-latency interprocessor communication for short messages (TMC, 1993;
von Eicken et al., 1992). Active messages are asynchronous (non-blocking) and have very low communication
overhead. A processor can send off an active message and continue processirig without having to wait for the
message to be delivered to its destination. When the message arrives at the destination, a handler procedure
is automatically invoked to process the message. The use of active messages improves communication
performance by about an order of magnitude compared with the usual sendlreceive protocol. The main
restriction on such messages is their size-t,hey can only carry 16 bytes of information. However, given
the constraints on the number of entities involved in dynamic bindings (z lo) , there is an excellent match
between the size of an active message and the amount of variable binding information that needs to be
communicated between predicate instances during reasoning as specified by SHRUTI. SHRUTI-CM~ exploits
this match to the fullest extent.

5.4 Encoding the Knowledge Base

In the S H R U T I - C M ~ system, the knowledge base is encoded by presenting rules and facts expressed in a human
readable, first-order logic-like syntax specified in Appendix D. The commands recognized by SHRUTI -CM~
are described in Appendix E.

Input Processing

Knowledge encoding in S H R U T I - C M ~ is a two-part process:

1. Serial preprocessing. A serial preprocessor running on a workstation processes the input knowledge
base and partitions it into as many chunks as there are processors on the CM-5 partition. The prepro-
cessor outputs a set of files-one file for each processor--which are subsequently read by the respective
CM-5 processors.

2 . Parallel knowledge base encoding. Each processor on the CM-5 independently and asynchronously
reads and encodes the fragment of the knowledge structure assigned to it by the preprocessor. Depend-
ing on the processor assignment scheme used, each processor on a n processor CM-5 would typically
need to process only i - t h of the ent,ire input knowledge base.

typedef s t r u c t cm-predbank /* predica te bank on t h e CM */
C

/* no f i e l d s used t o encode KB */

byte c o l l e c t o r ;
by te enabler ;
by te a rgs [MAX-ARGS1;
char qDepth;

/* a rg a c t i v a t i o n phase */
/* depth of reasoning chain

which makes c : a c t i v e */

typedef s t r u c t cm-pred /* predica te on t h e CM */
C

byte no0f Args ;
s t r u c t cm-list * ru les ; /* l i s t of r u l e s with pred a s conseq */
s t r u c t cm-list * f ac t s ; /* l i s t of f a c t s f o r pred */

byte nextFree ; /* index of next f r e e bank (minst) */
s t r u c t cm-predbank bank C ~ a l ; /* predica te banks */
s t r u c t cm-list *ruleBPtr [K2] ; /* r u l e back-pointers (f o r c : a c t i v a t i o n) */

) CM-Pred;

Figure 4: C st,ructures used to represent predicates in S H R U T I - C M ~ . MAX-ARGS is the maximum number of
 argument,^ a predicate can have. K2 is the multiple instantiation constant for predicates. The top part of
the typedefs contain fields used to encode the knowledge base while the bottom part has fields used in a
given episode of reasoning.

This two-part, asynchronous parallel input processing is well suited for large-scale knowledge bases. In
addition, SHRUTI-CM~ also provides a direct input mode. In this mode, all processors synchronously read
the same input and cooperatively decide-based on the processor allocatioli scheme-on who encodes the
current knowledge base item. This mode can be used to by-pass serial preprocessing and is useful when
small knowledge base fragments need to be added to an existing (large) knowledge base. SHRUTI-CM~ also
supports convenient and consistent parallel updating of large knowledge bases via incremental preprocessing.

In either of the input modes, the knowledge base is scanned by a lexical analyzer and parser, resulting
in the construction of internal data structures. Once a rule, fact or is-a relation has been recognized and
processed, these internal datastructures will be used to encode the knowledge base element on the Connection
Machine processors. In the case of a query, the data structures will be used to pose the query to the system.

A specially designated server processor builds hash tables which keep track of processor assignments.
Whenever the system needs to know which processor houses some predicate P, the server broadcasts the
required information. The system is designed in such a manner that the server does not become a bottleneck
during the reasoning process. Information from the server is needed only when posing a query.5 Once a
query has been posed, the system data structures are so configured that spreading activation will proceed
without the need for any information from the server. Maintaining a server processor therefore does not
affect inference timing in any way.

'The server is also accessed when encoding knowledge in synchronous direct input mode.

typedef struct cm-rule /* rule slot on the CM */
I.

/* knowledge base encoding */
struct cm-antlist *antecedent; /* list of antecedent predicates */
struct cm-list *consequent; /* consequent predicate */
byte no0fAnts ; /* number of ant predicates for rule */
int weight ; /* weight; currently unused */
byte splCond[MAX-ARGS]; /* list of special conditions */
int splIndex[MAX-~~~~1;/* procs containing spl cond constants */
index splPtrCMAX-ARGS]; /* ptr to spl cond constants */

/* reasoning episode */
byte conseqCollector CK21; /* c: values for the conseq pred are

accumulated here; reqd for supporting
multiple antecedent rules */

char qDepth [K2] ; /* reasoning chain depth; reqd for multiple
antecedent rules */

3 CM-Rule;

typedef struct cm-fact /* fact on the CM */
I
struct cm-pred *factPred; /* fact predicate */
index constant [MAX-ARGS] ; /* fact argument pointers */
index const~ocationCMAX-ARGS]; /* proc containing const */

boo1 active;
CM-Fact;

/* fact active if set */

Figure 5: C structures used t,o encode rules and facts in S H R U T I - C M ~ . MAX-ARGS is the maximum number of
arguments a predica.te can have. K 2 is the multiple instantiation constant for predicates. Processor indices
have type index and flags have type bool. Pointers are also of type index and index into local translation
tables on the respective processors. The top part of the typedefs contain fields used to encode the knowledge
base while the bottoim part has fields used in a given episode of reasoning.

typedef s t r u c t cm-entitybank /* e n t i t y bank on t h e CM */
C

/* no f i e l d s used t o encode KB */

bool buRelay ;
bool tdRelay ;
byte a c t i v a t i o n ;

) CM-EntityBank;

/* bottom-up r e l ay */
/* top-down r e l ay */
/* e n t i t y a c t i v a t i o n phase */

typedef s t r u c t cm-entity /* e n t i t y on t h e CM */
<

s t r u c t cm-l is t *superConcepts; /* bottom-up l i n k s */
s t r u c t cm-list *subConcepts; /* top-down l i n k s */

byte nextFree ;
s t r u c t cm-entitybank b a n k [~ l l ;

3 CM-Entity;

/* index of next f r e e bank */
/* e n t i t y banks */

Figure 6: C structures used to represent entities in the type hierarchy (in S H R U T I - C M ~) . Kl is the inultiple
instantiation constant for concepts in the type Iiierarchy. Flags have type bool. The top part of the typedefs
contain fields used to encode the knowledge base while the bottom part has fields used in a given episode of
reasoning.

typedef s t r u c t cm-isalink /* i s -a l i n k s on the CM */

index des t i na t ion ; /* index of des t i na t ion proc */
index concept ; /* des t ina t ion concept */

/* no f i e l d s used during reasoning episode */
CM-isALink;

Figure 7: C structure used to encode is-a relationships in S H R U T I - C M ~ . Processor indices have type index.
Pointers are also of type index and index into local translation tables on the respective processors. The top
part of the typedef contains fields used t,o encode the knowledge base while the bottom part has fields used
in a given episode of reasoning.

Represen t ing Knowledge Base Elements

Each knowledge base element (Section 3.1) is assigned to a single processor and represented using suitable
structures, defined in Figures 4-7. All processors in the partition except the server can encode knowledge
base elements. The SHRUTI network is internally encoded by a series of pointers which serve to link predicate
and concept representations. Unlike a serial machine, a "pointer" on the CM-5 would need both a memory
address and the index of the processor to which the required fragment of memory belongs. In order to
support parallel knowledge base encoding, the "memory addresses" are indirect and index into translation
t,ables on the respective processors.

Encod ing Ru le s a n d Facts

Depending on the processor allocation scheme (Section 4), every predicate and concept appearing in the
knowledge base will be assigned to a processing node on the CM-5. Further, a rule, fact or zs-a relation t,hat
is being encoded will also be assigned to a processor. The actual details of the processor allocation are dictated
by the processor assignment scheme being used. The S H R U T I - C M ~ design offers several options for processor
assignment schemes. SHRUTI-CM~ implementations use random processor assignment for predicates arid
concepts. Facts and zs-a links are encoded on the processors containing the relevant predicate or concept6
and rules were encoded on the processor containing the consequent predicate. Any processor in the machine
(except the server) can have both predicates and concepts assigned to it.

Once the predicates, concepts and other knowledge base elements under consideration are assigned to
processing elements on the CM-5, the knowledge base structures are built and/or updated. Rules, facts, and
IS-a links are encoded by a series of pointers which link predicate and concept representations to form the
entire network.

