
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1990

Structure Unification Grammar: A Unifying Framework for Structure Unification Grammar: A Unifying Framework for

Investigating Natural Language Investigating Natural Language

James Henderson
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
James Henderson, "Structure Unification Grammar: A Unifying Framework for Investigating Natural
Language", . December 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-94.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/359
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/359
mailto:repository@pobox.upenn.edu

Structure Unification Grammar: A Unifying Framework for Investigating Natural Structure Unification Grammar: A Unifying Framework for Investigating Natural
Language Language

Abstract Abstract
This thesis presents Structure Unification Grammar and demonstrates its suitability as a framework for
investigating natural language from a variety of perspectives. Structure Unification Grammar is a linguistic
formalism which represents grammatical information as partial descriptions of phrase structure trees,
and combines these descriptions by equating their phrase structure tree nodes. This process can be
depicted by taking a set of transparencies which each contain a picture of a tree fragment, and overlaying
them so they form a picture of a complete phrase structure tree. The nodes which overlap in the resulting
picture are those which are equated. The flexibility with which information can be specified in the
descriptions of trees and the generality of the combination operation allows a grammar writer or parser to
specify exactly what is known where it is known. The specification of grammatical constraints is not
restricted to any particular structural or informational domains. This property provides for a very
perspicuous representation of grammatical information, and for the representations necessary for
incremental parsing.

The perspicuity of SUG's representation is complemented by its high formal power. The formal power of
SUG allows other linguistic formalisms to be expressed in it. By themselves these translations are not
terribly interesting, but the perspicuity of SUG's representation often allows the central insights of the
other investigations to be expressed perspicuously in SUG. Through this process it is possible to unify the
insights from a diverse collection of investigations within a single framework, thus furthering our
understanding of natural language as a whole. This thesis gives several examples of how insights from
investigations into natural language can be captured in SUG. Since these investigations come from a
variety of perspectives on natural language, these examples demonstrate that SUG can be used as a
unifying framework for investigating natural language.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-94.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/359

https://repository.upenn.edu/cis_reports/359

UNIVERSITY OF PENNSYLVANIA

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

STRUCTURE UNIFICATION GRAMMAR:

A UNIFYING FRAMEWORK FOR
INVESTIGATING NATURAL LANGUAGE

James Henderson

Philadelphia, Pennsylvania

December 1990

A thesis presented to the Faculty of Engineering and Applied Science of the University of

Pennsylvania in partial fulfillment of the requirements for the degree of Master of Science

in Engineering for graduate work in Computer and Information Science.

- -
Mitchell Marcus

(Advisor)

Mitchell Marcus
(Graduate Group Chair)

Abstract

This thesis presents Structure Unification Grammar and demonstrates its suitability as a

framework for investigating natural language from a variety of perspectives. Structure Uni-

fication Grammar is a linguistic formalism which represents grammatical information as

partial descriptions of phrase structure trees, and combines these descriptions by equating

their phrase structure tree nodes. This process can be depicted by taking a set of trans-

parencies which each contain a picture of a tree fragment, and overlaying them so they

form a picture of a complete phrase structure tree. The nodes which overlap in the re-

sulting picture are those which are equated. The flexibility with which information can

be specified in the descriptions of trees and the generality of the combination operation

allows a grammar writer or parser to specify exactly what is known where it is known.

The specification of grammatical constraints is not restricted to any particular structural

or informational domains. This property provides for a very perspicuous representation of

grammatical information, and for the representations necessary for incremental parsing.

The perspicuity of SUG's representation is complemented by its high formal power. The

formal power of SUG allows other linguistic formalisms to be expressed in it. By themselves

these translations are not terribly interesting, but the perspicuity of SUG's representation

often allows the central insights of the other investigations to be expressed perspicuously

in SUG. Through this process it is possible to unify the insights from a diverse collection

of investigations within a single framework, thus furthering our understanding of natural

language as a whole. This thesis gives several examples of how insights from investigations

into natural language can be captured in SUG. Since these investigations come from a

variety of perspectives on natural language, these examples demonstrate that SUG can be

used as a unifying framework for investigating natural language.

Acknowledgments

The work presented in this thesis has only been possible because of the diverse set of

ideas and nondogmatic atmosphere provided by the computational linguistics group at the

University of Pennsylvania. (I came, I saw, I concurred.) I would especially like to thank

my advisor, Mitch Marcus, for his time, enthusiasm, and inspiration. Special thanks also go

to Aravind Joshi and Mark Steedman for their ideas and comments, and to Bob Frank for

making me defend my positions against seemingly all possible criticisms. I am also grateful

to the CLiFF discussion group here at Penn for their comments and support. I'd also like to

thank Amy Winarske, Yves Schabes, Tony Kroch, Ramesh Subrahmanyam, Anuj Dawar,

and Michael Niv. This thesis is dedicated to my cats, Flotsam and Jetsam, who I'm sure

will enjoy chewing on it.

Contents

Abst rac t

Acknowledgments

ii

iii

1 In t roduct ion

S t ruc tu re Unification G r a m m a r

2.1 Describing Phrase Structure .
. 2.1.1 The Notation

2.1.2 The Structure Models .
. 2.1.3 The Descriptions

. 2.2 Accumulating Phrase Structure

. 2.2.1 Grammar Entries

. 2.2.2 Combining Structure Descriptions

. 2.2.3 Complete Structure Descriptions

. 2.2.4 The Derivations

2.3 A Formal Specification of SUG .
2.4 Other Formalisms Using Partial Descriptions of Phrase Structure

3 Unifying Insights into Natura l Language

3.1 Examples of Expressing Grammatical Constraints
3.1.1 Using SUG's Large Domain of Locality
3.1.2 Trading Ambiguity for Underspecification

. 3.1.3 Capturing Generalities

3.2 Lexical Functional Grammar .
. 3.2.1 The Version of LFG

. 3.2.2 Expressing LFG' in SUG 40

. 3.2.3 Discussion 56

. 3.3 Description Theory 57

. 3.4 Abney's Licensing Parser 59

. 3.4.1 The Parser 59

. 3.4.2 ComparisonwithSUG 62

. 3.5 Tree Adjoining Grammar 64

. 3.5.1 The Definition of TAG and FTAG 64

. 3.5.2 Expressing FTAG in SUG 66

. 3.5.3 Discussion 72

. 3.6 Lexicalized Tree Adjoining Grammar 73

. 3.7 Combinatory Categorial Grammar 77

3.7.1 Categorial Grammar with Token Identity and Partiality 78

. 3.7.2 CCG with Structure Categories 88

. 3.7.3 Capturing Coordination in SCCG 95

4 Conclusions and Future Directions 104

. 4.1 Future Directions 107

Bibliography 112

Chapter 1

Introduction

The study of natural language has yielded many insights. These insights have come from

a diverse collection of investigations, each with its own perspective on the phenomena.

This diversity is reflected in the plethora of representations and formalizations these inves-

tigations have used. Although the formalizations are usually incompatible, often the key

insights of each investigation are not. Thus it should be possible to unify the insights from a

variety of investigations within a single formalism. By investigating all these insights within

a common framework, we can gain a better understanding of language as a whole. This

thesis proposes that Structure Unification Grammar is an appropriate framework for such

an investigation.

The key to finding such a framework is to extract the features common, or a t least

compatible, with all the formalisms. At first glance it appears we are left with nothing.

However, there are a few characteristics which have been consistently useful. The first is the

use of phrase structure. Some notion of phrase structure has been essential to almost every

modern theory of language. The second characteristic is the use of partial descriptions to

allow information to be accumulated over the derivation or parse. This eliminates the need

to completely specify an entity as soon as it is introduced. The use of partial descriptions

has been especially useful for theories which address computational issues, because it allows

decisions to be delayed until more is known about the sentence. These two characteristics

should be included in any formalism which attempts to perspicuously express insights from

the wide variety of linguistic investigations. Thus the unifying framework should perspic-

uously represent phrase structure trees and should support the partial specification of this

information. Structure Unification Grammar (SUG) is just such a framework; it is simply

a formalization of accumulating information about the phrase structure of a sentence until

this structure is completely described.

Although many formalisms exist which can be viewed as constructing phrase structure

trees from partial specifications, none allow the flexible specification of partial information

in the way that SUG does. Like many other formalisms, SUG uses feature structures to

allow the partial specification of node labels. For example, 'she' is nominative case, but

'Barbie' is ambiguous as to its case. Rather than giving 'Barbie' a different grammar entry

for each possible case, the entry for 'Barbie' can simply not specify the case. Unlike most

other formalisms, SUG also allows the specification of the structural relations to be equally

partial. For example, if a grammar entry says a node with category S can have a child

with category NP and a child with category VP, this does not preclude the same S node

from also having other children, such as sentential modifiers. Also, grammar entries can

partially specify ordering constraints between nodes, thus allowing for variations in word

order. This ability to partially specify structural relations is extended in SUG with the

addition of the dominance relation. Dominance is the recursive, transitive closure of the

parent-child relation, here called immediate dominance. Among other things, this allows

a grammar entry to specify that a trace N P is somewhere within an S, without specifying

exactly where, thus expressing a long distance dependency within a local domain.

In SUG the source of these partial descriptions is the grammar. Each SUG grammar

entry simply specifies an allowable grouping of information. Any of the information in a

grammar entry can be in a phrase structure description, as long as all its information is

there. Because of the complete flexibility SUG provides for specifying phrase structure

information, the grammar can state exactly what these information interdependencies are.

This ability to say what you know where you know it will be crucial in the discussion of

capturing grammatical constraints. Intuitively, each grammar entry can be depicted as the

fragment of tree structure which it specifies. Any tree which is generated by a grammar

can be depicted by overlaying these depictions of tree fragments.

A complete description of a phrase structure tree is constructed from the partial descrip-

tions in an SUG grammar by conjoining a set of grammar entries and specifying how these

descriptions overlap. The way two descriptions overlap is by sharing nodes. In other words,

a set of descriptions can be combined by conjoining them and doing zero or more equations

of pairs of their nodes. In the tree depiction given above, the overlaying of tree fragment

depictions corresponds to the conjoining of the descriptions and the nodes which overlap

in the resulting picture are the ones which are equated. As should be obvious from this

graphical representation, if node equations were not allowed the resulting description would

not specify a complete tree. What equations are allowed is only restricted by the require-

ment that there be at least one phrase structure tree which is compatible with the resulting

description. An example of combining descriptions is given in figure 1. One description

specifies the immediate children of S, another the structure of the N P "Barbie", and the

third the structure of the VP "poses". By conjoining these descriptions and doing the two

equations shown with circles, we produce a complete description of the phrase structure

tree for the sentence "Barbie poses". By using this very general combination operation,

the structure of a derivation is in no way restricted by the structures used in the gram-

mar. This flexibility is crucial for unifying within a single framework the insights from both

grammatical investigations of language and more procedural investigations of language.

S

Figure 1: An example of combining structure descriptions. The circled nodes are equated.

When all the information about a phrase structure tree has been accumulated, the

resulting description should completely specify that phrase structure tree. However, since

the result of a derivation is a partial description, there are always an infinite number of

trees which satisfy it. In order to make this partial description a complete description,

SUG assumes that anything which is not entailed by the description is false. For some

descriptions this will work, because they specify all and only the positive information in

some phrase structure tree. These descriptions are called complete descriptions of this

phrase structure tree, as was mentioned for the phrase structure of "Barbie poses" in the

previous paragraph. For other descriptions this assumption makes them unsatisfiable by

any phrase structure tree. For example, if the description specifies that a given terminal

exists but does not specify what its word is, then this terminal will be assumed not to have

any word. Such an assumption will make the description unsatisfiable, since all terminals

have, possibly empty, words. The implication of this is that only derivations which result

in complete descriptions are valid SUG derivations.

Despite the simplicity of this system, SUG is extremely powerful. Without restrictions

on the use of feature structures it has Turing Machine power. Even when these feature

structures are restricted to being atomic, SUG is strictly more powerful than Tree Adjoin-

ing Grammar, and can generate the language a?+. . .%, for any fixed ml. Unlike many

computational models with this power, SUG provides a perspicuous representation for in-

vestigating natural language. It is the combination of this power and this perspicuity which

makes SUG a suitable framework for unifying a diverse collection of investigations into the

nature of language.

The perspicuity of SUG's representation of grammatical information comes from three

major characteristics. The first is SUG's ability to partially specify information. This

permits a grammar entry to say as much and only as much as is desired. The second char-

acteristic is SUG's large domain of locality for specifying grammatical information. Most

importantly, both long distance dependencies and predicate-argument relationships can be

stated directly within single grammar entries, without the need to pass this information

through special node label features. The third characteristic is that there is no limit on the

amount or kind of overlap between grammar entries in the derived structure. Thus two sepa-

rate grammar entries can add constraints to the same set of nodes. This allows grammatical

information to be separated according to information dependencies rather than according

to structural configurations. Each of these characteristics are important in SUG's ability

to perspicuously express the variety of grammatical constraints found in the formalisms

discussed here.

The first formalism discussed here is Lexical Functional Grammar. LFG has a very

expressive language for specifying grammatical constraints, and an explicit representation

of semantic information which also constrains the possible derivations. SUG is sufficiently

expressive to specify almost all the constraints specifiable in LFG. This includes the ability

to constrain possible long distance dependencies, and the ability to express LFG's repre-

sentation of semantic information in the feature structure labels of SUG nodes.

The second investigation discussed is Description Theory. D-Theory makes extensive use

of the partial specification of phrase structure information in order to do syntactic parsing

incrementally and deterministically. Partial specifications allow a D-Theory parser to only

'This power means that SUG in its pure form can not be parsed very efficiently. I am not addressing this
issue in this paper because here I am only concerned with demonstrating the perspicuity and power of this
simple system. Presumably the subset of this power which is actually needed to parse natural languages is
quite efficiently parsable. How to characterize this subset is the topic of my current research. This will be
mentioned at the end of this thesis in my discussion of future research directions.

specify what it is sure of, delaying the specification of other phrase structure information

until later in the parse. SUG's use of partial specifications allow for the same degree of

flexibility, thus also supporting an incremental deterministic parser.

Another place where parsing considerations have crossed successfully with linguistic

investigations is Abney's licensing parser. Abney extends the linguistic notion of licensing so

that all phrases must be licensed, and parses sentences by inferring their licensing relations.

These licensing relations are both very general across languages and, when represented

properly, can easily be recovered by a psychologically plausible parser. One interesting

aspect of Abney's representation of these relations is the need for anti-relations, which are

specified with the licensee rather than with the licensor. Anti-relations are used primarily for

licensing adjuncts. The close relationship between licensing relations and phrase structure

relations permits SUG to manifest the same information in its representation of phrase

structure. Because the division of grammatical information in SUG does not have to follow

any specific structural configurations, both regular licensing relations and anti-relations can

be supported. Thus SUG also supports an efficient psychologically plausible parser for

recovering licensing information.

Tree Adjoining Grammar is also discussed in this thesis. Like SUG, the data structures

of a TAG grammar are phrase structure trees. However, the combination operation of TAG,

adjunction, is quite different from that of SUG. TAG still has a large domain of locality

for specifying grammatical constraints. I t can state both long distance dependencies and

predicate-argument relationships directly within single grammar entries, as was discussed

for SUG. Linguistic work in TAG (for example [Kroch and Joshi, 19851) has pointed out

the importance of these abilities. The explicit representation of phrase structure in TAG,

and SUG, is also useful because it provides for a distinction between phrase structure and

derivation structure, which will be important in combining the insights of CCG with those

of TAG analyses and other linguistic work.

Lexicalized Tree Adjoining Grammar adds the operation of substitution to TAG, thereby

permitting TAG grammars to be expressed lexically. This addition greatly increases the

flexibility with which information can be divided among grammar entries, thus permitting

lexicalization, but LTAG is still less flexible than SUG in this regard. These constraints

may be desirable linguistically, but it appears they can be manifested in SUG grammars if

desired. The use of an explicit representation of phrase structure in both LTAG and SUG,

and SUG's ability to express the information dependencies expressible in LTAG, allow SUG

to use the same analyses as LTAG in the specification of a lexicalized grammar.

The last investigation discussed is Combinatory Categorial Grammar. CCG proposes

a notion of constituent structure which is much different from the semantically based con-

ception used in the above investigations. CCG's constituent structure is motivated by

coordination and extraction phenomena. The data structures in CCG are curried func-

tional types, and the primary combination operations are function application and function

composition. A phrase is a constituent if the types from each word in the phrase can be

combined into a single type. Two constituents can coordinate if they can each be reduced

to the same type, with the result of the coordination being that type. This approach allows

what is usually called nonconstituent coordination to be treated as constituent coordina-

tion. This approach does a very good job at handling coordination phenomena, but it lacks

the perspicuous representation provided by a system like LTAG. SUG bridges this gap by

providing structures which both have explicit phrase structure, like LTAG trees, and be-

have like functional types, like CCG types. By interpreting these SUG structures as the

functional types they simulate, CCG's analysis of coordination can be applied to SUG's rep-

resentations. In this way the important characteristics of CCG's constituent structure can

be captured within SUG's derivation structure, while still expressing conventional phrase

structure within SUG's explicit representation of phrase structure.

Although this thesis is primarily concerned with the representation of grammatical in-

formation, there are also reasons to believe that SUG provides a good representation for

processing that information. As is pointed out in the discussion of D-Theory and Abney's

licensing parser, the partiality and flexibility of SUG's representation supports parsers for

natural language which are incremental, deterministic, and have other psychologically plau-

sible characteristics. The work on incorporating CCG's notion of functional types into SUG

provides another tool which is of great interest in developing psychological models of lan-

guage processing. These types provide a theory of how certain information in structures can

be abstracted away from, thus allowing many otherwise arbitrarily large structures to be

represented in bounded memory. This allows the investigation of parsers which have bounds

on the size of their memory, thus also bounding the amount of computation necessary to

parse. This later work will be discussed at the end of this thesis in the section on future

research.

The remainder of this thesis will define SUG more precisely, and show how it captures

the insights from various investigations into the grammatical and computational nature of

language. Chapter 2 starts with an extended discussion and definition of SUG, including its

formal specification. The last section of chapter 2 then compares SUG to other formalisms

which have addressed the issue of the partial specification of phrase structure. Chapter 3

discusses the above investigations into language and how their insights can be unified within

SUG. The first section of this chapter gives examples of how to perspicuously express a

variety of grammatical constraints in SUG. The other sections discuss Lexical Functional

Grammar, Description Theory, Abney's licensing parser, Tree Adjoining Grammar, Lexical

Tree Adjoining Grammar, and Combinatory Categorial Grammar. This thesis ends with

some concluding remarks and a discussion of future research directions.

Chapter 2

Structure Unification Grammar

As discussed in the introduction, Structure Unification Grammar is a formalization of ac-

cumulating information about the phrase structure of a sentence until this structure is

completely described. This chapter will expand the description given in the introduction

by giving the details of SUG's definition. It will also compare SUG with other formalisms

based on partially specifying phrase structure. The subsequent chapter will show how SUG

can unify the insights from a variety of investigations into natural language.

The first section in this chapter discusses the language which SUG uses t o describe

phrase structure trees. These trees are ordered trees of feature structures. The tree relations

are immediate dominance, linear precedence, and dominance. Immediate dominance is the

relationship between a node and each of its immediate children. Linear precedence is the

ordering relation used here. Dominance is the recursive transitive closure of immediate

dominance. Its addition is necessary in order to express long distance dependencies in a

single grammar entry. The nodes of the trees are feature structures. They are divided

into nonterminals, which are arbitrary feature structures, and terminals, which are atomic

instances of strings. These feature structures are allowed to share values, including having

the value of a feature be another node. For example, a node may have a feature head whose

value is one of the node's children. More examples of how this descriptive language is used

to express grammatical information are given below and in section 3.1.

The second section in this chapter specifies what constitutes an SUG derivation. The

objects used in these derivations are partial descriptions in SUG's language for specify-

ing phrase structure trees. Each step in a derivation combines descriptions by conjoining

them and adding zero or more statements of equality between nonterminal nodes in the

descriptions, under the condition that the resulting description is satisfiable. The leaves

of a derivation tree must be entries from the grammar, and the root must be a complete

description. A description is complete if assuming that anything which is not entailed by

the description is false, makes the description satisfied by a unique phrase structure tree.

The tree set generated by a grammar is the set of trees specified in this way by some de-

scription which is the result of some derivation for the grammar. The language generated

by a grammar is the yields of these trees. Examples of each of these definitions will be given

below.

To make the definition of SUG precise, the third section in this chapter gives a concise

formal specification of SUG. The reader may want to skip this section.

The last section in this chapter discusses how SUG compares to other formalisms which

can be viewed as using partial descriptions of phrase structure. The formalisms I will discuss

are CFGs, PATR-11, and the formalization of FUG given in [Rounds and Manaster-Ramer,

19871. Some other formalisms which can be viewed in this way will be discussed in chapter 3.

2.1 Describing Phrase Structure

The central concept in Structure Unification Grammar is the partial description of phrase

structure. It allows for great flexibility in both the specification of grammatical information

and the processing of that information. This section presents the language which SUG uses

to describe phrase structure.

2.1.1 The Notation

In recent years many linguistic formalisms have been developed which use partial descrip-

tions of linguistic information. These formalisms usually use feature structures to represent

this information. The problem with feature structures is that the relationships which they

can represent are restricted to being functional, in the sense that a feature structure label

must represent a function from feature structures to feature structures. This causes trouble

when specifying information about phrase structure, since many of the relations which we

wish to state, such as linear precedence and dominance, are not functions. Formalisms like

PATR-I1 ([Shieber, 19861) solve this problem by using a separate mechanism for specify-

ing phrase structure. PATR-I1 uses a context free skeleton for this purpose. Description

Theory ([Marcus et ak., 19831) takes a different approach. It extends feature structures to

allow structural relations to be expressed in the same manner as the information usually

expressed in feature structures1. This later approach gives the description of the phrase

structure the same degree of partiality given the other information. For this reason this is

the approach which will be taken here.

There have been several suggestions for how to add arbitrary relations to feature struc-

tures. One was proposed in [Rounds, 19881, where set values are added to feature structures.

This would allow linear precedence, for example, to be expressed by giving a node a fea-

ture with a set value containing all the nodes which precede it. However, this approach

would force an unwanted asymmetry in the representation between preceding and being

preceded by. Instead I will not use the automata based conception of feature structures

used by Rounds, but use a representation espoused by Johnson in [Johnson, 19901. In this

representation feature structures are specified using quantifier-free first-order formulae with

equality. In these formulae, variables range over feature structures, atoms are represented

as constants, and labels are specified as unary functions from feature structures to feature

structures. In [Johnson, 19901, the characteristics of atoms and a treatment of incomplete

information are axiomatized. This axiomatization will be discussed in section 2.1.3. The

advantage of this system over Rounds' representation of feature structures is that quantifier-

free formulae already have a mechanism for specifying arbitrary relations, namely predicates.

For example, if node x precedes node y this can be expressed as precedes(x, y)2.

The shift to using quantifier-free formulae as the notation for feature structures suggests

a few changes which I will adopt. Since a typical formula will contain many variables, none

of them distinguished from the others, I will treat a formula as describing a set of entities,

rather than a single one. This has the consequence that our phrase structure descriptions

no longer need to be root centered. Given that we are talking about sets of entities, it is

also natural to remove the restriction that they all be connected.

'Rounds and Manaster-Ramer take a similar approach in [Rounds and Manaster-Ramer, 19871. This
will be discussed in section 2.4.

