
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

July 1992

Focusing ATMS Problem-Solving: A Formal Approach Focusing ATMS Problem-Solving: A Formal Approach

Teow-Hin Ngair
University of Pennsylvania

Gregory Provan
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Teow-Hin Ngair and Gregory Provan, " Focusing ATMS Problem-Solving: A Formal Approach", . July 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-61.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/299
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/299
mailto:repository@pobox.upenn.edu

Focusing ATMS Problem-Solving: A Formal Approach Focusing ATMS Problem-Solving: A Formal Approach

Abstract Abstract
The Assumption-based Truth Maintenance System (ATMS) is a general and powerful problem-solving tool
in AI. Unfortunately, its generality usually entails a high computational cost. In this paper, we study how a
general notion of cost function can be incorporated into the design of an algorithm for focusing the
ATMS, called BF-ATMS. The BF-ATMS algorithm explores a search space of size polynomial in the number
of assumptions, even for problems which are proven to have exponential size labels. Experimental results
indicate significant speedups over the standard ATMS for such problems. In addition to its improved
efficiency, the BF-ATMS algorithm retains the multiple-context capability of an ATMS, and the important
properties of consistency, minimality, soundness, as well as the property of bounded completeness. The
usefulness of the new algorithm is demonstrated by its application to the task of consistency-based
diagnosis, where dramatic efficiency improvements, with respect to the standard solution technique, are
obtained.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-61.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/299

https://repository.upenn.edu/cis_reports/299

Focusing ATMS Problem-Solving:
A Formal Approach

MS-CIS-92-61
GRASP LAB 326

Teow-Hin Ngair
Gregory Provan

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

July 1992

FOCUSING ATMS PROBLEM-SOLVING:
A FORMAL APPROACH

Teow-Hin Ngair Gregory Provan
Computer and Information Science Department

University of Pennsylvania
Philadelphia PA, 19104-6389, USA

Abstract

The Assumption-based Truth Maintenance System (ATMS) is a general and pow-
erful problem-solving tool in AI. Unfortunately, its generality usually entails a high
computational cost. In this paper, we study how a general notion of cost function
can be incorporated into the design of an algorithm for focusing the ATMS, called BF-

ATMS. The BF-ATMS algorithm explores a search space of size polynomial in the number
of a,ssumptions, even for problems which a.re proven to ha,ve exponential size labels.
Experimental results indicate significant speedups over the standard ATMS for such
problems. In addition to its improved efficiency, the BF-ATMS algorithm retains the
multiple-context capability of an ATMS, and the important properties of consistency,
rninimality, soundness, as well as the property of bounded completeness.

The usefulness of the new algorithm is demonstrated by its application t o the task
of consistency-based diagnosis, where dramatic efficiency improvements, with respect
t o the standard solution technique. a.re obtained.

INTRODUCTION

The ATMS is a useful and powerful general problem-solving tool which has been widely used
within AI. The range of applications include nonmonotonic reasoning [McCarthy, 1980; Re-
iter, 1980], qualitative physics [Forbus, 19901, visual interpretation [Bodington et al., 1990;
Provan, 1990bI and diagnosis [de Kleer et a)., 1990; de Kleer and Williams, 1987b; Reiter,
19871. The ATMS allows search to be simultaneously conducted on multiple contexts, where
each context (also known as environment) defines a set of assumptions about the problem
domain. However, this flexibility comes at the cost of a high overhead due to storing many
(and sometimes exponentially many) sets of such assumptions. Controlling the problem
solver does not alleviate the poor performance on many tasks, such as diagnostic reason-
ing [Reiter, 19871, as it is the ATMS's generation of an enormous number of environments
which is often the cause of inefficiency [Provan, 1990~1. Moreover, it is not always necessary
to compute all environments for some domains, such as dia.gnosis. Various methods have
been proposed to focus the ATMS on certain subsets of the search space (e.g. [Dressier and
Farquar, 1990]), but none have been both general and effective.

The goal of this study is to analyze the efficiency of the ATMS in solving problems in sev-
eral domains, and devise efficient algorithms for problems the standard ATMS does not solve
efficiently. A cost-function-based algorithm has produced significant efficiency improvements
in the ATMS, as has been demonstrated for the domain of diagnostic reasoning.

This paper provides a coherent semantics for both the ATMS label representation and the
ATMS algorithms. In addition, the use of cost. functions for focusing is directly integrated
into the ATMS algorithm; the semantics of this extension of the ATMS are simply and
precisely defined.