5.5 Spreading Activation and Inference

Queries can be posed after the knowledge base has been encoded. Queries result in the activation of the
relevant predicate and concepts as described in (Shastri and Ajjanagadde, 1993) and (Ma.ni and Shastri,
1993). The activation propagation loop is shown in Figure 8. As noted in Section 5.3, markers are used to
represent SHRUTI phases.

The system runs asynchronously in that each processor continues with its processing irrespective of the
progress made by other processors. If an answer to the query is found, the reasoning episode terminates
immediately. If no answer is found after a certain number of asynchronous iterations, all processors synchro-
nize and iterate synchronously. This synchronization ensures that activation has had a chance to traverse
the depth of the network and is a safeguard against unlikely, but possible, cases of pathological imbalances
in conlputation and interprocessor coinmunication load. If no answer is found even after a fixed number
of synchronous propagation steps, the reasoning episode terminates without an answer. This termination
crit,eria is in keeping with the constraint that reflexive reasoning can only occur up to a bounded depth. The
user can experiment with the terminating criteria by setting the number of asynchronous and synchronous
iterations at compile time.

Each processing node maint,ains several activation "frontiers" for both the rule base and the type hi-
erarchy. Each frontier is essentially a list of predicates or concepts that are active and which need to be
considered in the current activation propagation step. The following frontiers are maintained: A rule-frontier
consisting of consequent predicates of rules under consideration in the current step; A fact-frontier consist-
ing of predicat,es for which fact matches need t.o be checked; A reverse-propagation-frontier for handling

'Assigning facts (is-a links) to the processor housing the associated predicate (concept) could result in deteriorating per-
formance if the distribution of facts (is-a relations) is skewed-i.e., a f ew predicates (concepts) have a disproportionately large
number of facts (is-a relations). Under such situations, other schemes such as splitting facts (is-a links) across processors may
have to be considered.

i n i t i a l i z e g lobal s t a t i s t i c s co l l ec t ion var iab les ;

while (te rminat ion condit ion not met) {
/* propagate ac t iva t ion i n t h e type hierarchy */
spread bottom-up ac t iva t ion ;
spread top-down ac t iva t ion ;

/* propagate ac t iva t ion i n the r u l e base */
reverse-propagate co l l ec to r ac t iva t ion ;
check f a c t matches;
propagate enabler ac t iva t ion by ru l e - f i r i ng ;

update s t a t i s t i c s co l l ec t ion var iab les ;
1

Figure 8: The main propagation loop used in spreading activation during an episode of reasoning. The
termination condition is met when the query is answered or the system determines that the query has no
answer. Note that the order of the operations is crucial while propagating rule base activation. Activation
of predicates whose collectors became active in the previous step must be reverse-propagated before facts
are matched, since fact matching could activate other predicate collectors whose activation should be spread
in the next propagatmion step. Further, fact matching for predicates that became active in the previous step
must occur before new rules are fired, since firing rules could activate more predicates and fact matches for
these predicates should be checked in the next iteration.

reverse-propagation of collector activation; and a type-hierarchy-frontier for activation propagation in the
type hierarchy. During each propagation step, all frontiers are consistently updated in preparation for the
next step in the iteration. Front.ier elements are deleted after performing the required operation. A frontier
element will reappear in the frontier for the next propagation step only if the operation attempted in the
current step was unsuccessful. This ensures that the same operation-like firing a specific rule, matching a
fact or firing an is-a fact-is not unnecessarily repeated. All frontiers are creat,ed and deleted asyr~chronously
on each processor.

During an episode of reasoning, all interprocessor communication-including firing rules, spreading acti-
vation in the type hierarchy and reverse-propagating collector activation--is effected using active messages
supported by the CMAML routines. The system has been tailored so that any information that needs to be
exchanged between two processors will always fit in a single active message.

In each activation propagation step, every processor scans its frontiers and takes appropriate action:
firing rules for predicates on the rule-frontier; propagating activation in the type hierarchy for concept,^
in the type-hierarchy-frontier; propagating collector activation for predicates in the reverse-propagation-
frontier; and matching facts for predicates on the fact-frontier. Processors send out active messages if the
predicates or concepts that need to receive activation are located on another processor. When these active
messages arrive at their destinations, they invoke handler functions which receive and process the incoming
activation, and update the relevant frontiers. In the asynchronol~s phase, each processing node operates
independently of the others.

Type Hierarchy and Multiple Instantiation

The type hierarchy is handled in a manner that is essentially similar to the rule base. Spreading bottom-up
and top-down activation is separate and sequential. As entities go active, t,hey broadcast t,heir activations
to all the processors in the partition. The processors cache this information for fast, local access during fact

matching and special condition checking. In order to handle multiple instantiation (also see Appendix C),
whenever a predicate or concept receives activation, it is compared with existing activation in the banks. If the
incoming activation is not already represented, it is then deposited into the next available bank. The predicate
representing the instantiation keeps track of the source of the instantiation in order to reverse-propagate
collector activation. An instantiation will need to be identified using (i) the processor housing the predicate or
concept; (ii) t,he predicate or concept that originated the instantiation and (iii) the ba.nk under consideration.
Enough information is ~naintained when an instantiation is received so that collector activation can be
propagated back to the predicate bank which originated the activation. Note that multiple instantiation is
handled without the use of switches (Mani and Shastri, 1993); the above protocol is functionally equivalent
to these switches and ensures that (i) any predicate or concept represents at most a bounded number of
instantiations (the number being decided by the multiple instantiation constants Kl and K2) and (ii) a given
instantiation is represented at most once so that no two banks of a predicate or concept represent the same
instantiation.

S ta t i s t i cs Collection

SHRUTI-CM~ can be configured to collect statistics about various aspects of the system like knowledge
base parameters, processor communica.tion and computation, and the reasoning process. These include the
distribution of knowledge base items among processors, the processor load and message traffic during query
answering, and a count of knowledge base items of each type (rules, facts, concepts, etc.) activated during
processing. Full-fledged data collection can slow down the system due to the extra time needed to accumulate
required data.

5.6 Characteristics of S H R U T I - C M ~

SHRUTI-~1115 has been tested using artificial knowledge bases containing up to several hundred thousand
rules and facts. Most of the experimentation has been carried out on a 32 node machine.

Figures 9-14 illustrate the performance, timing and resource usage of S H R U T I - C M ~ . Figure 9 plots
response time for varying query depths and knowledge base sizes. Figure 10 shows the number of rules fired
when answering the respective queries. In both these figures, the queries used were generated randomly, and
the values shown are averages for a given knowledge base size and query depth. About 100 queries with
depths ranging from 0 to 8 were used; some of the queries were answered while several were not. The graphs
depict the average for queries that were answered. The number of queries contributing to each data point
ranges from about 15 (for depth 0) to 1 (for maximum depth). As the number of queries averaged over
increases, we expect the curves to get smoother and statistically more reliable.

Figure 11 shows the average time needed to fire a rule as a function of knowledge base size and query
depth. When a reasonably large number of rules fire in a given reasoning episode, the time needed per rule
firing settles to a small, relatively constant value. Due to random queries being posed to a random knowledge
base, t,here is lot of variation in the response time and other performance statistics for a given knowledge
base size and query depth. Among all this variation, the behavior of the "time-per-rule" met,ric seems to be
consistent over a variety of knowledge bases. We however do not know whether the "time-per-rule" metric
will remain constant if the knowledge bases are significantly larger than the ones we have experimented with.

Figure 12 shows the distribution of a knowledge base with approximately 300,000 elements among the
CM-5 processors. It is easily seen that the distribution is very even as a result of random processor allocation.
Finally, Figures 13 and 14 show the computation and communication load on each processor for a 300,000
element knowledge base and a query of depth 8. Computation load is measured as the number of active
predicates, entities and facts on each processor, while comm~nicat~ion load is the number of active messages
sent out by each processor. In spite of the unpredictable nature of the activation trail in the knowledge base,
communication and computation load are relatively well balanced. Processor load is reasonably balanced
irrespective of the query.

QUERY DEPTH vs. RESPONSE TIME
0.25

sprnd version 07.3

.KB Size = 110036 +-
knowledge base: kb3 .KB Size = 21 9879 -t--
slats enabled .KB Size = 329871 - 0 . .

4 6
Query Depth

Figure 9: SHRUTI -CM~ running on a CM-5 with 32 processors. The graph shows the effect of the size of
tlie knowledge base on response time for queries with varying inference depths. Due to the random nature
of the knowledge base and the queries used, response times for a given depth are statistically reliable only
when a large number of data points are averaged. For the larger depths, very few data points were available
and this accounts for the seemingly better performance at larger depths. We expect the "dip" in the curve
to "straighten out" as more data points are averaged.