2The problem with Johnson's representation of feature structures is that he uses the usual classical
semantics for first-order formulae. This means that, unlike in Rounds' system, in his system subsumption
does not respect entailment, where subsumption is as defined in [Rounds and Kasper, 19861. In other words,
given two feature structure models, A and B, such that the nonnegative information in A is a subset of that
in B (A subsumes B), there may be descriptions which are satisfied by A but not by B. This is because a
description may have a negative constraint which is incompatible with information which is in B but not
in A. This will not be a problem here because the use of negation is limited to axioms in the definition
of SUG which either are true in all phrase structure tree models, or are simply predicating something's
existence. Thus this problem can not arise, and in SUG subsumption does respect entailment, with the
models restricted to those specified in the next section.

First-order formulae not only provide us with a natural representation for our descrip-

tions, they also provide a way to axiomatize the characteristics of the relations we wish to

add. Stating relations between nodes will have no causal role in a parse if we do not restrict

these relations in accordance with their intended meaning. These axioms can simply be

added to the set already introduced by Johnson to define the nature of atoms and unde-

fined information. In order to do this the notation will have to be expanded to first-order

formulae with quantifiers. The only problem with this is that the satisfiability problem for

first-order formulae with quantifiers is undecidable. However, we already know that SUG

is in general undecidable. Quantifiers will still be excluded from grammar entries.

2.1.2 The Structure Models

Before discussing how to describe phrase structure, it is necessary to specify the objects to

be described. I will restrict the set of models for the descriptions to ordered trees of feature

structures. The nodes of these trees are divided into two types, terminals and nonterminals.

The nonterminals are models of arbitrary feature structures3. Terminals are all instances

of strings. The terminals must be instances of strings rather than strings because otherwise

the phrase structure of a sentence with the same word occurring twice would not be a tree.

Values in the feature structures can corefer, both within a single node and between the

feature structures for different nodes. This includes the ability to have a node be the value

of a feature in another node.

The only components of the allowable structures other than the above feature structures

are the two ordered tree relations, immediate dominance and linear precedence. Immediate

dominance is the relationship between a node and each of its immediate children. The

graph of the immediate dominance relation must be a single tree. Linear precedence is

the ordering relation. It is a partial order on nodes which is transitive and antisymmetric.

Also, if a node x linearly precedes a node y, then everything in the subtree below x linearly

precedes everything in the subtree below y4.

3Any models of simple feature structures will do here, as long as they must be single feature structures
and must be connected. One such set of models is given in [Rounds and Kasper, 19861.

'There are a couple other constraints which could be imposed on the allowable models, which I have not
chosen to include. One is that the root of the tree have category S, but this seems better incorporated at the
level of a linguistic theory. Another is that the linear precedence relations completely order the terminals,
since the words of a sentence are always completely ordered in either time or space. I have not included
this constraint because there seem to be sentences in some languages for which some of this ordering is not
significant to the sentence's phrase structure.

2.1.3 The Descriptions

As discussed above, the language SUG uses to describe models of phrase structure trees uses

first-order logic as its notation. In this representation variables range over feature structures

and the constant I , constants represent atomic feature structures, unary function symbols

and equality are used to represent feature-value relationships, and predicates are used to

represent tree relations. [Johnson, 19901 shows how to represent the feature structures in

this way. If a feature structure x has y as its f feature's value, this is represented as the

statement f(x)xy. The constant I is used to represent nonexistent values of functions,

since first-order logic requires functions to be total5. The use of functions to specify feature

values enforces the fact that a given feature structure can have only one value for each of

its features. The characteristics of constants are enforced with the following axioms, taken

from [Johnson, 19901.

1. For all constants c and feature labels f, f(c)=l

2. For all distinct pairs of constants cl and cz, 7 (cl =c2)

The characteristics of I, which represents nonexistent information, are axiomatized as

follows, also taken from [Johnson, 19901.

3. For all feature labels f, f(l)=l

4. For all constants c, 7 (c=l)

Finally, when the value of a feature is specified then it must exist. This means that the

specification can not be done simply using equation, since f(x)=y is consistent with y=I .

Thus Johnson defines another operator "x" to be used for specifying features, which is

defined as follows.

For all terms u, v, u x v * (U=V A ~ (7 . ~ 1))

This is not an axiom, since there are an infinite number of instantiations of it, but a

definition of what x is an abbreviation for.

The axiornatization of the tree relations are done similarly to the above axioms, only tree

relations are specified using predicates rather than functions. The predicates idom and pmc

Johnson says this symbol is for undefined information, but I will use the term "nonexistentn because it
is less easily confused with the term "unspecifiedn. A feature structure can be completely unspecified and
yet still exist.

specify immediate dominance and linear precedence relations between nodes, respectively.

Formulae may also specify dominance relations between nodes using the predicate dom.

Dominance is the recursive, transitive closure of immediate dominance. Thus a node x

dominates a node y either if x equals y or if there are a series of nodes zl to tn such that x

equals q , y equals ,q,, and for all i between 1 and n- 1, z; immediately dominates z;+l. Nodes

are distinguished from other feature structures using the predicate node, and terminals

are distinguished from nonterminals using the predicate terminal. These predicates are

axiomatized as follows, where strings is the set of instances of strings.

12. dom(x,y) A dom(y,x) :) x x y

13. dom(x,y) * (x x y V 3z(idom(z,y) A dom(x,z)))

14. (a) prec(x, y) z) (node(x) A node(y))

(b) dom(x, y) z) (node(x) A node(y))

(c) terminal(x) z) node(x)

16. terminal(x) U (3s€strings, x x s)

Figure 2 gives an example of how phrase structure is specified in this descriptive language.

Not all the information about the structure is explicitly specified in the formula, but the

rest is derivable given the above axioms.

The above axioms complete the definition of the language SUG uses to describe phrase

structure trees. The grammar specifications can only use a subset of the expressive power

Key:

i idom(x,y) X C cat(x)-C
Y qm X C I " ~ "

dom(x,y) ')" head(x)-y
i Y

x - - -> y prec(x,y) specifiedx)t- y
xt terminal(x) Y

(X xmY [I empty feature
structure

Figure 2: The structure specified by (cat(x)xS A cat(y)xNP A ccat(z)x V P A a x "Barbie"
A b x "poses" A idorn(x, y) A idorn(x,z) A idorn(y,a) A idorn(z, b) A prec(y,z)). The key to the
right defines the symbols I will use to graphically depict phrase structure information. When
the variable names are not important I will simply specify the category or word of the node.

of this language, but the full power is necessary in order to express and reason with the

axioms. In particular, all the variables in a grammar entry must be existentially quantified

and the only logical connective which can be used is conjunction; universal quantification,

disjunction, and negation cannot be used. This will be discussed more in the following

section.

2.2 Accumulating Phrase Structure

With the above language for describing phrase structure it is now possible to define the

process of deriving phrase structure trees in Structure Unification Grammar. An SUG

derivation starts with partial descriptions of phrase structure from the grammar, and sticks

them together using node equations, until a complete description of some phrase structure

tree is constructed. That tree is the result of the derivation. This process can be visualized

as taking a set of transparencies, each with a grammar entry on it, and placing them on

top of each other6 until the resulting picture is of a complete phrase structure tree7. As

'Of course, this will only work if the original transparencies have their information spatially laid out in
a way compatible with the total resulting picture.

 his characterization is slightly misleading, since there will be information about the resulting descrip
tion, a s a consequence of the axioms, which is not depicted in any of the original transparencies. New
dominance and precedence relationships between nodes are an obvious example of this, although there are

this depiction implies, the descriptions in the grammar are not arbitrary formulae in the

language for describing phrase structure. This would allow negative facts, disjunctive facts,

and universal facts to be expressed in the grammar entries, all of which cannot be depicted

in this simple way. Grammar entries are restricted to being conjunctions of facts with only

existentially quantified variables. The restrictions on what is a complete description of a

phrase structure tree are defined by the need to have a unique phrase structure tree as the

result of the derivation. As with any partial description, the description resulting from a

derivation has an infinite number of phrase structure trees which are compatible with it.

One way to find a unique tree for a description is to assume that anything which is not

entailed by this description is false. This definition can only find such a tree for a subset of

the descriptions, called complete descriptions. All descriptions in this subset must specify

the immediate parent of every node except the root, and must specify the string associated

with every terminal. This section will go into the above discussion in more detail.

2.2.1 Grammar Entries

An SUG grammar simply consists of a set of partial descriptions of phrase structure. These

descriptions specify what configurations of information are allowed by the grammar. If a

particular description is in the grammar, then that description's information can be added

to a description in a derivation, as long as all its information is added and the result is

satisfiable. For example, the grammar entry (cat(x)%S~ cat(y)= NPA cat(z)w VPA idom(%, y)

A idom(x,z) A pprec(y,z)) allows two nodes whose cat features are compatible with NP and

VP, respectively, to attach under a node with a cat feature compatible with S, but in the

resulting description the NP node must precede the VP node. This example could equally

well be described with the precedence information being the precondition and the category

information being the result, but regardless the requirement is the same; all the information

can be included as long as all the information is included. Other examples will be given

throughout the rest of this thesis. This meaning of grammar entries may be clearer in the

case of a lexicalized grammar. In this case the presence of a word in a sentence can "license"

the portion of the complete structure which is specified in one of the word's grammar entries,

as long as the rest of the structure is compatible with this portion.

other less obvious possibilities. Nonetheless, all the information about the resulting description can be re-
covered from the resulting depiction using the axioms. In any case, this characterization is a useful way to
think about SUG derivations.

The entries in an SUG grammar are not arbitrary partial descriptions of phrase struc-

ture. They are restricted to a subset of SUG's language for describing phrase structure.

SUG grammar entries can only have existentially quantified variables and the only logical

connective allowed is conjunction. They cannot use universally quantified variables, dis-

junction, or negation. Because all variables in a grammar entry are existentially quantified,

the quantifiers are not explicitly specified. These restrictions are imposed for several rea-

sons. First, they ensure that in SUG subsumption respects entailment. Second, they greatly

simplify determining if a description is complete. If negation or disjunction were allowed in

the grammar entries, then a grammar entry could specify grammar specific characteristics

which need to be uniquely determined for the description to be completes. Third, it re-

stricts the domain of locality of grammar entries. If universal quantification was allowed in

grammar entries then they could directly constrain nodes which are not mentioned in their

description. Lastly, the intuitive characterization of SUG as simply constructing a picture

of the derived phrase structure tree by overlaying pictures of the grammar entries, would

not be possible without these restrictions on the language used to specify SUG grammar

entries.

Grammar entries are the leaves of SUG derivation trees. However, if the same grammar

entry is used twice in the same derivation, then the two instantiations of the grammar

entry cannot be identical. First, the two instances must use disjoint sets of variables. This

is simply a technique for avoiding variable capture during the derivation due to changing the

scope of the implicit existential quantifiers. Second, the two instances must have distinct

terminals. When the same word occurs twice in a sentence it must be manifested as two

distinct terminals in the phrase structure, otherwise the phrase structure is not a tree. Thus

whenever a grammar entry is introduced into a derivation, all its terminals are replaced with

new unique instances of their words. This has the effect of preventing any two terminals

with their words specified from equating.

2.2.2 Combining Structure Descriptions

The combination operation in SUG derivations is very simple. A set of descriptions are

combined by conjoining them and adding zero or more statements of equality between

'Other than this complication there are no problems with allowing disjunction in grammar entries. Not
permitting disjunction does not restrict the languages generatable by SUG, since any disjunction can be
specified with a grammar entry for each possible choice in the disjunction.

pairs of their nonterminals. Simply taking the conjunction of the descriptions would not

be sufficient, since the fragments would never become connected, and thus would never

form a complete description of a tree. Permitting arbitrary information to be added would

not permit the grammar to constrain the set of derivable phrase structure trees. By only

allowing coreference information to be added SUG avoids both these problems, and it

conforms to the intuitive characterization of SUG as simply constructing a picture of the

derived phrase structure tree by overlaying pictures of the grammar entries. An example of

this combination operation is given in figure 3. The only restriction on what equations can be

added is that the resulting description be satisfiable. This is exactly analogous to unification

in normal feature structures, which is also specified in this notation as equation under the

condition that the result be satisfiable. It is worth noting that the set of equations used in

combining two descriptions is not determined uniquely. The definition of a combination is

nondeterministic. Descriptions S and T can combine to produce a satisfiable description U

if there exists a conjunction of equations of nonterminals, E, such that U = S A T A E. Also

note that the fact that only the equation of nonterminals can be added does not prevent

terminals from equating, since the unification of features in nonterminals can cause the

equation of terminals as a side effect.

Figure 3: The combination of (cat(yl)= NPAa= "Barbie"~ idom(yl, a)) = Fl with (cat(x)wS
A c a t (y 2) z N P ~ cat(z)z V P A b z ('posesn A idorn(x,y2) A idorn(x,z) A Adorn(z,b) A prec(y2,z))
= F2 using the equation yl xyz to form (Fl A F2 A y1 ~312).

2.2.3 Complete Structure Descriptions

When a derivation is done there needs to be a phrase structure tree which it derives.

However, the result of a derivation is a description, not a tree. The question is, what phrase

structure tree does the resulting description specify? Given a partial description, the usual

way to to make it a complete description is to invoke the closed world assumption. In

other words, the description is assumed to specify everything which is true about the thing

being described. Under this assumption, anything which is not entailed by the description is

false. However, this will not produce a satisfiable set of constraints if the original description

contains disjunctive information. If the description entails f Vg but does not entail f and

does not entail g, then this assumption will produce a description which entails (f Vg) A lf

A lg, which is unsatisfiable.

In SUG descriptions the above problem arises in two ways. First, if a node x is dom-

inated by a distinct node and x does not have an immediate parent specified, then there

is an ambiguity as to what the immediate parent of x is, as is manifested in axiom 13 in

section 2.1.3. This ambiguity means that after applying the closed world assumption there

will be no tree models which satisfy the description. In other words, for any description

which has some nonroot node without its immediate parent specified, the closed world

assumption will produce an unsatisfiable description. The other way this problem arises

is when a terminal is specified to exist but no word is specified for it. When the closed

world assumption is applied to such a description, the terminal will be assumed not to be

equal to any instances of strings. Because in phrase structure tree models all terminals

are instances of strings, no models will satisfy the resulting description. These facts imply

the only way the closed world assumption will produce a satisfiable description is if all the

terminals which are known to exist have their word specified and all nodes except the root

have an immediate parent specified. Thus in order to use this method for determining the

resulting phrase structure tree, the resulting description must have all the terminals' words

specified and all the nonroot nodes' parents specified. In SUG such a description is called a

complete description, because it completely specifies a unique phrase structure tree under

the assumption that anything which is not entailed by the description is false.

The above approach to finding a unique phrase structure tree for a given description

only works for complete descriptions. Since we do not want to make arbitrary choices

when determining the resulting tree of a derivation, the only derivation trees which can

be allowed are those which result in such a complete description. This is precisely the

requirement for finished SUG derivations; the resulting description must be complete. Many

other constraints on the resulting descriptions of finished derivations can be enforced in the

grammar using features and underspecified terminals, as will be demonstrated in chapter 3.

2.2.4 The Derivations

As mentioned above, an SUG derivation starts with descriptions taken from the grammar,

combines them by conjoining them and adding equations between nodes, and ends with a

complete description which specifies the resulting tree of the parse. Each of these compo-

nents of a derivation are discussed at length in the previous sections. Such a derivation can

be described as a tree, the leaves of which are the initial descriptions, the internal nodes of

which are the intermediate descriptions, and the root of which is the resulting description.

All the descriptions in an SUG derivation tree must be satisfiable, otherwise the resulting

description would also be unsatisfiable. The leaves of an SUG derivation tree are entries

from the grammar, except their variables have been replaced with fresh variables and their

instances of strings have been replaced with fresh instances of strings. This replacement is

done in such a way that all the leaves of a derivation tree have disjoint sets of variables and

disjoint sets of instances of strings. This process is done to prevent two instantiations of

the same grammar entry from getting their variables or terminals unintentionally conflated.

Each internal node of an SUG derivation tree is the conjunction of its children, plus a con-

junction of zero or more equations between nonterminal nodes in its children. Because each

description in a derivation must be satisfiable, the sets of equations are limited to those

which result in satisfiable descriptions. There are no other restrictions on these equations.

The root of an SUG derivation tree must be a complete description. This means this de-

scription must specify an immediate parent for all its nonroot nodes, and must specify an

instance of a string for all its terminals. This requirement guarantees that the resulting

description will specify a unique phrase structure tree after assuming that anything not

entailed by the description is false. This unique tree is the resulting tree of the derivation.

The sentences whose words and ordering are compatible with the terminals of the resulting

tree are the resulting sentences of the derivation. Note that there may be more than one

such sentence, since the ordering of the terminals may be underspecified.

An example derivation is shown in figure 4. The leaves of the derivation tree are possible

grammar entries for 'Ken', 'poses', and 'shamelessly', and are given at the top of the figure.

The first step of the derivation combines the first two structure descriptions with the equa-

tion y ~ x y z . The second step combines this structure description with that for 'shamelessly'

with the equation q =a, thus forming a complete description of the tree shown at the bot-

tom of the derivation. The only sentence compatible with the ordering constraints on this

resulting tree is "Ken poses shamelessly". Note that many other derivation structures are

possible, including the one step derivation which combines all three structures with both

equations at the same time. In fact, all derivations will have an equivalent derivation for

each possible way of combining the grammar entries.

Figure 4: A derivation of the sentence "Ken poses shamelessly". The descriptions depicted
in the top row are grammar entries and the tree depicted at the bottom is the result of
the derivation. See figure 2 for an explanation of the notation used here and in subsequent
figures.

2.3 A Formal Specification of SUG

To clarify the above discussion, the following is a formal specification of an SUG grammar

and the sentences it generates. An SUG grammar is a tuple (S , L, A, V), where V is the

variables, AUstrings is the constants, L is the function symbols, {idom, prec, dorn, terminal,

node) is the predicates, and S i s a finite set of first order formulae in these primitives. The

formulae in S do not use disjunction or negation, and all their variables are implicitly

existentially quantified. The arity of all functions is one. Strings is a set of instances of

strings. The arities of terminal, and node are one. The arities of idom, prec, and dom are

two. What satisfies a formulae and what a formulae entails are always determined with

respect to the axioms given in section 2.1.3.

A description F is generated by a grammar (S , L, A, V) if and only if F is satisfiable,

F is complete, and F = Fl A . . . A F, A E, where the variables and instances of strings in Fl

through F, are disjoint, there exits a substitution 8 for variables and instances of strings

such that Fl[8],. . .,F,[B]ES, and E is a conjunction of equations between nonterminals in

F. A formula F is complete if for every terminal x in F, F entails xms where s is an instance

of a string, and for every node x in F, F either entails x z r , or there is a node y such that F

entails idorn(y,x), where r i s a unique node in F. xis a terminal in F if F entails terrninal(x),

x is a node in F if F entails node(x), and x is a nonterminal in F if x is a node in F but not

a terminal in F.

A tree is generated by a grammar if it is the subsumption minimal phrase structure

tree for some description generated by the grammar. A tree T is the subsumption minimal

phrase structure tree for a description F if T satisfies F, and, for all trees T' which satisfy F,

T subsumes TI. Such a tree will always exist and be unique for any description generated

by a grammar, since all such descriptions are complete descriptions. A tree T subsumes a

tree T' if and only if all the descriptions which TI satisfies are also satisfied by T ([Rounds

and Kasper, 19861). This definition of the resulting tree is equivalent to the one using the

closed world assumption, given above.

A list of strings s is generated by a grammar G=(S, L, A, V) if and only if s is a sentence

for a tree generated by G. A list of strings s is a sentence for a tree T if there is a bijection

g from words in s to nonempty terminals in T such that, g(w) is an instance of w and, if

g(u) precedes g(v) in T then u precedes v in s. Nonempty terminals are those which are not

instances of the empty string. An example of a simple grammar and the formulae generated

by it is shown in graphical form in figure 5.

Figure 5: The second row of structure descriptions are those generated by the grammar
G=(S, L, A, V) with S as shown in the first row, L={cat, head), A={St,S,NP,VP), and
XI,X~?YO,YI,Y~,Y~,Z,W,~,~,~,C,~,~,~,~E V .

2.4 Other Formalisms Using Partial Descriptions of Phrase

Structure

Many other formalisms can be viewed as combining partial descriptions of phrase structure

trees to produce a complete description, but they do not have the properties which will be

necessary in the next chapter. These properties are all concerned with the flexibility with

which grammatical constraints can be specified. In order to be able to express the large

variety of grammatical constraints found in investigations into natural language, it must be

possible to state the constraints you want where you want to state them. Other formalisms

either do not allow certain constraints to be specified or restrict how these constraints can

be grouped into grammar entries. This section will discuss three such formalisms, CFGs,

PATR-11, and the system defined in [Rounds and Manaster-Ramer, 19871. Some other

formalisms which can be viewed in this way will be discussed in chapter 3.

One simple formalism which can be viewed as using partial descriptions of phrase struc-

ture is Context Free Grammars. Each rule in a CFG specifies a possible tree fragment

of depth one. The expansion of a nonterminal in one rule by another rule corresponds to

equating a leaf of one fragment with the root of another. In this sense each rule used in

a derivation describes a fragment of the final tree. The problem is that the specification

of grammatical information in CFGs is very inflexible. Because node labels are atomic,

underspecification of these labels is not possible, thus requiring different rules for each way

of completely specifying the node label which should be underspecified. The same problem

occurs due to the fact that the children of each fragment are completely ordered. Since a

CFG grammar entry is limited to being of depth one, any constraint which spans more than

one level in the tree can not be expressed in a single grammar entry. Systems of node labels

can be devised to encode such constraints, but they suffer from the above limitation on

node label specification and lose the perspicuity of the encoded constraint. Finally, because

a CFG grammar entry is interpreted as a complete description of the parent-child relation-

ships for its root, all possible combinations of children for the parent must each be specified

in a different grammar entry, rather than being able to modularize this specification ac-

cording to co-occurrence restrictions. These factors prevent the perspicuous representation

of many grammatical constraints.

PATR-I1 ([Shieber, 19861) is an extension of CFGs which allows node labels to be spec-

ified using feature structures, including the ability to specify coreference between features

in node labels. This greatly increases the power of the formalism, but it still suffers from

most of the problems discussed above for CFGs. In fact, the only problem it solves is

CFGs' inability to underspecify node labels. Through the use of feature passing techniques,

this ability in turn helps in the encoding of constraints which span more than one level

in the tree, but such feature systems still lose the perspicuity of the encoded constraint.

PATR-I1 still can't underspecify ordering constraints and can't modularize the specification

of parent-child relationships according to co-occurrence restrictions.

The only other formalism I will discuss in this section is that described in [Rounds

and Manaster-Ramer, 19871, A Logical Version of Functional Grammar. This formalism

adds to feature structures the ability to specify dominance and linear precedence relations.

The resulting logic is used in fixed point formulas to specify grammars. The process of

instantiating the type variables in a fixed point formula provides the same kind of structure

as CFG derivations, but this structure is not used to enforce ordering constraints. Ordering

constraints are enforced using the dominance and linear precedence constraints, which may

be unrelated to the variable instantiation structure. This system is less expressive than SUG

because it does not have immediate dominance relations or instance unique terminals, but

the most important problem arises from the use of fixed point formulas to specify grammars.