The cost-function approach, although not new to the A1 literature, has not been rig-
orously applied to ATMS-based problem solving to date. We present a simple theoretical
framework for a cost function p (and associated order <) which preserves the partial or-
dering induced by set inclusion, namely for sets A and B, A E B + @(A) < e(B) . Such
a cost function can handle any rea,l-valued cost,, e.g. proba,bilistic or integer-valued costs.
Using an integer-valued cost function for a best-first ATMS algorithm called BF-ATMS has
efficiently solved several problems which takes the standard ATMS hours of CPU-time. In
addition to this efficiency, the BF-ATMS a.lgorithm guarantees sound, consistent and minimal
ATMS labels. Although completeness ca,nnot be guara,nteed, the la,bels exhibit a "bounded"
completeness property, which means that t,hey contain every environment (consistent or in-
consistent) with cost lower or equal to a given bound. The BF-ATMS algorithm is most useful
in problems where one has a. large number of possible solutions but only a small number of
them are desirable. Having a genera.1 theory of cost functions is important because many ad
hoe choices of cost function will not improve efficiency or may have undesirable properties,
e.g. lack of soundness or completeness. This general theory provides a priol.1' information
about the feasibility and properties of a wide variety of cost functions.'

Incorporation of traditional heuristic search techniques (such as A*) into the ATMS

'Fine-tuning cost functions to optimize performance is not addressed here.

is non-trivial because of the multiple-context search of the ATMS. Most heuristic search
techniques attempt to compute the single best solution, and keep a stack of next-best so-
lutions if the current best partial solution becomes sub-optimal. Hence, for single-context
searches, heuristic algorithms are easily defined. In contrast, the standard ATMS has no no-
tion of best solution, only consistent or inconsistent solutions, and it computes all solutions
simultaneously.2 Given the enormous number of environments generated simultaneously by
the ATMS, one needs to merge the ATMS's efficient (i . e . minimal) representation of labels
and its ability to avoid recomputing labels with a means of generating only those environ-
ments required for the particular application. With a naive application of heuristic search,
it is not obvious how the proliferation of environments typical in the ATMS can be curtailed
without a deep understanding of the ATMS algorithm.

The BF-ATMS algorithm uses the bounded basic ATMS algorithm as an environment
generator and a non-redundant cache for the environments generated. Hence, the improved
efficiency of the BF-ATMS algorithm is largely due to the ability of the modified ATMS
algorithm (while remaining correct) to ignore environments over the cost bound in each
of its execution steps and hence, to prevent them from incurring heavy costs in all later
computations. Also, the compactness of the label representation helps to eliminate many
representational and computational redundancies (see [de I<leer, 1986a1) which is why the
BF-ATMS algorithm is superior to a simple generate-and-test best-first search algorithm.

In the following, we formally define the basic ATMS algorithm and discuss its complexity
and some pathological problems. Solne existing focusing techniques for overcoming the
complexity trap of an ATMS are described and we show that they are instances of a more
general method of incorporating cost f~~nctioils into the ATMS algorithm. We proceed to
describe the BF-ATMS algorithm, and show how it can help solve the task of consistency-based
diagnosis more efficiently. Finally, we compare our approach to existing work.

2 ATMSREVIEW

First, let us review a formal theory of the ATMS. What has been lacking in most previous
formalizations, a semantics for ATMS operations like label computation, is described here
in a uniform, implementation-independent f~arnework.~

The following description and definitions of the ATMS are adapted from [Gunter et al.,
1990; Ngair, 19921: An ATMS is specified by a set Q of propositional atoms, a. set F of
input formulas constructed from Q, a. distinguished element IE Q denoting falsity and a set
A Q of propositional atoms, called the assumptions. Usually, one refers to a subset of A
as an environment and the set of all environments as the environment lattice, i.e. the power
set lattice for A. In addition, some propositional atoms are identified as premises, which are

2 ~ e r e we loosely use solution for context.
3 ~ s an example, the best-known semantics, that proposed in [Reiter and de Kleer, 19871, formalizes the

labels, but not the label-computation operat~ion. Similarly, t,he Boolean-la.t,tice formalization of [Brown et
al., 19871 describes the ATMS as solving Boolean-lat.t,ice eq~at~ ions , but ignores the algorithms which are
responsible for making the ATMS efficient.

considered to be always true. A propositional literal is either a propositional atom or the
negation of a propositional atom. A clause is a finite disjunction of propositional literals,
with no literal repeated. In the basic ATMS, only Horn clauses are allowed in F, where
a Horn clause is a clause with a t most one positive literal. In the extended ATMS, DNF
formulas of assumptions are also allowed. In this paper, we will only be concerned with the
basic ATMS.

