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Notation

Following the example of [Pol89] and [Pol84], linear function notation is used whenever
it can cause no ambiguity. Hence, instead of [ g(z)Q(dz) or [g¢dQ for the integral
with respect to a measure (), we write Q(g) or simply Qg.

The Cartesian product symbol is ®. Maximum and minimum are represented by V
and A respectively. The integral symbol [ appearing without limits refers to inte-
gration over the entire space. The inner product of two vectors z and ¢ i1s denoted
(z, ). Random variables are denoted X, Y and Z. CDF, PDF and PMF stand
for Cumulative Distributive Function, Probability Density Function and Probability
Mass Function respectively. The notation Z ~ P indicates that random variable
Z has distribution P, while IFp(Z) denotes the expectation of Z according to the
distribution P. In keeping with the notation used in [?], expectation of Z with re-
spect to the underlying probability measure will also be denoted by IP Z, as against
IP {a € A} which denotes the measure of set A.

N(m, o?) usually symbolises the Normal distribution of mean m and variance 2.
Boldface type is reserved for sets and vectors. Calligraphic symbols are generally
used as follows: A and B refer to classes of sets; D, G and H refer to classes of
functions; F, P and Q refer to a classes of distributions; £! and £? are defined as
in Section 2.6, while P(A) refers to the power set of a set A. R represents the set of
real numbers, while Rt denotes the nonnegative reals.

g = O(f) signifies that function g grows no faster than f. Similarly, ¢ = O(f)
signifies that ¢ is order f, while ¢ = o(f) indicates that g has asymptotic growth
strictly smaller than f. Finally, ¢ = Op(f), ¢ = Op(f) and g = op(f) indicate that
the respective growth rates of ¢ and f converge in probability to their prescribed
asymptotic relationship.

All other symbols are defined on site.



For science, G-d is simply the stream of tendency by which all
things seek to fulfil the law of their being.

LITERATURE AND DoGMA
William Arnold

1 Introduction

Often the best way to adumbrate a dark and dense assemblage of material is to
describe the background in contrast to which the edges of the nebulosity may be
clearly discerned. Hence, perhaps the most appropriate way to introduce this paper is
to describe what it is not. It is not a comprehensive study of stochastic processes, nor
an in-depth treatment of convergence. In fact, on the surface, the material covered
in this paper is nothing more than a compendium of seemingly loosely-connected
and barely-miscible theorems, methods and conclusions from the three main papers

surveyed ([VC71], [Pol89] and [DL91]).

And yet, closer inspection reveals a common thread running steadily through the
papers and delicately weaving them into a coherent and tightly-knit tapestry. It is
the ambition of this paper both to describe the content and significance of each of the
papers individually as well as to expose this elegant intertwining and interdependence.

The classical Bernoulli theorem states that in a sequence of n independent trials, the
relative frequency of an event A converges (in probability) to the probability of that
event as n — oo [VC71]. The need often arises to ensure that this convergence is
uniform over an entire class of events A. In other words, representing the relative
frequency of a set A € A after n trials by vﬁf) and the probability of A by P4, we
require that for arbitrarily small e,

P{sup [l = Py| > e} — 0 as n — . (1)
Ae€A

For instance, for a distribution function P over the real line R, and a class A =
{(—o0,t] : t € R}, the strong law of large numbers guarantees that the proportion
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of points in an interval (—oo,t] converges almost surely to P(t), while the classical
Glivenko-Cantelli theorem strengthens the result by adding uniformity of convergence
over all t [Pol84]. However, it turns out that even in the simplest of examples, this type
of uniform convergence does not necessarily hold. The first of the three papers to be
discussed here, [VCT1], supplies criteria on the basis of which one may judge whether
a given combination of distribution P and class A boasts such uniform convergence
(see Section 3). In particular, the paper demonstrates that for an arbitrary P, any
so-called Vapnik-Chervonenkis (VC) class of sets will exhibit uniform convergence.

While the main thread of the second paper, [Pol89], is claimed by the author to be
merely a glimpse into the theory of empirical processes, one may also view the material
there as a direct extension of the ideas presented in [VCT1] and the generalization
of the concept of uniform convergence to classes of functions. Instead of the relative
frequency of a set A € A after n trials, vﬁf’, we now speak of the expectation of a
function g € G with respect to the empirical measure P, (which puts mass n™' at
each of the sample points — see Section 4); instead of the probability of A, P4, we
now speak of the expectation of ¢ with respect to the underlying distribution P. The
uniformity result we are now after is that for arbitrarily small e,

P{sup (n'?|P,g—Pg|) > e} - 0asn — oco. (2)

9€G

This extension is more closely entwined with the ideas in [VC71] than may at first be
apparent. Indeed, if one considers the class of indicator functions G = {I4 : A € A}
corresponding to the class of sets A, then, besides a rescaling factor of n!/2, the two
uniformity goals (1) and (2) are seen to be identical: Since the empirical measure P,
puts mass n™! at each of the sample points, P, I is easily identifiable as the relative

frequency Uﬁl"), while in a similar fashion, P 14 = P(A).

Moreover, just as [VCT71] shows that a VC class of sets will satisfy requirement (1),
[Pol89] shows that goal (2) is achieved for what Pollard terms manageable classes of
functions. But the plexus does not end there: It turns out that if a class of functions
G={g : ¥ — R} with bounded envelope G is such that {subgraph(g) : g € G}
is a VC class of subsets of ¥ ®@ R, then G is, in fact, a manageable class of functions
[Pol89]. See Section 4 for the definition of subgraph(g) as well for an exposé of
the intricate relationship between VC classes of subsets and manageable classes of
functions.

Any discourse on asymptotics must go hand in hand with a discussion of the rates
at which convergence takes place. Indeed, concepts of ‘rates of convergence’ form the
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very seam binding the delicate filigree of the asymptotic with the rather coarser and
more ragged burlap of the finite.

The third paper surveyed, [DL91], considers a bound on the rate of convergence of
an estimate 7,(X,) (where X, is the vector of n i.i.d. F' sample points) to the value
of a functional T(F) of an unknown distribution F' € F uniformly over a class of
distributions F. The bound involves the modulus of continuity b(e) [DLI1] of the
functional T over F, and is shown to be attainable, to within constants, whenever
T is linear and F is convex. See Section 5 for a general discussion of [DL91] as
well as Subsection 5.5 where the implications of the caveat “to within constants” are
analyzed from the perspective of Estimation Theory.

Once again, close scrutiny reveals a fine enmeshment of the ideas of [D1.91] with those
of [VCT71] and [Pol89] which a cursory consideration may dispute. Indeed, given a
class of functions G, we can consider each function ¢ € G as a random variable with
respect to the probability space (R, B, P), where B denotes the Borel field on the
real line R and P is some probability measure of finite variance. Let F be the class
of marginal distributions of the resultant stochastic process, and choose the (linear)
functional T'(F'), F' € F to be the expected value of F', i.e. T(F) = P g where F' € F is
the distribution of the random variable ¢ € G. Convexifying F yields a form to which
the results of Donoho&Liu are applicable, so that a bound on the rate of convergence
to T'(F) of any estimate T,(X,,), including the empirical expectation P, g, uniformly
over F may be deduced via the modulus of continuity b(e¢). This is the approach
taken in Section 6 where the methods of [DL91] are implemented to establish bounds
on rates of uniform convergence for a VC class of subsets.

Of course, the results of [DL91] extend far beyond these rather constrained and con-
trived cases to incorporate any convex class of distributions F and any linear func-
tional 7' (not just the expected value with respect to the probability space (R, B, P)).
In many situations, even the conditions of convexity and linearity are not necessary;
in fact, the power and generality of the results of [DL91] are such that they may very
well assume a pivotal role in future research within this field.

This survey has the following structure: In Section 2 we review various concepts fun-
damental to the subsequent discussion. Sections 3, 4 and 5 comprise synopses of each
of [VCT71], [Pol89] and [DLI1] in turn. Interconnections and interdependencies are
elaborated upon where appropriate. Finally, Section 6 demonstrates how the results
of [DL91] may be applied to classes of sets delineated in [VC71], while Section 6.3
gives a brief outline of how to extend the application to classes of functions described

in [Pol89].



2 Revision of Basic Concepts

2.1 Linearity, Convexity, The Holder Condition, Jensen’s
Inequality

2.1.1 Linearity

A nonempty set L is said to be a linear space ([KF70], page 118) if the following
three axioms are satisfied:

1. L forms an Abelian group with respect to an operation ‘+’.!

2. Any field element « and any element @ € L uniquely determine an element
az € L, called the product of a and z, such that a(fz) = (af)z and 1z = 2.

3. The operations of addition and multiplication defined above obey two distribu-
tivity laws: For all z, y, € L

a) (a+ f)z = azx + Pu;
b) a(z + y) = az + ay.

A functional f defined on a linear topological space L is said to be linear on L if, for
all z, y € L and arbitrary numbers «, 3,

flaw + By) = af(x) + Bf(y)-

In other words, any two elements z, y € L uniquely determine a third element x + y € L, called
the sum of 2 and y, such that

a) T4+ y=y+z (commutativity);
by Vze L, (z+y)+ =2+ (y+ z) (associativity);
¢) There exists an identity element 0 € L such that Vz € L, 2 + 0 = z;

d) For every z € L, there exists an nverse element —z such that z + (—z) = 0.
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2.1.2 Convexity

Given a real linear space L, let  and y be any two points of L. Then the segment
in L joining = and y refers to the set of all points in L of the form ez + (1 — €)z for
0<e<L 1.

A set M C L is said to be convex if, whenever it contains two points z and y, it also
contains the segment joining z and y.

A functional p defined on L is said to be convex if ([KF70], page 130)

1. Vz € L, p(xz) > 0 (non-negativity);
2. Ve € L,Va > 0, p(az) = ap(z);

3. Vz,y € L, plz+y) < plz) + ply).

2.1.3 The Holder Condition

A real-valued function f defined on an interval X € R is said to satisfy a Holder
condition of exponent « if

Vz,y € X, [f(z) - f(y)] < cle —y|*

for some constant ¢ ([Fal90], page 8). This property is also referred to as a Lipschitz
condition of exponent o« in many texts.

2.1.4 Jensen’s Inequality

Let Z : ¥ — R" be a random variable defined on the probability space (¥, B, P), and
let ¢ : R — R denote a convex function. Under the assumption that both E(|Z])
and [E(|g(Z)]) exist, Jensen’s Inequality states that

gUE(Z)) < IE(9(2)).
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2.2 Some Convergence Concepts

Let {Z, : n=1,2,...} denote a sequence of real random variables Z, : ¥ — R

defined on the probability space (¥, B, P). Denote the CDF of Z, by Fz,.

{Z,} converges in probability to the random variable Y : ¥ — R if (this is denoted
Z, 5Y)

Ve > 0,V6>0,AN(e, §), ¥n > N(e, §), P{p € U : |Zo(¢) = Y(#)| < e} > 1— 6.

{Z,} converges almost surely to the random variable Y : ¥ — ® if
Ve>0,¥6>0,3N(, 6), P| (| { €T : |Zk(¥)-Y({®)| <e}| >1-6
k> N(e,8)

Almost sure convergence implies a joint occurrence of an infinite number of events
having probability greater than 1 —§. It is also known as convergence with probability

one (wpl) ([CBY0], page 214).
It is clear that almost sure convergence implies convergence in probability.
{Z,} converges in distribution to the random variable Y if

lim Fyz, (z) = Fy(z)

n—o0

at all points € R where Fy-(2) is continuous ([CB90], page 216).

2.3 A Central Limit Theorem

Let {Z,} be a sequence of independent identically distributed (i.i.d.) random variables
with finite mean m and variance ¢2. Then

converges in distribution to a Gaussian random variable with mean 0 and variance

a? ([GD86], page 281).
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2.4 The First Borel-Cantelli Lemma

Let {Ax : k = 1,2,...} denote a sequence of events on the probability space
(U, B, P). If 22, P(Ay) < oo then

P{y €V : ¢ € Ay for infinitely many k} = 0.

Consult [Bil79], page 46 for proof and elaboration.

2.5 Stochastic Processes, Sample paths and Separability

A real-valued stochastic process is a collection {Z; : t € T} of real random
variables, all defined on a common probability space (¥, B, P). The random variable
Z depends on both ¢ and the point » € U at which it is evaluated. To emphasize its
role as a function of two variables, write it as Z(#, t). For fixed ¢, the function Z(, )
is a measureable map from ¥ into R. For fixed ¢, the function Z(¥, -) is called a
sample path of the stochastic process. Consult [Pol84], page 1.