Just as the instantiation of type variables has the same structure as CFG derivations, the

specification of type variables in fixed point formulas has the same restricted domain for

specifying grammatical constraints as CFG rules. Any constraint which spans more than

one level in the instantiation structure can only be stated with the use of feature passing

techniques. The other problems discussed above are avoided in this system because of the

extensive use of partial information, including the unrestricted use of disjunction.

Chapter 3

Unifying Insights into Natural

Language

Now that we have defined a formalism which allows the flexible use of partial information

about phrase structure, it is possible to demonstrate how this approach allows the unification

of insights from a variety of investigation into language. Two characteristics of Structure

Unification Grammar will be important for this; SUG's use of partial information allows the

grammar to say exactly what is known where it is known, and SUG's combination operation

permits a complete separation between the phrase structure and the derivation structures.

The first characteristic is important for expressing many different kinds of grammatical

information, all in a concise perspicuous fashion. The second characteristic is important for

expressing within a single framework the insights from both investigations into grammatical

constraints on language, and investigations into the processing of language. Both these types

of investigations will be discussed.

This chapter will demonstrate how SUG can unify the insights from a variety of in-

vestigations into language by discussing an assortment of investigations and showing how

insights from them can be captured in SUG. In some cases it will even be possible to show

that an insight is better captured in SUG than in its original formalism. The discussion of

individual investigations will be preceded by a section which gives examples of how to per-

spicuously express a variety of grammatical constraints in SUG. These analyses are not spe-

cific to any particular investigation, but are taken from the field in general. The subsequent

sections discuss particular investigations into language. The investigations discussed are

Lexical Functional Grammar, Description Theory, Abney's licensing parser, Tree Adjoining

Grammar, Lexicalized Tree Adjoining Grammar, and Combinatory Categorial Grammar.

3.1 Examples of Expressing Grammatical Constraints

The characteristic of SUG which makes the perspicuous representation of grammatical con-

straints possible is the flexibility with which information can be specified in the grammar.

This flexibility gives SUG a large domain of locality for expressing grammatical constraints,

the ability t o underspecify information within this domain, and the ability to overlap these

domains arbitrarily in a derived structure. The significance of these characteristics will be

demonstrated through a series of examples. The first section gives several examples of how

SUG's large domain of locality allows the perspicuous representation of lexically specific

information within a word's grammar entry. The second section discusses how the under-

specification of information can be used to express ambiguities. The third section then

discusses how the previous lexicalized grammar entries can be decomposed so as to express

generalities in the grammar1.

3.1.1 Using SUG's Large Domain of Locality

Structure Unification Grammar's large domain of locality for expressing grammatical con-

straints permits interdependent sets of grammatical constraints to be expressed in single

grammar entries. To demonstrate this ability this section will give examples of lexical-

ized grammar entries. Each of these entries will include a terminal for the lexical item

and the fragment of structure necessary t o express the grammatical constraints associated

with that lexical item. These grammatical constraints are simply what we know about

the phrase structure given the presence of the lexical item. This topic will be discussed

further in sections 3.5 and 3.6 on Tree Adjoining Grammar and Lexicalized Tree Adjoining

Grammar.

The significance of SUG's domain of locality can be demonstrated by contrasting it

with that of Context Free Grammars. In CFGs even the enforcement of subcategorization

constraints needs to be coordinated between multiple grammar entries. The structure for

'rolls' in the middle of figure 6 shows how several such constraints can be expressed in a single

'Throughout this section I will be giving particular analyses, but these analyses are not the point of
this section. The objective is to demonstrate that analyses exist which have the properties discussed. Many
other analyses are possible within SUG, with varying degrees of naturalness. Disagreements with the analyses
given here are not in and of themselves arguments against the claims being made.

SUG grammar entry. The whole projection of the verb is present, the subcategorization -
for an subject is expressed, and the agreement information is expressed on this subject.

To express the interdependence between the lexical item and these constraints in a CFG

would require introducing several features of node labels whose sole purpose is to enforce

this interdependence across the boundaries of grammar entries. There will be several other

examples in this chapter which demonstrate how such node features can be eliminated given

SUG's large domain of locality.

(jR,?sg- R,3

quick,

Key:
x x - - -* Y prec(x,y) I idom(x,y) x)h head(x)-y (X X = Y
Y x, terminal(x) Y [I empty feature
x x:C cat(x)-C '2 specifier(x) -y structure
: dom(x,y) xjw x..wN
i. Y

Figure 6: Some example grammar entries used to derive the sentence "the quick tonka rolls
very quickly". The key is repeated here for convenience.

The structures for 'quick', 'quickly', and 'very' in figure 6 show how modification in-

formation can also be expressed within SUG's domain of locality. This ability eliminates

the need to introduce node features which distinguish between the categories adjective and

adverb, since the distinction can be expressed within the structure by specifying the cate-

gory of the modified node. Adjectives are A's which modify N's and adverbs are A's which

modify either V's or sometimes other A's. This in turn permits a single entry for 'very'

which can modify both adjectives and adverbs. By specifying adjuncts in this way, mul-

tiple adjuncts can attach to a single node. The root node of each adjunct structure can

equate with the node being modified without interfering with the attachment of the other

adjuncts. This iteration is possible because each adjunct brings with it the link necessary

to be attached. In contrast, subcategorized arguments can not iterate because the link

for attachment is supplied by the subcategorizing structure, not the argument, and thus

only one argument can attach. This technique for attaching adjuncts eliminates the need for

Chomsky adjunction2. The distinction between adjunct relationships and subcategorization

relationships will be discussed further in section 3.4 on Abney's licensing parser.

The structure for 'the' in figure 6 is like the modification structures in that the terminal

is not the head of the root, but it cannot iterate because the terminal is the specifier of the

root. The link between the and the is there in case the head of the is not a full

by itself, such as is the case for 'tonka' in figure 6. The structure for 'who' in figure 7 has a

similar basic configuration. Again in these structures, SUG's ability to express information

within the structure associated with a word, rather than just in its category, permits node

features to be eliminated. Given this analysis there is no need for the category determiner.

In fact the only categories which appear to be needed are the major categories, N, V, A, and

P, with their bar levels3. This is an indication of how much more expressive a formalism

with a large domain of locality, like SUG, is than a formalism like CFGs, in which much of

the work in writing a grammar is working out a system of features to enforce constraints

across grammar entry boundaries.

Because SUG allows the specification of dominance relations, long distance dependencies

can also be expressed in its domain of locality. An example of this is given in the structure

for 'who' in figure 7. In this structure node zy acts as a trace, since it needs to find an

argument position t o give it an immediate parent, and it will fill an obligatory argument

position by giving the argument node a filled head. The dominance relation restricts q so

it must equate to a node within the lower T, thus enforcing that 'who' must c-command its

trace4, but it also allows wl to move arbitrarily far from 'who'. Other constraints on where

a trace can equate can be enforced using node features, as will be shown in the discussion

21f Chomsky adjunction is desired, then it can be accommodate by splitting xnodes into two xnodes with
a dominance link between them. This allows a series of intermediate nodes to be inserted between them
to produce a Chomsky adjunction structure. If nothing is inserted the two X nodes can simply equate, since
dominance is recursive, giving the usual unmodified structure. I do not adopt this analysis because I think
Chomsky adjunction is an artifact of the inadequacies of CFG, not an insight of that investigation. In terms
of the adjunct/argument distinction just discussed, CFGs only have the ability to specify subcategorized
arguments.

3There are other features, such as tense and agreement, which could be argued to be part of the category
of a node. Nevertheless, all nodes can be subcategories of N, V, A, or P and there is no need for any
Uextracategorialn nodes, such as determiner.

4C-command is a relationship often used in Government-Binding Theory. The exact definition is not

Figure 7: An example of using dominance to express long distance dependencies.

of LFG.

Gerunds are a particularly good test for the domain of locality of a formalism because

they act like noun phrases but have the internal structure of verb phrases. Figure 8 gives

one possible structure for the gerund 'riding'. This structure includes the usual structure

of a v7 including the subcategorization for the object of 'ride7. However, the root of the
- -

structure is an E5 , thus making it fill N argument slots.

The two possible structures for 'wants' in figure 9 give another example of the advan-
-

tages of SUG7s domain of locality. The verb 'wants7 is followed by an and a tenseless V.
The 3 is semantically the subject of the 7, but the gets its Case6 from 'wants'. This

leads to two possible structures for 'wants', one which follows the semantic structure and

one which follows the Case structure, as shown in the first and second structures in figure 9,

always agreed upon, but it always involves there existing a node which is a short distance above the c-
commanding node and an arbitrary distance above the c-commanded node. In this case this node is the top - -
v. - -

'The head of the E root is shown as being 'riding', which is also the head of the v. This seems to violate -
the linguistic notion of head, but as is discussed in section 3.1.3, the head of the E is actually the '-ing'
endine. " -

'In Government-Binding Theory, Case is a formal notion closely related to case. All overt F s must
receive Case, even if their case is not overtly marked. 'Wants' is an exceptional Case marking verb because
it assigns Case to the semantic subject of its object, rather than having the subordinate verb assign Case,
as is true for 'said'.

riding,

tonkas, quickly,

Figure 8: One possible grammar entry for the gerund 'riding' used to derive the sentence
"Ken likes riding tonkas quickly".

respectively7. In either structure the relationship not expressed in the structure can be -
expressed over the nodes in the structure, and the case of the can be expressed. I will

adopt the second of these structures because semantic information will have to be expressed

anyways, so it seems unnecessary to have the syntactic structure mimic the semantic struc-

ture. Also, Case seems like an inherently syntactic phenomena, so it is not clear what role

it would play if not to determine the syntactic structure. Thus it is natural to assume that

immediate dominance links act analogously to Case assignment, only extended to all the

categories. Under this interpretation the adjunct structures in the previous structures can

be interpreted as saying that adjuncts assign themselves Case. This interpretation of Case

is similar to Abney's notion of licensing, as will be discussed in section 3.4.

 h here are other possible analyses. One common analysis is to express the subcategorization for the
subject with the infinitival verb, in the same way as would be done for tensed verbs, except the subject
would be marked as needing Case. Given this, the structure for 'wants' would still need to mention the
subject in its structure in order to say that it gives the subject Case. In accord with the idea that the
grammar entry should say everything known, the subcategorization and subjecthood relationship would also
be expressed in the structure for 'wants'. Given this, it is not clear why the subcategorization for the subject
should also be in the structure for the infinitival verb. For this reason I have not included this analysis in
the example, but that is not to say it could not be done.

'The need to express semantic information separately from phrase structure relations will be argued for
in section 3.2 on Lexical Functional Grammar.

- wants,

Figure 9: Two possible grammar entries for the exceptional case marking verb 'wants'.

3.1.2 Trading Ambiguity for Underspecification

SUG not only provides the domain of locality necessary to state what constraints are known

where they are known, it also allows you not to say what you don't know. This is a natural

consequence of using partial specifications. By underspecifying information, what would

otherwise be an ambiguity between multiple grammar entries can be expressed in a single

grammar entry. This section will give a few examples of this ability.

Figure 10 shows how underspecification of node labels can be used to express ambigui-

ties. Because feature structures are being used to label nodes, it is possible to underspecify

these labels, and thus express ambiguity between multiple labels. To do this, however, it

is necessary to use a feature decomposition of node labels which allows the desired ambi-

guities to be expressed. In the examples in figure 10 I use a feature decomposition of the

major categories which differs from the Chomskian feature decomposition. I represent N

as [-S,-MI, V as [+S,-MI, A as [-S,+M], and P as [+S,+MI9. This allows one structure

for 'know' which allows for either an 7 or a 7 object, which would not be possible with

the Chomskian feature decomposition. The second structure in figure 10 allows 'always' to

attach to either a or a P.
Another kind of ambiguity was expressed in each possibility for the structure for 'wants'

given in figure 9. Both structures express the fact that the objects of 'wants' are both

optional. They are optional because there are no underspecified terminals associated with

them. Remember that in order for a description to be complete, all the terminals in the

description need to have their words specified. By giving a node an underspecified terminal

as its head, that node must equate with a node which has a word as its head, thus "filling"

'Intuitively, the S feature stands for "usually subcategorizes for something" and the M feature for "usually
modifies something". Of course this interpretation of these features has no causal role in the system.

always,

Figure 10: Examples of using feature structures to underspecify node labels.

the argument. This technique is used to make the subject of 'wants' obligatory. Because the

heads of the two objects of 'wants' are either not mentioned or not specified as terminals,

they do not have to be equated with for the structure to be complete. Thus the objects are

optional.

3.1.3 Capturing Generalities

All the examples of grammar entries in the above sections are lexicalized. Using different

grammar entries for each word fails to express the generalities in the grammar. For example,

the structure given for 'rolls' in figure 6 has a lot in common with the structure given

for 'likes', as will any tensed verb. To express this generality i t is necessary to split the

information in these structures into the part which is present simply because the terminal

is a tensed verb, and the part which is specific to this verb. In SUG this can be done,

because the combination operation SUG uses allows two different grammar entries to have

multiple nodes in common in the derived structure. This section will look at several of the

structures given in the previous section and show how they can be constructed from a more

modular set of structures which express generalities in the grammar.

Figure 11 shows how the structures for 'rolls' and 'likes' given above can be split up to

express the significance of tense in the grammar. The root of each verb determines what

objects are subcategorized for, and the tense, which is manifested as a '-s' ending on the

verbs, determines the subcategorization for the subject. When the verb root's structure -
is combined with tense's structure by equating the V's, the result is the structure given

above for the tensed verb. Note that the verb root and tense structures have the entire

projection of the verb in common after they are combined. Because such overlapping is

allowed, structures can be split according to the interdependence of information, rather

than according to the topology of the structure.

rolls , likes , I

t J like, I

Figure 11: The two structures given in the first line can be split by morpheme and expressed
as the three structures given in the second line. The later decomposition expresses the
significance of the tense suffix '-s' in the former.

A similar split to that just discussed can be used to express the significance of the '-in&

ending on gerunds. Figure 12 shows how the structure for 'riding', taken from figure 8, can

be split into a structure for 'ride' and a structure for '-ing'. As in the above paragraph,

the verb root specifies the projection of the verb and what objects are subcategorized for.

The '-ing' ending specifies the root and its relationship to the 7. Again, the flexibility

of the combination operation is necessary to allow this split. Also, as is the case in all the

structures given here, the information provided in the structure for 'ride' is exactly what is

known about the structure given the presence of this morpheme, and the structure for '-ing'

specifies exactly what is known about the structure given the presence of the morpheme

'-ing'.

Splitting lexicalized grammar entries into a component for each morpheme can also be

used t o express the significance of a word's root in the grammar. This is demonstrated

in figure 13. 'Quick' can be the root of either an adjective or an adverb, although in the

former case the affix is not phonetically realized. The structure for this root specifies its

projection, which presumably includes semantic information. The '-ly' suffix makes 'quick' -
an adverb by specifying that the K modifies a v. The other structure shown allows 'quick'

to become an adjective by specifying that the modifies an x, although the effects of this

structure are not phonetically realized in the resulting terminals.

Structures like those given above obviously do not capture all the generalities which

riding,

Figure 12: The structure given on the left can be split by morpheme and expressed as the
two structures given on the right. The later decomposition expresses the significance of the
verb root and the suffix '-ing' in the former.

VS

quick, , quickly,
' I

Figure 13: The two structures given on the left can be split by morpheme and expressed as
the three structures given on the right. The later decomposition expresses the significance
of the root 'quick' in the former.

exist in the grammar. However, too fine grained splitting of structures would force the

introduction of special features to enforce constraints between different grammar entries.

This is precisely what was being avoided in the discussion of SUG's large domain of locality.

At the moment it is not clear what degree of modularity is appropriate for SUG's level of

representation. It could be that in order to fully express linguistic generalities without

nullifying the advantages of SUG's large domain of locality, another level of representation

would need to be introduced. Such a level could be analogous t o meta-rules in GPSGlO.

3.2 Lexical Functional Grammar

Capturing Lexical Functional Grammar's expressive abilities within SUG is of interest be-

cause it demonstrates how an SUG grammar can enforce a broad set linguistic constraints.

Of the many linguistic formalisms, Lexical Functional Grammar (LFG) is of particular in-

terest because of its explicit representation of semantic information in a structure distinct

from the phrase structure. This method of encoding semantic information in a grammar

works well in SUG and fits well with the approach that a grammar should explicitly say

what is known where it is known. LFG is also of interest here because the complexity and

directness of the formalism's representations exceeds that of the other formalisms discussed

in this paper.

To demonstrate that Lexical Functional Grammar's expressive abilities can be captured

within SUG I will show that any grammar in the version of LFG to be discussed can be

translated into an equivalent SUG grammar". The fact that SUG is sufficiently powerful to

do this at all is interesting, but also interesting is the way various constraints from an LFG

grammar are expressed in an SUG grammar. The constraints which will be of particular

interest are the explicit encoding of predicate-argument structure within the grammar and

the handling of long distance dependencies.

After specifying the precise version of LFG which I will be using, this section defines the

translation from such an LFG grammar to an SUG grammar. Following the definition of the

translation, the expression of linguistic constraints in the two formalisms will be compared.

'O~ilman Becker is investigating such a meta-level representation for Tree Adjoining Grammar.
''since LFG is known to be undecidable, this fact implies that SUG is undecidable as well. However,

if the feature structures of LFG grammars are limited so they can not generate arbitrarily large feature
structures, then LFG is decidable, and so is the translation of LFG in SUG. This issue will be discussed
further in section 3.5 on Tree Adjoining Grammars.

3.2.1 The Version of LFG

The version of LFG which I will use here is a subset of that given in [Kaplan and Bres-

nan, 19821. This version was chosen over more recent versions which involve functional

uncertainty because functional uncertainty is less perspicuously represented in SUG than

the system of bounded dominance metavariables and bounding nodes used in [Kaplan and

Bresnan, 19821. It is not clear that functional uncertainty can be completely simulated in

SUG at all. The only other serious shortcoming of the version of LFG used here is the

lack of set valued features in f-structures. To prevent any confusion with more complete

versions, the version presented below will be called LFG'.

3.2.1.1 Constituent Structure

In [Kaplan and Bresnan, 19821, constituent structure (c-structure) is determined by context

free rules with a few additions. The categories on the right side of a rule may be placed in

parenthesis, followed by a star, or a set of categories can be placed in braces and followed by

a star. The parenthesis denote that that constituent is optional. The star denotes that zero

or more instances of the category may be present in that position. The braces followed by

a star says that zero or more instances of any of the categories in the braces can be present

in that position, in any order. The f-structure equation associated with such a repeated

category is applied to each instance of that category, not to the collection of them. All

these features are allowed in LFG'.

3.2.1.2 Functional Structure

Most of the work in LFG is done in the functional structure (f-structure). F-structures

are represented in feature structures. The features and values of these feature structures

are specified with equations associated with each c-structure node. These equations can be

expressed using immediate dominance metavariables or bounded dominance metavariables.

The features and values may also be constrained with other statements annotating each

c-structure node.

The Feature Structures

The feature structures used in [Kaplan and Bresnan, 19821 have a few special character-

istics. Although a given grammar has a finite number of labels, there are an infinite number

of possible atoms. This is because each instance (token) of a semantic form is unique. Other

than semantic forms, a given grammar has a finite number of atoms. In LFG' the use of

semantic forms is restricted to occurring as values to the feature PRED. In addition to reg-

ular atoms, semantic forms, and feature structures, [Kaplan and Bresnan, 19821 also allows

features to have set values. Since there are no set values in SUG, LFG' does not allow the

use of set values. As will be discussed in section 3.2.5, this slightly restricts the coverage of

this version of LFG, as compared to that of [Kaplan and Bresnan, 19821.

Local Feature Value Statements

One way to specify information about the f-structure is by using the immediate domi-

nance metavariables 1 and f . The 1 is instantiated with the J-variable of the node whose

category the equation annotates. The f is instantiated with the 1-variable of the node

whose category is on the left side of the rule. These variables are given the values of the

5 f-structures of the nodes, henceforth simply called the f-structures of the nodes. Thus

the equations discussed here state information about these f-structures. For example, (1)12

says that the value of the SUBJ feature of the f-structure for the S node is the f-structure

for the NP node, and the f-structure of the S node is the same as that for the VP node.

Such equations can also be stated on lexical entries, as shown in (2).

(1) (K's 21) S - NP VP
(f S U B J) = I f = f

(2) (K's 22) handed: V, (f TENSE) = PAST
(1. PRED) = 'HAND((f SUBJ)(f OBJ2)(f OBJ))'

In [Kaplan and Bresnan, 19821 immediate dominance metavariables are used in two

ways, to specify two values as being equal, and to specify a label as being the same as a

value. The above examples are of the first type. (3) shows the second use. Here the feature

(3) (K's 43) VP + V PP*

which the PP's f-structure is a value of, is labeled by the symbol which is the value of the

PP's f-structure's PCASE feature. Both these uses are allowed in LFG', but the second can

12Most of the examples in this section are taken from [Kaplan and Bresnan, 19821. The numbers in
[Kaplan and Bresnan, 19821 for the examples will be given next to the numbers used here.

not be used to specify a label to be the value of a PRED feature because PRED's value is

a semantic form.

In addition to being able to specify a specific value for a feature, it is also possible to use

disjunction to specify that a feature has one of several possible values. This is also allowed

in LFG'.

Feature Value Constraints

In addition to being able to state the value of a feature, it is also possible to constrain

it in various ways13. One way is demonstrated in example (4). Here the CASE feature

(4) he: N, (f NUM) = SG
(f CASE) =, NOM
(r PRED) = 'PRO'

of the f-structure for the N node is constrained to be NOM. This means that the CASE

feature must be stated as having the value NOM by some other rule; it does not actually

state the value of this feature. The difference between this and a normal equation is that

the f-structure is also ruled out if no value is specified for the feature.

Another way to constrain the value of a feature is simple to specify that there must be

a value, without specifying what that value must be. This is called an existential constraint

and is demonstrated in (5) by the statement (7 TENSE).

(5) (K's 71) S - NP VP
(1' SUBJ) = 1 t = 1

(1 CASE) = NOM (f TENSE)

Either of these constraint statements can also be used with a negation symbol to con-

strain what a feature's value can't be. For example, (6) says that if to is present then the

f-structure of the S node can't be specified for the TENSE feature. In LFG', the value of a

feature which is negatively constrained can only range over atoms14.

(6) (K's 73) VP' - to VP
7 (r TENSE)) f = 1

13None of the methods of constraining feature values can be used for the PRED feature, since its value is
a semantic form. The importance of this restriction will be demonstrated in section 3.2.2.2.

"It is not clear that this restriction is necessary, but it makes the simulation of this mechanism easier.

Nonlocal Feature Value Statements

In addition to the immediate dominance metavariables, an f-structure statement may

include the bounded dominance metavariables $ and 6. Each fi is instantiated with the same

&-variable as some &. This relationship is called constituent control. The & is cdled the

constituent controller and the $ is called the constituent controllee. Constituent control can

be constrained by adding subscripts to the arrows. One bounded dominance metavariable

can control another only if they have the same subscripts. It is also necessary for the $

to be within a control domain for the 4. A control domain is a portion of the c-structure

dominated by the control domain's domain root. The domain root of a control domain for

a & can be restricted by adding a superscript which specifies the category of the domain

root. The domain root is also required to be a child of the parent node in the rule in which

the 4 is specified. Thus, in (7), &ip must control a hP, such as that in (8)' and this hp
must be in an equation annotating a node in the control domain rooted by the S node.