The timing reported in the graphs is t,he elapsed time needed to process the queries. Random, struc-
tured knowledge bases were used in these tests (see Section 5.7). These knowledge bases exploited the full
functionality of the reasoning system and had a mix of regular rules and facts, rules with special conditions,
quantified facts and is-a relations. Rules with special conditions included rules with repeated variables, typed
variables, existential variables and entities; rules with multiple predica.tes in the antecedent and rules which
lead to multiple instantiation of predicates. In spite of tlhe large scale of these experiments, it is evident that
S H R U T I - C M ~ provides relatively good performance. Figure 3 compares the performance of SHRUTI-CM.~ and
SHRUTI-CM~.

5.7 Generating Knowledge Bases

Almost all experimentation with SHRUTI -CM~ has been carried out using randomly generated structured
knowledge bases. Though the individual knowledge base elements are generated at random, these elements
are organized into domairrs thereby imposing structure on the knowledge base. Each doma,in is a cluster
of predicates along with their a~sociat~ed rules and facts. Doma.ins could be of two types: t a r g e t domains,
which correspond to "expert" knowledge about various real-world domains; and spec ia l domains, which
represent basic cognitive and perceptual knowledge about the world. A typical structured knowledge base
would consist of several target domains and a small number of special domains. The predicates within each
target or special domain, and predicates across target and special domains, are richly connected by rules;
predicates across different target domains are sparsely connected. The structure imposed on the knowledge
base is a gross attempt to mimic a plausible structuring of real-world knowledge bases. This is motivated

QUERY DEPTH VS. NUMBER OF RULES FIRED

.KB Size = 1 10036 4-

.KB Size = 219879 -t-.

.KB Size = 329871 -0 . .

0 2 4 6 8 10
Query Depth

Figure 10: SHRUTI-CM~ running on a CM-5 wit,h 32 processors. The graph shows the number of rules fired
in answering queries with varying inference depths. See caption for previous figure for an explanation of
the unexpected "dip" in the curve. Also note that, the shape of the curves are very similar to those in the
previous figure.

QUERY DEPTH vs. AVERAGE TIME PER RULE FIRED
0.001

4 6 8
Query Depth

spmd version 07.3

.KB Size = 110036 +-
knowledge base: kb3 .KB Size = 21 9879 -t--
stats enabled .KB Size = 329871 -0 . -

Figure 11: SHRUTI-CM~ running on a CM-5 with 32 processors. The graph shows the average time needed
to fire a rule, shown a s a function of knowledge base size and query depth.

,I 000000 Max: 11032,O
]Ilin: 10259,O

000000
lz O O O O O O
l8 000000

Figure 12: SHRUTI-CM~ running on a CM-5 with 32 processors. Distribution of knowledge base elements
(rules, facts and is-n relations) on the CM-5 processors for a knowledge base with approximately 300,000
elements. Note that the server (processor number 31) is not shown.

Figure 13: SHRUTI-CM~ running on a CM-5 with 32 processors. Computational load distribution on the
CM-5 processors. The number of active predicates, entities and facts on each processor is shown. This load
distribution was obtained when answering a query of depth 8 with a knowledge base of size approximately
300,000. Not,e tha t the server (processor number 31) is not shown.

Figure 14: SHRUTI-CM~ running on a CM-5 with 32 processors. Communication load distribution on the
CM-5 processors. The number of active messages sent by each processor is shown. This load distribution
was obtained when answering a query of depth 8 with a knowledge base of size approximately 300,000. Note
that the server (processor number 31) is not shown.

by the notion that knowledge about complex domains are learned and grounded in metaphorical mappings
from certain basic, perceptually grounded domains (Lakoff and Johnson, 1980). However, the '(knowledge"
in each domain is currently being generated at random.

The knowledge base generator takes several parameters as input. These parameters decide the number
of predicates, entities, rules and facts that will he generated, the fractions of various special rules, facts and
is-a relations, the number of domains, the distribution of the knowledge base among the domains and the
fraction of inter- and intra-domain rules. The number and maximum depth of the type hierarchies generated
can also be controlled.

The parameters supplied to generate the knowledge base used for the CM-5 experiments (identified in
the graphs as kb3) are shown below:

------------ Knowledge Base Parameters ------------
Number of rules: 150000
Number of facts : 150000
Number of predicates: 50000
Number of concepts: 50000
Multiple antecedent rule fraction: 0.10
Multiple instantiation rule fraction: 0.10
Special rule fraction: 0.40
Fraction of is-a facts : 0.25
Fraction of facts with E vars: 0.10

------------ Domain Parameters
Number of special domains: 3
Number of target domains: 150
Spl-Tgt knowledge base split: 0.02
Fraction of intra-special-domain rules: 1.00

Fraction of inter-special-domain rules: 0.00
Fraction of intra-target-domain rules: 0.96
Fraction of int er-target-domain rules : 0.0 1
Number of type hierarchies: 10
Maximum depth of type hierarchies: 5

Fraction of shared leaves in type hiers.: 0.05

5.8 Proposed Experiments with Real-World Knowledge Bases

Receiltly we have obtained WordNet (Miller et al., 1990) and plan to map it to our system. Although
WordNet does not exercise the full expressive and inferential power of our system, it is a sufficiently large
knowledge structure with numerous applications and can be used to test the effectiveness of certain aspects
of our system design, especially those having to do with message passing. We have also obtained a large
knowledge base consisting of over 14,000 frames and 170,000 attribute-value pairs about plant anatomy and
physiology from Bruce Porter of the University of Texas at Austin (Porter et al., 1988). The mapping of this
knowledge base to our system is very similar to that of WordNet. We are also trying to acquire a subset of
the CYC knowledge base (Lenat et al., 1990).

A planned application of our knowledge base system is to couple it to the Berkeley Restaurant Project
(BeRP) speech understanding system being developed at the International Computer Science Institute (Ju-
rafsky et al., 1994a; Jurafsky et al., 1994b). BeRP functions as a knowledge consultant whose domain is
restaurants in the city of Berkeley, California. Users ask spoken-language questions of BeRP which then
queries a database of restaurants and gives advice based on cost, type of food, and location. The current
BeRP system cannot perform inferences and any possible inferences are either hard wired into the grammar
or added to the restaurant database. Our knowledge base system will allow BeRP to make inheritance-like
inferences (a Chinese restaurant is an Asian restaurant) as well as more complex inference (if the user has
a car they can get to more distant restaurants). The rapid response of our knowledge base system will be
particularly useful for an on-line speech understanding system like BeRP.

5.9 The SHRUTI-CM~ User Interface

The following example illustrates the existing user interface to SHRUTI -CM~ and supporting utilities.

1. Knowledge base generation. The user must begin with a knowledge base in a syntax recognized
by SHRUTI-CM~. Knowledge bases in other formats should be translated into a form accepted by the
system. The following is an example knowledge base in SHRUTI -CM~ syntax.

/* Rules */
Forall x,y,z [give(x,y,z) => own(y,z) 1 ;
Forall x,y [own(x,y) => can-sell(x,y) 1 ;
Forall x:Animal, y:Animal

[preys-on(x, y) => scared-of (y ,x) 1 ;
Forall x,y,z Exists t

[move(x,y,z) => present(x,z,t) 1 ;
Forall x,y,z [rnove(x,~,z) => ~resent(x,~,t) 1 ;
Forall x, y [sibling(x, y) 0 born-together(x,~) => tvins(x, Y) 1 ;
Forall x,y [sibling(x,y) => sibling(y,x) 1;

/* Facts */
give (John,Mary,Bookl);
move (John,Nyc,Boston);

sibling (John, x) ;
Forall x:Cat, y :Bird [preys-on(x,y) 1 ;
Exists x:Robin [own(Mary,x) 1 ;

/* Type hierarchy */
is-a (Bird,Animal);
is-a (Cat,Animal);
is-a (Canary,Bird);
is-a (Tweety ,Canary) ;
is-a (Sylvester,Cat).

It is also possible to create a (pseudo-random) knowledge base using the knowledge base generator
(Section 5.7). The output of the generator is in the above syntax.

2. Preprocessing and loading. The preprocessor reads the input knowledge base, assigns knowledge
base items to CM-5 processors (using one of several available processor assignment schemes) and writes
out a set of files. These files are read and encoded on the CM-5.

3. Parallel knowledge processing. Once the KB has been loaded on the CM-5 one can pose queries,
obtain answers, and gather performance and timing data. The following dialog illustrates how the user
interacts with the system. The system prompt is >>. User input is in typewriter font while system
output is shown in slanted font.

>> i input-kb.pp
Processing file inpu t-kb.pp done

>> m -g
>> i

Enter Rules/Facts or Query:
cansell(Mary,Booki)?

>> r
Simulating ... done
Query answered affirmatively in 0.001 638 seconds

>> z
Resetting network . . . done.

>> i query
Processing file query done

>> r
Simulating . . . done
Query not answered

>>

The input command i is used to input the knowledge base and to pose queries.7 The run com-
mand r runs a reasoning episode. It reports elapsed time if the query is answered (as in the case of
cansell(~ary,~ookl)?). If the query is not answered, no timing is displayed (as in the case of the
query contained in the file query). Further commands can be used to view knowledge base distribution
on the processors, processor load, individual processor timing, number of rules fired, active predicates
and concepts, number of messages sent, and so on (see Appendix E).