Let A denote a collection of Borel sets on the real line. A real stochastic process
{Z; : t € T} with a linear index set T is said to be separable relative to A if
there is a sequence {t;} of parameter values and a subset A C ¥ of probability zero
such that for any A € A and any open interval I, the sets

S = ﬂ {1/’ : Zz(ﬁ’) GA}
te IuT

Sy = () {¥: Z,(¥) € A}
t,eluT

differ by at most a subset of A. Of particular importance in this paper is that if
the class A is taken to be the class of closed sets, then for a separable process, the
supremum and infimum over arbitrary intervals are measureable. This is because they
agree almost everywhere with the supremum and infimum over countable parameter
sets.
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2.6 Metrics, Pseudometrics and £! and £? Norms.
2.6.1 Metrics and Pseudometrics

A metric for a nonempty set L is defined as a single-valued, nonnegative, real function
p:L®L — Rt which has the following three properties: For all z, y, z € L,

1. p(z,y) =0 if and only if z = y;
2. plz,y) = ply, &) (symmetry);

3. plz, 2) < plz, y) + ply, z) (triangle inequality).

A pseudometric is defined similarly except with respect to property (1); for a pseu-
dometric, p(z, y) could be zero for some distinct pair z, y.

2.6.2 L! and £? Norms.

A functional p defined on a linear space L is said to be a norm in L if it has the
following three properties:

1. pis finite and convex;
2. p(z) =0 only if z = 0%

3. plaz) = |a|p(z) for all € L and all a.

Recalling the definition of a convex functional, we deduce that a norm in L is a finite
functional on L such that for all z, y € L,

1. p(z) > 0, where p(z) = 0 if and only if z = 0;
2. plaz) = |a|p(z) for all a;

3. plz +y) < plz) + p(y)-

2For p an £ norm (see later), z = 0 almost everywhere.
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Let L be a linear space equipped with a measure g. Then £! refers to the normed
linear space of all real measureable functions g such that

A
Il 2 [ lo@ld < .
|l ¢ |1 denotes the £*-norm.

L£? denotes the normed linear space of all real measureable functions such that
J¢*(z)dp < 0. The L£2-norm is defined as

A
lgll,2 /[ o) du

Consult [KF70], page 381 for details.
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3 On the Uniform Convergence of Relative Fre-
quencies of Events to their Probabilities

A synopsis of [VCT71] by Vapnik and Chervonenkis

As discussed in the Introduction, the classical Bernoulli theorem states that in a se-
quence of [ i.i.d. trials, the relative frequency of an event A converges (in probability)
to the probability of that event as [— oo [VC71]. The need often arises to ensure that
this convergence is uniform over an entire class of events A. In other words, repre-
senting the relative frequency of a set A € A after [ trials by vﬁ) and the probability
of A by P4, we require that for arbitrarily small e,

P{rY > ¢} — 0asl— oo, where

) = sup |U£41) — P4
A€A

The main thread of [VCT1] comprises two strands:

(1) Sufficient conditions on A for uniform convergence are derived. These condi-
tions do not depend on the probability distribution P, and are discussed in
section 3.2. Classes of sets which satisfy these conditions have been dubbed
‘Vapnik Chervonenkis (VC)’ classes, [Pol89] or classes of polynomial discrimi-
nation [Pol34].

(2) Sufficient and necessary conditions for uniform convergence are deduced. These
conditions do depend on the probability distribution P and are elaborated upon
in Section 3.3.

Before describing these results and their elegant derivations, we need a few supporting
definitions and concepts.
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3.1 Cake-Cutting, Growth functions and the Shattering of
Classes of Sets

3.1.1 The Cake-Cutting Conundrum

Any enthusiast for conundra and puzzles is no doubt familiar with the problem of
determining, as a function of r, the maximum number of pieces into which a cake
E may be partitioned using at most r slices. Let us extend the problem to include
n-dimensional cakes being partitioned by means of r slices ((n — 1)-dimensional hy-
perplanes). Denote by ®(n, r) the maximum number of pieces obtainable.

In order to obtain a recurrence relation for ®(n, r), consider the case where the
first » — 1 hyperplanes have already been placed so as to maximize the number of
compartments into which the ‘cake’ E™ has been partitioned. All that remains to be
done is to place the final rth hyperplane.

Now, for n > 2, any two non-parallel (n — 1)-dimensional hyperplanes intersect along
an (n — 2)-dimensional hyperplane. Hence, when the rth hyperplane is inserted, it
will be traversed by at most r — 1 hyperplanes, each of which is (n — 2)-dimensional.
Further, since the rth hyperplane will form one of the boundaries of any new compart-
ments added, the maximum number of new compartments will equal the maximum
number of (n — 1)-dimensional segments into which these (n — 2)-dimensional hyper-
planes partition the rth hyperplane itself [Wen62], [Sch50]. See Figure 1.

Hence, ®(n, r) is seen to obey the recurrence relation
O(n,r)=®(n,r—1)+®(n—1,r —1), where (0, ) =1 and ¢(n, 0) =1

It is not difficult to show by induction that

Z (17;) ifr>n
k=0

r Hr<n

O(n, r) =

and, hence, that for n > 0 and r > 0,
O(n,r) <r*+1 (3)

In what follows, essential use is made both of ®(n, r) and of inequality (3).
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i" I —
Hyperplane 1 T l_
1 =111

Hyperplane 2

New compartments
Hyperplane 3

1 -dimensional hyperplanes intersect
along 0-dimensional hyperplanes (poinis).

o Hyperplane 4 is partitioned into &(n-1, r—1) = 4
] | =] [ TXXXRR
== \.....'.' 1-dimensional segments by the three 0-dimensional
||:”|:m:” X hyperplanes (points of intersection).

Hence, 4 new components are added.

===

Figure 1: 2-Dimensional Cake being partitioned using 4 one-
dimensional hyperplanes. The number of new compartments added
by the fourth slice is seen to be ®(n — 1, r — 1) = 4.

3.1.2 Fruit Cakes and Growth Functions

Let us now consider a slightly different cake-cutting problem. Let there be a set X,
of r different fruit chunks scattered throughout the cake E™. Denote the positions of
the fruit chunks within the cake by zq, 2o, ..., z,.

Instead of a knife with which to trace out hyperplanes, we have a host of implements
with which it is possible to extract any one of a class A of cake pieces. Note that
A does not necessarily delineate a partition of the cake since the potential pieces of
cakes may intersect one another.

Now, each piece A € A picks out or induces the subsample X# of fruit chunks. The
problem is to calculate the number of different groupings of fruit chunks which may
be extracted by the class A. We term this number the index of A with respect to
X, and denote it by A#(zy, 3, ..., z,). Obviously, AA(zy, z,, ..., ) is always
at most 27, the cardinality of P(X,). The maximum of A#(z, 24, ..., x,) over all

possible positionings of the fruit chunks is called the growth function and is denoted
by mA(r).
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In what follows, we generalize from cakes to any set X. For a more formal definition
of the growth function m#(r), see [VCT71], subsidiary definition 1.1.

Example 1: If X is the real line ® and A is the set of semi-infinite intervals of the
form (—oo, a], @ € R, then m*(r) = r + 1. [VCT1]

Example 2: If X is Euclidean 2-space, E?, and A is the set of quadrants of the
form (—oo, ], t € R ® R, then mA(r) < (r + 1)? since there are at most r + 1
places to set each of the horizontal and vertical boundaries [Pol84]. More precisely,

mA(r)=1+%+ 123 ([Pol84], problem I1.8).

Example 3: If X is the segment [0, 1] and A is the class of all open sets, then
mA(r) = 2. [VCTI]

Example 4: Let X be Euclidean n-space E™ and A be the class of all half-spaces
of the form (1,_(}5) > 1, 2 € X, for all fixed n-vectors ¢. Let E™ be the space of
vectors v and E™ be the space of vectors @.

As shown in Figure 2, to each vector z; there corresponds a hyperplane in En dividing
E™ into the two half-planes

Ys = {¢€E" : (z, ¢) > 1} and
Yo = {9€E" ¢ (a1, 0) <1}

Making the return journey to E", we find that each ¢, partitions E” similarly into

Ys = {2 €E" : (z, ¢r) > 1} and

Yo = {a€E" (2, ) <1}

The critical observation is that for a fixed vector z; € E™, if ¢ is any vector in Tz,
then z is in Y5. Similarly, ¢ € Yo = 2 € Yo

Hence, any set of r points in E*, X,=z,, 22, ..., z, induces a set of r hyperplanes
in £™ which partition F” into a number of compartments such that the vectors ¢
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Figure 2: Correspondence between subsamples of the set
X,=z,, &3, ..., ¥, and compartments of E*. Each point z; is seen
to induce a hyperplane r; in E*, while any vector ¢ in a certain com-
partment of £™ induces the same subsample of X,.
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from any single compartment induce half-planes Y5 and Y. in E™ which, though
different for each @, all pick out the same subsample XTY of X,. Thus, finding the
growth function for this example is equivalent to finding the maximum number of
compartments into which E” may be partitioned, a problem already addressed in
Section 3.1.1. i.e. for this example, m*(r) = ®(n, r).

3.1.3 Shattering Classes of Sets

A class A of subsets of a universe X is said to shatter a set of points X, C X if it
can pick out every possible subset of X, [Pol84]. In other words, A shatters X, if
AA(zy, 9, ..., 7,) = 2". As pointed out in [Pol84], the choice of the term ‘shatter’ is
perhaps inappropriate, implying violent fragmentation of X, rather than meticulous
extraction of each individual subset, “... but at least it is vivid” [Pol84].

Example 5: Consider the class A of closed disks in £?: A can shatter any set of
three non-collinear points, but cannot shatter any set of four points [Pol84].

All of the above definitions and concepts are elegantly united in Theorem 1 of [VC71]
which states that for any class of sets A, m*(r) is either identically equal to 2" or else
is majorized by ®(n, r), where n is the smallest sample size which 4 cannot shatter,
no matter what the sample configuration (e.g. in Example 5 above, n = 4). In turn,
we have shown in Equation (3) that for r > 0, ®(n, r) < r" + 1.

Hence, m*(r) is either equal to 2" or is polynomial in nature, with the order of
the polynomial being the value n as defined above (For a proof of this theorem, see
[VCT1]). Classes A for which the latter condition hold are said to be of polynomial
discrimination since they pick out at most a polynomial number of subsamples of X, ;
they have also been dubbed Vapnik Chervonenkis classes in the literature.
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3.2 Distribution-Independent Sufficient Conditions

We now return to the problem of finding conditions under which we can be assured of
uniform convergence of relative frequency to probability over a class A C B of events
with respect to the probability space (X, B, P).

To relieve the reader of the torments of suspense, we state the main result of the first
part of [VCT1] here: It turns out (See [VCT1], Corollary to Theorem 2) that a
sufficient condition for this uniform convergence to occur is merely that the class of
events A be of polynomial discrimination with respect to the whole space X.

This simple result is a consequence of some rather involved yet elegant applications
of concepts from combinatorics and probability theory. We give here a brief outline
of the general argument and refer the reader to [VCT71] for the details.

Step 1: Symmetrization. Instead of working with () = sup,., Ivﬁ) — P4
directly, define a class of new random variables pfi) = |[v, —v4l, A € A, where v,
and v’} are the relative frequencies of a set A € A for two independent samples of
size I. Define further the maximum difference between v’ and vl over the entire

class A, pV) = supAeA(p(/i)). We assume throughout that both stochastic processes

{pg) : A€ A} and {Ivg) — P4| : A€ A) are separable, or at least that p!) and 7(!
are measureable.?

3As an example of a 7(1) which would not be measureable, consider a universe X = [0, 1] and
an index set 7' = [0, 1]. Let S be a non-measureable subset of X, and let P be Lebesque measure.
Define the class A = {A; : t € T} as follows:

[0,1/2) — {t} ifteS, t<1/2
A=< [0,1/2)u {t} ifteS, t>1/2
{ [0, 1] - {¢} iftgs

Hence, for z € X,
IUE:()—PA,](‘L‘)‘—‘ 0 forz#t,tgS

1/2 forallze X, teS
1 forz=1tt¢gSs

Thus, () = %IS + Is» which is non-measureable and hence not a random variable.
(Adapted from [Mintz], page 304).
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Lemma 2 of [VC71] establishes that there is a strong relationship between p() and
7@, More precisely,

PLlr® s <Ip{(1)>£} 4
10> < P23 (1)
In other words, if p() — 0 as | — oo, then 7() — 0 (in probability) which is the
result we are after. In Step 2 below this type of convergence of p{) is demonstrated
for classes A of polynomial discrimination.

Step 2: Permutations. Now all that remains to be done is to place bounds on

}

P {p‘” > g} =P {(X;,X;') € X'o X'+ sup ol (X)) - vR(X)| >
A€

o

We note three simplifications which are immediately applicable:

(1) Independence allows us to concatenate the two {-samples used in calculation of
vY and v’} into a single 2l-sample, X,

(2) For a fixed sample X, instead of taking the supremum of |[v; — v’ | over allof A,
we need consider only those sets which induce essentially different subsamples
in X,;. Denote the class of all such sets by A’. By definition, |A'| = A*(X.),
and

(3) We can partition the class of all ordered samples of size 2[ of the universe X
into equivalence classes, each indexed by a subset X C X of size 2[, where

[X] = {Xu=T(X) : i€{L,2,...,201}

and 7} is a permutation of the elements of X.