For each propositional atom X appearing in Q, an ATMS is required to compute the
following set of environments [Reiter and de Kleer, 19871:

{ p G d (p V X is a prime implicant of F), (1)

where p is interpreted as a conjunction of literals and p is the negation of p. Because of this
logical interpretation, it is more natural to order the environments by the superset ordering
2

An ATMS label, denoted by Lx, is a set of environments associated with each proposi-
tional atom X appearing in Q. An ATMS algorithm is supposed to manipulate the labels so
that when it terminates, each label will have the correct values as stipulated by equation (1).
In an ATMS, we are only interested in labels that are anti-chains, i.e. no environment is a
subset of another environment in the same label. The following defines the operations that
manipulate the labels in an ATMS:

Definition: Given two labels A and B, we say that A is subsumed by B , written as A 5 B,
if for every environment p E A, there exists environment p' E B such that p' C p. The
operations meet, join and diflerence of A a.nd B a,re defined as:

A A B = MA<Y({pl U p z I pl E A,pz E B)) ;
A V B = M A . Y (A u B);

A - B = { p € A j $ p ' ~ B s . t . p l ~ p) ,

where M A X is the function which returns the maximal environments (smallest subsets)
under the superset ordering >.

It is easier to characterize the above operations by referring to the set of enviroilments
supported by the labels:

Definition: The support of a label A is defined to be the set of environments that are
supersets of at least an environment in A, i.e.

Note that M AX(U(A)) = A because of the anti-chain property of a label. The following
results summerize the important properties of the operations defined on labels:

Proposition 1 The following properties h.old for the meet, join and diflerence operations
on any pair of labels A, B :

Proof: Immediate.

The first task an ATMS algorithm needs to perform is to initialize the labels.

Definition: Given an ATMS with a set of input formulae F, different possible values of
Lx's (where X E Q) are called states of the ATMS. An initial ATMS state is a state such
that for each X E Q, the following is true:

1. If X is an assumption but not a premise, then Lx is equal to {{X)),

2. if X is a premise, then Lx is equal to { {)) . The corresponding justification with empty
antecedent can be deleted from F.

3. otherwise, LX is equal to the empty set.

Semantics: The semantics of the ATMS can be characterized by specifying that the output
of the ATMS, the Lx7s, must satisfy

LI = M A X ((p 5 A I F ~ p i s i n c o n s i s t e n t)) ,

Lx = M d X ({ p c d / F U p is consistent, and F U + X)) ,

where X f L, and F U p denotes F U {+ z I z E p) .

Algorithm: The next definition characterizes the fundamental step in a basic ATMS
algorithm.

Definition: For any jilstification 11, (z XI,. . . , X , + Y) E F, we say that ?C, is appll.cable in
the ATMS if in the current state of the ATMS, we have

Furthermore, the application of an applica,ble $ is the illodification of LIr as follow:

and if Y zI, we perform the additional step of removing the new inconsistent environments
from every X $l:

Intuitively, a justification is said to be applicable if some environments are already known
to entail every antecedent node but are not yet included in the label of the consequence node.
The application of the justification is then a rectification of this problem. Furthermore,
if the consequence node represents the inconsistency, then the newly added inconsistent
environments are removed from every other node so as to reduce duplicity. These definitions
can be extended to a sequence of justifications as follows:

Definition: Let . . , $,) be a sequence of justifications. The sequence is said to be
applicable to the ATMS if is applicable and each $;, 1 < i 5 s is applicable after the
sequential application of . . to the ATMS. The application of the sequence to the
ATMS is defined to be the sequential application of &, . . . , +,. An applicable sequence of
justifications is said to be complete with respect to .F if, after the application of the sequence,
no justification in F is applicable.

A basic ATMS algorithm is a process which repeatedly finds an applicable justification
and applies it, i.e. searching for a complete applicable secluence and applies it. This "batch"
algorithm can also be used to update the ATMS "incrementally". When new justifications
are added to the ATMS, one can simply execute the algorithm starting with the ATMS state
resulted from the previous run. This gives the same result as running the ATMS algorithm
starting with the initial ATMS state again. The above algorithm has been shown ([Gunter
et a!., 19901) to converge with the results as specified in equa.tion (1).

COMPLEXITY RESULTS

It is known that the task solved by the ATMS is hard [Provan, 1990~1. In particular, note
that computing the label for even a single 1itera.l will be NP-hard. .4s a worst case example,
consider an ATMS with the following input set of clauses:

A; + B;, i E [1,1z]
Bl , . . . , B n * z .