(7) (K's 141) Sf - NP S

(t Q) = & p W h l f = -1
(1 FOCUS) = 1

(8) (K's 135) NP - e
7 = I?NP

Control domains are limited by specifying bounding nodes. These are represented by

putting boxes around the bounding nodes in a c-structure rule, as shown in the more

complete version of (7) given in (9). The complete definition of a control domain is given

(9) (K's 150) Sf - NP El
c r ~) = u g ~ ~ t = i

in the bounding convention ([Kaplan and Bresnan, 19821 p245):

A node M belongs to a control domain with root R if and only if R dominates M and there

are no bounding nodes on the path from M up to but not including R.

Set Valued Feature Structures

As mentioned above, [Kaplan and Bresnan, 19821 uses set valued feature structures.

Since these are not available in SUG, LFG' must be defined differently than the version in

[Kaplan and Bresnan, 19821 for certain phenomena. [Kaplan and Bresnan, 19821 analyzes

adjuncts and coordination using sets. In LFG', adjuncts are analyzed by adding what would

be included in a set directly to the feature structure the set would be in. This may require

changing some feature labels to prevent unwanted feature clashes. LFG' does not include

any provisions for handling coordination. This is because in SUG coordination appears to

be best treated at the level of processing. This view will be discussed below in section 3.7

on Combinatory Categorial Grammar.

3.2.1.3 Global Constraints

There are several well-formedness constraints on f-structures. The requirements given in

[Kaplan and Bresnan, 19821 are functional uniqueness, completeness, coherence, and proper

instantiation. In addition LFG' requires unique association. Functional uniqueness says

that in any f-structure a particular feature can have at most one value. This is enforced by

the fact that f-structures are represented as feature structures. The rest of the constraints

are discussed below.

Completeness ensures that all the features needed by all the f-structures' PRED features

are present. An f-structure is complete if it and all the f-structures in it are locally com-

plete. An f-structure is locally complete if it contains values for all the governable features

which its predicate governs. A feature is governable if any semantic form in the grammar

subcategorizes for it. An f-structure's predicate governs a feature if the f-structures PRED

feature's semantic form mentions the feature.

Coherence is the complement of completeness. An f-structure is coherent if it and all the

f-structures in it are locally coherent. An f-structure is locally coherent if all the governable

features it contains are governed by the f-structure's predicate. In addition to this, the

definition of coherence is extended to include "topicalized" categories. For an f-structure to

be locally coherent, the features TOPIC and FOCUS must have their values identified with

those of features which are subcategorized for. [Kaplan and Bresnan, 19821 also allows the

values of TOPIC and FOCUS to be anaphorically bound in stead of identified, but since

anaphora is not being considered here, LFG' does not allow for this possibility.

Proper instantiation restricts the instantiation of bounded dominance metavariables

beyond requiring that a controllee be in a control domain of the controller it is bound

to. Several conditions must be satisfied for an f-structure to be properly instantiated. All

domain roots must be distinct. There must be at least one control domain for each controller

(.&). For a given controller, each of its control domains must have exactly one controllee

(fi). Each controllee must have exactly one controller. [Kaplan and Bresnan, 19821 also has

requirements that the binding relationships be "nearly nestedn and that all control domains

have a lexical signature. These are not part of LFG'. The first is probably a processing

constraint and the second is best dealt with as part of a theory of headedness.

Unique association is a restriction on allowable LFG' grammars. It requires that for

any grammar there can be defined a partial mapping from metavariables to categories in

c-structure rules such that, for every f-structure F generated by the grammar, this mapping

determines a total function from the f-structures included in F to the c-structure nodes of

F's associated c-structure. In other words, for every f-structure included in a generated

f-structure, there is always a unique c-structure node which is associated with it via a

mapping defined on the grammar. In all the examples in this section, the mapping can

be defined by associating each category which is annotated with an equation assigning a

value to PRED, with the metavariable having this feature predicated of it. Since all the

f-structures in the examples will eventually have one and only one value for PRED, this

mapping fulfills the requirements for unique association. The importance of this restriction

for the simulation of LFG' in SUG will be discussed in section 3.2.2.2.

3.2.1.4 Anaphora

[Kaplan and Bresnan, 19821 includes a theory of anaphoric binding as part of LFG. Since

SUG provides no method for coindexing things, other than having them share some feature

structures, LFG' will not include any theory about anaphoric binding. In SUG anaphoric

binding is considered a postsyntactic phenomena.

3.2.2 Expressing LFG' in SUG

In this section the mapping from an LFG' grammar to an equivalent SUG grammar is

given. The SUG grammars are equivalent to their associated LFG' grammars in the sense

that they define the same sets of sentences, and portions of the SUG structures produced

for each sentence can be identified which are the same as the f-structures produced by

the LFG' grammar for those sentences. In particular, the f-structure is a subset of the

SUG structure's root's feature structure. In addition, the c-structures for a sentence are

approximately a subset of the nodes and relations in the SUG structure, each labeled with

one of the values in their feature structure. The exact definitions of these correspondences

will be given below. The discussion below will parallel that in the previous section. At the

end of each component of the mapping, the significance of that component will be briefly

discussed.

3.2.2.1 Simulating Constituent Structure Rules

An SUG grammar can simulate c-structure rules by augmenting the simulation of context

free rules. Context free rules can be simulated as shown in figure 14. The structural

relationships between nodes are the same as the derivation structure for this rule, with the

addition of a few extra terminals. Every nonterminal here has a cat feature which specifies

the category of that node, and a uid (Unique IDentification) feature which is used to ensure

that all possible equations simulate application of CFG rules. The uid features of the roots

of these treelets have an empty string terminal as their value. Since all such roots have

this feature and terminals are instance unique, two roots can never equate. In addition, the

nonterminal leaves of a treelet all have distinct values for the feature position, so they can

never equate to each other. Thus the only allowable equations are between leaves and roots.

Such an equation simulates the expansion of the leaf by the rule for the root's structure.

To guarantee that the leaves of a rule's structure do equate with the root of another

rule's structure, the nonterminal leaves of these treelets have underspecified terminals as the

values of their uid features. In order for the structure to be complete, these underspecified

terminals must equate with fully specified terminals. The only way this can happen is if the

leaves which have the terminals as their uid values equate with roots, which have specified

terminals as their uid values. Once a leaf is equated with a root it can't participate in any

more equations due to its uid feature value. Note that the existence of the empty string

terminal in this structure has no linguistic significance. The notation of SUG could easily

be changed to eliminate the need for this terminal without changing its power or basic

character.

Given this framework, the use of parenthesis to designate an optional constituent can

be easily simulated, as shown in figure 15. The only difference between the optional and

obligatory arguments is that optional arguments do not have their uid feature referring to

an underspecified terminal. This means that the optional argument leaves do not need to

type: c-struc
Lat: S 1

Figure 14: The SUG structure which simulates the context free rule S + NP VP.

type: c-struc
L t : N P 1
Luid:

4

type: c-struc type: c-struc type: c-struc et
-3 kfi.] ---+;:m

Figure 15: Simulating the optional argument in NP + DET (AP) N.

find a root to equate with, but there is still nothing preventing such an equation from taking

place. Thus the expansion of this constituent is optional, as desired.

Simulating the two additions involving repeated constituents is a little harder. This

requires the addition of a node which is not in the c-structure, and interaction with other

rules. The effects of following a category with a star is simulated as shown in figure 16. The

position of the starred category is recorded by adding a special node in that position. This

node has the value *-node for the feature type so as to distinguish it from the c-structure

nodes. The features rule# and position make this node distinct from other uses of star.

The possibility of having an arbitrary number of constituents in this position is handled

by allowing each child to provide its own immediate dominance link to this special node.

Thus every rule which expands a category of the type which is starred needs an additional

structure for attaching in this position. In figure 16 one of these additional structures

is given for the rule P P + P NP. The root of this structure can only equate with the

particular star node for NP -+ DET N PP* because of the values given to its type, rule#,

and position features. In this way, any number of any P P expansion structures can be

introduced in this position. This method can be generalized to the cases where the star

follows a set of categories by introducing the additional structures for the rules expanding

any categories in the set. This technique for encoding stared constituents is the same as

the usual way of expressing them in CFG, except Chomsky adjunction is not necessary.

type: c-struc
L t : N P 1

I
type: c-struc

a t : P 1
pz:$-stnr 1 1type: c-&mc I = t

..., cat: NP
1---71 wsition: 2 I

Figure 16: The structure for the rule NP - DET N PP* and the additional structure this
rule needs for the rule P P - P NP.

As this last construction indicates, the structure constructed for a sentence by an SUG

grammar may not be exactly the same as the c-structure constructed for that sentence by

the equivalent LFGf grammar. However, there is a straightforward mapping between the

two. Given a structure produced for a sentence by an SUG grammar, the c-structure which

would be produced for this sentence by the equivalent LFGf grammar is the tree formed

by the immediate dominance and linear precedence relations between the nodes whose type

feature has the value C-strue, plus immediate dominance relations between each child of a

node whose type feature has the value *-node, and this later node's parent. Each c-structure

node has the label given in the associated SUG structure node's cat feature. This mapping

will not change even though other types of nodes will be added to the SUG structure in the

following section.

The one remaining problem in simulating c-structure rules is how lexical entries are

used to close off the expansion of a category. As demonstrated in figure 17, lexical entries

are treated as simple c-structure rules. Since the uid feature of the root is a terminal with

its word specified, equating it to a node will close off the simulated expansion of this later

node.

handed

Figure 17: The structure for the lexical entry "handed: V".

3.2.2.2 Simulating Functional Structure Annotations

F-structure is represented in the SUG grammars by embedding it in the feature structures

of the nodes described in the previous section. In this way the instantiation of immediate

dominance metavariables is a direct consequence of the unification of the node's feature

structures. However, this does not allow the direct expression of many of the mechanism

LFG' uses for specifying information about f-structures. The simulation of these mech-

anisms often require enumerating many cases or making use of the constraints on SUG

structures using additional nodes. The instantiation of bounded dominance metavariables

can also be simulated straightforwardly by embedding their f-structures in the feature struc-

tures of nodes. The difference between this process and simulating immediate dominance

metavariable instantiation is that simulating bounded dominance metavariable instantiation

makes use of the ability to only specify dominance relations, thus allowing the metavariables

to control another metavariable which is an arbitrary distance from the c-structure nodes

where it is attached. Each of these constructions will be discussed in detail below.

Representing LFG' Feature Structures

The feature structures used in SUG are very similar to those used in LFG', but one

difference needs to be compensated for. LFG' grammars have an infinite number of atoms,

since semantic forms are instance unique. Thus it is not adequate to simple specify semantic

forms as atoms in SUG feature structures. However, the effect of instance unique atoms can

be achieved by representing each semantic form as a feature structure containing an atom

which specifies the semantic form, and a terminal, since terminals are instance unique. With

this minor addition, LFG' feature structures can be translated directly into SUG feature

structures.

Simulating Local Feature Value Statements

Statements which specify the values of attributes in f-structures can be simulated

by simply recording this information in the feature structures which represent these local

variables. These feature structures are the values of the feature f-struc in each c-structure

node. Figure 18 shows how (10)15 is represented in this way. The fact that the value

(10) S - NP VP
(l S U B J) = J T = 1

(1 CASE) = NOM

of the SUBJ feature in the f-structure of the S is the f-structure of the NP, is stated

by coreferencing these two values. Now when a node is equated with the NP node, the

former node's f-structure will be unified with the value of the subj feature for the S node.

Lexical entries are handled similarly, as shown in figure 1916. For structures which include

a node with type: *-node, the f-struc value of this node is coreferenced with that of the

parent. The equations annotating the starred symbol are then represented on the additional

structures for the rules expanding this starred symbol. This is discussed further below and

is demonstrated in figure 20.

Given this representation for the f-structure of a given c-structure node, the f-structure

of a sentence is the value of the f-struc feature in the root of the sentence's complete SUG

structure, converted as discussed in the previous section. Later it will actually be necessary

to change this definition slightly and eliminate a few features from this feature structure

l5MY example, but derived from (71) in [Kaplan and Bresnan, 19821.
''As in Waplan and Bresnan, 19821, the metavariables within the semantic form are left unanalyzed, since

their instantiation plays no role in the acceptability of a structure.

Figure 18: A partial simulation of (10) by adding the f-stwc feature to figure 14.

9 I
handed,

Figure 19: The simulation of (2), repeated below, by adding the f-struc feature to figure 17.

(2) (K's 22) handed: V, (T TENSE) = PAST
(t PRED) = 'HAND((?' SUBJ)(f OBJ2)(t OBJ))'

and the feature structures it includes. However it will remain a simple matter to extract

the f-structure from a SUG structure for a sentence.

Since there is no way to underspecify or coreference feature labels in SUG feature struc-

tures, the use of immediate dominance metavariables to specify equality of a label with a

value can not be expressed directly. However, since any LFG' grammar has only a finite

number of labels, it is always possible to enumerate all the possible labels and enforce this

equality in every enumeration. Since SUG derivation is a nondeterministic process, it is

sufficient to simply list all these possibilities in the grammar. An example of a schema for

these entries for (11) and (12) is given in figure 20. Note that the case feature's value is

(11) NP + DET N PP*
T=1 T = L (t (1 CASE)) = 1

(12) P P + P NP
t = I (t O B J) = L

written as "case:, a". This is not actually an expression within SUG feature structures; it

denotes that the value of case is constrained to be a, but this is not yet known to be true.

The expression of such constraints within SUG will be discussed in the next section.

The use of disjunction to specify feature values is also handled by taking advantage

of SUG's nondeterministic derivation process. All that need be done is specify a different

structure for each disjunct. If there is more than one disjunction in a rule, then there must

be a different structure for each possible combination of values. This in effect pushes all

disjunction down into the grammar, which is disjunctive by nature. It would be possible to

add to SUG the ability to specify arbitrary disjunction, as is done with feature structures

in [Rounds and Kasper, 19861. This would not change the formal power of SUG, but most

linguistic applications don't seem to need it. Whenever possible disjunction should be

expressed as the underspecification of feature values.

As is hopefully now clear, the local feature value statements for the f-structures of

LFG are easily expressed in SUG as part of SUG's node labels. This technique carries

over directly to methods of specifying syntactic structure other than that used in LFG.

The predicate-argument structure specified in LFG as annotations on CFG rules can be

specified in any SUG grammar as information embedded in the feature structure labels of

fstruc: [I

position: 3
fstruc: [a :

Figure 20: Schema for the structure for (11) and the additional structure this rule needs
for (12). This is figure 16 with the f-struc feature added.

nodes. This is facilitated in SUG because SUG's domain of locality is sufficiently large to

specify these predicate-argument relations without the feature passing techniques necessary

in LFG.

Enforcing Feature Value Constraints

The ability to constrain the value of a feature is very difficult to simulate in SUG. It

requires the introduction of a new type of node and the use of the completeness requirements

for SUG structures. The basic idea is that a constraint equation introduces a new node which

has no immediate parent and which can only get an immediate parent in the circumstances

when the constraint is satisfied. An equation which states the value of the constrained

feature must introduce a node which the former node can equate with, and which has an

immediate parent. As long as the equation of these nodes can only occur in the right

cases, the completeness requirement that all nonroots have immediate parents will only be

satisfied if the constraint is satisfied.

Figure 21 gives an example of how a constraint equation can be simulated in SUG. The

node on the right has the features type:comtmint and feature:case to ensure that it will

only equate with nodes which are also either enforcing or satisfying a constraint on the case

feature. The feature location restricts the set of nodes which can be equated with to only

those enforcing or satisfying a constraint on this instance of this case feature, as discussed

further below. By also stating that the case feature has the value nom, any node satisfying

this constraint must also specify the value to be nom.

location:

Figure 21: The simulation of (4), repeated below.

(4) he: N, (f NUM) = SG
(T CASE) =, NOM
(1' PRED) = 'PRO'

Figure 22 gives an example of how an equation which might be needed to satisfy a

constraint is expressed. This is the same as figure 18 except an additional node has been

added. Like the above constraint node, it has the features type: constmint, feature: case, and

location to restrict what constraints it can satisfy. Unlike the above constraint node, it has

an immediate parent. Thus this node in no way interferes with any derivation which could

occur without it, but if a constraint enforcing node exists for this feature in this location,

then equating these nodes will allow the derivation to finish successfully. These constraint

satisfying nodes must be introduced for any equation which gives a value for a feature which

has a constraining equation for it somewhere in the grammar.

type: c-struc L:, 1
3

Fype: constraint
Bture: case I "

Figure 22: A partial simulation of (10) given that the feature case may be constrained. This
is figure 18 with a constraint satisfying node added.

The use of the feature location in these constructions is not completely foolproof. It

is possible that two constraint nodes which are not for the same f-structure to equate,

thus forcing their f-structures to equate, without anything else ruling out the derivation.

This is why every LFG' grammar must exhibit unique association. The mapping which

unique association guarantees to exist can be used to specify a uid feature with its value

coreferenced with a terminal, for every f-structure. Thus these unwanted equations can not

occur, since the uid features of the two f-structures could not unify. For our purposes the

uid feature in each pred feature will suffice for this purpose, since all the f-structure in the

examples in this paper always eventually get a pred feature, as discussed in section 3.2.1.3.

The construction above simulates constraint equations which specify a particular value

which a feature must have. The other two kinds of constraining statements can also be

simulated in this way. Existential constraints can be expressed simply by not specifying the

value of the feature when the constraining node is specified. The negation of an existential

constraint can be expressed without a constraining node by giving the feature the value

none, where none is not in the set of LFG' atoms. In order to express the negation of a

nonexistential constraining statement we must take advantage of the fact that there are

a finite number of atoms other than semantic forms. Since LFG' does not allow the pred

feature to be constrained, the fact that there are an infinite number of semantic forms

will never be a problem. Also, LFG' only allows features which are negatively constrained

to have atomic values, so no complex feature structures need to be considered as possible

values for these features. Thus there are always only a finite number of values which a

negatively constrained feature can have. Therefore a negative constraint can be expressed

as the disjunction of the set of constraining equations specifying each nonexcluded atom as

the features value, plus a negative existential constraint. This form of the constraint can

be expressed using the mechanisms defined above.

This simulation of constraining equations is clearly ugly. However, this complexity in

some sense reflects the complexity of enforcing constraining equations in general. Like with

disjunction, this complexity can often be avoided by the clever use of ordinary feature value

statements. For example, if we know that all N P nodes will somehow receive a value for

the feature case, then simply stating the value of the case feature will have the same effect

as using a constraining equation to restrict it to that value.

Simulating Nonlocal Feature Value Statements

Like the instantiation of immediate dominance metavariables, the instantiation of bounded

dominance metavariables can be simulated by embedding the information predicated of their

f-structures in the feature structure of a node. This requires the introduction of another type

of node, since these metavariables must be distinguished from the immediate dominance

metavariables. Figures 23 and 24 show how these nodes are used.

A node with type: bounded is introduced for every 6, as shown in figure 23. The subscript

of the metavariable is specified as the cat of this node. The superscript of the metavariable

determines what nodes are eligible to be the domain root. For every node in the rule which

is a possible domain root, a structure is constructed with the bounded node dominated by

it. This domination relation ensures that the bounded node will only equate with nodes

in places dominated by the domain root. The other constraints on the control domain will

be addressed below. The information predicated of this metavariable's f-structure is put in

Figure 23: A partial simulation of (7), repeated below

(7) (K's 141) Sf - NP S

cr a) = urp, T = 1
(T FOCUS) = 1

1 = ULP

the f-struc feature of the bounded node. Each bounded node also has an empty terminal

as a child and a uid feature with this terminal as its value. This will cause this bounded

node to satisfy the completeness constraints for a bounded node for a $I in the same way

the structure for a lexical entry satisfies the completeness constraints for an unexpanded

preterminal node. The fact that these nodes do not have immediate parents ensures that

they must find a bounded node for a $I to equate with.

Figure 24 demonstrates how h's are represented. Like in the previous figure, the CAT

feature ensure that the metavariable this metavariable is controlled by will have the proper

subscript. The f-struc feature also works as above. This node is the complement of those

just discussed in that it has an immediate parent, but its uid feature is an underspecified

terminal. Thus if a l) metavariable's node equates with this 9 metavariable node, the result

will fulfill the completeness requirements for both nodes.

So far the only part of the bounding convention which has been enforced is that a node

(8) (K's 135) NP + e
T = ~ N P

Figure 24: A partid simulation of (8), repeated nearby.

in a control domain must be dominated by the control domain's root. It still remains to

incorporate the effects of bounding nodes. This can be done by adding another feature to

bounded nodes, as shown in figures 25 and 26. The domain feature is set so that all the

nodes which are not separated by a bounding node have the same value for it. Such a set

can be defined simply by, in each rule, coreferencing the domain values of the parent and

the child if the child is not a bounding node. The domain value of a bounding node is given

an instance unique value, thus distinguishing the domain value of the set of nodes this node

bounds from above from the other coreferenced domain values1'. Now the bounded nodes

can be given a domain feature with its value coreferenced with that of either its domain

root or the node it annotates, depending on its metavariable. In this way two bounded

nodes can equate only if the one for the .h- is not separated from the domain root of the one

for the by any bounding nodes.

The simulation of nonlocal feature value statements in SUG is interesting for two rea-

sons. It demonstrates the importance of dominance relations in handling long distance

dependencies, and it shows how more complicated restrictions on long distance dependen-

cies can be encoded in SUG. The introduction of a special kind of node (i.e. bounded

nodes) to handle these dependencies does not seem to be necessary for natural language.

The simulation of (8) shown in figure 24 simply replaces a c-structure node's need for a uid

171n order for this method to be foolproof, we must also make provisions for the case when the complete
sentence's root is not a bounding node. This can be done by arranging for a particular structure to always
be the root of any complete structure, and providing a domain value from there, if necessary. I will not go
into the details here.

Figure 25: The complete simulation of (9), repeated below. This is figure 23 with the
domain feature added.

r" cat: NP c"NcI

Figure 26: The complete simulation of (8). This is figure 24 with the domain feature added.

(9) (K's 150) S' + NP El
(r Q) = U ~ w h I r = l

terminal with a bounded node's need for a uid terminal. If this type of rule is the only use of

fi then these rules can be eliminated and the bounded nodes for 6 s can be made c-structure

nodes. This would be the same as the treatment given above in section 3.1. With this

change, the domain feature would work the same way. In some sense the use of the domain

feature to constrain where 4 nodes can equate is simply a technique to allow the stipulation

of constraints on long distance extraction. However, such a specification may simply be a

declarative manifestation of a processing strategy for matching fillers with gaps. Under this

interpretation there is no need to have the constraints on long distance dependencies follow

from other constraints on the grammar, since they are rooted in a different component

of the language system. More complicated constraints on long distance extraction can be

encoded using other systems of features similar to the domain feature.

3.2.2.3 Enforcing Global Constraints

The four global constraints in LFG' are functional uniqueness, completeness, coherence, and

proper instantiation. Functional uniqueness is enforced by the fact that feature structures

are being used to represent f-structure. Both completeness and the unextended version of

coherence can be enforced as follows. Each time a pmd feature value is specified, these con-

straints are encoded as constraint equations, and these equations are simulated as discussed

above18. The extension of coherence which requires the features topic and focus to have

their values identified with features which are subcategorized for, can be enforced using a

constraint which requires each of these features to have its value set equal to that for a 4.
This constraint can be represented in the same way as an existential constraint for some

feature, say bound, in the value of topic or focus. The constraint can then be satisfied, when

this value is set equal to that for a 4, in the same way as specifying a value for the feature

bound, but without specifying this feature.