Hence,

AcA AcA’

where A’ depends on the choice of X, pursuant to simplification (2) above, and
6: R — {0, 1} is the indicator function for the subset [0, c0) C K.
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In turn, since the supremum over a class of non-negative functions cannot be greater
than the superposition of the functions,

/0 [22}4), (pg)(ng) - —)} dP < /A§IH( é) dP

And now for the step which makes use of permutations of the sample X,;. Since all
samples X, in an equivalence class [X] generate the same class of sets A’, we have

[ Zolioen—5)ar=[ 5

AeA’ AeA’

dP

(2i)! .
21 Z (PA TiXa) _5)

The crucial observation is that the innermost summation represents the total number
of arrangements of a fixed sample X,; for which pfi) > ¢/2. But if A picks out m
elements in X, then p(l) > ¢f2 f01 any arrangement in which k& of these m elements

fall in one [-sample and |v; — v| = |¥ — 2=£| > ¢/2. Hence, the expression in
brackets, call it I', may be 1ewutten as

(m) (21 - m)
k -k
I'= Z 21

{k: |2k fi—m/[l]>€/2} ( i )

Now, since |A’| < mA(2l) for all samples X,; and T satisfies ' < 26“21/8, we can
combine all the relations back to Equation (4) to yield the succint inequality

P{W(“ > e} < 4mA(20) e Y8 (5)

Finally, for any Vapnik-Chervonenkis class A, m#4(2l) < (2)" so that Inequality (5)
implies uniform convergence:

lim P{r®¥ > ¢} <4 Jim (20)" e~8 = ¢

Actually, an even stronger result follows from Inequality (5): A simple application of

the first Borel-Cantelli Lemma (See Section 2.4) guarantees almost sure convergence.
For details, consult [VCT1].

Note that nowhere in this derivation did we have to impose criteria on the properties
of the distribution P. This is a testament to the power of the result.
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3.3 Distribution-Dependent Necessary and Sufficient Con-
ditions

The second major strand of the [VC71] paper completes the finely woven arras by
providing a sufficient and necessary condition for relative frequencies to converge (in
probability) to probabilities uniformly over a class of events A.

Since the mathematical justification of the validity of this condition is relatively com-
plex and does not lend itself readily to simplification, nor does it contribute to the
conceptual clarity of the ideas, we omit most of it here and refer the reader to [VCT71]
itself. Instead we merely state the results and discuss their importance.

Once again, we need first a definition.

Entropy. In section 3.1.2 we defined the index of a class A with respect to a sample
X, as the number of different subsamples of X; which A can pick out. We denoted
this index by A*(X;). We also defined the growth function m#(/) as the mazimum
value of AA(XI) over all possible samples of size [. We now turn our attention to a
function which reflects the expected value of A*(X,) with respect to the underlying
distribution P. Define

HA(l) = Ep log, AYX))

HA(l) is dubbed the entropy of the system of events A in samples of size [ [VCT1].
The concept correlates well with the thermodynamic idea of entropy; indeed the
greater the entropy of A within samples of size X, the greater is A’s discriminatory
power, and the less the [ elements of X; are permitted to ‘cluster’ together.

Our main interest is in the ratio of entropy to sample size, HA({)/{, as { — co. In
fact, the key result is that convergence of HA(1)/! — 0 as | — oo is both a sufficient
and necessary condition for the desired uniform convergence of relative frequencies to
probabilities.

We give here an outline of the argument validating this claim. First of all, we de-
fine the random variable ¢) = [log, A*(X))]/I, so that HA(I)/l = Ep &Y. Now,
Lemma 3 of [VC71] states that H4(l) has a limit ¢,0 < ¢ <1, as [ — co. Lemma 4
augments this by showing that for large [, the distribution of £{) is concentrated near
c. Indeed, for any ¢ > 0, lim;_,, PP{|("¥) — ¢| > ¢} = 0, showing convergence in
probability of €@ to c¢. Observe that the requirement that HA(l) — 0 as [ — oo is
equivalent to the requirement that ¢ = 0.
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3.3.1 Proof of Sufficiency

To prove sufficiency of this requirement, let us now partition the space of [-samples
X! into two regions: X'= {log, A4(X)) < €?1/8} for some ¢ > 0, and X! = X'— X!,
Since these sets are disjoint and exhaustive, invoking elementary set theory*,

PO > = P({x0>n X))+ P ({x¥ >} n X!)
< P({x9> e nx!) + P (X))

Now, by definition, within Xf, AAX)) < 2€°l/8 Further, with ¢ = 0, IP (Xi) =

P {f(l) > 62/8} — 0 as | — oo by Lemma 4 of [VCT71]. Hence, invoking Equation 5
above, we see that

P {7‘('(1) > e} < 4.8 U8 (Xi) = 4(2/‘3)621/8 + P (XD

The right hand expression converges to zero as [ goes to infinity. Hence,

P{W”)>e}—>0asl—>oo

3.3.2 Proof of Necessity

To establish necessity of the condition lim,_., H*(!)/! = 0, we resort to an argument
by contradiction, showing that the supposition lim;_. H#(I)/l = ¢ > 0 implies the
existence of a positive € such that lim;_.o, P{sup¢c4 |0y — V4| > 2¢} = 1. A bound
similar to Inequality 4, namely

1
P {sup |v£{) — P4l > e} > —IP {sup [vy — V4] > 26}
AcA 2 l4e4

then abrogates uniform convergence of relative frequencies to probabilities. (See
[VCT1] for details).

Intuitively, this condition imposed on H*#(l) amounts to ensuring that the expected
value of the index of A increase at a rate strictly smaller than the rate of proliferation
of subsets of the sample X; with [. In other words, even if the growth function m#(1)

4We assume here that Xf , X; € B where B is the set of events in the probability space (X', B, P).
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increases exponentially, uniform convergence is assured as long as the expected value
of A4(X)) is a member of the o(2') class®.

As a final note, we observe that though this is a fine result, it is attained at the
expense of both independence from distribution properties as well as almost surety
of convergence. It is shown in [Pol84] that both of these desireable properties may be
reinstated with a slight alteration of the condition H#(l)/l — 0 as { — oo. Indeed,
Theorem 21 of [Pol84] states that a necessary and sufficient condition for almost
sure convergence of relative frequencies of events in a class A to their probabilities is
(n/1) = 0 where n; = ny(X)) is the smallest integer such that A shatters no collection
of n; points from X;. We refer the reader to [Pol84], Section I.4 and problems I.11
and [I.12 for a proof of sufficiency and necessity.

5 Actually, the conditions are less stringent even than this: Thanks to the concavity of the loga-
rithmic function,

HA() = Ep log, A*(X)) < log, Ep A*(X))
so that HA(l) could still satisfy the criterion even if Ep A*(X;) exhibited exponential growth.
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4 Asymptotics via Empirical Processes

A synopsis of [Pol89] by David Pollard

In Section 3, we discussed conditions under which the relative frequencies of events
in a class A serve as asymptotically good estimates of the probabilities of the events
uniformly over A. Consider now the extension of these ideas to a class of functions G =
{g : ¥ — R}, where, for each g € G, we are interested in P g, the expected value
of g with respect to some probability measure P in the probability space (¥, B, P).

Define the empirical measure P, as that measure which places mass n~! at each of
n sample points, zy, ..., z, € ¥. An intuitive estimate for P g is then the expected
value of g with respect to this empirical measure. In other words, we estimate the
mean of g by the average of the n evaluations of ¢ at the sample points zy, ... 2.

Our quest is then criteria under which P, g provides an asymptotically good estimate
of P g uniformly over G. This is the subject of this section.

Note that seen in this light, the material covered in [VC71] and reviewed in Section 3
emerges as a special case of the more general case involving function classes. Indeed,
with G as the class of indicator functions G = {I4 : A € A}, the determination of
probabilistic bounds on the worst case difference between the true mean of a function
and its expectation with respect to the empirical measure reduces to the determination
of probabilistic bounds on the worst case difference between the relative frequency
and the probability of a set.

The main topic of [Pol89] is an exposition of a very powerful technique for the anal-
ysis of the entire family of problems involving averages of functions of independent
observations, of which the problem scrutinized here — that of finding criteria under
which these averages converge uniformly to the expected values of the functions — is
a member.

Let us now cast the problem into notation consistent with that used in [Pol89]. Define
the empirical process v, = {n'/2(P, — P)g : g € G} for a class of functions G.
v, may be thought of as an operator acting on ¢ to produce a properly standardized
sample average [Pol89]. As stated in the Introduction, the uniformity result we are
now after is that for arbitrarily small €,

P{sup (nV*|P,g — Pg|) > €} = IP{sup |vng| > ¢} — 0 as n — oo.
9€¢ 9€G
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The empirical process method for establishing criteria under which the above result
holds comprises four main steps [Pol89]:

1. Beginning with a family of averages, symmetrize via the introduction of a new
source of randomness. Instead of analyzing the difference between an empirical
expectation and the true mean, we are now looking at the difference between
two independent empirical expectations.

2. Transform the symmetrized process of averages into a conditionally Gaussian
stochastic process.

3. Apply a recursive method known as chaining to exploit the rapid decay of
Gaussian tails and bound the process probabilistically by an integral involving
a capacity function.

4. Derive conditions on the function class G subject to which the necessary uniform
bound on the capacity function is attained. This bound then percolates through
the integral derived in STEP 3 above, and manifests itself as the required bound
on the original empirical process.

Figure 3 presents schematically the thread of our mini-tour through the labyrinth
of empirical processes. In order to present the material in a modular fashion, we
will discuss Gaussian Processes and the Chaining method first and then return to
the four-step method outlined above. Though this ordering may seem haphazard,
familiarity with Gaussian Processes and the Chaining method in principle will later
obviate the need to break the continuity of the argument with a meandering excursion
into clarification of the supporting definitions.

4.1 Maximal Inequalities for Gaussian Processes

As stated in Section 2.5, a stochastic process is any collection of random variables
{Y; : t € T}. A process is said to be Gaussian if every finite subcollection of these
random variables has a joint normal distribution [Pol89]. Let us now consider the
problem of finding a bound on the expectation of sup,cr |Y:| where {Y; : ¢t € T'} is
a Gaussian process.
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Figure 3: Schematic of the main thread through the labyrinth
of empirical processes.

4.1.1 Finite Collections of Normal Random Variables

Consider first the related problem of estimating the maximum of a finite collection
of normal random variables {Z; ~ N(0,0?) : ¢ = 1,...,n} where nothing is
known about the joint distributions. Define ¢ = max (oy,...,0,). A crude bound on

max; |Z;| is Yy |Z;|. Since

P]Z,l = IPIA‘r(O, 0’5)' = \/;2;0'{ _<_ \/g(f,

(A n 2
P max |Z| <P Y |Z]=> P|Z] < \/:an.
) s

1=1 i=1

we conclude that

The problem with this bound is that we have placed identical emphasis on the con-
tribution of each |Z;| towards 3%, |Z;|. In order to improve on this bound, we need
somehow to stress the contribution of whichever |Z;] is the t{rue maximum, while si-
multaneously suppressing the contributions from the other |Z;|’s as much as possible.

We do this by transforming the |Z;|’s via a nonnegative, convex, increasing function
M(-) on the positive half-line:
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From Jensen’s Inequality (see Section 2.1) followed by the crude bound,
P max |Z] = M~ [M (113 max |z,.|)] < M [zp max M (|zi|)]

< M [Z P ()

=1

In order to exploit convexity as much as possible, we make H increase as fast as the
tails of |Z;| can bear without allowing the sum of expectations Y}_» , IP M (|Z;]) to
exceed a multiple of n [Pol89]. It is straightforward to show that for normal tails, the
function M(z) = /4" suffices to ensure that P M (|Z;|) < v/2 for all 4. Thus,

M™! [Xn: PM(|Zil)} <M [\/in} < MT! [n:"] < 2\/50'(logn)1/2 for n > 2,

whence IP max |Z;| < 3 max o;(logn)'/? for n > 2. (6)

The chaining method of Section 4.1.2 makes use of repeated applications of Inequal-
ity (6) to obtain a surprisingly good bound on the supremum of a Gaussian process.

4.1.2 Brownian Motion and Chaining

Before addressing Gaussian processes in their full generality, consider next the special
case of Brownian Motion on the bounded index set [0, §].

Brownian Motion or the Wiener Process on [0, ¢] is defined to be a Gaussian
process {B(t) : 0 <t < é} with the following properties ([Bil79], page 442):

1. With probability 1, B(0) = 0 (Process begins at the origin).

2. For 0 <t <ty ... < iy, <6, the nonoverlapping increments
B(ty) — B(t1), ..., B(tam) — B(ta;m—1) are independent.

3. For any t, s € [0, é], the increment B(t) — B(s) is distributed N (0, [t — s]).

Once again, we are interested in a bound on the expectation of sup,e( 5 |B(t)|. The
main idea of the chaining method is to approximate this supremum by the maximum
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taken over a succession of finite subsets of [0, §] each more finely spaced than the last.
For k = 0, 1, ..., define & = §/2F and let T(k) denote the set of 2¥ equally spaced
points {8k, 28k, ..., 2F8;}. Owing to sample path continuity, the maximum of B(t)
taken over T'(k) increases monotonically to sup.p, g |B(t)|, whence

P tl’élt?,g |B(t)| — PP t:ggﬂ |B(t)| as & — oo.