The system also provides the capability to process command files in order to facilitate unattended
batch processing.

 h he m -g command puts the system in direct input mode. The system always starts up in parallel input mode and hence
the first i commands reads input in parallel. In order to pose the query directly using the second i command, the input mode
is changed using the m command. See Appendix E.

4. Analysis a n d visualization. The data obtained from reasoning episodes can be analyzed and plott,ed
as graphs (Figures 9-11); dynamic processor load, timing, etc. can be visualized (Figures 13 and 14);
knowledge base distribution can be analyzed and visualized (Figure 12); and the actual connectivity
of the knowledge base can be graphically displayed. All analysis and visualization are done off-line.

I n t e g r a t e d Use r Envi ronment

In the existing SHRUTI -CM~ system, all tools and utilities are separate programs. The user must manually
invoke the required program or script in order to execute any kind of processing, analysis or visualization.
Future versions of SHRUTI-CM~ will provide an easy-to-use graphical user interface which integrates the entire
suite of programs and tools (Section 2). The parallel rapid reasoning system would form the core of the
S H R U T I - C M ~ system around which all the other programs and tools would be organized. Data processing,
analysis and visualization tools would be a combinationof scripts, already existing tools and custom generated
programs. Except for the parallel part, all the other tools would be off-line and usable on a workstation.

The SHRUTI-CM~ system would also provide for automated remote access to the CM-5 so t.hat all off-line
tools and processing can be confined to the local workstation. The parallel reasoning episodes will be run on
the remote CM-5 and the results and output transferred back to the local workstation for further processing.

6 Related Work

There has been considerable work in the conceptual design of massively parallel systems based on spreading
activation, marker passing, and connectionism (Lange and Dyer, 1989; Sun, 1992; Barnden and Srinivas,
1991; Waltz and Pollack, 1985; Charniak, 1983; Fahlman, 1979). However, only very few researchers have
tried to implement knowledge base systems on existing parallel platforms. A salient example of such work
is the PARKA system (Evett et al., 1993) implemented on the CM-2. PARKA encodes frame-based knowl-
edge (analogous to a semantic network) and supports efficient computatioll of inheritance, recognition, and
structure retrieval which is a generalization of recognition. The performance of PARKA has been tested using
pseudo-random networks (with up to 130,000 nodes) as well as subsets of CYC (Evett et a]., 1993; Lenat
et al., 1990). The CYC subsets used had about 26,000 units. PARKA'S run time for inheritance queries is
0 (d) and for recognition queries is O(d + p) where d is the depth of the is-a hierarchy and p is the number
of property constraints. Actual run-times range from a fraction of a second (for inheritance queries) to a
little more than a second (for recognition queries with 15-20 conjuncts). PARKA does not support rule-
based reasoning; it can only handle frame-based knowledge with some extensions to deal with memory-based
reasoning.

Seman t i c Networks on Special P u r p o s e Ha rdware

Fa.hlman (1979) proposed t,he design of NETL, a massively parallel machine that could execute marker passing
algorithms for computing inheritance and recognition in parallel. Although this machine was never built, it
influenced the design of the CM-2 (Hillis, 1985). Researchers such as Moldavan (1993) have also proposed
and built special purpose hardware for realizing semantic networks and production systems.

The Semantic Network Array Processor (SNAP) developed at the University of Southern California is
described in (Moldovan et al., 1992). The conceptual design of the SNAP is based on associative memory
and marker passing, and is optimized for representing and reasoning with semantic networks. The SNAP
provides a special instruction set for network creation and maintenance, marker creation and propagation,
logic operations and search/retrieva.l. A SNAP prototype has been built with off-the-shelf components
a.nd used to implement a parallel, memory-based parser (Moldovan et a]., 1992). The parser is ca.pable of
processing sent,ences in 1-10 seconds depending on the sentence length and the size of the knowledge base
used. The largest knowledge base used consisted of about 2,000 nodes.

Unlike SHRUTI and PARKA, SNAP-based knowledge representation systems use special purpose hardware.
Further, SNAP-based systems can only deal with semantic networks and do not currently support the full
range of inferences supported by SHRUTI.

The partitioning and mapping of production systems (or rule-based systems) onto multiprocessors is
considered in (Moldovan, 1989). A performance index is obtained by analyzing rule interdependencies.
This performance index is optimized so as to maximize inherent parallelism and minimize interprocessor
communication. Optimizing the performance index is intractable and approximations and simplifications are
necessary in order to make the problem tractable. A message-passing multiprocessor architecture (RUBIC,

for Rule-Based Inference Computer) for parallel execution of production systems is also described.

7 Conclusion

We have described an SPMD mapping of SHRUTI on t.o the Connection Machine CM-5. We have discussed
issues involved in the design and implementation of this system-both from machine independent and ma-
chine dependent points of view. From the test results summarized in the previous sections, it is evident that
SPMD implementations are vastly superior in comparison with the SIMD system and offer several hundred-
fold speedups. [n view of its greatly improved performance, we plan to expend our effort in improving and
extending the asynchronous (SPMD) message passing system on the CM-5. The SPMD rapid reasoning
system on the CM-5 is also being mathematically analyzed (Mani, 1994) with the objective of obtaining
quantitative measures which can be used to further improve performance.

SHRUTI-CM~' currently supports only backward reasoning. Future work on the CM-5 will involve devel-
oping a forward reasoning system and an integration of the forward and backward reasoners.

All experiments reported here have used randomly generated knowledge bases. As noted in Section 5.8,
we plan to encode large real-world knowledge bases on the system and interface it with applications. This
will not only help us evaluate the parallel rapid reasoning systems more thoroughly, but will also result in
practical and usable systems. Depending on the kind of knowledge bases used, we also expect this endeavor
to provide insights into aspects of reflexive reasoning.

8 Acknowledgements

This work has been support.ed by ARO grants DAA29-84-9-0027 and DAAL03-89-C-0031 to the Army
Research Center a t the University of Pennsylvania, ONR grant N00014-93-1-1149 and NSF resource grant
CCR930001N to Lokendra Shastri, and National Science Foundation Infrastructure Grant CDA-8722788 to
the University of California at Berkeley. All CM-5 and 32K, 16K and 8K CM-2 experiments were run on
t,he Connection Machines at the National Center for Supercomputing Applications (NCSA), University of
lllinois a t Urbana-Champaign. All experiments on the 41.; CM-2 were run at the University of Pennsylvania.
The CM-5 workshop at NCSA-conceived by the Metmacenter Computational Science Inst,itutes in Parallel
Computing, sponsored by the NSF, and organized by the National Center for Supercomputing Applications
and the San Diego Superconlputing Center-provided D. R. Mani with some computing resources and a
great learning opportunity.

Thanks to David Bailey, Susan Davidson, Jerry Feldman, Ben Gomes, Dan Jurafsky. Marilynn Livingston,
Srini Narayanan, Chris Overton, Sanguthevar Rajasekaran, and David Waltz for several comrnents and
suggestions which have contributed to this work. Thanks to Tom Fontaine and the CM-2 support staff at
the University of Pennsylvania for their help in getting started with the CM-2 and C*, the consulting staff
a t NCSA and the University at California at Berkeley for their help with t,he Ch4-5.

8And SHRUTI-CMP, see Appendix A.

A SHRUTI on the CM-2

The CM-2 (TMC, 1991a) is an SIMD data parallel computing machine which can be configured with up to
64K processing elements. Each processor has several kilobits of local memory and can execute arithmetic
and logical instructions, calculate memory addresses, read and store information in memory and perform
interprocessor communication. The processors are organized as an n-dimensional hypercube. The CM-2 is
controlled by a standard serial front end processor (usually a VAX or SUN machine). A sequencer decodes
commands from the front end and broadcasts them to the data processors, all of which then execute the same
inst,ruction simultaneously and synchronously. A NEWS grid provides fast communication between adjacent
processors and a router network provides general interprocessor communication between any two processors.

The design and i~nplementation of' the SIMD parallel rapid reasoning system on the CM-2-SHRUTI-
CM~-is based on knowledge-level partitioning (Section 4) of the underlying network generated by a knowl-
edge base. We describe techniques used to encode the knowledge base and implement spreading activation
when answering queries. We then explore the characteristics of the system by running a battery of tests. All
discussion pertains only to backward reasoning.

A . l Encoding the Knowledge Base

The knowledge base is encoded by presenting rules, facts and is-a relations to the S H R U T I - C M ~ system. The
input syntax for rules, facts, i s -a relations and queries is specified in Appendix D. Appendix E gives a listing
of commands recognized by S H R U T I - C M ~ .