All of the clauses of proper instantiation either are already enforced, or can be enforced

by restricting the grammar. Each controllee will have exactly one controller because of the

1 8 ~ h e fact that this is possible is pointed out in [Kaplan and Bresnan, 19821, p 212.

uid feature in the controller nodes. Since only one controller node for each .& will be placed

under a given node, there will be only one controllee per control domain for each controller.

The requirement that there must be at least one control domain for each controller can

be enforced in the grammar by requiring all structures for the rule to have at least one

controller node per 4. That domain roots must be distinct can similarly be enforced by not

allowing more than one controller node to be placed under the same node.

3.2.3 Discussion

The above constructions can be used to translate any LFG' grammar to an equivalent SUG

grammar. This demonstrates that LFG' is a t most as powerful as SUG. This translation is

also interesting for other reasons. It demonstrates that many of the linguistic generalizations

captured well in LFG can also be captured perspicuously in SUG. The components of LFG

which are of particular interest in this regard are its explicit representation of predicate-

argument structure and its treatment of long distance dependencies.

In addition t o the representation of phrase structure in its c-structures, LFG has an

explicit representation of predicate-argument structure in its f-structures. This permits

phrase structure and predicate-argument structure t o be expressed independently, thus

freeing the phrase structure from the need to exactly mimic predicate-argument structure.

LFG's f-structures can be expressed in SUG within the feature structures which label phrase

structure nodes, with the f-structure of the root being the f-structure of the sentence. By

specifying predicate-argument structure in this way, the correspondence between semantic

constituents and syntactic constituents is maintained throughout a derivation, but these

structures need not be identical. This permits the perspicuous representation of semantic

relationships such as those in raising verbs like 'seems'. This method of expressing predicate-

argument structure in SUG works independently of the methods LFG uses for specifying

c-structure, and thus can be used in any SUG grammar. The analyses proposed above in

section 3.1 are especially suited to these specifications because the domain of locality of the

grammar entries is large enough to state predicate-argument relationships directly, without

the feature passing techniques needed in LFG.

LFG's treatment of long distance dependencies provides fairly adequate mechanisms

for specifying what dependencies can and can't exist. SUG can simulate these mechanisms

using dominance relations and a simple system of feature constraints. The use of dominance

relations to handle long distance dependencies was demonstrated in section 3.1, but those

analyses allowed long distance dependencies which are not found in English. The system

of feature constraints used to simulate the bounding nodes of LFG can be applied to the

SUG analysis in section 3.1 to help rule out these unwanted long distance dependencies.

Other similar systems of feature constraints could be developed if this simple system proved

inadequate t o capture the desired constraints. One such system is discussed at the end of

section 3.6 on Lexicalized Tree Adjoining Grammar.

3.3 Description Theory

Description Theory (D-Theory, [Marcus et a l , 19831) solves several problems in the de-

terministic parsing of natural language by having the syntactic processor build a partial

description of a sentence's phrase structure, rather than a complete specification. The de-

velopment of SUG was heavily influenced by this work, as is evident from SUG's extensive

use of partial descriptions in the specification of both nodes in the phrase structure and the

structural relations themselves. After describing crucial aspects of D-Theory, this section

will discuss how SUG's use of partial information allows it to adopt many of the parsing

strategies advocated in D-Theory.

D-theory uses its partial specification of phrase structure to avoid specifying things

which can only be determined later in the parse or with the use of semantic information.

For example, the output of a D-Theory parser can leave unresolved ambiguities between

possible prepositional phrase attachments and ambiguities arising from coordination. This

is possible because D-Theory uses dominance rather than immediate dominance to specify

trees, and because two nodes which are not equal may be equated at a later time. A

prepositional phrase, for example, can be attached as high as possible, then lowered to the

appropriate phrase when the disambiguating information is brought to bear.

The parsing framework which D-Theory uses is based on the Marcus Parser ([Marcus,

19801). The basic data structures are a buffer for unattached constituents and a stack for

incomplete constituents. There are a small set of operations which can be performed on

these data structures, including attaching an item in the buffer to an item in the stack and

dropping an item from the stack into the buffer. The grammar specifies when t o perform

each operation. The parser always proceeds deterministically, in the sense discussed in

[Marcus, 19801. This requirement dictates that once information is added to the state of

the parse, i t can not be removed. It is this indelibility of information that makes parsing

in the presence of ambiguity difficult.

A D-Theory grammar is specified using two mechanisms. One is a form of context

free grammar and the other is a set of templates which trigger certain actions. Given an

incomplete constituent in the stack, the context free rules say how that constituent can be

completed. The templates have a pattern which includes information about the state of

the parser. If this pattern matches the current state of the parser then the actions of the

template are performed. For example, if the first buffer cell contains the word 'the' then the

construction of an NP is triggered by pushing an NP on the stack and attaching 'the' below

it. This mechanism alleviate the need for the context free grammar to have categories such

as determiner, which do not fit well into many characterizations of phrasal categories. The

idea behind using these two separate mechanisms is that the leading edges of phrases are

relatively easily recognized and thus can be handled with simple patterns.

SUG does not assume any particular parsing framework, but the fact that it could be

used as the declarative portion of an investigation into deterministic parsing is evident

from SUG's relation t o D-Theory's declarative portion. SUG is powerful enough to ex-

press anything expressible in the portion of D-Theory which is not procedural. Perhaps

more importantly, SUG has the properties which are important in D-Theory for parsing

deterministically.

D-Theory's ability to partially specify information about phrase structure is shared by

SUG. In particular, SUG has the ability to express dominance relations and the ability to

postpone the equations of nodes, thereby allowing SUG to express the ambiguities discussed

above. The difference between SUG's approach to this underspecification is that of D-

Theory is that D-Theory considers a parse complete even without resolving the ambiguities.

D-Theory assumes that later processes, like the semantic component, take the result of the

syntactic processor and further disambiguate it. SUG, on the other hand, requires that

the structure be completely disambiguated when the parse is done. However, SUG is not

intended to be a model of the syntactic component of a parser alone. Disambiguations due

to semantic influences would be included in the SUG parsing process. If there are situations

in which people never disambiguate between some possibilities, then a notion of partial SUG

parse could be defined which would allow for this underspecification, but the exact nature

of these partial parses would have to be constrained to maintain the basic semantics of SUG

grammars.

The mechanisms D-Theory uses to specify grammatical information are easily translated

into SUG. Context free grammar rules can be specified as outlined in section 3.2.2.1. The

use of templates to trigger constituents can be expressed by adding the structure which

the action would create to the grammar. The presence of the template contents in this

structure limits its use to the appropriate contexts. The structure given to 'the' in figure 6

illustrates this basic idea. The use of such nonhead projection of nodes will be discussed

further in the next section.

3.4 Abney's Licensing Parser

In [Abney, 19861, Abney presents a parser which is designed to be a model of linguistic

performance while still reflecting some concepts from Government-Binding Theory (GB).

It is interesting to compare this parser to Structure Unification Grammar because it is a

procedurally defined investigation into language and because the concerns driving its design

were more computational than the other systems discussed in this paper. The central

concept in Abney's parser, that of licensing, is important because it not only manifests

important linguistic generalizations, but it is also easily parsable. Licensing relations are

easily expressed in SUG in ways which preserve their usefulness in parsing. This section will

first describe Abney's parsing system, then discuss how the insights from this investigation

can be manifested in SUG.

3.4.1 The Parser

The central concept in Abney's parser is that of licensing. Licensing is a generalization of

$-assignment in GB. Essentially, a phrase is licensed if it has some function in the structure

of the sentence. Thus, not only do NP's have to find a $-grid position to fill, all other phrases

have to find an analogous role. Abney chooses licensing relations as the central concept of

his parser because they are both easily parsed and very general across languages. With the

exception of their directionality, many licensing relations seem to be language universallg.

''In the sense that licensing relations are expressions of language universal thematic structure, they have a
lot in common with Lexical Functional Grammar's f-structure. However they differ from f-structure in that
they are direction specific and are more tightly constrained to conform the phrase structure relationships.

3.4.1.1 The Parser's Representations

The parser does not actually build phrase structure; it builds licensing structure. However,

because of the restrictions placed on licensing relations, there is always a simple mapping

from licensing structure to phrase structure. A licensing relation is a ternary relation

between the licensing node, the licensed node, and the role associated with the relation.

Like Sroles, licensing relations are unique, in the sense that each node is only licensed by one

relation. Also like @-roles, they are determined by information associated with lexical entries

(i.e. the heads of phrases). Unlike Croles but like Case assignment, licensing relations are

directional, in that they can only hold when the licensor and licensee are in a specified

order. This direction is specific to each licensing relation. Licensing is also restricted to

hold between sisters in the phrase structure tree2'. The only additional restrictions needed

to ensure that any licensing structure has an associated phrase structure are that licensing

relations be nonreflexive and acyclic, which are independently desirable constraints. Given

this relationship between licensing structure and phrase structure, I will talk of licensing

structures in their more familiar phrase structure form.

Information about licensing relations are specified as triples associated with lexical en-

tries. A triple specifies the direction in which it must be assigned, the type of node to

which it must be assigned, and the role of this licensing relation. A set of such triples will

be called a licensing frame. These frames are carried along with a word in the parse and

determine what licensing relations can be assigned.

There are a couple of problems with parsing using licensing relations which have prompted

Abney to add another mechanism for specifying them. Many of the things licensed by a

given head are adjuncts. If we want the parser to be efficient, it should not have to be

looking for every adjunct which might modify a phrase. Thus it is desirable to specify the

licensing relations for adjuncts on the adjuncts themselves. The other reason for doing this

is to facilitate the detection of failed parses early in the parse. By specifying what will

license a prehead adjunct on the adjunct, it is possible to tell if it can be incorporated into

the parse by seeing if the expected licensor can be licensed by something in the current

20~ ince the phrase structure tree is defined in terms of the licensing structure, this is actually not a
restriction but simply a definition of how the phrase structure tree relates to the licensing structure. It is
significant, however, in that Abney wants his analyses to parallel those in GB, and in this way it restricts
the licensing relations he can propose. As a specific example, he can not say that 'wants' licenses 'Mary' in
the sentence "John wants Mary to leaven without violating the GB analysis of 'Mary' as being a constituent
of "Mary to leaven.

structure. A similar technique can be used for prehead subcategorized arguments, such as

the subjects of subordinate clauses. In this way a failed parse can be detected as soon as

it can not be seen how something will be incorporated into the parse. These additional

licensing specifications are called anti-relations. They have the same structure as licensing

relations.

3.4.1.2 The Parsing Process

Since Abney views the parser as a processing model of language, it proceeds incrementally

from the beginning of the sentence to the end and only recovers one parse at a time. If it

can't be seen how the next word will be incorporated into the current parse structure, the

parser will stop and fail. If the sentence is ambiguous it disambiguates the sentences in a

way which reflects people's preferences.

The state of a parse is represented as a list of partial subtrees, one of which is distin-

guished as the current subtree. When a word is read, it is added to the end of the list, after

being projected to its maximal projection. A list of pattern-action rules is then consulted,

and the first pattern which matches has its action done. These patterns are restricted to

only refer to the root of the current subtree and an unspecified part of the near edge of the

preceding subtree. The actions can combine and add information to the subtrees, and can

modify a small amount of the information already specified in them.

Abney uses several actions in his parser. The most important one is attachment. If the

root of a subtree matches the restrictions for a licensing relation on an adjacent subtree,

then it can be attached to that subtree, thus filling that licensing relation. This operation

can also be done when the root of a subtree has an anti-relation which matches a node on

the near frontier of an adjacent subtree. Since he is doing these attachments whenever he

can, sometimes a choice is made which must later be undone. As mentioned above, these

changes are limited. One such action, called REANALYZE, is used when the wrong lexical

entry for a word has been chosen. This action detaches a previously attached projection of

a word and replaces it with a homonym. This can only be done if nothing has been attached

under the replaced projection. Another mutating action is called STEAL. It detaches an

argument from one subtree so as to attach it to some other subtree. A third mutating

action, called REPLACE, detaches one node so as to attach another in its place. The final

such action which he discusses, called frame switching, replaces one licensing frame with

another for that word, as long as the arguments which have already been attached have

analogous positions in the new frame. These mutating actions are what prevents this parser

from being deterministic, in the sense of [Marcus, 1980].

During parsing it is often the case that there is more than one way to attach a con-

stituent. Since Abney only wants to get one parse at a time, he has to choose one of these

attachments. He does this by ordering the possibilities as follows ([Abney, 19863, pp12).

1. &licensers preferred over non-8-licensers

2. Verbs preferred over other categories

3. Low attachment preferred

These attachment preferences reflect the disambiguation choices people make.

The final component of Abney's parser is a mechanism for placing empty categories,

but this component is not central to his investigation. Abney considers his parser to be one

component of a complete parsing model, namely the one which recovers licensing relations.

Thus he is not concerned with long distance dependencies. However, he implements a mech-

anism for placing traces in order to detect where empty categories fill licensing relations.

This mechanism is analogous to slash passing in GPSG, which is not surprising since both

GPSG and Abney's parser can only specify immediate dominance relations between nodes.

When a wh-element is encountered a trace is created and appointed a "host". As the parse

proceeds the trace is passed from parents to children until a node is found which can license

it. This way of finding gaps enforces that a moved element must c-command its trace, but

no other constraints on movement are embodied.

3.4.2 Comparison with SUG

The most important insight Abney makes in this investigation is the concept of licensing.

Recovering the licensing relations in a sentence is a large part of parsing, yet when these

relations are represented well they are easily recoverable. One important aspect of Abney 's

representation of licensing relations is its partiality. For example, the specification of li-

censing relations Abney uses could be translated into a context free grammar, but such a

representation would not be adequate for incremental parsing. Because of its partiality,

SUG's representation also allows for the flexible specification and manipulation of licensing

information. Both types of licensing relations can be represented in SUG using the phrase

structure relations they imply. For example in figure 6, 'rolls' expresses its licensing of a

-
subject by specifying an idom link from its maximal projection to the subject m, and 'quick'

expresses its anti-relation by specifying an idom link from its licensing to its maximal

projection. In both cases underspecified terminals are used to express the obligatoriness

of these licensing relations, and words are used to specify the uniqueness of these licensing

relations.

The need for representing licensing relations in both regular relations and anti-relations

is another important insight of Abney's licensing parser. There are several phenomena, such

as movement restrictions, which point to a distinction between subcategorized arguments

and adjuncts. The usefulness of anti-relations in Abney's parser is further evidence for

treating these two types of licensing with distinct mechanisms. As shown above, SUG has

the ability to express both these syntactic relationships. In SUG as in Abney's parser, the

difference between expressing regular licensing relations and anti-relations is that a regular

licensing relation is specified with the licensor, while an anti-relation is specified with the

licensee. This means a regular licensing relation is specified in SUG as an idom relation

from a headed parent to a headless child, while an anti-relation is specified in SUG as an

idom relation from a headless parent to a headed child. The distinction between these two

types of structures was mentioned previously in section 3.1.1.

The differences between specifying a constituent relationship with the head of the parent

and specifying it with the head of the child may explain many of the differences between lan-

guages with more fixed word order and little case marking, such as English, and languages

with freer word order and rich case marking, such as Warlpiri. In the former case most

constituent relationships are determined by the head of the parent, and thus are specified

as an idom relation between a headed parent and a headless child. This necessitates some

information such as word order constraints in order to determine which nodes correspond

to which argument positions. However, the arguments do not need to be explicitly marked,

since the portion of the structure which they contribute is the same regardless of what posi-

tion they fill. In the case of languages like Warlpiri, constituent relationships are determined

by the head of the child. This means that word order constraints are unimportant, since

each argument carries in its structure information which specifies what argument slot it fills.

However, because the portion of the structure which a word contributes is dependent on

what argument slot it fills, this information must be explicitly marked on the word itself"-'.

"For more discussion of this point, see [Brunson, 19881.

63

3.5 Tree Adjoining Grammar

The extensive amount of work which has been done on the formal characteristics and linguis-

tic applications of Tree Adjoining Grammar (TAG, [Joshi, 1987a1, [Vijay-Shanker, 19871,

[Joshi et al., forthcoming, 19901, [Kroch and Joshi, 19851) make it well worth discussing

here. This is especially true given the similarity between SUG and TAG. The basic objects

of both TAG and SUG are phrase structure trees, thus permitting a distinction between

phrase structure and derivation structure. Also, the size of SUG's domain of locality for

expressing grammatical information is very similar to TAG's.

This section will be primarily concerned with showing that any TAG grammar can be

translated into an equivalent SUG grammar. The translation which will actually be given is

between Feature Structure Based Tree Adjoining Grammar (FTAG, [Vijay-Shanker, 19871)

and SUG, because it is more straight forward. An independently desirable restriction on

FTAG makes it equivalent to TAG. After these two versions of TAG are defined and the

translation to SUG is given, the implications of this translation will then be discussed,

with particular attention given to the work which has been done on the formal power of

TAG. Most of the discussion about the linguistic work which has been done in TAG will be

postponed until the next section, which will discuss Lexicalized Tree Adjoining Grammar.

3.5.1 The Definition of TAG and FTAG

As mentioned above, the objects used in a Tree Adjoining Grammar derivation are trees.

The trees in a TAG grammar are called elementary trees and are of two kinds, initial

trees and auxiliary trees. The initial trees represent simple structures. The auxiliary trees

represent the recursive components which can be inserted into the simple structures to

produce arbitrarily large structures. The insertion is done using a process called adjunction.

Feature Structure Based Tree Adjoining Grammar works the same way as TAG, but the

adjunctions in FTAG are constrained with a slightly different mechanism than in TAG.

3.5.1.1 TAG's Definition

Formally, a TAG grammar is a tuple G=(VN, VT, S, I, A) where VN is a finite set of

nonterminals, VT is a finite set of terminals, S is a distinguished nonterminal, I is a finite

set of initial trees, and A is a finite set of auxiliary trees. An initial tree has S labeling

its root, elements of VT labeling its leaves, and elements of VN labeling its internal nodes.

An auxiliary tree also has elements of VN labeling its internal nodes, but its frontier also

contains one element of VN. All the other leaves are labeled with elements of VT. If this one

nonterminal leaf, called the foot node, is labeled with A E VN, then the root is also labeled

with A.

In a TAG derivation, trees are combined using tree adjunction, as depicted in figure 27.

To adjoin a tree T2 at a node x in a tree TI, TI is split at x and T2 is inserted between

the two pieces. More precisely, the subtree of TI below x is excised, T2 is substituted in

its place, and the excised subtree is substituted for the foot node of T2. The nonterminal

labeling x must be the same as the one labeling the root and foot nodes of T2.

A

Figure 27: The adjunction operation in TAG.

In addition to the limits nonterminal labels place on possible adjunctions, each of these

possible adjunction sights have adjunction constraints. A node's constraints specify what

auxiliary trees can be adjoined at that node. If no trees can adjoin then that node has a

null adjoining (NA) constraint. Adjunction constraints can also specify that a node has an

obligatory adjunction (OA) constraint. An OA constraint requires that the node have some

tree adjoined at it before a derivation using the tree is finished.

A TAG derivation uses one initial tree, on which a finite number of adjunctions are

performed. The resulting tree must have no remaining OA constraints. The tree set T(G)

generated by a TAG grammar G is the set of all trees which are the results of derivations

using trees from G. The string language L(G) generated by G is the set of strings which are

yields of trees in T(G).

3.5.1.2 FTAG's Definition

A FTAG grammar is the same as a TAG grammar, except that nodes which are labeled with

nonterminals also have two feature structures associated with them, a top feature structure

and a bottom feature structure. These feature structures take the place of adjunction

constraints, which do not exist in FTAG. When a tree T2 is adjoined at a node x in a tree

TI, the trees are combined as in TAG, except the top feature structure of x must unify with

the top feature structure of the root of T2 and the bottom feature structure of x must unify

with the bottom feature structure of the foot of T2. After being so unified, the root and

foot keep their feature structures in the resulting tree. This operation is illustrated at the

top of figure 30. When the derivation is complete the top and bottom feature structures

of each node must unify. Obligatory adjoining constraints can be simulated in this system

by giving a node top and bottom feature structures which can not unify with each other,

thus forcing something to be adjoined at that node to separate the inconsistent feature

structures.

3.5.2 Expressing FTAG in SUG

To translate an FTAG grammar into an SUG grammar, the SUG grammar must allow sets

of equations which simulate all the possible adjunctions within the FTAG grammar, and

the SUG grammar must be constrained so that these are the only possible sets of equations.

This section will proceed by first explaining what the translation is and how the resulting

SUG grammars can simulate FTAG derivations, then it will be shown that these simulations

are the only possible derivations in the SUG grammars.

To simulate adjunction in an SUG grammar, it must be possible to insert an arbitrary

amount of structure at each adjunction sight. To allow this, each FTAG node which is a

possible adjunction sight is mapped to a pair of nodes in the SUG grammar called twins.

As shown in figure 28, one of these nodes includes the top feature structure of the FTAG

node, the other includes the bottom feature structure of the FTAG node, and the former

dominates the later. Since there is only a dominance relation between twins, they can

be pulled an arbitrary distance apart to allow another structure to be inserted between

them, thus simulating an adjunction. If no adjunction is simulated at these nodes, then

the dominance relations allows the twins to be equated, thus unifying the top and bottom

feature structures as required for an FTAG derivation to finish.

The uid and twin features restrict the possible sets node equations to those which sim-

ulate FTAG derivations. The need for either an adjunction or the unification of the top

Figure 28: The translation of a nonterminal in a TAG tree into two nonterminals in a SUG
structure. The dominance link between the SUG nodes allows the top and bottom halves
to be separated by a simulated adjunction or to be equated if there are no adjunctions at
this node.

and bottom feature structures at this node is reflected in the top twin's underspecified uid

terminal and the bottom twin not having an immediate parent. Because all nodes have the

twin feature, the equation of two nodes will always force the equation of their respective

twins' uid terminal, and thus their respective twins. This can only happen if a node equates

either with its own twin, thus simulating the feature unification, or with the top and bottom

nodes shown in figure 29, thus simulating an adjunction, as discussed below.

The roots and feet of auxiliary trees require additional nodes to be added to the cor-

responding SUG trees. Each root and foot node gets mapped to a pair of twin nodes to

permit adjunction there, but there is an additional node above the twins for the root and

an additional node below the twins for the foot, as shown in figure 29. These additional

nodes are what equate with the twins of the adjunction sight when this auxiliary tree is

adjoined, as demonstrated in figure 30. The extra root node equates with the top of the

two twins and the extra foot node equates with the bottom twin. The features features of

these two extra nodes are coreferenced with those of their nearest twin node to ensure that

the top and bottom feature structures are unified as required for FTAG adjunctions.

The only remaining aspects of FTAG grammars which need to be mapped to SUG

grammars are terminals and tree structure. FTAG terminals are simply mapped to SUG

Figure 29: The translation of root and foot nodes in a TAG tree into two nodes each
for simulated adjunctions at these nodes, as given in figure 28, and one pair of nodes for
simulated adjoining of this tree. These later nodes are the top and bottom nonterminals in
this figure.

features: b,

twin:

1
12

Figure 30: The simulation of a TAG adjunction in the equivalent SUG grammar. After the
simulated adjunction the nodes equated can not be involved in any more equations, but
further adjunctions at the TAG nodes can be simulated with the other four nodes shown in
figure 29, which are not shown here.

terminals. Each immediate dominance link in a FTAG tree is mapped to one in the as-

sociated SUG tree as was shown in figure 28. Links from nonterminals to terminals are

translated into links from the bottom twin of the nonterminal to the terminal. Links be-

tween nonterminals are translated into links from the bottom twin for the upper node to

the top twin of the lower node. Ordering relationships are translated equally transparently;

if one node in an FTAG tree precedes another, then all the nodes in the SUG structure

associated with the former node linearly precede ad the SUG nodes associated with the

later node.