Figure 4 represents a systematic way of relating the maxima over successive sets T'(k).
In a way, the hunt for the supremum of B(?) is akin to a parallel binary tree-search
over [0, §]. The crucial observation is that for any & > 1, to each t in T'(k) there
corresponds a ¢’ in T'(k — 1) at most a distance of 6,y away. Thus, for each ¢, ' pair,
by the triangle inequality,

|B(t)] < |B(¢)] +|B(t) - B()].

So, when attempting to find the maximum of |B(t)| over a set T'(k), k¥ > 1, one need
only find the maximum over the set T'(k—1) and then add to this value the maximum
discrepancy maxier k), verr-1) |B(t) — B(t')]:

max |B(t)| < max IB Y+ max |B(t) — B(t')].

teT(k) el (k— teT(k)

Now, for Brownian Motion, each increment B(t) — B(t') is distributed N(0, &), so
that, by Inequality (6), IP max;er) |B(t) — B(t')] < 3612 (log 2%)1/2. Hence, taking
expected values of both sides of the above inequality yields the recurrence relation

/ k
Ptrergfa(z.) |B(t)] < P IRX | B(2)| + 31/ 6k-1 log 2,

Ptxnga(%() |B(t)] = P|B(%)]

whose solution is

k
< \/6i 2t
P tIGnTax |B(t)| < IP|B(6)| + ;3 6;_1log

Hence, making use of the identity é; = 6;-;/2,¢ > 1 and the fact B(6) ~ N(0, §),
and letting £ — oo,

P sup. |B(t)] < VEIP|N(0, 1|+f§:3,/ )i=1 log 2 (7)

< K V/§ since the infinite sum converges.
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Figure 4: Chaining.

4.1.3 Generalization to Gaussian Processes

The above bound on the supremum over Brownian Motion on [0, é] can be carried
over to a Gaussian Process {Y; : t € T} where a pseudometric® p defined over T
controls the increments of the process”:

P|Y(s)=Y(t)]* < p(s, t)* forall s, tin T.

The following adjustments complete the generalization:

o With T'(0) the singleton {tq}, 6 = sup,cr p(t, to),

o The subsets T'(k) C T, k = 0,1, ... are now maximal sets of points greater
than & = §/2* apart, so that for all ¢ € T'(k), there exists a t € T'(k — 1) such
that p(t, t') < ér—1, and

o The size of T'(k) is measured by the function D(e) = D(e, T, p), defined as the
largest n for which there are points ¢, ..., ¢, in T with p(t;, t;) > e for i # j .

Ssee Section 2.6 for definition.

“For Brownian Motion the usual Euclidean metric is replaced by p(s, t) = \/|s — t|

8log D(e) is called the e-capacily of T. Also, lim._.o 19_%) may be shown to be equivalent to
the boz dimension of T'. See [Fal90] for details.
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A chaining argument similar to that for Brownian Motion leads to the recurrence
relation
<
P ax Y(t)| < P zeI’F(%)—(l) |Y (¢)] + 36k-11/log D(6%),

whose solution in the limit is, for some tg,

P sup [Y(t)| < PP |Y(to)] + 3§:5'—1\/10g D(6:),

1=1

where the supremum is over a countable dense subset of 7. If Y has p-continuous
sample paths® then the supremum over a dense subset of 7' is equal to the supremum
over all of T'. Further, if the sum is treated as a lower step function approximation
to an integral, then for all ¢y € T the solution simplifies to

§
Psup [Y(t)] < PIY(t) + K / Vlog D(x, T, p) dz (8)
teT 0

where § = sup p(t, to)
tel

Of course, this inequality has meaning only when the integral is finite. It can be shown
that in this case, there exists a version of the process having continuous sample paths,
so that the assumption of sample path continuity becomes superfluous.

As a final note, we observe that a result similar to Inequality (8) would be obtained
if the expectations in the recurrence relation were replaced by any L£%(/P) norm,
€ [1, 2]. For example, with £2(IP) norms, for all t; € T,

1/

1/2 ,
(IP sup (Y(t)[Z) < (P |Y(t0)|2> + K ./: \ﬁ)g D(z, T, p)dx (9)

teT
where § = sup;cr p(t, to)

This result is strictly stronger than Inequality (8) in the sense that an upper bound
on an L*(IP) norm implies a corresponding upper bound on the L£L(IP) norm, but
the reverse does not necessarily hold. In what follows, we focus our attention on
the £2(/P) norm, bearing in mind that for a class of functions G, convergence of
IP sup ;g |vng|* — 0 as n — oo guarantees the uniformity result that we are after,
P{sup,cg |vn gl > €} — 0asn — co.

9This would make Y a separable process — see Section 2.5.
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4.2 Symmetrization

Now that we have found a bound on the expectation of the supremum of a Gaussian
process in the form of Inequalities (8) and (9), all that remains to be done is to
transform the original empirical process v, = {n'/?(P, — P)g : g € G} into a form
to which the results for Gaussian processes become applicable. Although v, is, by
the Central Limit Theorem!®, approximately asymptotically a Gaussian process, a
surprising amount of manoeuvring is needed to obtain a strict inequality. To avoid
tedium, only the general approach and main results are stated here; the reader is

referred to [Pol89)] for the details.

Let &= {2,..., 2.} € V" and &'= {2}, ..., 2} € U" be two independent se-
quences of observations, with each observation sampled according to the distribution
P in the probability space (U, B, P). Further, let {o;} be a sequence of sign variables
for which P {o; = +1} = P{o; = -1} = 1/2.

By an approach strongly reminiscent of the SYMMETRIZATION STEP of Section 3.2,
we avoid dealing with v, = {n'/?(P, — P)g : ¢ € G}, and work rather with the
rescaled difference between the two empirical measures, {n'/?|(P, — P!)g| : ¢ € G}.
Then, exploiting the symmetry between @ and &', we may introduce the sign variables
without affecting expected values (see [Pol89]). Further symmetrization arguments
replace terms involving «! by their z; counterparts, yielding ultimately the inequality

2
P sup |v, g < 4IP sup n™! (10)
9€9 9€g

i o:ig(;)

Now consider the construction of the sign variables from a sequence {¢;} of indepen-
dent N(0, 1) variables, o; = ¢;/|¢;|, and define the process

{Ya(g, &) =n~'/ Xn:qz-g(rcz-) : g €G}

which is Gaussian conditionally on & and has increments controlled by the £*(P,)
norm. Some arithmetic (see [Pol89]) then reduces Inequality (10) to

IP sup |v, g|* < 2 1P sup n" Y, (g, )|
9€g 9€g

10Gee Section 2.3.
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Now, the right hand side may be bounded by use of Inequality (9), with the corre-
sponding e-capacity of G denoted by log Dy(e, G, P,) '*: For fixed g5 € G,

(P sup |,,ng|z) < J2r(P. gd) + K/ Jiog Da(y, G, Pdy (1)
]

9€g

where §(z) = sup(P.lg — go*)"/*.
9€g

4.3 Manageable Classes

Although we have found a bound for IP sup g v, g/> which depends on G only
through its capacity, it remains for us to find criteria for G subject to which this
bound will converge to zero, hence validating P, g as an asymptotically good estimate
of P g uniformly over G.

It turns out that function classes which exhibit a property known as manageability
(to be defined in Section 4.3.1) are prime candidates for this uniform convergence.
In fact, the climax of our four-step tour of empirical processes is encapsulated in

Theorem 4.4 of [Pol89]:

Let G be a manageable class for an envelope G with PG? < oo. Let
G(n),n=1,2,..., be subclasses for which

1. 0 € G(n) for all n, and
2. supyegn) Plgl — 0asn — 0,
Then

P sup |v,g|* = 0asn — co.
9€G(n)

The proof of this theorem as well as the intricate details of how manageability leads
to a simplification of Inequality (11) are omitted here. Instead, the remainder of this
section is devoted to the definition of manageable classes of functions and a discourse
on their intimate relationship with VC classes of sets.

1T other words, Da(e, G, P,) equals the largest N for which there are functions g1, ..., gy in G
with

2 : .
(Pnlgi —gjlz)ll > ¢ fori#j.
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4.3.1 Definition of Manageability

Let G be a class of functions with envelope G'2. G is said to be manageable for G
if there exists a decreasing function D(-) for which

1
1. [ \log D(e) dz < oo, and
[ Vlog (z)dz < oo, an

2. for every measure ) with finite support,

D, (e\/QGz, g, Q) < D(e)for0 <e< 1.

It is seldom possible to calculate directly the uniform bound on capacities required by
this definition [Pol89]. How, then, are we to establish manageability of a function class
and hence exploit the results of the previous section? The answer to this question
involves VC classes of sets and is perhaps as remarkable as it is elegant.

4.3.2 VC Classes of Sets and Manageable Classes of Functions

Define the subgraph of a function ¢ : ¥ — R as a subset of the product space
¥ Q R:

subgraph(g) = {(¥, 2) e T QR : 0 < 2 < g(¥) or g(¥) < = < 0}.

Define also a Euclidean function class as a class G with envelope G for which, for
measures () of finite support,

sup D1(eQG, G, @) = O(¢™") for some V,
Q
where Dy is the £1(Q) capacity of G.

The crucial connection between VC classes, subgraphs and Euclidean function classes
appears as Lemma I.25 of [Pol84]:

12That is, G > |g| for every g € G
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Let G be a class of functions on ¥ with envelope (G, and let Q be a measure
on ¥ with finite support. If the class of subgraphs of functions in G form a
VC class of subsets of ¥ @ R, then G is Euclidean.

From here, the final leap is easy: Elementary inequalities involving the £'(P) and
L£%(Q) seminorms, where P has density G with respect to @, show that Euclidean

classes of functions have analogous bounds on their £? capacities ([Pol84], Lemma
36). In particular,

Every Euclidean class is manageable.

Hence, in short, a function class G with envelope G whose subgraphs form a VC

class is, in fact, a manageable class. Conceptually, the above arguments may be
summarized thus:

Subgraphs N Gis a Gisa Desired
of G form Euclidean manageable convergence of
a VC Class class class P sup,eg |vngl*

For completion, we mention the existence of another connection between the VC
property and manageability: A class of functions G is called a VC major class if
there exists a VC class of sets C such that {¢ : g(¢) > a} is a member of C for all
g € G and for all @ € R. Dudley (1987) has shown that

Every uniformly bounded VC major class is manageable for a constant enve-
lope.

Example: As an example application, consider the first of the two asymptotic prob-
lems dealt with in [Pol89]. Glossing over the reduction to empirical process notation,

we pick up the analysis at the stage where we need to show uniform convergence in
shrinking neighborhoods of a point tg,

P sup Vo (|- —tl =] - —t])] = 0asn —0
t€[Sn —to, Sn+1o]

for every sequence of positive numbers {6,} converging to zero.
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Consider a member g(-, t) of the function class G = {g(-, t) = (|- —t| — |- —to]) :
|t, — t| < é,}. It has a constant value of ¢t — ¢, on the interval (—oo, min{t, {o}], a
constant value of ¢ — ¢ on (max{t, {5}, 00, ], and inbetween follows the straight line
joining (t — t) to (to —1).

Hence, for any o € R and t € [6,—to, 6,410}, the inverse image C = {z : g(z, t) > a}
is a semi-infinite interval on the real line. Now, the class C of all such intervals has
been shown in Section 3.1.2 to be a VC class. Thus, G is a uniformly bounded VC
major class, and is, therefore, manageable for constant envelope é;.

Further, g(to,t0) = 0 € G and for all g € G, Pg < |t —tg] < 6, —» O asn — 0,
whence all the hypotheses of Theorem 4.4 of [Pol89] (see Section 4.3) are satisfied.
It follows that uniform convergence is, indeed, attained.

4.3.3 Properties of Manageable Classes

We conclude this chapter with a few subsidiary remarks about the nature of manage-
ability, and the construction of more complicated manageable classes once the basic

classes have been established by way of VC classes of subgraphs or VC major classes
of functions.

The first three of the following properties of manageable classes are deduced from
elementary £? inequalities; the reader is referred to [Pol89] for a sample derivation.
The last property is taken from Dudley (1987), Theorem 5.3.

If G is manageable for envelope G and H is manageable for envelope H, then

1.GoH={goh : g € G, h€ H} is manageable for envelope G + H,
where the symbolic operator ¢ represents addition (+), maximum (V),
or minimum (A).

2. GxH ={gh : g€ G, h e H} of products is manageable for envelope
GH.

3. The closure of G under convergence is manageable for envelope G.

4. The symmetric convex hull of G, denoted by sco(G) and consisting of
all finite linear combinations ¥ ajg; of functions g; € G for which
> |e;| < 1, is manageable for envelope G.
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5 Geometrizing Rates of Convergence

A synopsis of [DL91] by Donoho and Liu

As mentioned in the introduction, any discussion on asymptotics must go hand in
hand with a treatment of rates of convergence. The theme of [DL91] revolves around
a bound on the rate of convergence of an estimate 7,,(X,)*® to the value of a functional
T(F) of an unknown distribution F' € F uniformly over a class of distributions F.
The main result is two-fold: First, it turns out that for estimating a linear functional
over a convez distribution class F, the geometry of the problem, expressed in terms
of an index known as the modulus of continuity b(¢), determines the optimal rate of
convergence. Second, and perhaps more startling, is that this optimal rate is, in fact,
attainable, provided only that b(e) is Holderian!®.