Input Processing

A lexical analyzer and parser read t8he input, parse it and build internal data structures which represent the
rules and/or facts presented to the syst,em. All input processing is performed sequentially on the front-end.

As predicates and entities (or concepts) are recognized in the input, the parser builds hash tables which
keep track of processor assignments. The hash tables can be used to efficiently access these predicates and
entities while encoding rules and facts, posing queries and inspecting their state.

Once a rule, fact or i s -a relation has been recognized and processed, the resulting internal data structures
can be used to encode the knowledge base element on the Connection Machine processors. In the case of a
query, the data structures will be used to pose the query to the system.

Representing Knowledge Base Elenlents

Knowledge base elements are represented on the processors using parallel structures. A parallel structure
allocates space for the specified structure on every processor. Figures 15 and 16 indicate the structures
used to encode predicates, rules and facts in the rule-base. The structures used to encode concepts and
i s -a relationships in the type hierarchy are similar (though simpler). Note that a parallel structure will be
allocated for each knowledge base element: predicate, fact, rule, concept and as-a link. When the knowledge
base grows and more space is needed, the size of the parallel structure is doubled. The virtual processor
capability of the CM-2 ensures that each (physical) processor now houses two structures. This is transparent.
to the programmer and one can still assume that each processor houses one structure, with double the number
of (virtual) processors in the machine. Using this scheme, the representation automatically scales with the
size of the knowledge base. As the number of virtual processors increases, the system will run proportionately
slower. The virtual processor mechanism therefore provides a simple, scalable and transparent way of trading
off time for space.

typedef s t r u c t crn-pred / * predica te on the CM * /
C

boo1 used; /* f l a g */
byte no0f Args ;

byte nextFree; /* index of next f r e e bank (minst) */
s t r u c t cm-predbank bank[~2] ; /* predica te banks */

) CM-Pred;

typedef s t r u c t cm-predbank /* predica te bank on t h e CM */
C

/* no f i e l d s used t o encode KB */

boo1 cChange ; /* co l l ec to r value changed */
boo1 eChange; /* enabler value changed */
byte c o l l e c t o r ;
byte enabler ;
byte a rgs [MAX-ARGS] ; /* a rg ac t iva t ion phase */

3 CM-PredBank;

Figure 15: Structures used to represent predicates in SHRUTI-CM~. MAX-ARGS is the nlaximum number of
arguments a predicate can have. K2 is the multiple instantiation constant for predicates. Flags have type
bool. T l ~ e top part of the typedefs contain fields used to encode the knowledge base while the bottom part
has fields used in a given episode of reasoning.

Encoding Rules and Facts

Depending on the processor allocation scheme used (Section 41, every predicate and entity appearing in
the knowledge base will be assigned to a (virtual) processing element on the CM-2. Further, a rule, fact
or is-a relation that is being encoded will also be assigned to a (virtual) processor. These two processor
allocations-one for the relevant predicates/entities and the other for the rule/fact under consideration-
nlay or may not be independent,. The actual details of the processor allocation are dictated by the processor
assignment scheme being used.

The current and more recent versions of S H R U T I - C M ~ use random processor assignment schemes for all
knowledge base elements. Earlier versions used randoin allocation for predicates and concepts; however,
facts and is-a links were encoded on the processors containing the relevant predicate or concept and rules
were encoded on the processor containing the consequent predicate.

Once the predicates, concepts and other knowledge base elements under consideration are assigned to
processing elements on the CM-2, all that remains to be done in order to encode the rule/fact is to correctly
fill out the various fields in the relevant structures. Encoding a fact involves the corresponding predicate and
the entities filling the arguments of the predicate. Encoding a rule (is-a relation) involves two predicates
(concepts) and a rule-slot (i s - a link). If a rule has multiple predicates in the antecedent, the encoding is
slightly more complex, as pictured in Figure 17.

A.2 Spreading Activation and Inference

Queries can be posed after the knowledge base has been encoded. Again, queries have a specific syntax (as
described in Appendix D) and result in activating the relevant predicate and concepts in keeping with the

typedef struct cm-rule /* rule slot on the CM */
C

/* knowledge base encoding */
boo1 used; /* flag */
boo1 dummy; /* rule slot is dummy if flag set */
index antecedent; /* invalid for head rule slots */
index consequent; /* points to head slot in a dummy */
byte no0fAnts; /* > 1 in a head rule slot */
int weight ;
byte antNo0fArgs; /* invalid for head rule slots */
byte argMap [MAX-ARGS] ; /* arg mapping; invalid on head slot */
byte splCond [MAX-ARGS] ; /* not used in dummy slots */
int splIndex [MAX-ARGS] ; /* not used in dummy slots * /

/* reasoning episode */
byte dummyCollector [K2] ; /* used only in dummy slots */
boo1 fire; /* rule can fire if set */
boo1 selected; /* instantiation selected if set */
byte nextBank; /* next conseq pred bank to consider */
byte bankSelected[K2] ; /* rule back pointer */
/* NOTE: bankSelected[i] == j if bank i in the ant pred has

instantiation from bank j in the conseq pred; valid only on
non-head rule slots; in a head rule slot bankSelectedLi] == i */

3 CM-Rule;

typedef struct cm-f act /* fact on the CM */
C
boo1 used; /* flag */
index f actPred; /* fact predicate index */
byte no0f Args;
index constant [MAX-ARGS] ; /* fact arguments */

bool active;
3 CM-Fact;

/* fact active if set */

Figure 16: Structlires used to encode rules and facts in S H R U T I - C M ~ . MAX-ARGS is the maxiinurn number of
arguments a predicate can have. K2 is the multiple instantiation const,ant for predicates. Flags have type
bool while processor indices have type index. The top part of the typedefs contain fields used to encode
the knowledge base while the bottom part has fields used in a given episode of reasoning.

Thc rule i lu~ handlm:
rtllc dot I. activation uansformaunn

2. special eonditi~n checklilg

a n t e c e d e n t p r c d i c a l e a

Dummy rule s las handle
activation transformation

-.
Head rule s las check Ibr 1 ~ ~ ~ ~ N L S I ~ I specia,con&tions

Figure 17: Encoding single- and multiple-antecedent rules. The figure on the left indicates the encoding
of single-antecedent rules while the figure on the right depicts the encoding of multiple antecedent rules.
Every predicate and rule-slot is housed on a processor. Arrows indicate links which are implemented using
interprocessor communication.

description in (Shastri and Ajjanagadde, 1993) and (Mani and Shastxi, 1993). The reasoning episode can
then be run, either step-wise or to completion. We now describe the mechanics of spreading activation and
matching facts in the system. The gross structure of the activation propagation loop is indicated in Figure 8.
Phases in SHRUTI are represented as "markersnintegers with values ranging froill 1 to the maximumnuinber
of phases.

The Rule Base

As shown in Figure 8 spreading activation in the rule base consists of three steps:

Propagating rule activation. Spreading activat,ion in the rule base by rule firing is achieved by executing
the following:

1. Every non-dummy rule-slot gets the instantiation in the consequent predicate bank under con-
sideration.

2. All non-dummy rule-slots check if all special conditions in the rule are satisfied.

3. If all special conditions are satisfied, the dummy rule-slots g e t the respective instantiations from
the corresponding head rule-slot.

4. All non-head rule-slots transform the activation and send it to the respective antecedent predi-
cates.

In the process of firing a rule, the syst,em maintains sufficient book-keeping information to reverse-
propagate collector activation to the consequent of a rule.

Once a rule fires, it will not fire again unless a new bank of the consequent predicate becomes active.
This ensures that the same rule does not repeatedly fire thereby minimizing unnecessary interprocessor
communication. Note also that the processor housing t,he rule-slot will need to communicate with other

processors in order to ge t predicate bank instantiations, get information from the head rule-slot, send
information to dummy rule-slots and send the transformed activation to the antecedent predicate.

C h e c k i n g f a c t m a t c h e s f o r a c t i v e pred ica tes . All facts for predicates which have active collectors are
matched simultaneously. Processors encoding the facts communicate with the processors housing the
relevant predicates and concepts in order to check if the firing "phases" match. If a fact "fires", the
collector of the corresponding predicate is activated.

R e v e r s e - p r o p a g a t i n g c o l l e c t o r a c - f i v a t i o n . Sending collector activation to predicate banks which origi-
nated the activation involves the following:

1. Non-head rule-slots g e t the state of the predicate collect,or.

2. Dummy rule-slots send the collector value to the head rule slot which accumulates all the incoming
values.

3. Non-dummy rule-slots send the activation to the respective consequent predicates provided the
collector activation exceeds a threshold. The threshold could depend on the number of antecedent
predicates for the rule, the level of activation of antecedent predicate(s), and/or other factors.

Rule-slots that have already propagated collector activation to the corresponding predicate bank will
not pa.rticipate in this st,ep. Again, this is done in order to minimize unnecessary interprocessor
communication.