3.5.2.2 The Proof of Equivalence

To demonstrate that the SUG grammars which result from the above translation are weakly

equivalent to their associated FTAG grammars, it will be shown that the only sets of

equations which can occur in these SUG grammars are those which simulate derivations in

the FTAG grammars. These constraints in the SUG grammars are primarily accomplished

with the uid (for Unique IDentification) and twin features. All nonterminals have a uid

feature whose value is a terminal which the nonterminal immediately dominates. If this

terminal has its word specified, then the nonterminal can not equate with any other node

with its uid terminal's word specified, because words are instance unique. If a node's uid

terminal does not have its word specified, then before the derivation is over this terminal

must equate with a terminal with its word specified. Since terminals can only equate as

a side effect of nonterminal equations, in order for the derivation to finish the nodes with

underspecified uid terminals must equate with nodes whose uid terminals have their words

specified.

The twin feature coordinates the two equations needed to simulate an adjunction. In

twin nodes the value of the twin feature is the uid terminal of its other twin22. In the

additional nodes for the root and foot nodes of auxiliary trees, the value of the twin features

are the uid terminals of the other additional root or foot node in the tree. Thus when the

top node of a pair of twin nodes equates with an additional root node, the bottom node

of these twins must equate with the additional foot node, and vice versa. After this pair

of equations both the nodes have their uid terminal filled. Through the features features,

these equations also unify what was the top feature structure of the adjunction sight with

"The value of the twin feature could be the other twin itself, but this would introduce unnecessary cycles
in the feature structures.

what was the top feature structure of the root, and what was the bottom feature structure

of the adjunction sight with what was the bottom feature structure of the foot. If these

unifications fail then the equations are not possible, as desired. If a pair of twins are not

used to simulate an adjunction, then they can be equated to each other, thus simulating the

unification of the top and bottom feature structures as necessary for an FTAG derivation

to finish, and filling the upper twin's uid terminal.

Now that I have described how the SUG grammars can simulate the operations in their

associated FTAG grammars, let me convince you that no other sets of equations are possible

in these SUG grammars. There are five kinds of nodes, top twins, bottom twins, additional

roots, additional feet, and terminals. Let us consider all the possible equations which could

occur between these kinds of nodes. First, terminals can only equate with other terminals

and only as a side effect of the equation of nonterminals, so this case is subsumed under

the other cases. Bottom twin nodes and additional root nodes can never equate with each

other because their uid features conflict. Top twin nodes and additional foot nodes can never

equate to each other because their twin features conflict. Additional root nodes can never

equate t o additional foot nodes because their twin features would cause the uid terminals of

their associated additional foot and root nodes to equate, thus forcing these associated nodes

to equate, thereby forming an unallowable cycle in the tree structure. All the remaining

types of equations, namely between top and bottom twins, top twins and additional roots,

or bottom twins and additional feet, are possible and correspond to combinations described

in the previous paragraph.

To show that the derivations in the SUG grammars will all correspond to valid deriva-

tions in their FTAG grammars, I still need to show that the SUG derivations can only

finish if they correspond to finished FTAG derivations. Since an SUG derivation can not

stop unless all the terminals have their words specified, the uid features ensure that the

SUG derivations here can only finish when all twin nodes have either been involved in an

adjunction or have been equated to each other. Also, the structures for auxiliary trees can

only be used in a derivation if they are used in an adjunction, since the word of the addi-

tional foot node's uid terminal is not specified. Thus these grammars will never simulate

an incomplete FTAG derivation.

Given that the derivations of the SUG grammars all correspond to FTAG derivations

in their associated FTAG grammars, and vice versa, all that is needed to show that these

associated grammars are weakly equivalent is that the sentences resulting from associated

derivations are the same. Since the two derivations have exactly the same derivation struc-

ture, this can be proved by induction on the steps of the derivations. The important point

here is that the mapping from FTAG trees to SUG structures preserves all the tree and

ordering relations in the FTAG trees. Each FTAG node maps to a set of SUG nodes which

all have the same ordering constraints as the FTAG node and which together participate

in the same tree relations with other such sets of SUG nodes as the FTAG node. This fact

makes the base case of the induction easy, since the terminals in an FTAG elementary tree

map directly to the terminals in the associated SUG grammar entry23. From figure 30 it

should be clear that the tree and ordering relations resulting from an FTAG adjunction

map in the same way just described to the SUG structure resulting from the simulation

of this adjunction. Again, since terminals map to terminals and ordering constraints are

preserved across this mapping, the yield of the FTAG tree which results from an adjunction

is the same as the yield of the SUG structure which results from the simulation of the

adjunction. The only other operation, that of equating top to bottom feature structures,

does not change the yields of the structures in either case. Thus by induction on the steps

of a derivation, the sentence generated by an FTAG derivation is the same as the sentence

generated by the associated SUG derivation.

3.5.3 Discussion

The transformation given above demonstrates that Structure Unification Grammar is at

least as powerful as Feature Structure Based Tree Adjoining Grammar. Since FTAG is

known to be undecidable, this implies that SUG is undecidable, as is any formalism which

combines the unrestricted use of feature structures with the ability to generate arbitrarily

large structures ([Vijay-Shanker, 19871). However, if we restrict the feature structures in

grammars so they can not grow arbitrarily large in a derivation, then both FTAG and

SUG become decidable24 ([Vijay-Shanker, 19871 for FTAG). All the SUG grammar entries

mentioned in this thesis have this property. This restriction makes FTAG equivalent to

TAG, but SUG under this restriction is strictly more powerful than TAG, since SUG can

recognized the language aya;. . .a& for any fixed m and TAG can only do this for m less

than five ([Vijay-Shanker, 19871).

23When comparing the yields of FTAG trees with SUG structures I will not include the empty terminals
which the SUG structures use for their uid feature values.

24There are other ways to make SUG decidable. In ~articular, if we require that the grammar be lexical-
izable, then it will be decidable (same argument as [Schabes et al., 19881).

Several other formalisms have been proven weakly equivalent to TAG, and thus are

strictly less powerful than SUG. These formalisms include Combinatory Categorial Gram-

mars, Head Grammars, and Linear Indexed Grammars. The fact that SUG can express

all the languages expressible in Combinatory Categorial Grammar is of particular inter-

est here, as this formalism will be discussed later in this chapter. This level of expressive

power demonstrates that SUG is capable of expressing a very broad class of grammatical

constraints.

The most important characteristic which makes TAG linguistically interesting is its large

domain of locality. This domain determines what constraints can be expressed locally within

a single grammar entry. TAG has the ability to express long distance dependencies within

its domain of locality; both a gap and its filler can be specified in a single grammar entry.

The dependencies can stretch over an unbounded distance through adjunctions. Examples

of such trees are given for Lexicalized Tree Adjoining Grammar in figure 32. Since the

above transformation maps each FTAG elementary tree to an equivalent SUG grammar

entry, SUG has a t least as large a domain of locality as TAG. An example of expressing

long distance dependencies was already given in figure 7, and more will be given in the

comparison of SUG with Lexicalized Tree Adjoining Grammar.

Another important characteristic of TAG is the fact that it represents phrase structure

explicitly, rather than, for example, using the derivation structure of a CFG as does LFG.

This both facilitates the expression of constraints in the grammar and allows a distinction

to be made between phrase structure and derivation structure. SUG also represents phrase

structure explicitly. The distinction between phrase structure and derivation structure will

be important in the discussion of Combinatory Categorial Grammar (CCG). CCG espouses

a type of phrase structure which is quite different from traditional views of phrase structure,

but which does a good job of capturing regularities in coordination. I will argue that the

structures espoused by CCG are best thought of as derivation structures in SUG, thus

allowing the advantages of traditional phrase structure to be kept while still capturing the

conjunction generalities in the derivation structure.

3.6 Lexicalized Tree Adjoining Grammar

Lexicalized Tree Adjoining Grammar (LTAG, [Schabes, 19901) adds to TAG a substitution

operation. This does not increase the power of the formalism, but it allows more flexibility in

the specification of grammar entries. As a result of this increased flexibility, TAG grammars

can be translated into lexicalized grammars in LTAG. The resulting grammars are very

similar to those which have been presented in this paper for SUG. This section will show

that grammar specification in SUG is flexible in the ways it is in LTAG, and show that where

they differ SUG is actually more flexible. I will also briefly discuss the linguistic reasons

why this extra flexibility may not be desirable and how this constraint can be expressed in

SUG.

The major motivation for adding more flexibility in the specification of TAG grammar

entries is to allow them to be the minimal structures which localize semantic and syntac-

tic dependencies. Like TAG elementary trees, LTAG elementary trees have a large enough

domain to locally express syntactic and semantic relationships, such as long distance depen-

dencies and predicate-argument structure. In addition, the substitution operation in LTAG

makes it possible for each elementary tree to contain only one predicate-argument structure,

since subconstituents can be substituted in. These properties allow LTAG elementary trees

to each be associated with a particular lexical item, called the anchor, which is the source

of the syntactic and semantic information in the tree25. These structures are semantically

minimal in the sense that their meaning is not best thought of as the composition of smaller

meanings. The lexicalization of a grammar facilitates parsing because only the portion of

the grammar which is pertinent to the words in a sentence need be considered in parsing

the sentence. It also results in a more modular representation of the grammar.

SUG also allows grammar entries to be minimal in the sense just discussed. As was

discussed in the previous section, SUG's domain of locality is sufficient to locally express long

distance dependencies and predicate-argument relations. LTAG's division of information

among grammar entries is also possible in SUG, since the substitution operation of LTAG

is just another example of node equation in SUG. This ability to divide information is

demonstrated in the lexicalized grammar entries given in section 3.1.

Figure 31 gives several simple LTAG elementary trees and SUG structures which could

be used to express the same grammatical i n f ~ r m a t i o n ~ ~ . As explained in section 3.1, the fact

that the substitutions are mandatory is expressed in SUG using underspecified terminals and

the head feature. Note that the SUG versions of the adjuncts do not produce a Chomsky

2 5 ~ h e r e are cases, such as idioms, where the anchor is actually more than one word. In the comparisons
between LTAG and SUG given below I will assume the one word case, but the number of terminals in the
structure does not effect any of the points made.

2 6 ~ a n y of the LTAG examples used here are taken from [Schabes, 19901.

adjunction structure, as do the LTAG versions. Also note that the SUG version of the

structure for 'thinks' treats the S object like any other subcategorized argument, unlike the

LTAG version, in which it is a foot node in stead of a substitution node.

at
C I
has ,

Figure 31: The top row shows LTAG elementary trees and the bottom row shows SUG
structures which can be used to express the same grammatical information in an SUG
grammar. An arrow marks nodes at which substitution must take place and a star marks
the foot node of auxiliary trees.

The interesting distinctions between LTAG and SUG come out in their different mech-

anisms for handling long distance dependencies. Figure 32 gives a set of LTAG elementary

trees for 'rides'. The first tree is the case without movement, the next two are the two

possible extractions for wh-questions, and the last two are the two possible extractions for

relative clauses. The filler-gap relationships in the last four trees can be stretched an un-

bounded distance by adjoining auxiliary trees, such as that given for 'thinks' in figure 31,

at the lower S. If we take seriously the idea that the anchor of a tree is the source of the

information in that tree, then the trees in figure 32 imply that the word 'rides' is ambiguous

between the five extraction possibilities. I t seems more natural to say that in each case the

verb is the same, but the presence of a wh-word introduces the information about the long

distance dependency. This analysis is easily expressed in SUG, as demonstrated in figure 33.

The long distance dependency is still expressed locally, but in the structure for 'who' rather

than in the structure for ride^'^'.
2 7 ~ n a strictly lexicalized grammar this distribution of grammatical information runs into problems with

NPJ VP

I
rides

I
rides

A
NP,l (+wh) S

A
Npl A

V NP
I I

rides E'

"'A
NPiJ(+wh) S

A
NP VP

r i V A P
I

rides

Np'A
NP,L(+wh) S

A
NPl VP

1
A

V NP
I I

rides & I

Figure 32: Five LTAG elementary trees for the word 'rides'. They are all necessary in order
to express all the extraction possibilities.

Figure 33: One SUG structure for 'rides' and two for 'who' which allow all the extraction
possibilities expressed in figure 32.

Although the SUG analysis given here for long distance extraction more closely follows

the intuition that the anchor should be the source of the information in its structure, as it

is it doesn't express the constraints on extraction which are implied by the LTAG analysis.

Because in the LTAG analysis a dependency can only stretch across structure for which

there is an auxiliary tree, the possible extractions can be limited via restrictions on the

possible auxiliary trees. As discussed in [Kroch, 19891, this approach allows restrictions on

long distance extraction to fall out of purely local constraints on possible elementary trees.

As it is the SUG analysis does not constrain the extraction possibilities at all, except via

the dominance relation. However, the analysis in section 3.2 for expressing the bounding

convention of LFG in SUG gives a technique for enforcing some restrictions with features.

In particular, two features could be used, one which makes an unbounded coreference chain

through the nodes which are foot nodes in LTAG trees, and one which establishes local

domains along this chain. The trace would have to equate within one of these local domains

along the unbounded chain from its dominating node. Such a system would restrict long

distance dependencies in a similar way to LTAG, and have these restrictions fall out of

purely local constraints on structures2*.

3.7 Combinatory Categorial Grammar

All the investigations discussed so far use a fairly traditional view of phrase structure, which

is based primarily on semantic considerations. Combinatory Categorial Grammar (CCG,

[Steedman, 1987]), on the other hand, makes no use of such structure. CCG advocates

a more flexible form of constituent structure motivated by coordination and extraction

phenomena. For example, in the sentence "Barbie pushed and Ken rode the tonka", "Barbie

pushed" and "Ken rode" are each constituents, since they are coordinated, while in the

sentence "Barbie pushed the tonka and surprised Ken", "pushed the tonka" and "surprised

Ken" are each constituents. This view of constituency has allowed CCG to treat many such

examples of "nonconstituent coordination" as simple constituent coordination.

reduced relatives, where there is no wh- word to introduce the modification and filler relationships. This
would require another structure for 'rides' which carries the needed information, but it would still only be
one such structure.

"Such use of features to restrict possible long distance dependencies may seem like a hack, but it could
also be viewed as simply a declarative manifestation of a particular gap filling strategy in the natural
language parser. I personally believe that restrictions on long distance dependencies are best investigated
in a procedural framework.

This section will discuss how some of the insights gained from CCG's perspective on

natural language phenomena are embodied in SUG. In particular, it will look a t coordination

phenomena. The central idea is that many SUG structures can be assigned types analogous

to CCG categories. This permits the characterization of coordination phenomena given in

CCG to be adopted for SUG. The constituent structures espoused by CCG are thus captured

in the derivation structures of SUG, while still preserving conventional constituent structure

in SUG's explicit representation of phrase structures.

Unfortunately, the types used as CCG categories are not sufficiently expressive to be used

as types for SUG structures. To extend CCG's categories in a principled way it is necessary

to return to their source, Categorial Grammar (CG). In the first section below a calculus

is presented which adds a few features to Lambek's calculus for CG ([Lambek, 1961]), thus

defining a system of types which is appropriate for typing SUG structures. These types are

then used as categories in a system analogous to CCG. The resulting CCG-like system is

equivalent to a large subset of SUG grammars, with an additional derivational constraint.

Finally, some examples of coordination phenomena are given which demonstrate how CCG's

theory of coordination can be applied to this subset of SUG via the new category system.

Applying CCG's notion of functional type to SUG structures has more significance than

simply providing a theory of coordination for SUG. CCG's approach to language is very

different from SUG's, but they both seem to reflect important characteristics of language.

By crossing the two formalisms we can find a single representation which manifests the

desirable characteristics of both formalisms. This process can also give us a better under-

standing of each formalism and their relation to each other. The approach taken here in

combining the two formalisms is to first expand CCG until it can perspicuously express the

linguistic information which has been found useful in SUG, then find an intersection of this

expanded version of CCG and SUG. The formalism defined by this intersection will have

two characterizations, one from the CCG side and one from the SUG side. Thus we can use

the same formalism for investigating those characteristics of language which SUG reflects

and for investigating those characteristics of language which CCG reflects, but still use the

notation appropriate for the particular characteristic.

3.7.1 Categorial Grammar with Token Identity and Partiality

CCG is based on a system of types called Categorial Grammar. In [Lambek, 19611 Lambek

defines a calculus (Lambek Calculus) for deducing equivalences between these syntactic

types. Many of the combination rules CCG uses are theorems of this calculus. This section

adds some independently desirable features to CG syntactic types and modifies Lambek

Calculus to reflect these changes. In particular, the new types include the ability to name

and refer to specific tokens of categories, and the ability to underspecify the labels of basic

categories and the ordering constraints between subcategories. The resulting system of

types can be used to type SUG structures. In the following section theorems from this new

calculus are used as combination rules in a system analogous to CCG which differs only

minorly from a large and interesting subset of SUG grammars.

3.7.1.1 Lambek Calculus

The syntactic types of CG are either basic categories, such as NP or VP, or of the form

(X/Y), (X\Y), or (X-Y), where X and Y are syntactic types. In this notation X/Y stands

for "I would be an X if only I could combine with a Y to my right", and X\Y is the same

except the Y is expected on the left. Thus, for example, the categories NP and S\NP can

combine to form S. The category X-Y is the concatenation of X and Y.

Lambek Calculus uses one axiom and a set of inference rules to deduce subtype rela-

tionships. The sequents are of the form A + X, where A is a sequence of types and X is

a single type. This sequent means that a sequence of things with the types specified in A

and in the order specified in A are also of the type X. The one axiom of the system is X

+ X, which expresses the trivial equivalence of identical types. The inference rules are as

follows. The sequents above the line are the antecedents of the rule and the sequent below

is the conclusion. For example, the /L rule should be read "if A is of type Y and I',X,A is

of type Z, then I',X/Y,A,A is of type Z". The Cut rule is not actually needed, since adding

i t does not change the power of the system. The fact that this cut elimination theorem

holds is important because it shows that this set of rules "make sense". What the Cut rule

says is that, if A is of type X then, for any sequent you can prove with X on the left side,

that sequent with A substituted for X is also a theorem. In other words, if A is of type X

then anything which X can do, A can do. The fact that this is true even without having

it explicitly stated in the Cut rule is why we can interpret this calculus as proving subtype

relationships.

As an example of Lambek Calculus, the following is a proof of the composition rule

X/Y Y/Z -, x/z.

A I X A - Y
.R:

A,A + X-Y

A + X r ,x,n+y
Cut:

I',A,A -, Y

3.7.1.2 Adding Token Identity

In Lambek Calculus, an instance of a category is described solely in terms of its type. There

are no mechanisms for naming and referring to particular tokens of categories. For example,

the category NP/NP restricts both the argument and the result of the category to be of type

NP, but there is no way to say that these two NP's must be the same category token. This

lack of expressive power carries over to CCG, where it prevents some necessary distinctions

from being made. In this section I will present these linguistic motivations, then discuss

how Lambek Calculus can be extended to allow identity between tokens of categories to

be expressed and enforced. I will delay discussing the details of the resulting calculus until

section 3.7.1.4.

Linguistic Motivations

The first major advantages of being able to refer to tokens of categories is the ability

to distinguish between some categories which are indistinguishable in Lambek's categories.

In Lambek's categories, one way of type raising an NP produces the category S/(S\NP).

If an S/S is composed with this category, the result is also the category S/(S\NP). Thus

a sentence needing a sentential complement, such as "Barbie said that" (S/S), can be

combined with a type raised subject NP, such as "Ken" (S/(S\NP)), to form "Barbie said

that Ken" (S/(S\NP)), and this string will be of the same type as "Ken" (S/(S\NP)).

The fact that these two strings can not be distinguished on the basis of their categories

is a problem for CCG, because CCG relies on the equality of categories as its criteria for

what can be coordinated. It is not possible to coordinate "Ken" with "Barbie said that

Ken". If we add to the descriptions of these categories the ability to designate which uses of

the category S actually describe the same token, then these categories are distinguishable.

The type raised NP is now Si/(Si\NP) and the sentence looking for a verb phrase is now

Si/(Sj\NP), where equal subscripts designate token identity. Thus the added expressive

power of being able to refer to tokens of categories prevents these two very different strings

from having the same categories, and thus prevents CCG's rule for coordination from making

the incorrect prediction that they should be c ~ o r d i n a t a b l e ~ ~ .

The second major advantage of being able to refer to tokens of categories is the ability

to identify intermediate results within the category for a single word. For example, 'almost'

can modify PP's but it would not be sufficient to give 'almost' the category (N\N)/(N\N),

since this category would also allow 'almost' to modify other postnominal modifiers such

as "who ate the cheese steak". To remedy this we can give prepositions a category such as

((N\N)/PPi).(PPi/NP), which expresses the existence of the P P even though it is neither

an argument nor a result for the category as a whole. With this analysis and the flexibility

in ordering constraints proposed below, 'almost' can have the category PPj/PPj. Using this

technique token identity provides a mechanism for incorporating many of the advantages

of conventional phrase structure into a system with CCG derivation structures, as will be

2 9 ~ a r k Steedman (personal communication) has pointed out that the distinction I am making here already
exists in the semantic structure which accompanies syntactic types in CCG. In the type raised category
(S/(S\NP)), the two S's necessarily have the same semantic interpretation, while this is not true in the
category for "Barbie said that Ken". However, allowing syntactic operations to be contingent on information
available only in the semantic interpretation would be a radical departure from the system described in
[Steedman, 19871. The proposal given here can in part be viewed as characterizing the syntactic import of
this semantically based generalization.

demonst rated below.

Extending Lambek Calculus

In order to be able to refer to particular tokens of categories, the calculus to be described

below uses variables which range over categories. The categories which these variables name

are specified in formulae. For example, Si/(Si\NP) can be expressed as w where res(w)=x

A arg(w)=z A dir(w)=rgt A res(z)=x A arg(z)=y A dir(z)=lft A c~t(x)=SA cat(y)=NP. For

convenience I will use the more readable form w:(x:S/z:(x\ y:NP)). Since the result of the

category and the result of the argument of the category are named with the same variable,

the token identity of these two positions has been expressed.

Given the ability to express token identity between categories, the calculus has to be

changed to enforce these constraints. The problem is that the places where a category is

mentioned may be far apart in a sequent, and the places in a proof tree where a category

is involved in a proof step may also be far apart. To solve this problem the proof needs to

construct a derivation history of each category and pass that history through the proof. In

this way each proof step can be contingent on being compatible with the previous steps of

the proof.

The derivation history constructed by a proof needs to record both what categories were

produced from what other categories, and the necessary ordering of these categories. For

example, if the /L rule combines z:(x/y) with w to make x, then the history needs to record

that y=w, that z precedes w, and that z and w were used to produce x. Also, the system

has to include rules which propagate ordering constraints through the derivation history

and prevent incompatible information from existing in a proof's history information. The

details of such a system will be presented after discussing adding partiality to the categories.

3.7.1.3 Adding Partiality

The categories of Lambek Calculus do not allow for much partial information. First, the

basic categories are atomic symbols, such as S or NP. There is no way to partially specify

these categories. The basic categories should be specified as feature structures, so as to

allow their partial specification. Second, the only way to express ordering constraints is via

the directionality of slashes. This mechanism only allows siblings in the derivational history

to be ordered, and all siblings must be ordered. This does not allow sufficient flexibility for

expressing ordering constraints. Thus a more flexible mechanism for expressing ordering

constraints between categories needs to be added. This section will give some linguistic

arguments for these additions, then discuss how they can be added to the calculus discussed

in the previous section. The complete calculus will be presented in the next section.