The result is established by way of another bound on the rate on convergence, denoted
by A4 and involving the difficulty of testing the composite hypothesis'® Hy : T(F) <t
against the composite hypothesis Hy : T(F) > t+ A. Under certain asymptotic con-
ditions, A 4 is always attainable, to within constants, regardless of the characteristics
of the functional T or the class of distributions F. Linearity of T' and convexity of F
then guarantee that the modulus bound agrees with A4, to within constants. From
here, verification that b(€) is a Holder function is all that is necessary to ensure that
the supporting asymptotic conditions are met.

Yet that is not all. Donoho&Liu show that for the modulus bound to agree with
A 4, the prerequisites of linearity and convexity may be discarded, provided that the
essence of the geometry is preserved: A new criterion is that the hardest two-point
subproblem of testing T(F) <t versus T(F) > t + A should be roughly as difficult,
from a minimax risk point of view, as the full composite hypothesis-testing problem.
Moreover, in one example, Donoho&Liu show that even this last condition may be
dropped. On the other hand, in «ll cases satisfaction of a Hélder condition by the
modulus of continuity is necessary in order to preserve the attainability of the optimal
rates. For clarity, the relationships among these concepts are shown graphically in

Figure 5.

In this section, we review the definitions and properties of concepts vital to later
developments. We then identify A4(n, a) as a lower bound, to within constants, on
the rate of convergence of T,(X,) to T(F) (Theorem 2.1 of [DL91]). Next, we

13where X,, is a vector of n i.i.d. F sample points
14Gee Section 2.1 for definition.
15Gee [CBY0], Section 8.3, for a very lucid treatment of Hypothesis testing.
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Figure 5: Graphical interpretation of the relationships among
A4, the modulus bound, linearity, convexity and the Holder
property of b(e).

present an estimator which, again to within constants, attains the rate Ax(n, a),
provided that the tails of A4(n, @) behave appropriately. Finally, we show how
linearity of 7', convexity of F and the satisfaction of a Holder condition by b(e)
ensure such behaviour.

The generalized case (where linearity of 7' and convexity of F need not be assumed) is
dealt with in Section 5.4.2, while Section 5.5 discusses the implications of the caveat
“to within constants” from a Decision-Theoretic point of view.

The concepts discussed in [VCT71] and [Pol89] ¢ can be placed within the current
framework of estimators and functionals on classes of distributions. In this way, rates
may be deduced for the convergences involved. Though often relatively straightfor-
ward, detailed derivations of this nature can be lengthy and the reader is referred to
Section 6 for an example exposition.

16Respectively those of uniform convergence of relative frequency to probability over a class of
events and uniform convergence of sample mean to true mean over a class of functions.



5 Geometrizing Rates of Convergence 36

5.1 Definitions

The following definitions are concerned with the distinguishability of distributions
within a class and the difficulty of estimating a functional 7' over such a class.

5.1.1 Hellinger Affinity

Hellinger Affinity p(P, Q) is a measure of the ‘closeness’ of two measures P and )

and is defined as
o(P, Q) = [ Vadu,

where p = ‘;'—5, q= ‘;% for any measure p which dominates P and @ [LY90].

5.1.2 Hellinger Distance

The Hellinger Distance H(P, ) between two probability measures P and @ is
defined as

H(P,Q) = 5 [ (Vo Vi)
where, as before, p = d ,q = —% for any measure g which dominates P and @ [LY90].

It can easily be shown that

H*(P, Q) =2(1—p(P, Q))

5.1.3 Modulus of Continuity

The modulus of continuity of a functional 7" over a class of distributions F, with
respect to Hellinger distance, is defined as

b(e) = sup {|T(Fy) — T(Fo)| : H(Fy, Fo) <, Fy, Fy € F}.

In words, the modulus of continuity measures, as a function of €, the greatest variation
of the functional over any Hellinger ball of radius €. In a way, it gives an indication of
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the extent of correlation between the “shape” of a distribution and the value of the
functional of that distribution: For functionals which exhibit very little dependence
on how the probability mass is distributed!” and can change wildly for very similar
(in a Hellinger sense) distributions, the modulus will be large, even for small e. On
the other hand, functionals which are highly dependent on mass distribution'® will
tend to have small moduli, perhaps linear or polynomial in € for ¢ — 0.

Throughout the remainder of this paper, we will be interested in the asymptotic
behaviour of b(¢€) for € — 0.

In order to build up some intuition regarding the nature of the modulus of continuity,
we look at a few examples of functionals and classes of distributions and derive their
moduli.

Example 1: Location Parameters. Consider the class of shifted Gaussian dis-
tributions F = {N(a, 1) : a € R} and a functional T which returns some location
parameter such as the mean. Let Fy and F; be distributions whose locations differ
by A > 0. Then the Hellinger affinity between Fj and Fj is seen to be

oo e—-(m-—a)2/4 e—(r—a—A)2/4 1
p(Fo, Fl) = / dr = m

—00 27

Thus the Hellinger distance between the two distributions is

H(Fo, Fy) = /2 (1 = p(Fy, F)) = V2y/1 — e=8%/5,

Since this is a monotonically increasing function of A, we see that in any Hellinger
ball of radius €, the distributions whose locations are furthest apart lie on the skin
of the ball. Hence, the modulus of continuity is simply the inverse function of the

Hellinger distance:
2
ble) = A = J—Slog (1 — %)

A Taylor Series expansion of the above yields b(¢) = 2e+ % +O(¢€®), whence it is clear
that b(¢) is dominated by the linear term for € — 0.

17Consider, for instance, a functional which counts the number of local maxima in the probability
density.
13Such as mean or median.
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In a similar fashion we may show that the modulus is linear for location parameters
over classes of Laplacian or Cauchy distributions:

In the case of Laplacians, F = {F(-) = [ e *"9/2dt : a € R} so that some
algebra leads to p(Fy, Fy) = fﬁ, where, as before, the locations of Fy and F;

differ by A > 0. Hence, H(Fy, F1) = /2 — 2—1'7% which, once again, is monotonically
increasing. Some numerical analysis then confirms that b(e), the function inverse of
H, is dominated by a linear term for small e.

The case of Cauchy distributions yields similar calculations.

Example 2: A Nonlinear Modulus. Consider the problem of estimating the
value of a density at a point. [Far72] deals with optimal rates of convergence in a
very general setting. In this example we limit our analysis to a very specific class of
distributions, and show that in this case, the modulus of continuity is quadratic for
small e.

The main idea is to choose a class of distributions for which minor differences in
the value of the functional are amplified in the profiles of the densities concerned.
Hence, distributions which are confined to small Hellinger balls must have very similar
profiles, and even closer functional values.

We select the class of densities indexed by a € (0, 1] where an arbitrary member f,
is defined by'®:

a

o [~ o 7 X @ = - :
o 7T 1010§:l,§awhe1e/0 \/mdfb—lia—(l'*'ﬁ) -1

0 elsewhere

Let the functional be T'(F,) = F,(0) = a. Let us now calculate the Hellinger distance
between two arbitrary members F, and Fjz of F = {F,(-) = [, fa(z)dz : a €
(0, 1]}. Without loss of generality, assume a > /. Hence,

HF, Fy) = 3 [ (VIu®) - /7s(@) " de

19Perhaps unexpectedly, the rate of decay of the tails of these types of densities does not seem
to influence the modulus of continuity. For instance, identical results are obtained if we choose
fo(z) = W, or even fq(z) = %e“”, where n € (1, 00) and 0 < z < a for a suitably

normalizing a.
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(14%)"-1 2 (145)° 1
= 1 ” L NN gy [T ey
= 3 ) (x+l)1/4 (z+1)1/4 (1+_1_)2_1 (a:+l)1/2

Substituting y = = + 1,
2 1 (1+2°)2 1 2
HY(F,, Fp) = 1 /1 L (o —2vap + ) dy—i—/ = dy
= —[a-l—ﬂ—‘)\/— +ﬂ(———)],whence
H(FaaFB): 1— ﬂ/a

Plotting H(F,, F3) as a function of a and 3 yields the surface in Figure 6. Contour
lines represent the skins of Hellinger balls, so that from Figure 6 we see that for any
Hellinger ball of radius e, the difference between o and § is maximized on the skin

of the ball at @« = 1 > 3. Hence we can derive the modulus of continuity: For any
0<e<l,

€ = H(F],Fl_b(e))z 1 - 1—b(6)

so that ble) = 1-— (1 — 62)2
= 2¢% —¢€h.

For small ¢, b(¢) is seen to be dominated by the quadratic term.

5.1.4 Testing Affinity

Let P and @ be probability distributions on a common space ¥. Let F € {P, Q}
be an unknown distribution and consider deciding the hypothesis Hy : F' = P versus
H; : F = @ based on an observation » € W. Let ¢ : ¥ — [0, 1] be an arbitrary
member of the class ® of measureable randomized decision rules such that ¢(v)
represents the probability of rejection. Then the testing affinity [LY90], [LeC86] is
defined as

"(P, Q) = inf Ep¢+Eq(1-¢)

and is seen to be the sum of errors of the best test between P and (). Indeed, the
testing affinity may be shown to be equal to || PA Q ||= f(p A ¢) d where p = 5~
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7

Figure 6: 3-Dimensional Plot and Contour Plot of H(F,, Fj;) as
a function of a and fS.

q= % for any measure g which dominates P and (). Hence, the testing affinity gives
a very intuitive indication of the distinguishability of P and Q.

The concept of testing affinity may be generalized to composite hypotheses: If P and
Q are sets of measures, denote the hardest two-point testing problem by

(P, Q)= sup (P, Q).

PeP,QeQ

An observation crucial to future developments is that the minimax risk?° in separating
P and Q is w(conv(P), conv(Q)) where conv(F) is the class of measures which are
convex combinations of members of F [LY90] and [LeC86].

5.1.5 Upper Affinity and Inverse Upper Affinity

As before, let T be the functional of interest, acting over the class of distributions
F. As in [DLI1], let F¢, and F>,4a denote the subsets of F where T takes values

2 3 .
20 Assuming a zero-one loss function
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< t and > t + A respectively. Now, let }‘g;) denote the set of product measures

{F® . F € Fg}, and similarly for fgzm. Then the upper affinity as(n, A) of
the estimation problem is defined as

as(n, A)=sup 7 (conv(}-g;)), conv(fg)*_A))
; < >

Assuming a zero-one loss function, this is the minimax risk of the hardest problem of
distinguishing Ho : F<; and H; : F>ia with a sample of size n.

The inverse upper affinity A (n, a) is defined as
Aa(n, a) =sup{A : as(n, A) > a}.

A, is the largest A at which, for a sample of size n, one cannot test hypotheses
Hy: Fepand Hy @ Fyyya with sum of errors less than o [DLI1]. In other words, Ay
is the largest amount by which the subclasses F<; and F>¢a can be separated while
still guaranteeing a minimum threshold error level of a. In effect, A4(n, a) places a
bound on how well the functional 7' can be estimated: Any estimator T,, of T" gives
rise to the test where we accept Hg whenever T,, < t + A/2 and accept H; when
T, > t+ A/2. For this reason, Au(n, ) will be vitally important in the discussion
which follows.

5.2 The Lower Bound

As mentioned in the previous paragraph, A4 places limits on how well 7' can be
estimated. Indeed, we show here that for some a € (0, 1) and for any symmetric

increasing loss function L(-), the minimax risk is bounded from below by $ L (%A)
The result is a simple corollary of Theorem 2.1 of [DL91] which states that

inf sup Pr{|T, — T(F)| > Aaln, @)/2} > a/2.
Tn Fer

The proof of this theorem appears in [DL91] and will not be presented here. Instead,
as we have been wont to do in previous chapters, we give a brief overview of the main
argument:

Basically, in testing the hypotheses Hy : F<; versus Hy : F>yya, an inverse upper
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affinity of A 4(n, ) implies that Type I and Type I errors®! together sum to a mini-
mum risk level of a??, so that at least one of these error Types must incur a risk of
. Now, with a test which decides Ho if T, <t + % and H, if T, >t + %, a Type
or Type Il error can occur only if the estimate 7}, is on the ‘wrong’ side of the point
t+ &; in other words, only if |T, — T(F)| > £.

Combining these two observations, the probability?® that 7, differs from T'(F') by at
least % is lower bounded by 2 for the worst case F'.

5.3 Attaining the Lower Bound: The Binary Search Esti-
mator

In the previous subsection, we established A 4(n, a)/2 as a lower bound on the rate
of risk convergence to zero for some fixed a € (0, 1). The proof involved showing that
even with the best of all possible estimators T,, hypothesis testing techniques would
always yield a worst-case risk proportional to L (M;Jl)

In this section, we describe an actual estimator T, which is optimal to within con-
stants, in the sense that, under certain conditions, it too converges to T(F') at a rate
which is a constant multiple of A 4(n, ). In this case, though, the actual worst-case
risk is proportional to L(KA4(n, a)), where K may be substantially larger than .24
Nevertheless, the fact that A, forms a lower bound together with its (near) attain-
ability establishes it as an optimal rate of convergence.