The Type Hierarchy

Propagating activation in the type hierarchy is similar to spreading activation in the rule-base, except
that it is much simpler. Spreading bottom-up activation and top-down activation are handled sepa.rately
(and sequentially) in the type hierarchy. When spreading bottom-up (top-down) activation, all i s -a links
which have an active bank in the subconcept (superconcept) "fire" and spread actmivation to the respective
superconcept (subconcept). The i s -a link gets activation from the subconcept (superconcept) and sends
it to the superconcept (subconcept). Again, in order to minimize communication, we ensure that any new
activat.io11 traverses corresponding i s -a links exactly once.

Multiple Instantiation

Multiple instantiation in S H R U T I - C M ~ is handled without the use of switches (Mani and Shastri, 1993).
Predicates and concepts can accommodate K 2 and Ki instances respectively. When spreading activation in
the network, predicate and concept banks are considered one at a time. In other words, in a given clock cycle
(i.e., in one iteration of the propagation loop; see Figure 8) only one active ba.nk of a predicate or concept
will be considered. As described in Appendix C, care is taken to avoid potential problems that could result
from this technique.

Whenever a predicat,e or concept receives activation, it is compared with existing act,ivation in the banks.
If the incoming activation is not already represented, it is then deposited into the next available bank. The
rule- or link-slot that sent in the activation is notified that the instantiation it sent has been select,ed. In the
rule base, the rule-slot receives the bank number accommodating the new instantiation. This information
is needed when reverse-propagating collector activation. If the incoming activation is already represented
in the predicate or concept,, or if all banks are already in use, the incoming activation is discarded. Even
in this case, rule-slots are notified so that they can proceed to the next bank of the consequent predicate.
A rule-slot retries sending the same instantiation if it does not receive notification that the act,ivation was
either selected or discarded. This protocol simulates the function of the multiple instantiation switches, and
brings about efficient dynamic allocation of predicate and concept banks.

SIZE OF KNOWLEDGE BASE vs. RESPONSE TIME
I I I I

Inference Depth

zero -+

seven -+---

0 50000 100000 150000 200000
Size of Knowledge Base (Rules+Facts)

Figure 18: SHRUTI-CM~ running on a CM-2 with 4K processors. The graph shows the effect of the size of the
knowledge base on response time for queries which require inference depths ranging from 0 to 10. Queries
used were not randomly generated. The knowledge base used was not structured.

Statistics Collection

Apart from timing the reasoning episodes, S H R U T I - C M ~ can also be configured to gather data about several
other aspects including knowledge base parameters (number of rules, facts, is-a relationships, and concepts)
and communication data (number of messages, sends and gets). Enabling full-fledged data collection can
slow down the system due to t.he extra t,ime needed to accumulate the required data.

A.3 Characteristics of SHRUTI -CM~

SHRUTI-CM~ has been run on a 4K CM-2 and on a 32K CM-2. Both machines had 256 kilobits of memory
on each processor. Figures 18 and 19 summarize the results of experiments run on these machines. In t,hese
figures, the response time shown is the actual CM time used. The timing routines available on the CM-2
also report elapsed time for the reasoning episode. Elapsed time is affected by other processes running on
the front end and is therefore unreliable. The knowledge bases used in these experiments were generated
at random, and did not contain is-a relationships or rules with special conditions. The inference path for
a given query was tailored to ensure a reasonable branching factor-at least one of the predicates in t,he
activation frontier had five or more outgoing links originating from it.

Based on these and other experiments, and on the design of S H R U T I - C M ~ , we can summarize the charac-
teristics of the system:

The response tirne is approximately linear with respect to the size of the knowledge base, for knowledge
bases with up to 160,000 elements. Thus, as the size of the knowledge base increased, query answering
time increased proportionately. This is to be expected since more predicates would be active on the
average and woulcl entail proportionately more processing and interprocessor communication as the

SIZE OF KNOWLEDGE BASE vs. RESPONSE TIME
5

0 '
0 50000 100000 150000 200000

Size of Knowledge Base (Rules+Facts)

simd version 05.1 Inference Depth

zero -+

Figure 19: S H K U T I - C M ~ running on a CM-2 with 32K processors. The graph shows the effect of the size
of the knowledge base on response time for queries which require inference depths ranging from 0 to 10.
Queries used were not randomly generated. The knowledge base used was not structured.

size of the knowledge base increases.

Beyond a certain limit, we expect response time t,o increase steeply wit11 the size of the knowledge
base. However, effort was not expended in locating this limit or studying the characteristics of the
system near this threshold since our focus shifted to the CM-5. As a result, all timing results stated
here apply only to knowledge bases with up to 160,000 rules a,nd facts.

Time taken to answer a query increases as the average branching factor of the knowledge base increases.
This again is caused by increased processing and interprocessor communication.

Increasing inference depth needed to answer a query proportionately increases response time. Every
extra inference step requires an extra activation propagation step (i.e., an extra iteration of the loop
in Figure 8).

Response time is approximately inversely proportional to the number of (physical) processing elements
on the machine. This can be attributed to the increased computing power and the lower "density"
(with fewer knowledge base elements per processor) which results in enhanced parallelism.

The time taken to answer a query ranges from a fraction of a second to a few tens of seconds.

An inherent problem with the use of parallel varia,bles on the CM-2 is inefficient memory usage. Since
the number of virtual processors must. always be a power of two, this could potentially lead to significant
waste of memory. There appea.rs to be no simple solution to this problem without breaking out of
SIMD operation. SPMD implementations on the CM-5 avoid this problem entirely.

The maximum size of the knowledge base that can be encoded on a machine depends on the total
amount. of memory available on the machine. In addition, with increasingly large knowledge bases, the
communication bottleneck would also significantly slow down the system.

SIZE OF KNOWLEDGE BASE vs. RESPONSE TIME
10

50000 100000 150000 200000
Size of Knowledge Base (Rules+Facts)

sirnd version 05.1 Inference Depth

zero +-

Figure 20: SHRUTI-CM~ running on a CM-5 with 64 processors. The processing nodes on the CM-5 are used
in SIMD mode. The graph shows the effect of the size of the knowledge base on response time for queries
which require inference depths ranging from 0 to 10. Queries were not randomly generated. The knowledge
base used was not structured.

B SHRUTI-CM~ on the CM-5

In this section, we briefly evaluate SHRUTI -CM~ running on the CM-5. Since S H R U T I - C M ~ is written in C*,
and a C* compiler is available for the CM-5, SHRUTI-CM~ was recompiled and run on the CM-5. SHRUTI -CM~
running on the CM-5 uses the CM-5 in data-parallel (SIMD) mode. Figure 20 summarizes the results. Com-
paring with Figures 18 and 19, we observe that the performance of S H R U T I - C M ~ on the CM-5 is comparable
to that on the CM-2', though message passing on the CM-5 appears to be more robust.

C Multiple Instantiat ion-Some Technical Details

Multiple instantiation in both S H R U T I - C M ~ and SHRUTI -CM~ is handled without the use of switches (Mani
and Shastri, 1993). When spreading activation in the network, predicate and concept banks are considered
one at a time. In other words, in a given iteration of the activation propagation loop (see Figure 8) only one
active bank of a predicate or concept will be considered. This technique could cause indefinite waits in the
rule base. To illustrate the problem, suppose we are currently considering bank i of predicate P. Let P be
the consequent of rules rl and 9-2. Let R1 and R2 be rule-structures that represent rl and rz. At propagation
step t , suppose rl fires and rz does not. The fact that rl fired for bank i of P will be noted in R1, and R1
can shift its focus to the next active bank i + 1 in the next propagation step. Since 7-2 did not fire, R2 is
stuck at bank i. Rz cannot skip bank i and go on to bank i + 1 since rz could fire later due to activation
propagating in the type hierarchy. We circumvent this problem by defining special protocols.

'The rule of thumb seems to be that a 32 node CM-5 is approximately equivalent to a CM-2 with 8K processing elements.

3 3

Note that this problem does not arise in the type hierarchy since all is-a links originating at a concept
always fire-unlike a rule, no precoildit,ions need to be satisfied for an i s -a link to fire.

Let Dth be the depth of the type hierarchy. Then,

If a rule r for bank i of some predicate fires at time step t , then update R , the structure representing r,
to consider bank i + 1 of the corresponding predicate in step t + 1 (subject to the conditions mentioned
below).

If a rule r for bank i of some predicate does not fire at time step t , then two cases are possible:

1. If t < Dth, then do not update R. Thus, bank i will be reconsidered in step i + 1.

2 . If t > Dth, update R to consider bank i + 1 in the next time step.10

Since activation spread in the type hierarchy will not activate any new concepts after Dih time steps, this
scheme ensures that all banks of a predicate will eventually be considered.