Linguistic Motivations

Many people have argued for the extensive use of partial information in linguistic for-

malisms ([Marcus et al., 19831, [Shieber, 19861, etc.). Section 3.1.2 gave examples of when

feature structures are important for underspecifying node labels. The atomic symbols used

in most work on categorial grammar are often viewed as a simpler notation for a more

complete feature structure representation. With this extension two categories match if they

have the same function-argument structure and the corresponding basic categories from

each category can unify.

The inadequacies of atomic basic categories are not as severe a limitation as the ex-

tremely limited ability to express ordering constraints. As an example of this, consider

the problems CCG has with handling some long distance dependencies. When parsing the

sentence "who does Barbie think poses", the word 'who' has either the category Sf/(S/NP)

or the category Sf/(S\NP). However, the phrase "does Barbie think poses' has neither the

category S/NP nor the category S\NP, since the NP it is missing is neither on its right nor

on its left. Versions of CCG have been proposed to handle this problem, but it is difficult

t o prevent these versions from allowing too much flexibility in the positions of NP's. The

approach taken here is that the category for 'who' should express the fact that the NP

missing from its S argument can be internal to the S. To do this category specifications

need to be able to leave categories unordered3'.

In [Joshi, 1987b], Joshi argues that not only do siblings sometimes need to be unordered,

but that some languages require ordering constraints between nonsiblings. To provide these

expressive abilities, the new calculus does not use directionality of slashes to represent

ordering constraints. In stead, ordering constraints are expressed directly between tokens

of categories. This allows any ordering constraints expressible within the domain of a lexical

entry, which is comparable to that of the version of TAG presented in [Joshi, 1987bl. This

system still has the ability to express any ordering constraints expressible using directional

slashes.

3 0 ~ h i s is not the same as the notation (SJNP), which is simply an abbreviation for (S/NP V S\NP).

Extending the Calculus

Given the changes to the calculus to allow reference to tokens of categories, it is easy to

add the partial specification of basic categories and ordering constraints just discussed. Since

categories are already specified using formulae to restrict the instantiation of variables, the

methods used in section 2.1 to express feature structures in this form can be used. In a proof,

the necessary unifications of basic category labels will occur as a side effect of expressing the

token identity of these categories, since unification is done simply by equating variables. As

with other constraints, the calculus must be restricted so that no inconsistent information

can be created in the course of doing these equations.

Since the ordering constraints described above are specified directly between categories,

rather than being expressed in the directionality of slashes, the inference rules do not need

to mention ordering constraints. As in section 2.1, the ordering constraints can simply be

expressed as predications over categories. I will use the same ordering relation used for SUG,

namely linear precedence. In order to enforce these predications, the formulae of a sequent

need to be interpreted with respect to afew axioms which propagate the ordering constraints

down the derivation history and prevent incompatible ordering constraints. These axioms

will be specified in the next section.

3.7.1.4 The New Calculus

The calculus presented here extends Lambek Calculus by adding the ability to refer to

specific tokens of categories, allowing basic categories to be partially specified with feature

structures, and relaxing the method of expressing ordering constraints to allow the spec-

ification of linear precedence constraints between arbitrary categories. First the sequents

of this calculus are defined, then the axiom and rules are given. Finally several example

proofs are given.

The Sequents

As discussed above, this calculus uses variables to refer to specific tokens of categories

and formulae to constrain the instantiation of these variables. In accordance with this,

sequents are of the following form, where S is a multiset of variables, x is a variable, and

fi and fi are formulae which constrain the possible values for the variables. Ordering

constraints between the categories in S are expressed in fl . I will represent multisets using

square brackets, as in [xl, . . . ,%I.
In a sequent, the variables designate which tokens of categories are under consideration,

and the formulae specify all other information. The formulae determine the categories of

the tokens, the ordering constraints on the tokens, and the produced-from relations between

tokens. These formulae will be defined after first specifying the terms of these formulae.

The terms of the formulae are typed. All terms are of type category (C). The categories

are divided into concatenation categories (Cc) and function categories (Cf). The function

categories are also divided into those which are zeroth order (Cp), and those which are

nonzeroth order (Cfc). The zeroth order function categories are basic categories, and thus

are feature structures.

Given a set A of atoms, a set L of labels, and a set V of variables, the formulae terms

are defined as the following basic terms closed under the subsequent term constructors.

basic terms: ~ E A : Cp, xE V: C

constructors: frst: C,+C, scnd: Cc+C, res: Cf+ +Cf, QV: Cf+ +Cr, k L : Cp+Cp

The atoms are the basic feature structures. The constructors frst and scnd map concatena-

tion categories3' to their first and second components. For function categories, res and arg

specify their result and argument. Nonatomic feature structures are specified using labels

as functions which map feature structures to feature structures, as in section 2.1.

The formulae are as follows, where tl ,t2E C and fi and f2 are formulae.

The symbol x is the same slight modification of equality used for SUG, which is discussed

in section 2.1.3. Ordering constraints are specified using 4 for linear precedence. The

produced-from relation is specified using +. The only connective allowed in formulae is

conjunction. The symbol T is true and I is false.

The intended meaning of the above terms and predicates dictate that formulae have

certain properties. These properties are enforced by the following axioms.

31The name "concatenation category" is not entirely accurate, since the order of the two components is not
important in this calculus. As with the directionality of slashes, ordering constraints between concatenated
categories need to be expressed independently.

x c x

x t y A y t z + X+Z,

x 4 y A y 4 z j x 4 z ,

x 4 y A x t z A y t w j z 4 w

1 (x 4 x)

In addition to these axioms, feature structures are constrained by the first four axioms in

section 2.1.3, which were taken from [Johnson, 19901. The above axioms are simply those

from section 2.1.3 which are concerned with dominance and precedence, where dominance

is manifested here as +.

The Axioms and Rules

This calculus is designed to have certain properties which guarantee that it has the

desired behavior. First, in a proof, information is passed up through the left sides of

sequents to an axiom, where it is checked for consistency, and down the right sides of

sequents until it is either passed back up another portion of the proof or expressed in the

theorem. The *R rule also has to check for consistency, since it combines two formulas

on the right side. Second, the only information which can be added to the formulae as

they are passed through the proof is that information required by the rules and axioms.

Arbitrary information can not be added, even though such information would only weaken

the resulting theorem. Third, the category on the right side of a sequent needs to be

produced from all the categories on the left side, in order to enforce ordering constraints.

Thus the rules and axioms are designed so that if " (S , fl) -, (x , f2)" is a theorem, then f2

entails fi and for all YES , x+y.

The axioms are as follows.

axioms: ([XI, fi) + (y, fi A x x y)

where (fl A x x y) is satisfiable.

The unifiability of basic categories and the consistency of ordering constraints are guaran-

teed by requiring that the right side formula is satisfiable.

The inference rules are designed to enforce the information passing requirements given

above. For convenience I will use z-x/y for (E S (Z) X X A ~ q (z) ~ y) and a-x-y for (frst(z)%x

A s c n d (z) ~ y). Remember that the slash in "x/y" is now nondirectional, as is the connective

in " x . y".

/L: (S l , f l) + (Y , f2) (s2+[~] , f2 A Z ~ X / Y A x+zA x+y) + (w , f3)

(Sl+S2+[~1, f l) + (w , f3)

/R: (S+[Y], f1 A z ~ x / y A z-x) + (x , f 2)

(S , h) + (z , f 2)

* R : (S l , fi A z r x . ~ A 2.-X) + (x , f2) (S2, fl A Z E X - y A z+y) + (9, f3)

(SI + S2, h) + (z , fz A f3)

where (f2 A f3) is satisfiable.

Cut:
(1 , 1 + (9 2 (5'2+[xI, f 2) + (Y , f3)

(Sl+S2, h) + (Y , f3)

Including the Cut rule is redundant, as it is in Lambek Calculus. As discussed above for

Lambek Calculus, this fact indicates that this proof system can be interpreted as deriving

subtype relationships.

Example Proofs

To demonstrate this new calculus, below are given several proof trees for interesting

theorems. These theorems will be used below in defining an expanded version of CCG.

The proof of function application:

The proof of function composition with one argument:

(w-x/zA w c x x c u A x t y 1
" A yl x y 2 A F2

([~,v], U=X/YI A v=Y~/z) + (w, x c u A x c y l A y lny2 A F2)
In

The proof of the insignificance of argument order for the outermost two arguments:

x c v x c v
vcu V + U A z t y A z t y

[YI, A V 6 . Z (A F l)-(y'i;rz) ('xl'i:~~)-(x'i:L~)
A Fl

x t v A x c y
([XI, FI) + (z, F I) ([v,,], V-u A V-ZA F l) -t " A V ~ U A V+ZA Fl

(t-x/z A t c x A s-t/y
x t v A x t y

[u,y,z], A s + t A u=v/zA v-x/y) (=F1 A v+uA vczA Fl
/R

x c v A x t y +
t' A v t u A v + t A Fl

/R

The proof of type raising:

) - (y,\=;;A Y+X

A W = ~ / V A W + Y A W=Y/VA W + Y

([x,v], w y / v A w t y) - (y, v=y/xA y+vA YcXA w = Y / ~ A W ~ Y)
/L

([x],) -t (w, v ~ y / x h y + v A y + ~ A W - - Y / U A W ~ Y)
/R

3.7.2 CCG with Structure Categories

Now that we have a calculus which adds to Lambek Calculus the ability to specify to-

ken identity, partial basic categories, and partial ordering constraints, we can make these

additions to Combinatory Categorial Grammar. CCG uses the categories from Lambek

Calculus and combines them using a few rules whose application can be restricted. For the

most part, these combination rules are theorems of Lambek Calculus. In particular, CCG

uses function application and function composition. One exception is the use of non-order-

preserving function composition. For example the rule X/Y Y\Z + X\Z is sometimes used

in CCG but it is not a theorem of Larnbek Calculus. These operations do not seem to

be necessary with the ability to flexibly specify ordering constraints, so I will not include

them in the version of CCG to be defined here. The other example is used for handling

parasitic gaps, which will not be discussed here. With these provision, all the components

of CCG are taken from Lambek Calculus. Thus we can define a new version of CCG with

the desired additions simply by using the categories and theorems of the calculus presented

in the previous section rather than Larnbek Calculus. Since this new calculus is an exten-

sion of Lambek Calculus, the resulting system will still be able to express all the categories

expressible in CCG.

In addition to the above changes, the version of CCG defined here has several restrictions

which only allow categories which behave like SUG structures. The most significant of these

is that categories can not be greater than second order. Other restrictions prevent certain

identities between categories. None of these restrictions interfere with the linguistic appli-

cations of this system. The resulting version of CCG will be called Structural Combinatory

Categorial Grammar (SCCG).

This section defines SCCG in more detail and gives a mapping from SCCG grammars

to equivalent grammars in a slightly restricted version of SUG. The restriction manifests

a constraint in SCCG on possible long distance dependencies. This mapping will be used

below to show how the theory of coordination in CCG can be applied in SUG.

3.7.2.1 Structural Combinatory Categorial Grammar

Like CCG, an SCCG grammar is lexical. The categories for SCCG are those defined for

the extension of Lambek Calculus given above. In order to maintain some of the advan-

tages discussed in section 3.7.1, each lexical entry contains a set of categories, rather than

a single category, plus an anchor category for the entry's word. An anchor category de-

termines the position of its word. In a derivation, the possible orderings of the words is

exactly the possible orderings of the anchor categories for the words, as determined by the

ordering constraints between these anchor categories. The possible grammar entries will be

constrained, as outlined above, after the derivations of SCCG are defined.

In CCG the main combination operations are function application and function compo-

sition. SCCG uses versions of these operations provable in the above extension of Lambek

Calculus. Proofs for some of these rules were given above. In addition to these rules, SCCG

allows the order of arguments to be switched. This is in keeping with the use of linear

precedence statements to enforce ordering constraints. One case of the rules which switch

arguments was also proven above.

Since the ability to rearrange the order of arguments makes all orderings equivalent, I

will use a notation for categories which does not represent this superfluous i n f ~ r m a t i o n ~ ~ .

In particular, categories will be represented as a result, which must be a basic category, and

a multiset of argument categories. For example, the category w where res(w)wv~ arg(w)=z

A res(v)xx A arg(v)xy will now be w where res(w)wx A arg(w)x[y,t]. For readability I

will write this as W E x/[y,z]. The notation y= x/[will be interpreted as ywx. In SCCG

derivations it will often be convenient to specify this category information when the category

is mentioned. For this I will use the notation w:(x:S/[y:NP, z:VP]) for w where w=x/[y,z]

A cat(x)xS A cat(y)x N P A cat(z)= VP. In such cases the derivation history and ordering

information will be specified separately. For example, x+w A x+y A x + t A y+ will be

written (xm" A yir). In derivations, the later information will be left out where it
w Y

is not important. The anchor category for each word will be written in bold face.

The change in notation just introduced allows the rules of SCCG to be specified in one

rule schema, but I will introduce it through a series of increasingly more general rules. The

rule schema below is for function application. As is implied by the notation, the order of the

arguments [zl,. . .,%, y] is not important. Because the rules which change the ordering of

arguments are particular to the number of arguments involved, this schema is actually short

hand for an infinite number of rules, since there can be an arbitrary number of categories

in q,. . .,r, which y might need to be moved over.

32This change eliminates from the notation categories such as the r/y in (x/y)/z. This is only significant if
there are linear precedence relations specified on such intermediate categories. The restrictions on possible
grammar entries discussed below ensure that no such constraints are specified.

The rule for function composition is the same except y' is replaced by y'/[sl,. . .,%I and

sl,. . .,s, are passed on as arguments in the resulting category. The resulting schema is

shown below. Since in this notation y'/[l=y', the schema shown above is a special case of

this one, except that now y', and thus y, must be basic categories.

u:(x/[r1,. . .,rn1 Y]) (fl) 0: (y'/[s1, . . .,S,l) (f2)

w:(x/[PI,...,~~, ~1,-..1h])

To allow the argument y to be nonbasic we need to express its possible arguments

explicitly. Thus y should be y/[z1,. . ., +] and v should be (y'/[, , . . . , 4])/[sl,. . . , h]. In the

current notation v needs to be written y'/[4,. . .,4, ~1,. . .,%I. These changes result in the

rule schema given below. Again, since y/[l=y, the above rule schema is a special case of

this one. This schema represents the combination rules of SCCG. Note that t and v are not

equated, only their subcategories are. Since SCCG categories are never greater than second

order, all the categories which are equated are basic categories.

A SCCG derivation proceeds by using the above rule schema to combine categories

from the chosen lexical entries for the words. When the categories have been reduced to

a single basic category, the derivation is complete. Each combination of categories must

not introduce inconsistent category information. An example of a derivation in SCCG is

given below. The grammar entry for 'poses' has three categories in it in order to express

the internal structure of the projection to S. This is represented with the concatenation

symbols between the categories. To help show the structural nature of this system, category

information is included in the produced-from tree. The ordering constraints imposed by

the order of the words are introduced as the derivation proceeds.

The definition of SCCG given so far is further constrained with some restrictions on

Ken poses shamelessly
x l : N P y:S/[x2:NP, q] (x 2 + q) . w : V . q:VP/[w] v:(z2:VP/ [z2])

possible grammar entries. The first of these is that no category can be greater than second

order. This permits the category x/[y/z] but not x/[y/[z/[w]]]. The only potential linguistic

application for categories of greater than second order are modifiers of modifiers of modifiers.

In CCG such a word would have a category like ((X/X)/(X/X))/((X/X)/(X/X)), which is

third order. However the ability to specify internal structure in SCCG permits modifiers to

introduce nodes which permit categories which modify them to be first order, as was done

with PP's and 'almost7 in section 3.7.1.2. Thus there seems to be no linguistic application

for categories greater than second order in SCCG.

The second constraints on SCCG grammar entries is more complicated but seems to

be necessary in order to give a structural interpretation to SCCG categories. The basic

idea is that a given category will be introduced into a derivation by only one category and

will be removed from the derivation by only one category. For example, the category x/y

removes y from the derivation and introduces x. The category x/x does not introduce or

remove any categories. The category x/(y/z) introduces both x and z, and removes g3. To

enforce this constraint, for every time a category is introduced that category must have an

instance unique value for the feature introduced, and for every time a category is removed

that category must have an instance unique value for the feature removed. This prevents

both the initial specification of a category as being introduced or removed in more than one

position, and the equation of two categories which are each introduced or removed in some

category. This is the only use of instance unique values allowed in SCCG.

The definition of when a category is introduced and when it is removed uses three posi-

tions in a category. They are the result, the argument results, and the argument arguments.

33The reason x/(~/z) must be treated as introducing z is that y/z removes z and x/(~/z) combines with
y/z to make x, which does not remove z, so z must have been introduced by x/(y/z).

92

Given a category x=(z/[(w/[ull,. . .,ul,]),. . . zis the result, the wj are

the argument results, and the uij are the argument arguments. Remember that in this no-

tation x=(x/fl), so even if a category has no arguments, it still has a result, namely itself.

Since results are d l basic categories and no categories are greater than second order, all cat-

egories in one of these positions are basic categories. A category x introduces a category y if

y is mentioned as either a result or an argument argument, more times than y is mentioned

as an argument result. A category x removes a category y if y is mentioned as an argument

result more times than y is mentioned as either a result or an argument argument. If the

difference between these two counts is greater than one, then y is introduced or removed

that many times, but this will not occur with the categories allowed in SCCG.

The third constraint is very simple; no produced-from relations can be stated in SCCG

grammar entries. This ensures that the produced-from relation in the result of an SCCG

derivation will be exactly the history information for that derivation.

The fourth restriction on SCCG grammar entries requires that the feature structure

label of a category in an argument argument position must be incompatible with that of

its argument result category. In other words, if a category has an argument u and u has a

result y and an argument z, then y and z must not be unifiable. This constraint may not

be necessary, but it greatly simplifies the relationship between SCCG and SUG.

The last constraint restricts what categories can be mentioned in constraints in SCCG

grammar entries. The only categories on which constraints can be stated are basic categories

and categories specified as elements in grammar entries. For example, if w:(v:(x:S/y:NP)/z:VP)

is an element of a grammar entry, then w, x, y, and z can have linear precedence statement

specified on them, but v cannot. This is partly to simplify the translation to SUG and partly

because in the notation used for SCCG, in this example w:(x/[y,z]), such internal categories

do not exist. This restriction means that only these categories can be mentioned in linear

precedence relations, and only these categories can be the anchor category of a grammar

entry. Since all values in feature structures must be of type Cp, node label constraints are

already limited t o only basic categories.

3.7.2.2 SCCG's Relation to SUG

With the above definition there is a fairly direct relationship between SCCG categories and

a subset of SUG structures. As has been used repeatedly in previous sections in this chapter,

SUG nodes can be forced to equate with other nodes using underspecified terminals and

features such as uid or head. Such nodes correspond to arguments in SCCG categories. SUG

nodes which fill these underspecified terminals correspond to results in SCCG categories.

The use of nonredundant dominance links in SUG structures correspond to the use of

second order functions in SCCG, with one restriction to be discussed. Examples of these

relationships are given in figure 34. This section will define these correspondences in more

detail by giving a mapping from SCCG categories to weakly equivalent SUG structures,

and a necessary restriction on the instantiation of dominance links in SUG. All the SCCG

grammar's derivations are included in their equivalent SUG grammar's derivations. Because

of these relationships SCCG can be used to show the connection between the analysis of

coordination in CCG and equivalent analyses in SUG. This connection is the topic of the

next section.

Barbie Ken, thinkst [It

ii,

thinks, Ken, who, e t

Figure 34: Some examples of SUG structures and the SCCG categories which are equivalent
to them.

The categories of SCCG have a lot in common with SUG structures. SCCG categories

have Linear precedence relations and produced-from relations which behave exactly like

linear precedence and dominance relations in SUG. The combination operation is SCCG

results in the equation of categories, and the combination operation in SUG results in the

equation of nodes. SCCG basic categories are feature structures, as are SUG nodes. When

a SCCG derivation is done there must be a single category which is produced from all the

categories used in the derivation. Likewise, when an SUG derivation is done there must be

a single node which dominates all the other nodes used in the derivation. The only aspect of

SCCG categories which does not have a trivial correlate in SUG is the requirement that all

arguments to categories must find other categories to equate with and all results except the

final result must find arguments to equate with. In SUG these properties can be enforced

using the two requirements on the completion of an SUG derivation: that all terminals

must have their words specified and that all nodes except the root must have an immediate

parent.

With the above outline of the correlation between SCCG categories and SUG structures

it is fairly easy to define a mapping from SCCG categories to equivalent SUG structures: Let

the SCCG category being translated be c. Also let h be a function which maps categories in

c to nodes in the SUG translation of c. For all basic categories x in c, h(x) is a nonterminal.

If c is not basic and is an anchor category for a word w, then h(c) is a terminal with

w as its word and the h of the result of c is the immediate parent of h(c). If c is

or contains a basic anchor category x for a word w, then create a terminal a with w

as its word and state idom(h(x),a) in the SUG structure. For all the feature structure

information stated about a basic category x in c, state the same information about h(x),

except the introduced and removed feature information. Do the same for linear precedence

information, ignoring constraints on categories whose h has not been defined. In this same

way, translate produced-from constraints between these categories as dominance relations

in the SUG structure34.

As outlined above, the argument-result information in SCCG categories can be mani-

fested in SUG structures using immediate dominance links and terminals. To describe this

mapping I will make use of the definitions of the category's result, the category's argument

results, the category's argument arguments, when a category introduces another category,

and when it removes another category, which were all given in section 3.7.2.1. For all the

basic categories x in the category being translated c, give h(x) a feature head which has

as its value a terminal. This terminal has no word specified unless otherwise stated. If c

removes a category x, then in the SUG structure, h(x) is immediately dominated by the h

of the result of c, and give h(x) the feature parented with a word as its value. The parented

feature ensures that no two idom links are conflated. If c is second order, then the h of

34For translating grammar entries this will not be necessary, since there are no produced-from constraints
in SCCG grammar entries.

every argument argument is dominated by the h of its argument result, and these pairs are

also added to the SUG structure's nesting list, to be described below. For every category

x introduced by c, h(x)'s head terminal must have its word specified. If there are no words

available in the structure, add a terminal with the empty string as its word and make it

immediately dominated by some nonterminal.

An SCCG grammar entry can be mapped into an equivalent SUG grammar entry by

translating each category in the set as described above. If a category is mentioned more

than once in the SCCG grammar entry, then the information due to each mentioning is all

stated on the same node in the SUG grammar entry. These grammar entries are equivalent

in the sense that an entire grammar translated in this way will be weakly equivalent to the

original grammar.

The nesting list and its effects are the slight modification of SUG mentioned previously

as being necessary to translate SCCG categories into SUG structures. With this modifi-

cation SUG derivations are unchanged except the pairs in the nesting list must not cross

in the dominance structure of the resulting tree. In other words, there must be some total

ordering of the pairs in the nesting list such that for any given pair (x,y) there is no pair

(z,w) after (x,y) in the ordering, such that either z or w is between x and y in the domi-

nance structure and not equal to x or y. Since the pairs in the nesting lists produced by the

mapping specified in this section coincide with the use of nonredundant dominance rela-

tionships, this restriction essentially manifests a restriction on long distance dependencies.