The estimator proposed in [DL91] assumes a compact parameter space T(F) € 2 =
[—d, d]. Consider an estimator constructed from repeated hypothesis tests where each
successive test enables us to shrink the search space and to home in on T(F') in a
manner akin to a Binary Search. During each phase we perform a minimax hypothesis
test between the lower third and upper third of the current search space, with the
middle third adopting the role of ‘A’ in our previous discussions on hypothesis testing.
The new search space is formed by deleting whichever third — upper or lower — is
rejected by the test. Hence, each phase of the search yields a search space % the
size of the previous one; after a prescribed N phases we are left with an interval a

21 False rejection and false acceptance respectively

22Consult definition of inverse upper affinity above

Zmeasured according to the distribution F whose parameter we are attempting to estimate
24Gee Section 5.5 for details.
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%)N of the length of the initial space, whereupon we select the midpoint as

our estimate.

fraction (

Let us refine this idea with a few details: First of all, we endow our ‘Binary Search
Estimator’ Tg;, with a ‘tuning constant’ A, which varies with sample size but is fixed
for any given n. A,, is the length that we wish the search space finally to have after all
N tests; if no error occurs during any of the hypothesis tests, then Tg;, will differ from
T(F') by no more than %’1. The number of successive tests we need perform is then
N = N(d, A,), the smallest integer such that d’' = (%)N%’l > d, while the starting
search space is [—d', d'| D Q and the initial hypothesis test compares Hy : F<_q/3
against Hy @ F>q3.

Naturally, the minimax risk associated with Tp;, is the accumulated risk from all N
hypothesis tests. More precisely, using T’g;, as an estimator??,

A Nl 3. A
sup Pr{|Tgin — T(F)| > —1 < (,-k—TL)a
sup 1T (F)] 2}_12001”(2)2

where a4 (n, A2 (%)k), is the upper affinity of the (N — k)th hypothesis test. Though
this last sum may look unwieldy, if A, is made a constant multiple?® of the inverse
upper aftinity A4(n, a), Theorem 2.3 of [DL91] shows that the sum of upper affini-
ties can be made arbitrarily small provided only that A4 exhibits appropriate tail
behaviour. Hence, under this condition, Tg;, is seen to attain the desired rate of
convergence, a constant multiple of Ay4.

5.4 Ensuring Appropriate Tail Behaviour of A,

The reader would be justified in surmising that it may prove difficult to obtain
A4(n, a) in closed form, let alone derive properties concerning its tail behaviour.
In this section we side-step the former problem, and instead focus on the latter,
showing that asymptotic behaviour of A4 may be derived indirectly by way of the
modulus of continuity.

The required tail behaviour we would like A4 to exhibit is:

51t should be noted that Tg;, incorporates N ‘sub-estimators’ Ty, 1, ..., Tn n (one for each suc-
cessive hypothesis test), no two of which need be the same.
260nce again, the reader is referred to Section 5.5 for a discussion of the magnitude of this constant.
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For fixed « € (0, 1), there should exist ¢ > 0 and 0 < Ay < A; < oo such
that

n n

q/2 q/2
Ao [M}/ < Aa(n,a) < A [M} (12)

for suitably large n.

If this is indeed the case, then the supporting conditions of Theorem 2.3 of [DL91]
are met, and, as discussed in the previous section, Tg;, is seen to achieve the desired
rate of convergence. This rate is proportional to A 4; from Inequality (12) the rate is,

hence, O (n“qﬁ).

Now, in general, the validity of Inequality (12) may be difficult to show. However, it
is possible to show that if the geometry of T' and F conform to certain criteria, then

b(c Hogal) o A, o) < b(() Hog af (13)

n n

where b(¢) is the modulus of continuity described in Section 5.1.3. The geometric
criteria necessary as well as the derivation of the above inequality are discussed in
Sections 5.4.1 and 5.4.2. In the meanwhile we note that if Inequality (13) can indeed
be established, then the problem is simplified dramatically: The establishment of
b(e) as a Holder function is all that is necessary to transform Inequality (13) into a
form which satisfies Inequality (12). The rate of convergence is, thus, b(n=1/?). See
Figure 5.

It would seem at first glance that we have simply replaced one set of criteria with
another. This is indeed the case; however, as we will see in Sections 5.4.1 and 5.4.2,
the replacement criteria are far easier to deal with.

5.4.1 The Case of Linear 7" and Convex F

In this section, we show that sufficent conditions for Inequality (13) are linearity of
the functional T and convexity of the distribution class F. It can be shown that the
lower bound of Inequality (13) can always be established; it is the upper bound which
needs some work.
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We begin by extending the notions of Hellinger Affinity and Hellinger Distance?” to
classes of distributions. For two classes of distributions P and Q, define

p(P,Q) = sup{p(P, Q) : PeP,Qe€Q}, and
H(P,Q) = inf{H(P,Q) : PeP,QecQ}.

Now, for F' € F, consider the Hellinger ball By(e, F) = {F € F : H(F, F) < ¢}
By the definition of the modulus of continuity®®, {T'(F) : F € By(e, F)} C [T(F)
b(e), T(F) + ble)], so that for any ¢ in the parameter space Q, H(Fci, Forro()) >
Recalling the identity H*(P, Q) = 2(1 — p(P, Q)), this leads to

€.

62

P(}—gt, th-}-b(s)) <l1- 5
Now the crucial observation is that if T is a linear functional and F is a convex class,
then Fc; and F>.ya are both convez, for all ¢t and all A. Hence, F<; = conv(F<;) and

Fsigb(e) = conv(Fsipp(e)), so that

w

€
p (cmw(fst), COn’U(th-{—b(c))) < 1-5 (14)
Now, Le Cam has established ([LeC86], page 477) that
P (conv(’P(”)), conv(Q(”))) < p(conv(P), conv(Q))" (15)

where P and Q are distribution classes and P and Q™ are the classes of corre-
sponding product measures. Le Cam has also shown that p(P, @) > w(P, @) where
7(P, Q) is the testing affinity?® between distributions P and Q. If we put P = F,
and Q = F>yy(c) and take suprema over ¢, Inequality (15) then yields

?usrz) p (conv(fst), covzv(f2t+b(e))) > sug p (conv(]-"i’;)), con'u(}-g;:_b(()))
€ te - -

= aa(n, ble)).

Finally we substitute Inequality (14) into this last, to yield

()

P4

2 k(3
ay(n, ble)) < (1 - 6—) , whence

Ag(n, a) < b( 2(1—a1/")>.

27See Sections 5.1.1 and 5.1.2 for definitions.
28Gee Section 5.1.3 for definition.
29Gee Section 5.1.4 for definition.
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A simple application of the inequality (1 — al/") < Jl—ogﬁl, which appears as Lemma
3.3 in [DL91], produces the upper bound of Inequality (13). As mentioned previ-
ously, once Inequality (13) has been validated, establishment of the modulus as a
Holder function suffices to guarantee that Tg;, attains the desired convergence rate

of b (n”1/2).

Section 6 contain an elaborate example of a case where A, is linked to the modulus
via linearity of T' and convexity of F.

5.4.2 The General Case

In the previous section, we employed linearity of T' and convexity of F to establish
Inequality (12). Though these are sufficient conditions, we demonstrate here that
they are not necessary. Indeed, the link between A 4 and the modulus follows from an
underlying geometric property, of which linearity of 7' and convexity of F constitute
just one of many possible manifestations.

The essential geometric property is that the hardest two-point subproblem of testing
T(F) < tversus T(F) > t+A should be roughly as difficult, from a minimax risk point

of view, as the full composite hypothesis-testing problem (i.e. testing Hy : conv(}-g:))

versus Hj : conv(]-—gzlA) for sample size n).

Define the two-point upper affinity a,(n, A) and the two-point testing bound
Az(n, a) as

ax(n, A) = sug s (.7'_(57;), fger)
te =

Ag(n, a) = sup{A : az(n, A) > a}

Note the omission of convexification in comparison with the definitions of a4 and A4.
Now, some identities concerning Hellinger Affinities and Hellinger Distances combined
with a little algebraic manipulation lead directly to an inequality identical to that
of (12), but involving A, in place of A4.*° The details may be found in [DL91]. It
now becomes apparent that this new inequality leads immediately to Inequality (12)

provided only that A4 is roughly equal to A,. Consult [DL91] for more precise
criteria.

3%ndeed this new inequality, combined with the fact that As(n, a) < Ax(n, ) since az < ag,
accounts for the lower bound of Inequality (12).
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Yet, even this last criterion concerning the hardest two-point subproblem may be
discarded, as long as the connection between A4 and the modulus can still be made.
Indeed, In Example 5.2 of [DL91], Donoho&Liu show that a suitable relationship
between A, and A4 is elusive and we are forced to resort to other methods to find a
link between A4 and the modulus of continuity.

Nevertheless, no matter how the connection with the modulus is made, b(¢) still needs
to be a Holder function in order to establish Inequality (12) and hence ensure that
TB:» achieves the desired convergence rate of b (n‘l/ 2).

5.5 Link with Estimation Theory

In Section 5.2 we identified A 4(n, «) as a lower bound, to within constants, on the
rate of convergence of T,,(X,,) to T(F'). More specifally, we reiterated Theorem 2.1
of [DL91], which states that

inf sup Pp{|T, = T(F)| 2 Aa(n, a)/2} 2 /2.

T Fer
We then went on to show that for some constant K, KA (n, ) is an attainable

rate of convergence, whence A 4(n, a) emerges as the optimal rate of convergence to
within constants.

In this section, we analyze the caveat “to within constants” from a Decision- Theoretic
standpoint. We show that this description, though accurate, may be misleading in the
sense that the constants involved will not, as is often the case, be swallowed up during
our passage to the infinite. Moreover, the constants, though finite, are unbounded:
classes of distributions can be found for which the constants are arbitrarily large and,
correspondingly, the rate of uniform convergence arbitrarily reduced.

Consider the following problem of minimax location parameter estimation [ZM84]:
Let F' be some distribution with an even, unimodal density function. Define the
distribution class F = {F(-—0) : 6 € Q = [-d, d]}. The functional we are
attempting to estimate is T(Fy € F) = 6. Let A denote the action space of the
statistician®', and let L(T,(X,), ) denote the zero-one loss function defined on A@Q:

0 if ITn(Xn) - 9' <e
L(TW(X,), 0) =
1 i [T0(X,) — 8] >

3In this case, A = [—d, d].
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where e > 0 is given.

In [ZM84] it is shown that for the case d = 2e, the minimax risk is @ = F'(—e), while
at the other extreme, for d — ooe, @ — 2F(—e). In other words,

F(—e) ifd=2e
inf sup Pp{|T, —T(F)| 2 e} = (16)
" Foe¥ 2F(—e) if d = oce

If we fix the risk level at @ and compare the relative sizes of the confidence intervals
ez and e, in the two cases, we see that, thanks to the evenness of F',

a = F(—e) = 1-Fler) = e = F'1-a)
o = 2W(—en) = 2(1-Flew)) = € = F1(1-%)

so that

e P (1-5) F7(5)

g F1l1(l—a) F-l(a)

We now make the connection with A4(n, o). Note that for any t € Q, conv(F¢,) =
F<i and conv(Fsipa) = Fripa. Hence, owing to the unimodality and evenness of F,
the upper affinity of the estimation problem is, for n =1,

as(l, A) = sup 7 (Fgt, Foega)
teQ

= || Foapg AN Fap ||

- 2n(:5)

Thus, the inverse upper affinity for n = 1 may be derived:

a4

Au(l, @) =2F71 (;) .

<

Now, in both the fixed-size confidence procedure and the hypothesis-testing settings,
loss can be incurred only if the estimate differs from the true value of the location
parameter by at least e or Ay(1, «)/2. Hence, A(1, @)/2 can be identified with e
in Equation (16) above. But which e should we use, e, or e,.?

If we set As(1, @)/2 = e, for some a, the lower bound in Theorem 2.1 of [DL9I1]
is seen to correspond exactly with Equation (16) above in the d = 2e case, with
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minimax risk of $. However, for the d = coe case, the minimax risk then becomes
twice the lower bound of Theorem 2.1.

In order to preserve the risk level at § and hence accommodate all scenarios, we
resort to setting A4(l, @)/2 = e,. Thus we see that the optimal rate of conver-
gence of estimator to parameter, Ay(1, ), must be slowed by a factor of ey [/e; =

F1(2) /FY(a).

This reduction in rate of convergence would not be as noteworthy if it were not for
the fact that relatively simple classes of distributions may be found which satisfy the
unimodality and evenness criteria and for which the factor F'~! (%) /F~'(a) can be
made arbitrarily large.

Example: The Contaminated Normal distribution Consider a Contaminated
Normal distribution, F,, = (1 — ¢)N(0, 1) + eN(0, v) for some 0 < ¢ < 1 and
v € [1, 00).