I11 S H R U T I - C M ~ , the multiple instantiation indefinite wait problem is handled by placing special eleillents on
the rule-frontier. Normally, a rule-frontier element is a (consequent) predicate, along with t,he bank that was
instantiated. All rules for that predicate bank are considered in a given propagation step. If any rule does
not fire for this bank, then a special pair of elements is added to the rule-frontier. This pair specifies the
predicate bank a n d the associated rule that need to be reconsidered in the next pr~pagat~ion step. Whenever
such a pair is encountered on the rule-frontier, only the specified rule is processed. If subsequent banks of
the predicate become active, these predicate banks will be placed on the frontier as usual, irrespective of the
fact that previous banks could have rules which have not yet fired.

lo Whenever any rule-slot R is updated to consider an inactive predicate bank, R waits till an instance has been assigned to
that bank.

D Input Syntax for Rules, Facts and Queries

To illustrate t,he input syntax for rules, facts and is-a relations, we begin with an extension of the example
in Section 5.9.

/* RULES */
forall x,y,z Cgive(x,y,z) => own(y,z)l;
forall x,y [buy(x,y) => own(x,y)l;
forall x,y [own(x, y) => can-sell(x, y)l ;
f orall x, y [sibling(x, y) & born-together(x, y) => twins(x,y)l ;

forall x, y [preys-on(x, y) => scared-of (y ,XI];
forall x,y,z Cmove(x,y,z) => present(x,z,t)l;
forall x,y,z Cmove(x,y,z) => present(x,y,t)l;
forall x,y exists t

[born(x,y) => present(x,y ,t)l;
forall x:Animate, y:Solid-obj

[walk-into(x, y) => hurt(x)l ;

/* FACTS */
give (John, Mary, Bookl);
give (x, Susan, Ba112);
forall x:Cat, y:Bird preys-on (x,y);
exists x:Robin [own(Mary,x)];

/* IS-A FACTS */
is-a (Bird,Animal);
is-a (Cat,Animal);
is-a (Robin,Bird);
is-a (Canary,Bird);
is-a (Tweety,Canary);
is-a (Sylvester,Cat).

NOTE: Any text included between /'s are comments. The comments given above are enclosed between /*
. . . */ so that they look identical to comments in C code.

The above example illustrates the input syntax accepted by the parallel rapid reasoning systems. Most
of the features are self-evident. Some points to be noted regarding the input syntax follow. Items prefixed
by a dagger (t) are supported only by S H R U T I - C M ~ .

A rule meant for the backward reasoner is said to be balanced if the following conditions are satisfied:

- Repeated variables in the antecedent are also present in the consequent.

- Typed variables, existential variables and entities present in the antecedent are also present in
the consequent.

Only balanced rules will be accepted by the system. Rules which do not satisfy the above conditions
will he rejected. A warning message to this effect will be printed.

Any variable (used in a rule) which is not listed in either t<he list of universally quantified variables or
in the list of existentially quantified variables is assumed to be existentially quantified.

Any name beginning with an uppercase alphabetic character is assumed to be an entity. All names
beginning with 1owerca.se are variable names. Names of predicates can begin with either uppercase

or lowercase letters. Capitalization of names should be consistently used - for example, name1 and
Name1 would represent two dzfferent predicates; similarly, Cons t -a and Const-A are different entities.

A semicolon (;) indicates that a rule, fact or is-a fact has been entered; it also indicates that more
input is to follow. The occurrence of a period (.) in the input indicates the end of a rule, fact or
is-a fact and also terminates the input. A (quantified or unquantified) predicate terminated by a ? is
interpreted as a query.

The lexical analyzer removes all whitespace; the input is therefore unaffected by the addition of extra
blanks, tabs or newlines. Further, spaces can be omitted wherever it is not essent,iall1.

The lexical analyzer also removes all comments. Any text enclosed between /'s (/ . . . /) is a com-
ment. The text of a comment can contain any character or symbol except /. A comment can start
and end at any point in the input. In particular, a comment may span several lines or may be limited
t o part of a single input line.

t ~ a ~ s . Predicates and ent,ities can be tagged (with a non-zero, positive integer) by using the < >
construct: < g i v e (x , y , z) ,3> or <Mary, 6>. Tags can be used to group "similar" predicates and entities
together.

Error Handling. When synt,a.x errors are detected in the input, the action taken depends on the
mode of input:

- If input is being read from the terminal (s t d i n) , an error message is issued, and the last rule or
fact should be re-entered after typing one or more semi-colons (;).

- If input is being read from a file, the parser prints the line number containing the syntax error
and continues reading the file, so that all syntax errors in the file are listed. Rules or facts in the
input that were correctly recognized (i.e., had no syntax error) will be encoded; the others will
be ignored.

Below is tlw formal grammar for the input language (for rules, facts, is-a relations and queries) which
specifies the exact form of each input structure. The grammar is accurate for SHRUTI-CM~. Though most
of t,he coi~structs are identical in SHRUTI-CM~, there are some minor differences. Further, SHRUTI-CM~ does
not support tags.

~ n p u t + . /* stop - no more input */
I ; input /* continue - more inpu t */
1 input- i tem input

input- i tem -+ query /* query * /
1 fac t /* fact */
I rule /* rule */
(tag-def /* t a g definition */

rule + q-prefix [pred-list => predicate]
I pred-list => predicate

fac t -+ predicate

I q-pred
query -+ predicate ?

I q-pred ?
tag-def < predicate , NUM >

I < constant , NUM >
q-pred - q-prefix [predicate]

"To distinguish between t,he variable ' f o r a l l x ' and ' f o r a l l x', a space is essential. But a space is not required after the ','
in 'onn(x,y) ' . In general, spaces are not essential before and after punctuation symbols.

36

q-prefix + FORALL type-list
I EXISTS type-list
I FORALL type-list EXISTS type-list
1 EXISTS type-list FORALL type-list

type-list + variable
I variable : constant
I variable , type-list
I variable : constant , type-list

pred-list + predicate & pred-list
I predicate

predicate + arg-or-pred (arg-list)
I arg-or-pred ()

arg-list -+ arg-or-pred , arg-list
I arg-or-pred

arg-or-pred + constant I variable
constant + C O N S T
variable + V A R

Here, C O N S T represents entities (any token starting with an uppercase letter), V A R are variables (quantified
or unquantified) in the rules, facts or queries and are tokens beginning with lowercase letters. The variable
and entity tokens are represented by a sequence of alphanurrleric characters along with - and *. Any int,eger
is recognized as a N U M . The tokens FORALL and EXISTS are recognized when the input cont,ains these
words, spelled with any combination of uppercase and lowercase letters (i.e., arbitrarily capitalized).

E SHRUTI-CM Commands

Comma.nds recognized by SHRUTI-CM~ and S H R U T I - C M ~ are listed below. Some of the commands and de-
scriptions are applicable only to SHRUTI-CM~ and are prefixed by a dagger (t). The S H R U T I - C M ~ preprocessor
only supports the commands i, w and q. Each command is invoked by using a single character. The first
non-blank character typed at the input prompt is taken to be the command. Any non-blank text following
the first character forms the argument(s) for the command. The list below indicates the purpose of the
command, the command syntax and a brief description of the command.

Quit Syntax: q
Terminates the SHRUTI-CM program.

Help Syntax: ?
Prints out a list of available commands and t,he command-line options and/or arguments which the
commands accept.

Read Input Syntax: i [-f I -b 1 [input-f ilel
Reads input from the terminal (when input-f ile is not specified) or a file (when input-f ile is
specified). The -b option is used to build a backward reasoning system (default), while the -f option
builds a forward reasoning system (currently unsupported).

t1n S H R U T I - C M ~ the behavior of this command is dictated by the current input mode. The system
always starts up in parallel asynchronous mode; the mode can be changed using the m command. In par-
allel asynchronous mode, each processor in the partition processes a different input file input-f ile .pid
where pid is a three digit processor index (prefixed by zeros if necessary). In global synchronous mode,
all processors cooperatively process the same input file input-f ile.

+Syntax: i [-h hash-table-file] [-f I -b 1 [input-file]
The -h option for read input is supported by the S H R U T I - C M ~ preprocessor and can be used to update
the internal server hash tables which store processor assignment and other details for predicates and
concepts. This feature is useful for incremental preprocessing of large knowledge bases.

+change Input Mode Syntax: m [-p I -g 1
Changes input mode to parallel asynchronous (with the -p option) or to serial, global synchronous
(with the -g option). Without any option, this command prints out the current input mode. The
current input mode dictates the behavior of the i command.

+Write Out Hash Table Syntax: w [-o output-f ile-pref ixl
Writes out the current server hash tables to the specified file (with a .hashtables extension). If no
output file prefix is given, kb.pp is used as default. The hash tables writ,t.en out can be read by the
preprocessor (using the i command with the -h option) and supports incremental preprocessing of
large knowledge bases.