All the dependencies which are ruled out by this restriction are also ruled out by the Path

Containment Condition, proposed as a universal linguistic constraint in [Pesetsky, 19821.

Using this translation any SCCG derivation can be simulated by an equivalent SUG

derivation. For each SCCG reduction there is an SUG combination which does the same

equations as the SCCG reduction. If an SCCG reduction results in a single basic category,

then the associated SUG combination will result in a complete description. The difference

between the SCCG reductions and the SUG combinations is that the SCCG reductions

both do equations and remove the categories equated. If these are the only mentionings of

the category, then the SCCG reduction in effect abstracts away from the existence of that

category. The SUG combination does not do such abstraction. However, the fact that the

two derivations are equivalent indicates that the abstraction could have been done in the

SUG derivation without any problems. In fact, such abstraction can be done in an SUG

derivation exactly when it can be done in an equivalent SCCG derivation. Thus SCCG

provides a theory of how to abstract away from characteristics of an SUG structure without

thereby allowing violations of the forgotten constraints. Coordination can be handled in

SUG by performing these abstractions on the coordinated structures until they are the

same, then using this common abstracted structure as the result of the coordination. It is

hoped that this process of equating then abstracting is indicative of syntactic processing in

general, and will lead to a better understanding of constraints such as memory limitations,

which also require this type of abstraction in order to conserve memory. This later topic

will be discussed briefly at the end of this thesis in the section on future research.

3.7.3 Capturing Coordination in SCCG

With the extended version of CCG presented in the last section and the mapping from

analyses in this formalism to SUG analyses, it is now possible to show how CCG's theory

of coordination can be applied to SUG. Figures 35 to 38 give examples of coordination

phenomena with their CCG, SCCG, and SUG analyses. For CCG and SCCG the coordi-

nation is allowed by the coordination schema X and X -+ X. This schema allows any two

derivation structure constituents to coordinate as long as they are the same category. This

analysis of coordination in SCCG can be applied to SUG through the mapping given in the

previous section. Each SUG structure to be considered here is equivalent to a set of SCCG

categories. These categories represent the type of the structure. Two SUG structures can

coordinate if each of their types can be reduced to a common category without any equa-

tions. Since no equations are done in these reductions, they simply abstract away from

certain characteristics of the structures, as mentioned above. Once a common abstraction

has been found for the types of the two SUG structures, this common category can be trans-

lated back into an SUG structure and be used as the result of the coordination. In this way

SCCG acts as a theory of abstraction for SUG structures, and this theory of abstraction is

used to determine the common characteristics of the coordinated structure^^^. In each of

the examples the common type for the coordinated SUG structures is the SCCG category

which is coordinated in the SCCG derivation.

Figure 35 gives a simple example of what is typically treated as nonconstituent co-

ordination. Since CCG defines constituency in terms of derivation structure and CCG's

35This definition of coordination is actually alittle more restrictive than simply requiring the two structures
to have a common abstraction. Here the result of the coordination must have a single SCCG category as its
type. This is done to make the SUG analysis more closely follow the SCCG and CCG analyses. Loosening
this constraint will be discussed in the last example in this section.

Barbie pushed and Ken rode the tonka

Figure 35: The CCG, SCCG, and SUG analyses of "Barbie pushed and Ken rode the tonka",
in that order. In the SCCG analysis, subscripts are used to designate what categories are
identical, multiple categories for the same word are specified by putting a concatenation dot
between the categories, and the linear precedence constraints are the same as those shown
in the SUG analysis. The reductions in the SCCG analysis which result in the equation of
categories are numbered in correspondence with the equations of the associated nodes in
the SUG analysis.

derivations are sufficiently flexible, this example of coordination is handled in the same way

as coordination of conventional constituents. For the same reasons, SCCG can also handle

this example. In the SCCG example the subject does not need a type raised entry because

of the flexibility introduced with the change from directional slashes to linear precedence

constraints. The only other difference is the inclusion of a VP node in the projection of

the verb. Both these differences are orthogonal to the coordination analysis. The SUG

analysis is a translation of the SCCG analysis into SUG structures. Each SUG grammar

entry is a translation of the SCCG grammar entry in accordance with the mapping given

above. The combination of the subjects' structures with those of the verbs corresponds to

the SCCG reductions labeled 1 and 2, except the SUG combination only does the equations

of the subject NPs, without abstracting away from their existence. Each of the resulting

combined structures is then equivalent to the SCCG category for its subject plus the cat-

egories for its verb, only with the subject NPs coreferenced. These sets of categories can

each be reduced without equations to the category S/[NP], analogously to that portion of

the SCCG derivation. An SUG structure equivalent to this SCCG category is then used to

combine with the object to produce a complete SUG structure.

Figure 36 demonstrates that the coordinated SUG structures do not have to be the

same, as long as they have the same functional behavior in a derivation, as indicated by

their common reduced SCCG category. The result of this coordination abstracts away from

the differences between the structures and manifests some of the common characteristics of

their types.

A more challenging example of nonconstituent coordination is given in figure 37. In this

example a verb which subcategorizes for a sentence must be combined with the subject of

that sentence without the subject's verb. In CCG this requires the subject of the subordi-

nate clause t o be type raised. The same technique can be used in SCCG, as is shown in

the SCCG analysis36. This is translated into an SUG analysis using the ability to specify

dominance relationships. The type raised NPs translate to structures with a headless S

which dominates a headed NP, thus expressing the expectation for a headed S which sub-

categorizes for the NP. Note that reduction 3 in the SCCG analysis corresponds to two

36This type raised category for NP's may seem rather arbitrary, since it singles out S's, as opposed to the
other things which might subcategorize for an NP. However, in a more general analysis the S category might
be underspecified so as to allow any category which might subcategorize for an NP. Such a grammar entry
would simply manifest the fact that all NP's are subcategorized for by something. In other words, that all
NP's receive Case.

equations in the SUG analysis.

The top analysis in figure 38 shows how CCG can handle the modification of phrases

internal to coordinated constituents. The categories for "the men" and "the women" are

NPs which have been type raised with respect to an NP modifier. This allows these phrases

to combine with their verbs before they combine with the modifying PP. Similar analyses

could be given in SCCG and SUG, but in figure 38 an alternative approach is taken. The

problem with the CCG analysis is that a parser would have to choose the grammar entry

shown for "the men" on the basis of the P P at the end of the sentence. This would cause

problems for an incremental parser. If "the men" and "the women" were simply given the

category NP, then when "likes the men" and "hates the women" are each combined, these

NP's are removed and thus there is nothing for "in her class" to modify. In SCCG this

problem could be avoided by separating the combination rule into two parts, one which

does the category equations and one which does the reduction of the two categories. This

would permit the combination marked with a star in the SCCG analysis. If we then loosen

the criteria for coordinatability to allow the coordination of sets of categories which are

linked by common subcategories, then the example is allowed. This analysis fits nicely with

SUG, since the equation half of the SCCG combination rule corresponds directly to the

equation of nodes in SUG, and the reduction half corresponds to abstracting away from the

existence of the node. The new definition of coordinatability in SUG would simply allow

the coordination of any pair of connected tree fragments, as long as the fragments' sets of

SCCG categories can each be reduced without equations to a common set of categories.

This definition replaces the requirement that the coordinated phrases be reduced to a single

category with the requirement that they be combined into a single tree fragment. The later

notion has no correlate in CCG.

Barbie pushed and Ken thinks he drove the tonka

1 NP S/[NP,VPiI VP,I INPI pNP S/[NP,VPj I *VP,/ [S] 3NP S/[NP,VP,] VPJ [NP] NP
S/[VP,I S/[VP I S/ [VP, I

S/ [NPI
4
- S/[NPl

S/INPIEoo,
S/[NPl

Barbie t

coord

xxxx, [It

Figure 36: The CCG, SCCG, and SUG analyses of "Barbie pushed and Ken thinks he drove
the tonka", in that order.

Barbie thinks Ken knows Joe squeaks

I /
Ken +

coord

1 ,!
Barbie ,

Figure 37: The CCG, SCCG, and SUG analyses of "Barbie thinks Ken and knows Joe
squeaks", in that order.

Barbie likes the men and hates the women in her class

NP S/[N,VP,I W, I [NPI NP S/[NP,VP,l Wjl [NPI NP NPk/[NPk,PP,] *PP, I [NP] NP
S/[NP,NPl S/[NP,NPl * 3

NR/[NP,,NP] ' S/[NP,NP,] *NP, * S/[NP,NP.] *NPLmrd NPk/[NPkI
S/[NP,NP,] NP,

4 NPpL

5
S/[NPl

S

thet ment the , women,
coord

5 4
h

Barbie

Figure 38: A CCG analysis of LLBarbie likes the men and hates the women in her class"
and an alternative analysis in SUG and a modified version of SCCG. The SCCG reductions
marked with a star only equate the categories which would ordinarily be equated and
removed. Because they are not removed the subsequent modification is possible.

Chapter 4

Conclusions and Future Direct ions

This thesis has presented Structure Unification Grammar and demonstrated its usefulness

for representing grammatical information through a series of comparisons with other in-

vestigations into natural language. These comparisons have demonstrated that a diverse

collection of insights from a diverse collection of investigations can be unified using SUG as

a framework. By investigating these insights within a common formalism we can see how

they interact and thus gain a better understanding of language as a whole.

The tools which allow SUG to successfully unify insights from often incompatible for-

malisms are SUG's perspicuous representation of phrase structure trees and SUG's ability

to pa r t i dy specify this information. Research into natural language has repeatedly demon-

strated the usefulness of these tools, and this thesis further supports their importance. Even

investigations such as CCG which purport not to need phrase structure can be interpreted

in structural terms. Feature structures have been used in many formalisms to allow the

partial specification of node labels. SUG differs from most of these formalisms by allowing

structural relations to be equally partial. In SUG both immediate dominance and linear

precedence relations can be only partially specified, and chains of immediate dominance

relations can be underspecified with dominance relations.

SUG's representation of grammatical information gives it two characteristics which make

the perspicuous representation of a diverse collection of constraints possible. First, SUG

can partially specify constraints, thus allowing any information which is not known to be

left unspecified. Second, SUG's domain of locality for specifying grammatical constraints is

very large. Because dominance relationships can be specified, long distance dependencies

can be specified in a single grammar entry. Also, since there are no limitations on the

sets of structural relations which can be specified, predicate-argument relationships can be

specified directly in single grammar entries.

SUG's large domain of locality does a lot to permit information to be stated where it

is known, but limitations on the ways structure descriptions can combine could interfere

with the flexibility with which such specification can be done in a grammar. For this reason

SUG allows arbitrary node equations when combining structure descriptions, provided the

resulting description is satisfiable. No other information can be added, since this would

undermine the ability of the grammar to constrain the possible structures. Because of

this combination operation any derivation structure is possible, regardless of the phrase

structure, and the set of nodes in one grammar entry may overlap arbitrarily much with

those of another entry when the derivation is done. This property permits grammatical

constraints to be spread across the grammar according to information dependencies, rather

than according to structural configuration. This property together with the above two

properties, mean that an SUG grammar can state exactly what is known, where it is known.

When an SUG derivation is done the resulting description must completely specify the

information in some phrase structure tree so a unique phrase structure tree result can be

found. This means all nodes except the root must have immediate parents and all the words

of each terminal must be specified. These requirements can be used by the grammar writer

to ensure that certain information will be specified during the course of a derivation. This

provides the ability t o specify obligatory arguments and ensures that all structure fragments

will be used in the final description. These techniques plus the formentioned flexibility in

specifying grammatical information give SUG the power and perspicuous representations

necessary to unify the insights from the diverse collection of investigations discussed here.

The power of SUG is demonstrated by its ability to specify almost all the constraints

specifiable in Lexical Functional Grammar. This includes the ability to constrain possible

long distance dependencies, and the ability to express LFG's representation of semantic

information in the feature structure labels of SUG nodes. Some of the other LFG constraints

are not so easily simulated in SUG, but this seems to be an indication of the inherent

complexity of enforcing these constraints.

Although the details differ, SUG's representation of grammatical information has the

same basic character as that of D-Theory. They both depend heavily on the partial descrip-

tion of phrase structure trees. These partial descriptions allow D-Theory to do syntactic

parsing incrementally and deterministically by allowing the specification of what the parser

is sure of while allowing specification of other phrase structure information to be delayed

until later in the parse. SUG's use of partial specifications allow for the same degree of

flexibility, thus also supporting an incremental deterministic parser.

SUG's representation also supports the type of parser proposed by Abney in [Abney,

19861. Abney's parser is based on the linguistic notion of licensing, only extended so that

all phrases must be licensed. A sentence is parsed by recovering these licensing relations.

This approach combines linguistic concerns with parsing concerns because these licensing

relations are both very general across languages and, when represented properly, can be

easily recovered by a psychologically plausible parser. One key idea in the representation

of these relations is the use of anti-relations, which are specified with the licensee rather

than with the licensor. Anti-relations are used primarily for licensing adjuncts. The close

relationship between licensing relations and phrase structure relations permits SUG to man-

ifest the same information in its representation of phrase structure. Because the division of

grammatical information in SUG does not have to follow any specific structural configura-

tions, both regular licensing relations and anti-relations can be supported. Thus SUG also

supports an efficient psychologically plausible parser for recovering licensing information.

The importance of some of the characteristics of SUG are demonstrated in work on Tree

Adjoining Grammar. Like SUG, the data structures of a TAG grammar are phrase structure

trees, and TAG has a large domain of locality for specifying grammatical constraints. TAG

can state both long distance dependencies and predicate-argument relationships directly

within single grammar entries, as can SUG. Linguistic work in TAG (for example [Kroch and

Joshi, 19851) has pointed out the importance of these abilities. The explicit representation

of phrase structure in TAG, and SUG, is also useful because it provides for a distinction

between phrase structure and derivation structure, which is important in combining the

insights of CCG with those of TAG analyses and other linguistic work.

Although it is not as flexible as in SUG, Lexicalized Tree Adjoining Grammar's ability to

partition constraints among grammar entries is sufficiently flexible to allow TAG grammars

to be lexicalized. This allows for a more modular expression of grammatical information

than in TAG. Because SUG has both LTAG7s explicit representation of phrase structure

and the ability to express the information dependencies expressible in LTAG, SUG can use

the same analyses as LTAG in the specification of a lexicalized grammar.

Most of the investigations discussed in this thesis use a semantically based conception of

phrase structure. However, the usefulness of SUG is not limited to such investigations, as

is demonstrated by its ability to incorporate insights from Combinatory Categorial Gram-

mar. CCG proposes a notion of constituent structure which is based on coordination and

extraction phenomena. Since SUG structures behave in a similar manner to the functional

types of CCG, this notion of constituency can be captured in the derivation structures of

SUG, while still maintaining the explicit representation of conventional phrase structure.

This makes it possible t o apply CCG's theory of coordination to SUG, thus allowing what

is usually called nonconstituent coordination to be treated in the same way as constituent

coordination.

4.1 Future Directions

The work presented in this thesis runs counter to most work on grammatical formalisms,

because there is no attempt made to show that SUG constrains the possible languages.

This other work, called constrained grammatical formalisms, tries to find formalisms which

are powerful enough to handle natural language phenomena but not powerful enough to

handle things which do not occur in natural language. This is the same objective as in

linguistics, but it is usually assumed that the formalism itself will not rule out all non-

natural languages, but it will give any linguistic theory specified in that formalism some of

the constraints on possible languages for free. TAG and LTAG are good examples of this

approach. Several constraints on long distance dependencies fall out of using TAG, when

some natural assumptions are made about the form of grammar entries ([Kroch and Joshi,

19851).

The difficulty with investigating constrained grammatical formalisms is that the con-

straints are implicit to the formalism and thus not easily altered if they are not desirable.

Changing a constraint may involve modifying the formalism to the extent that the previous

linguistic work done in that formalism needs to be significantly altered. Since the only way

to test such a formalism is to try to develop a linguistic theory within that formalism, each

iteration in the process of developing a constrained grammatical formalism can take a long

time.

One alternative to constrained grammatical formalisms is to use a very general formal-

ism and state the constraints explicitly on top of the formalism. This permits the linguistic

work done with one set of constraints to be easily transferred to another set of constraints,

since the formalism has not changed. By separating the constraints from the representation

in this way the process of investigating constraints can be significantly speeded up. This

is the approach advocated here. As has been demonstrated in this thesis, SUG is a very

good representation, both for specifying grammatical information and for supporting inves-

tigations into parsing. This provides a good framework for investigating computationally

motivated constraints.

The work in SUG which I am currently doing falls within this approach of explicitly con-

straining grammatical formalisms. As an example, consider the constraint that the parser

must proceed incrementally with a memory of bounded size. This constraint is motivated

by the idea that the memory of the parser has similar characteristics to conscious short term

memory. If the size of the description exceeds the size of the memory, then the parser must

abstract away from some of the information. The CCG-like type system for SUG structures

defined in section 3.7 provides a theory of how this abstraction can be done without allowing

violations of the forgotten constraints. However, forgetting information will eliminate some

otherwise possible parses. In particular, when a structure with a sufficiently large right fron-

tier is built, not all the nodes on the right frontier can be remembered, so some allowable

modifications and argument subcategorizations will no longer be possible. This means that

in such a situation there must be some limit on how many phrases can be modified, and

there must be a limit to the depth of center embedding. Natural language has both these

types of constraints. In addition, a restriction on posthead modifier attachment implies the

need for heavy NP shift. Given any strategy for deciding what nodes to remember for future

modification, there will exist a constituent whose node will be forgotten before the last of

its subcategorized arguments is parsed. If this constituent is to be modified, the modifier

must come before the last argument. Thus this restriction forces the existence of heavy NP

shift in order to express such modification in such contexts.

I also intend to investigate several other computationally motivated constraints. One

is a more specific restriction on the memory available to the parser. With a more specific

restriction on memory, specific analyses would make specific predictions about the accept-

ability of sentences. One candidate for this restriction is a connectionist model of short

term memory proposed in [Shastri and Ajjanagadde, 19901. It permits only a small number

of entities to be remembered, but an arbitrary number of predications over those entities.

Another area in need of constraint is SUG's mechanism for expressing long distance de-

pendencies. Resolving where to equate a node which is dominated but not immediately

dominated is probably the most computationally expensive part of parsing in SUG. The

linguistic constraints on long distance dependencies greatly decrease this complexity, so it

is hoped that they can be "explained" in terms of efficient parsing strategies. Only future

research can determine the success of this endeavor.

Bibliography

[Abney, 19861 Steven Abney. Licensing and parsing. In Proceedings of NELS 16, Amherst,

MA, 1986.

[Brunson, 19881 Barbara A. Brunson. A Processing Model for Warlpiri Syntax and Im-

plications for Linguistic Theory. Technical Report CSRI-208, University of Toronto,

Toronto, Canada, 1988.

[Johnson, 19901 Mark Johnson. Expressing disjunctive and negative feature constraints

with classical first-order logic. In Proceedings of the 28th Annual Meeting of the As-

sociation for Computational Linguistics, Pittsburgh, PA, 1990.

[Joshi, 1987al Aravind K. Joshi. An introduction to tree adjoining grammars. In Alexis

Manaster-Ramer, editor, Mathematics of Language, John Benjamins, Amsterdam,

1987.

[Joshi, 1987bl Aravind K. Joshi. Word-order variation in natural language generation. In

AAAI 87, Sixth National Conference on Artificial Intelligence, pages 550-555, Seattle,

Washington, July 1987.

[Joshi et al., forthcoming, 19901 Aravind K. Joshi, K. Vijay-Shanker, and David Weir. The

convergence of mildly context-sensitive grammatical formalisms. In Peter Sells, Stuart

Shieber, and Tom Wasow, editors, Foundational Issues in Natual Language Processing,

MIT Press, Cambridge MA, forthcoming, 1990.

[Kaplan and Bresnan, 19821 Ronald Kaplan and Joan Bresnan. Lexical functional gram-

mar: a formal system for grammatical representation. In Joan Bresnan, editor, The

Mental Representation of Grammatical Relations, MIT Press, 1982.

[Kroch, 19891 Anthony Kroch. Assymetries in long distance extraction in a tree adjoining

grammar. In Mark Baltin and Anthony Kroch, editors, Alternative Conceptions of

Phrase Structure, University of Chicago Press, 1989.

[Kroch and Joshi, 19851 Anthony Kroch and Aravind Joshi. The Linguistic Relevance of

Tree Adjoining Gmmmar. Technical Report MS-CS-85- 16, University of Pennsylvania

Department of Computer and Information Sciences, 1985. To appear in Linguistics

and Philosophy.

[Lambek, 19611 Joachim Lambek. On the calculus of syntactic types. In Structure of

Languageand its Mathematical Aspects. Proceedings of the Symposia in Applied Math-

ematics, XII, American Mathematical Society, Providence, RI, 1961.

[Marcus, 19801 Mitchell Marcus. A Theory of Syntactic Recognition for Natuml Language.

MIT Press, Cambridge, MA, 1980.

[Marcus et al., 19831 Mitchell Marcus, Donald Hindle, and Margaret Fleck. D-theory: talk-

ing about talking about trees. In Proceedings of the 21st Annual Meeting of the Asso-

ciation for Computational Linguistics, Cambridge, MA, 1983.

[Pesetsky, 19821 D. Pesetsky. Paths and Categories. PhD thesis, Massachusetts Institute

of Technology, Cambridge, MA, 1982.

[Rounds and Kasper, 19861 William Rounds and Robert Kasper. A complete logical calcu-

lus for record structures representing linguistic information. In IEEE Symposium on

Logic and Computer Science, 1986.

[Rounds and Manaster-Ramer, 19871 William Rounds and Alexis Manaster-Ramer. A log-

ical version of functional grammar. In Pmeedings of the 25th Annual Meeting of the

Association of Computational Linguistics, 1987.

[Rounds, 19881 William C. Rounds. Set values for unification-based grammar formalisms

and logic programming. 1988. Manuscript, CSLI and Xerox PARC.

[Schabes, 19901 Yves Schabes. Mathematical and Computational Aspects of Lexicalized

Grammars. PhD thesis, University of Pennsylvania, Philadelphia, PA, 1990.

[Schabes et al., 19881 Yves Schabes, Anne Abeillk, and Aravind K. Joshi. Parsing strategies

with 'lexicalized' grammars: application to tree adjoining grammars. In Proceedings

of the 12th International Conference on Computational Linguistics (COLING'88), Bu-

dapest, Hungary, August 1988.

[Shastri and Ajjanagadde, 19901 Lokendra Shastri and Venkat Ajjanagadde. h m Sim-

ple Associations to Systematic Reasoning: A Connectionist Representation of Rules,

Variables and Dynamic Bindings. Technical Report MS-CIS-90-05, University of Penn-

sylvania, Philadelphia, PA, 1990.

[Shieber, 19861 Stuart M. Shieber. An Introduction to Unification-Based Approaches to

Grammar. Center for the Study of Language and Information, 1986.

[Steedman, 19871 Mark Steedrnan. Cornbinatory grammars and parasitic gaps. Natuml

Language and Linguistic Theory, 5 , 1987.

[Vijay-Shanker, 19871 K. Vijay-Shanker. A Study of %e Adjoining Grammars. PhD thesis,

University of Pennsylvania, Philadelphia, PA, 1987.

	Structure Unification Grammar: A Unifying Framework for Investigating Natural Language
	Recommended Citation

	Structure Unification Grammar: A Unifying Framework for Investigating Natural Language
	Abstract
	Comments

	tmp.1186151593.pdf.z_Tz8