Figure 7 shows a plot of F} (%) [F7) () for v =100, e = 55 and 0 < a < 0.25. For
comparison, the curves for Normal, Cauchy, and Laplacian F' are also shown.

Let us now focus our attention on the Contaminated Normal distribution: Figure 8
illustrates /' (52’-) /F7,)(a) for various values of variance v of the contaminant, with
¢ held constant at 1l0' The shape of the surface bears out what many evaluations
of F} (%) /F7) () for € = 5, @ = 0.05 and v ranging from 1 through 10° seem
to suggest: that the maximum value of the curve increases as C'\/v where C =
0.2355. In other words, the factor by which the rate of convergence is slowed seems

to be proportional to the standard deviation of the contaminant, and is therefore
unbounded.

As a final note, it should be emphasized that the demonstration of the possibility of
unbounded constants is intended merely to warn the unwary and to discourage the
blind application of the results; it is certainly not meant to detract from an otherwise
very general and very powerful result.



5 Geometrizing Rates of Convergence
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Figure 7: Plot of F~! (%) /F~(a) as a function of 0 < o < 0.25
for F' Normal, Cauchy, Laplacian and Contaminated Normal
(ZN(0, 1) + £N(0, 100)).

variance

Risk Level

Figure 8: Plot of the factor e, /e; = F) (%) /F7}(a) as a function
of 0 <a<0.2and 1 <v <500 for the Contaminated Normal
distribution, where ¢ is held constant at %
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6 Rate of Convergence over a VC Class

In order to gain insight into the manner in which the results of [DL91] may be applied,
consider a relatively simple setting: Let us derive a lower bound on the rate of uniform
convergence of relative frequency to probability over a class of events A C B with
respect to the probability space (X, B, P).

Section 3 summarized the result of [VCT71] that a sufficient condition for such con-
vergence to be uniform over A is merely that A be of polynomial discrimination
with respect to the whole space X. We therefore limit our analysis to such a class of
events, and derive rates of convergence for estimators of P(A), using methods outlined

in [DLI1] and described in Section 5. 32

We begin by transforming the problem into a form to which the results of [DL91] are
applicable. We need to find a suitable distribution class F and functional 7 : F — R.

Let 84 : X — {0, 1} denote the indicator function for A € A.3?, so that we can define
the stochastic process D = {§, : A € A}. Let F denote the corresponding class
of distributions such that Fy € F is the CDF corresponding to the random variable
04. Further, let T' be the (linear) functional which returns the expected value of its
argument F' € F. Hence, for any Fy € F, T(F4) = P(A). By establishing a uniform
rate of convergence of an estimate 7,,(X,,)** to the value of the functional T'(F4) of
an unknown distribution Fy € F we simultaneously establish a rate on the uniform

convergence of any estimate (including relative frequency) to probability over the
class of events A.%°

Having defined F and 7', we proceed to derive an expression for the inverse up-
per affinity A4(n, a) for some confidence level a. If Ay(n, «) can then be shown
to exhibit appropriate tail behavior, our quest will be accomplished: A4(n, «) will

32In the interests of consistency, we maintain the use of the symbol ‘A’ to represent an arbitrary
member of 4, despite the unfortunate clash with the subscripts used in the symbolic representations
of upper aflfinity a4 and inverse upper affinity A 4.

33We assume throughout that each event A € A is measureable.

34ywhere X, is a vector of n i.i.d. Fy4 sample points

35 Actually, since distinct sets of equal probability have indistinguishable images in F, much of the
structure of the class A may be lost in the transformation to F. It is for this reason that we still
insist that A be of polynomial discrimination to guarantee uniformity over A4; the uniformity result
established using the results of [DL91] makes a statement only about the distribution class F, and
cannot be extrapolated back to the generating class of sets .A. Hence, if the conditions of [VCTI]
are satisfied by A, then convergence will occur at best at the rate prescribed by [DL91].
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represent the optimal rate of convergence, to within constants.

In Section 6.1 we derive an expression for A 4(n, @) using various graphical and empir-
ical techniques. For an arbitrary generating class of sets A4, we derive testing affinities
and the upper affinity a4(n, A) en route to the inverse upper affinity A 4(n, ) which
is seen to display n~1/2 tail behavior. Then, in Section 6.2, we show how the geom-
etry of the problem, in the form of the modulus of continuity, may be exploited to
short-cut the derivation.

6.1 Graphical and Empirical Approach

Recall the definition of the upper affinity
ays(n, Ay =sup « (conv(]:g?), conv(fg;)JrAD
; < >

where F¢; and F>¢ya denote the subsets of F where T takes values < ¢ and > ¢+ A
respectively, F(*) denotes the set of product measures F®, F € F, and 7(P, Q)
represents the testing affinity between the classes P and Q. Recall also the identity

(P, Q)= sup ||PAQ]
PeP,QeQ

Now, for the current example, an arbitrary member F4 : ® — [0, 1] of F has the
profile

0 for z € (—o0, 0)
Fa(z)={ 1— P(A) forze[0,1)
1 for « € [1, c0)

so that T'(F4) also corresponds to fa(1), where f4 is the PMF of F4. Let F4 have
the dual notation Fi, where t = T'(F4) = P(A). Then the product measure F™ s
seen to have a PMF ft(n) defined on R" as:

(=) (1 = (== for (24, 29, ..., 2a) € {0, 1}"
ft(n)(xh Ty oo vy ‘rn) -
0 for (zy, x2, ..., x,) & {0, 1}

Hence,forOgAS%andOStSl—A,

r (FO,F) = 3 () [#F - 0rF A+ A - - Ay

k=0
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It is already clear that a purely theoretical analysis will soon become overwhelmingly
complicated. We therefore resort to numerical and graphical tools for assistance.

Figure 9 shows a plot of ( (n), E(fgs) as a function of ¢t and A, with n = 6. Similar
plots for various values of n yield surfaces which all share the following algebraically
verifiable properties:

1. For fixed t, = (Ftn , Ft+)A) is monotone decreasing in A.

2. For fixed A, 7 (F(n Ft+A) exhibits (n — 1) cusps®, as shown in Figure 10.

Furthermore, 7 (Ft \ Ft(+)A) is maximized at the cusp nearest the hyperplane

__1-A
t =18

3. The surfaces are symmetrical about the hyperplane ¢t = % over the region
0<A<1,0<t<1—A.

From property (1) we deduce that
(-7:<t » F H—A) =7 (Ftn Ft(«:)A)

In words, the most error-prone two-point testing problem between f&’;) and fgi A OC-
curs for elements which reside on the very ‘edges’ of the classes, and whose functional
values are, hence, as close to each other as possible. Moreover, a %reatel testing aﬁ"m-
ity cannot be generated even if the corweuﬁed classes conv f< and conv(f>t+A)

are tested in the stead of fgt and f2t+A. This last is a consequence of the following
two facts:

o The functions t*(1 —¢)"*, k=1, 2, ..., n are unimodal over 0 < ¢t < 1;

e For the calculation of # (Ft("), Ft(fg_\‘), we select the smaller of t*(1 — ¢)" % and
t+A) 1 -t—=A)Fforallk=1,2,...,n.

y =

381t can be shown that for fixed A, the cusps occur at ¢ satisfying

k n—k
4 1-t—A
—_— ) = — fork=1,2,...,n—1
(t+A> ( J ) o B 7
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Figure 9: 7 (F M &

(n)

+A

A <0.1, with n = 6.

) as a function of 0 < ¢ < 0.5 and 0.04

VAN

Figure 10: 7r( ")
A =
t=12= 0.4(5.

0.0 and n =

71
Fia) . fo
8, 10. Both functions are maximized at

as a function of 0 < ¢ < 0.6 for fixed
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For even n, properties (2) and (3) imply that the cusp which maximizes = (Ft("), Ft(:)A>
1-4

occurs at t = >

Combining all these observations, we deduce

as(n, A) = supr (conv(fg:)), conv(fgg_A))

= ﬂ(F&, Ff_i_)é) for even n
2

(=) ()" ()" (52) ]

Exploiting symmetry, we conclude that, for even n,

st 2)= ()" 42 £ ()](152)" (099)°

A plot of a(n, A) is shown in Figure 11.
Recall now the definition of the inverse upper affinity

As(n, a) =sup{A : as(n, A) > a}.

For a fixed confidence level a, the graph of A (n, «) versus n corresponds to the
contour line at height o on the surface of as(n, A). Hence, the contour plot of
Figure 11 actually serves also as a plot of A4(n, a) versus n fora = 0.1, 0.2, ..., 0.9.
Each curve is seen to follow 5 for some value of ¢, whence we conclude that A 4(n, «a)
displays the required tail behaviour delineated in Inequality (12) of Section 5.4. The
conditions of Theorem 2.3 of [DLI1] are met, and A (n, a) = O (n‘1/2> emerges
as the optimal rate of convergence of an estimator to T(Fy) = P(A), A € A.

It should be emphasized that this is only an empirical result, abounding in empirical
observation and heuristic deduction and lacking somewhat in rigour. It would seem
that without some complicated algebra, we have reached an impasse in our quest for
a precise expression for the optimal rate of convergence.
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0.178

0.123

0,073

0.023

Figure 11: 3-Dimensional Plot and Contour Plot of a4(n, A) for
0<n<150 and 0.02 <A <0.2.

6.2 The Modulus to the Rescue

We showed in Section 5.4.1 that the problem of deriving optimal rates of convergence
is greatly simplified provided

1. The functional T is linear,

[

The class F is convex, and

3. The modulus of continuity of 7" with respect to F, b(¢), is a Holder function of
exponent q.

Indeed, if the geometry of F and T satisfy these three criteria, we can immediately
conclude that the optimal rate of convergence is b (n‘l/z) =0 (n“’/?).

For the current setup, the functional T' returns the expected value of its argument
F € F, and is, thus, linear. Though A does not necessarily generate a convex F,
we can continue the analysis using conv(F) as the distribution class. Of course, the
price to be paid is that the rates will no longer necessarily be optimal since we are
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dealing with a superset of the original class®”. Nevertheless, there are many interesting
examples of VC classes A for which F is itself convex® and nothing is lost. We assume
henceforth that F is convex.

The only remaining criterion concerns the modulus of continuity b(e), to which we
now turn our attention.

Recall the definition of the modulus of continuity of T" over F
b(e) =sup {|T(Fy) = T(Fo)| : H(F, Fo) <e, Fy, Fy € F}.

Here H(Fy, Fo) is the Hellinger Distance between two probability measures F) and
Fy in F and is defined as

. 1 g
HX(F,, Fy) = 5/(\/ﬁ- \/ﬁ) i
where f, and fy are the PMFEF’s of Fy and Fp respectively.

In our case, the PMF f, is defined as
l1—t forz=0
filz) =<t forx =1
0 forz e R,z ¢ {0, 1}

Hence, the Hellinger distance between two arbitrary members F, and Fj of F is

- \ﬂr\/—ﬁ) +(va-/5)

H(F,, Fs

(17)

Figure 12 shows a plot of H(F,, Fj) as a function of a and 3. Contour lines represent
the skins of Hellinger balls, so that from the figure we see that for any Hellinger ball
of radius ¢, the quantity |o — 3| is maximized on the skin of the ball at a =1 — 3.
Substituting into Equation (17) yields, for any 0 < e < 1,

H(Fo, Fio) =¢ = \/(\ﬁ—_“-\/c?)2+(\/E—\/T:)2

2

370n the other hand, if we could find a convex subset of F, the rate of convergence for the subset
would form a lower bound on the optimal rate for . However, this lower bound might no longer
be attainable.

38Consider, for instance, the class A of intervals of .
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Figure 12: 3-Dimensional Plot and Contour Plot of H(F,, F}j)
as a function of a and j.

Hence, € = 1—-2\/a(l —a)

2
I
so that | ——— = a—a

whence o« =

From here we can derive the modulus of continuity: For any 0 < e < 1,

be) = Ja— Bl
= |1 —2q|
= J1-(1-e)?
= eV2—¢?

A Taylor Series expansion yields b(e) = v2e — 71563 — O(¢€%), so that for small e,
b(€) is seen to be Hoélderian of exponent 1. We conclude that the rate of conver-
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gence optimal for all possible estimators of T'(F}), including relative frequency, is
b (n_1/2> =0 (72"1/2>, and that this rate is, in fact, attainable.

Finally, the astute reader may be perturbed by a possible incongruity between of the
above result and that of Inequality (5). Indeed, fixing 7, as the relative frequency
estimator, the methods of [DL91] have lead to the lower bound

sup P{lTn —T(F)| > Aa(n, a)/?} > af2.
Fer

On the other hand, if the generating class of events A is of polynomial discrimination,
and we denote the order of the majorizing polynomial by d 3, then the approach of
[VCT71] leads to the upper bound

P{sup |T,, — T(F)| > e} <4(2n+ 1)Pe /8
FeFr

for n > d/2.