+Syntax: w [-g 1 [-o output-file-prefix]
This command, when used on the SHRUTI-CM~ preprocessor, writes out the preprocessed knowledge
base. The output file names are suffixed with the processor number. If the output file prefix is not
specified, kb.pp is used as the default. If the -g option is absent, the inference dependency graph for
the knowledge base is also written out (with file extension . idg)

Run Reasoning Episode Syntax: r C[-fl #steps]
Runs the reasoning episode after a query has been posed. It is an error to invoke this command when
a query has not been posed. Without any options or arguments, r runs the reasoning episode to
completion--till the query is answered or the reasoning episode has proceeded long enough to conclude
that there will be no answer. When #steps is specified with t,he -f option, the reasoning episode is
forced to run for #steps propagation steps (irrespective of whether the query has been answered or

not). If the -f opt,ion is not specified, the reasoning episode terminates either after #steps cycles or
after the query has been a.nswered, whichever happens first.

tSince S H R U T I - C M ~ runs reasoning episodes asynchronously, this command does not support the -f
and/or #steps arguments.

Reset Network Syntax: z C -q I -v 1
Resets the network and removes all activation including the query. With the -v option, a message is
printed out indicating that the network has been reset (default). The message can be suppressed by
using the -q option.

Set Phases Syntax: p [#phases]
Sets the number of phases per clock cycle to #phases. The current number of phases is printed out if
the command is invoked without an argument.

Display Syntax: d { -p I -c } name
Displays the current in~tantiat~ions of the predicate (with the -p option) or concept (with the -c option)
specified by name. An error message is printed if the named predicate or concept is not present in the
system.

tSyntax: d { -p name I -c name }*
SHRUTI-CM~ supports multiple -p and/or -c options.

Statistics Syntax: s C -a I -k I -q I -c I - s 1
Prints out knowledge base and reasoning episode statistics. When the system is configured for detailed
statistics collection, this command will print out more information. The -a option prints out all the
accumulated data (default). The -k option prints out information about the knowledge base. All
details about the current reasoning episode are printed out by the -q option. The -c and - s options
print out cumulative data and data from the last propagation step respectively, for the current query.

tDue to the asynchronous nature of the S H R U T I - C M ~ system, a global propagation step is not well
defined. Hence, S H R U T I - C M ~ does not support the -c and -s options.

tDisplay Tagged Activation Syntax: a -f f i r s t - tag [-1 last-tag]
Displays the number of active predicates and entities with tag values in the specified range. If the -1
option is not specified, active predicates and entities with tag value equal to f i r s t - tag are printed.

+Display Processor Load Syntax: 1 [-a I -k I -q I -t 1 [-n processor]
Prints out the processor load for the current reasoning episode. When the system is configured for
detailed statistics collection, this command will print out more information. The -a option prints
out all information (default). The -k option prints out t,he distribution of the knowledge base on the
processing elements. The distribution of active element,^ for the current reasoning episode are printed
out by the -q option. The timing for individual processors (for t,he current reasoning episode) is
displayed by the -t option. If the -n option is given, required information is displayed for the specified
processor. If the -n option is not used, data is displayed for all processors in the partition.

References

Ajjanagadde, V. and Shastri, L. (1991). Rules and variables in neural nets. Neural C:onaputation, 3:121-134.

Barnden, J . A. and Pollack, J . B., editor (1991). Adliances in Connectionist and Neural Computation Theory,
Volume 1. Ablex Publishing Corporation, Norwood, NJ.

Barnden, J . A. and Srinivas, K. (1991). Encoding techniques for complex information structures in connec-
tionist systems. Connection Science, 3(3):269-315.

Carpenter, P. A. and Just, M. A. (1977). Reading comprehension as eyes see it. In Just, M. A. and Carpenter,
P. A . , editor, Cognitive Processes in Co~r~prehension. Erlbaum.

Charniak, E. (1983). Passing markers: A theory of contextual inference in language comprehension. Cognitive
Science, 7(3):171-190.

Dietz, P., Krizanc, D., Rajasekaran, S., and Shastri, L. (1993). A lower bound result for the commonelement
problem and its implication for reflexive reasoning. Technical Report MS-CIS-93-73, Department of
Computer and Information Science, University of Pennsylvania.

Evett, M. P., Andersen, W. A., and Hendler, d . A. (1993). Massively parallel support for efficient knowledge
representation. In Proceedings of th,e Thirteenth International Join,t Conference on Artificial Intelligence,
pages 1325-1330.

Fahlman, S. E. (1979). NETL: A System for Representing and Using Real World Knowledge. MIT Press,
Cambridge MA.

Feldman, J . A. and Ballard, D. H. (1982). Connectionist. models and their properties. Cognitive Science,
6(3):205-254.

Hillis, W. D. (1985). The Connection Machine. MIT Press, Cambridge, MA.

Jurafsky, D., Wooters, C., Tajchman, G . , Segal, J., Stolcke, A., Fosler, E., and Morgan, N. (1994a). The
Berkeley restaurant project. In Proceedings of the International Conference on Speech and Language
Processing, Yokohama, Japan. To appear.

Jurafsky, D., \Vooters, C., Tajchman, G. , Segal, J . , Stolcke, A,, and Morgan, N. (1994b). Integrating
advanced models of syntax, phonology, and accent/dialect with a speech recognizer. In AAAI Workshop
on Integrating Speech and Natural Language Processing, Seattle. To appear.

Lakoff, G . and Johnson, M. (1980). Mefaphors We Live By. University of Chicago Press, Chicago.

Lange, T. E. and Dyer, M. G. (1989). High-level inferencing in a connectionist network. Connection Science,
1(2):181-217.

Lenat, D. B., Guha, R. V., et al. (1990). CYC: Towards programs with common sense. Communications o j
the ACM, 33(8):30-49.

Mani, D. R. (1994). A mathematical analysis of message passing (MIMD) SHRUTI simulation systems.
Technical report, University of Pennsylvania. Forthcoming.

Mani, D. R. and Shastri, L. (1993). Reflexive reasoning with multiple instantiation in a connectionist
reasoning system with a type hierarchy. Connection Science, 5(3 & 4):205-242.

Miller, G. A., Beckwith, R., Fellbaurn, C., Gross, D., Miller, K. , and Tengi, R. (1990). Five papers on
IVordNet. Technical Report CSL-43, Princeton University. Revised March 1993.

Moldovan, D. I. (1989). RUBIC: A inultiprocessor for rule-based systems. IEEE Transactions on Systems,
Man, and Cybernetics, 19(4):699-706.

Moldovan, D. I. (1993). Parallel Processing: From Applications to Systems. Morgan Kaufmann, San Mateo,
CA.

Moldovan, D. I., Lee, W., Lin, C., and Chung, M. (1992). SNAP: Parallel processing applied to AI. Computer,
25(5):39-50.

Newell, A. (1992). Unified theories of cognition and the role of Soar. In Michon, J . A. and Akyiirek, A,,
editor, Soar: A Cognitive Architecture in Perspective, pages 25-79. Kluwer Academic, Netherlands.

Porter, B., Lester, J . , Murray, K., Pittman, K., Souther, A., Acker, L., and Jones, T . (1988). A1 research in
t,he context of a multifunctional knowledge base: The botany knowledge base project. Technical Report
AI88-88, University of Texas.

Shastri, L. (1991). Why semantic networks? In Sowa, J . F., editors, Principles of Sem.antic Networks:
Explorations i n the Representation of Knowledge. Morgan Kaufmann, San Mateo, CA.

Shastri, L. (1993). A computational model of tractable reasoning-taking inspiration from cognition. In
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence.

Shastri, L , and Ajjanagadde, V. (1993). From simple associations to systematic reasoning: A connectionist
representation of rules, variables and dynamic bindings using temporal synchrony. Behavioral and Brain
Sciences, 16(3):417-494.

Sun, R. (1992). On variable binding in co~inect~ionist networks. Connection Sctence, 4(2):93-124.

TMC (1991a). Connection machine CM-200 technical summary. Technical Report CMD-TS200, Thinking
Machines Corporation, Cambridge, MA.

TMC (1991b). Connection machine CM-5 technical summary. Technical Report CMD-TS5, Thinking Ma-
chines Corporation, Cambridge, MA.

TMC (1993). CMMD Reference Manual. Version 3.0. Thinking Machines Corporation, Cambridge, MA.

TMC (1994). CM-5 User's Guide. CMost Version 7.3. Thinking Machines Corporation, Cambridge, MA.

von Eicken, T . , Culler, D. E., Goldstein, S. C., and Schauser, K. E. (1992). Active messages: A mechanismfor
integrated communication and computation. In Proceedzngs of the Nineteenth International Synaposium
on Computer Architecture. ACM Press.

Waltz, D. L. and Pollack, J . B. (1985). Massively parallel parsing: A strongly interactive model of natural
language interpretation. Cognitive Science, 9(1):5 1-74.

	Massively Parallel Simulation of Structured Connectionist Networks: An Interim Report
	Recommended Citation

	Massively Parallel Simulation of Structured Connectionist Networks: An Interim Report
	Abstract
	Comments

	tmp.1187370047.pdf.7MFZw