With respect to the probability space (¥, B, P}, define, for each F' € F the ‘bad-
set’ Bp(6) = {4 € ¥ : |T, — T(F)| > é}. The lower bound of [DL91] then
limits the rate of convergence to zero of the probability of the largest® bad-set
supper P (Brp(A4/2)), while the upper bound furnished by [VC71] guarantees a rate
of 4(2n 4 1) e=<*"/8 for the convergence to zero of P{supFE}- T, — T(F)| > e} =
P{Urcr Br(e)}.

Hence, if we equate ¢ = Ay(n, a)/2, elementary set theory allows us to relate the
two bounds:

{1t > P {2‘23 lTn—T(F)lze}:P{ U BF<e>}
FerF
> sup P (Bp(e)) =sup P (BF(AA/Q))
FeF FeF
> «f2

It would seem that the exponentially decreasing upper bound may quickly diminish
to less than the lower bound! The resolution of this apparent contradiction, however,

39d is called the VC-dimension of A.
40with respect to measure P
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lies in the fact that e, now equated with Ay(n, @), is no longer a constant, but is
instead monotonically decreasing in n. Indeed, the rate of decrease of € is sufficient
to compensate for the apparent exponential decay of the upper bound: In the above
example we showed that A 4(n, a) is proportional to b(n"1/2) where b(§) is asymptot-
ically linear in 6. Hence, putting ¢ = Cn~'/? for some constant C, the upper bound
is seen to degenerate into an increasing function:

4@2n+ 1) e =4 (2n + 14 e O « (20 + 1)

The integrity of the results is preserved.

6.3 Extension to Manageable Classes of Functions

As a final note, we mention that a similar application of the results of [DL91] to a
manageable class of functions G = {gx : A € A} allows us to derive a lower bound
on the rate of uniform convergence to zero of the empirical process*! operating over
this class with respect to the probability space (R, B, P) *2.

As in the above example, we begin by casting the problem into a mold to which
the results of [DL91] are applicable. Our first task is to define a suitable class F of
distributions on the measureable space (R, B) and to find a mapping R : § — F.
Furthermore, if a functional 7' : 7 — R can be found such that for all ¢ € G,
T(R(g)) = P g, then establishing an optimal rate for all estimators 7,, : R* — R to
converge to T' uniformly over F is tantamount to establishing a lower bound on the
rate of convergence to IEp of a specific estimator such as IEp_, the expectation with
respect to the empirical measure*® P,. A scaling by a factor n'/? then establishes an
analogous bound on the rate of convergence to zero of the empirical process.

An intuitive choice for the mapping R and the functional T" is to treat ¢, as a random
variable** on (R, B, P), have R(g)) = F)\ be the distribution of this random variable,
and let T (R(gy)) be the expected value of this distribution F). Regardless of P, the
condition T(R(g)) = P ¢ is then satisfied for all ¢ € G, provided P g exists.

41Gee Section 4 for definition.

42Where B denotes the Borel field on % and P is some probability measure of finite variance. This

last condition is needed in order for the Central Limit Theorem to be applicable — see Section 2 of
[Pol89].

43See Section 4 for definition.
““We assume here that g, is measureable for all A € A.
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From here, an expression may be derived for the rate of convergence by methods
inspired by [DL91]. In particular, we once again invoke one of the main results of

[DLI1]:

If T is linear, F is convex, and the modulus of continuity of T with respect
to F, b(e), is a Holder function of exponent ¢, then the optimal rate of

convergence is b (n’l/z) =0 (n‘qﬂ).

Since 7' is an expectation, it is linear. In general, however, F is not necessarily convex.
The simplest remedy is to derive an optimal rate of convergence for the class conv(F)
rather than for F. Of course, the price of the simplification is that &(n~/?) is demoted
from its position as optimal rate to a humble status of upper bound for the minimax
estimator Tpg;, described in Section 5.3. However, provided the losses incurred by
convexification do not exceed the gains furnished by the use of an optimal estimator
instead of [Ep,, the validity of the main claim — that b(n~'/2) forms a lower bound
on the empirical process rate of convergence — is not jeopardized?’.

Hence, all that remains to be done is to derive an expression for the modulus of
continuity b(e) of T' with respect to conv(F). Provided convexification losses are not
excessive, verification that b(e) is Holderian of exponent ¢ is sufficient to establish
b (n‘l/z) =0 (71“’/2) as the lower bound on the rate of uniform convergence to zero
of the empirical process operating over G.

45Even in the case where convexification losses outstrip the gains provided by an optimal estimator,
some significance can still be gleaned from the results: 5(n~!/2) then forms an upper bound on the
empirical process rate of convergence, guaranteeing a certain rate. Moreover, it may yet be possible
to establish b(n='/?) as a lower bound as well, using methods from [DL91] which do not rely on the
convexity of F (See Section 5.4.2 for elaboration). Hence, even greater import is imparted to the
rate b(n_l/z): Since it forms an upper and lower bound on the empirical process rate, asymptotic
equality of the two rates may be inferred.
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7 Conclusion

It was the ambition of this survey not only to give conspectuses of the main threads of
each of the three papers [VC71], [Pol89] and [DL91], but also to expose their intricate
intertwinement and interdependence.

The first paper, [VC71], addresses the problem of establishing criteria subject to which
one may conclude that the relative frequencies of events converge to their probabilities
uniformly over a class A C B with respect to the probability space (¥, B, P). The
results are twofold:

1. A sufficient condition for uniform convergence is that the class of events be of
polynomial discrimination. No constraints need be imposed on the distribution

P.

2. A sufficient and necessary condition for uniform convergence is the asymptotic
approach to zero of the ratio of entropy H*(l) to sample size I. Since the
entropy of a class of events A is defined as the ezpected value of the index of A,
the satisfaction of this condition depends upon the distribution P.

The results of [VC71] continue to be pertinent to, and have impact upon, areas such as
Neural Network Theory and Learning Theory. Though stronger results have emerged
since its publication, the paper retains its pre-eminance, if not for its continuing
general applicability then for the sheer elegance of its derivations.

The second paper, [Pol89], sees the extension of the ideas of [VC71] to a class of
functions G. The main concern is the establishment of criteria for which convergence
of the empirical mean P, ¢ to the actual mean P ¢ may be guaranteed uniformly over
G. The climax of [Pol89] is basically that the desired uniformity is attained provided
G is a manageable class, along with a few subsidiary conditions. The link with [VC71]
is strengthened by the rather remarkable result that if {subgraph(g) : ¢ € G} is of
polynomial discrimination, then G is, in fact, a manageable class of functions.

Perhaps more than in the actual results, however, the significance of [Pol89] lies
in its exposition of a very powerful technique for the analysis of the entire family
of problems involving averages of functions of independent observations, of which
the problem scrutinized here — that of finding criteria under which these averages
converge uniformly to the expected values of the functions — is a member.



7 Conclusion 63

Any treatment of convergence concepts would be incomplete without a discussion of
rates of convergence. The theme of [DL91] revolves around a bound on the rate of
convergence of an estimate 7;,( X, )* to the value of a functional T'(F') of an unknown
distribution F' € F uniformly over a class of distributions F. The main result is that
for estimating a linear functional over a convez distribution class F, the geometry
of the problem, expressed in terms of the modulus of continuity b(€), determines the
optimal rate of convergence. Moreover, if b(€) is a Holder function of exponent g,
the optimal rate is b (n“1/2) =0 (n‘q/?) and is, in fact, attainable. As an encore, it
is further shown that the prerequisites of linearity and convexity may be discarded,
provided that the essence of the geometry is preserved: A new criterion is that the
hardest two-point subproblem of testing T(F) < t versus T(F) > t + A should
be roughly as difficult, from a minimax risk point of view, as the full composite
hypothesis-testing problem.

As mentioned in the Introduction and demonstrated in the elaborate example of
Section 6, a little reflection shows the results of [DL91] to be directly applicable to
the convergence problems analyzed in [VC71] and [Pol89]. Indeed, given a class of
functions G*7, each function ¢ € G may be construed as a random variable with respect
to the probability space (R, B, P). Let F be the class of marginal distributions of
the resultant stochastic process, and choose the (linear) functional T(F), F € F to
be the expected value of F, i.e. T(F) = Pg where F' € F is the distribution of the
random variable ¢ € G. Establishing the modulus of continuity of 17" over conv(F) as
a Holder function of exponent ¢ places a lower bound of b (71“1/2) =0 (n‘qﬂ) on the
rate of uniform convergence to T'(#') of any estimate T,,(X,,), including the empirical
expectation P, g.

Of course, the results of [DL91] extend far beyond these rather confined cases. Indeed,
the power and generality of the results is matched only by the scope of their appli-
cability: Nonparametric distribution classes succumb to investigation as tractably as
parametric classes, and the latitude afforded in the choice of functional 7' is virtually
unconstrained. For these reasons, the results of [DL91] may very well assume a piv-
otal role in future research within the field of stochastic processes and their rates of
convergence.

4Swhere X, is a vector of n i.i.d. F sample points
47G could be a class of indicator functions if classes of events are involved as in [VCT71].



64

Papers Surveyed

[VC71] Vapnik & Chervonenkis: (1971)
On the Uniform Convergence of Relative Frequencies of
Events to their Probabilities.
Theory of Probability and its Applications, 1971, Vol. 16,
No. 2, 264-280.

[Pol89] Pollard, D.: (1989)
Asymptotics via Empirical Processes.
Statistical Science, 1989, Vol. 4, No. 4, 341-366.

[DL91] Donoho & Liu: (1991)

Geometrizing Rates of Convergence, II.
The Annals of Statistics, 1991, Vol. 19, No. 2, 633-667.

References

[BD77] Bickel & Doksum: (1977)
Mathematical Statistics: Basic Ideas and Selected Topics, Holden-Day.

[Bil79] Billingsley, P.: (1979)
Probability and Measure, Wiley.

[CB90] Casella & Berger: (1990)
Statistical Inference, Wadsworth.

[Dud78] Dudley, R. M.: (1978)
Central Limit Theorems for Empirical Measures.

The Annals of Probability, 1978, No. 6, 899-929.

[Dud87] Dudley, R. M.: (1987)
Universal Donsker Classes and Metric Entropy.
The Annals of Probability, 1987, No. 15, 1306-1326.

[Fal90] Falconer, K.: (1990)
Fractal Geometry: Mathematical Foundations and Applications, Wiley.



7 References 65

[Far66)

[Far72]

[GDs6]

[THS1]

[KF70]

(LY90]

[LeCS6]

[Mal88]

[Mintz]

[Pol84]

[Rom88§]

[SYS1]

Farrell, R. H.: (1966)

On the Lack of a Uniformly Consistent Sequence of Estimators of a Density
Function in Certain Cases,

Farrell, R. H.: (1972)

On the Best Obtainable Asymptotic Rates of Convergence in Estimation of
a Density Function at a Point.
The Annals of Mathematical Statistics, 1972, Vol. 43, No. 1, 170-180.

Gray & Davisson: (1986)
Random Processes: A Mathematical Approach for Engineers, Prentice-Hall.

Ibragimov & Hasminskii: (1981)
Statistical Estimation: Asymptotic Theory, Springer.

Kolmogorov & Fomin: (1970)
Introductory Real Analysis, Dover.

Le Cam & Yang: (1990)
Asymptotics in Statistics: Some Basic Concepts, Springer-Verlag.

Le Cam, L.: (1986)
Asymptotic Methods in Statistical Decision Theory, Springer- Verlag.

Maller, R. A.: (1988)
Asymptotic Normality of Trimmed Means in Higher Dimensions.
The Annals of Probability, 1988, Vol. 16, No. 4, 1608-1622.

Mintz, M.
A Review of some ideas in Measure Theory and Probability Theory
Lecture Notes, pp 51-500.

Pollard, D.: (1984)

Convergence of Stochastic Processes, Springer-Verlag.

Romano, J. P.: (1988)

On Weak Convergence and Optimality of Kernel Density Estimates of the
Mode.

The Annals of Statistics, 1988, Vol. 16, No. 2, 629-647.

Sacks & Ylvisaker: (1981)
Asymptotically Optimum Kernels for Density Estimation at a Point.
The Annals of Statistics, 1981, Vol. 9, No. 2, 334-346.



7 References 66

[Sch50]

[Wen62]

[Wol91]

[Yat85]

[ZM84]

Schlafli, L.: (1950)

Gesammelte mathematische Abhandlungen, 1, Basel, 1950.

Wendel, J. G.: (1962)
A Problem in Geometric Probability.
Math. Scand., 1962, Vol. 11, 109-111.

Wolfram, S.: (1991)
Mathematica, Addison-Wesley.

Yatracos, Y. G.: (1985)

Rates of Convergence of Minimum Distance Estimators and Kolmogorov’s
Entropy.
The Annals of Statistics, 1985, Vol. 13, No. 2, 768-774.

Zeytinoglu & Mintz: (1984)

Optimal Fixed Size Confidence Procedures for a Restricted Parameter
Space.

The Annals of Statistics, 1984, Vol. 12, No. 3, 945-957.



	Convergence of Stochastic Processes
	Recommended Citation

	Convergence of Stochastic Processes
	Abstract
	Comments

	tmp.1187292657.pdf.EjoCF