It is easy to check that the label of z is {{XI, X 2 . . . X,) I X; G A; or Xi G B;, 1 5 i 5 n).
Therefore, an ATMS will generate a. 2n size label for the node z . Hence, we have:

Proposition 2 A basic ATMS with I?, + 1 justification,s and 211, assumption.s may generate
label with size as large as 2". O

The above result establishes an exponential lower bound for the complexity of any ATMS
algorithm that is complete. Similar results were obtained for the case of prime impli-
cates/implicants generation in [Chandra and Markowsky, 19781. Furthermore, we also know
that implementing the ATMS in terms of a prime implicate generation algorithm [Kean and
Tsiknis, 1990; Reiter and de Icleeu, 19871 will lead to average-case perfornlance exponential
in the number of literals or input formu1a.e [Prova.n, 1990~1.

For general cases, the NP-hardness of the ATMS task does not tell us exactly what factors
affect the complexity. The following result remedies this by giving an upper bound to the
complexity of the basic ATMS algorithm:

Proposition 3 Given a knowledge base with c assumptions and formulae with 12 distinct
propositional atoms and 1 total occurrences of propositional atoms, a worst case complexity
of running the basic ATMS algorithm is O (c * 1 * n * 23c).

Proof: First, we consider the meet and join operations as defined in formulas (2) and (3).
Given two labels C1 and C2 of sizes ml and m2 respectively, the worst case complexities of
computing C1 A Cz and C1 V C2 are O (c * (ml * m2)2) and O (c * (ml + m2)') respectively.
Note that O(c) is the cost for each subset comparison.

Since the size of the environment lattice P is 2", every Lx of the ATMS has at most
O(2') environmenh4 This is also true for the results of the meet and join of two Lx7s, hence
the worst case complexities of the operations meet and join are both O (c * 22c).5 Therefore,
the application of a justification of length k , e.g. X I , . . . , xk + y , requires at most the cost
k * O(c * 22c).

To include the cost of finding a con~plete applicable sequence, note that one may need
to search through most of the justifications, i.e. need O(1) meet and join operations, before
finding one that is applicable. Furthermore, due to the mo~lotonicity of application, any
complete applicable sequence of justifications is of length at most n * 2". Therefore, a worst
case complexity of running the basic ATMS algorithm is O (c * 1 * IZ * 23") .

An interesting special case is if there is no assumption given, then the complexity of the
ATMS algorithm reduces to O(1 * n). In particular, such situations arise when we wish to
check the satisfiability of a collection of propositional horn clauses. For instance, given an
ATMS, one might wish to check whether a pa.rticular subset of assumptions is consistent with
the input formulae. This can be accomplished by changing these assumptions to premises
and removing all assumptions from the system before running the ATMS algorithm. We
will know that the given assumptions are consistent if the label of I is empty when the
algorithm terminates. It is worth noting that the complexity of checking satisfiability using
an ATMS compares favoritely with other existing algorithms [Chang and Lee, 1973; Dowling
and Gallier, 19841.

Since the incremental basic ATMS algorithm is an extension of the batch ATMS algo-
rithm, it also has O (c * 1 * n * 23c) as an upper bound to its worst case complexity. In the
following section, special cases of taslis will be analyzed to identify some pathological cases
where these exponential complexity results hold.

4Note that we are oversimplifying here. T l ~ r largest, possible size of a label is C:,2. Using Sterling's

forn~ula, this reduces to 0(2 ' /&) .
'This requires suitable data structures for storing pairwise u~liolls of eilviroilinellts during the meet oper-

ation, e.g. a 2' size array, so that each environment needs to compare wi th not more that 'LC environments.

DIFFICULT CASES FOR THE ATMS

This section characterizes a class of problems for which the ATMS will produce labels of size
exponential in the number of assumptions. These problems illustrate the different ways in
which the multiplying effect of combining labels from the antecedents of a justification can
lead to an explosion in the size of the consequent-node's label. By learning these patholog-
ical cases, we hope to devise ways of controlling the multiplying effect so as to reduce the
complexity of the ATMS computation. A step towards this goal is described in Section 7.

In the following, upper-case letters (e.g. A, B) refer to assumptions.

Parity Problem
The parity problem is one for which the complexity of even the basic ATMS is provably

exponential [Provan, 1990bl. The parity problem is defined (as given in [de Kleer, 1986~1):
For an expression F of n variables { p l , . . . , p,), each of which can take on Boolean values,

the parity of F is 1 if there is an odd number of variables set to 1 , and 0 if there is an even
number set to 1. The goal is to find an F with parity 1. Parity is defined recursively, calling
xi the parity for all variables up to and including variable p;. Define assumptions A; as
p; = 0 and B; as pi = 1 for i = 1, ..., n, and a,ssumptions Xi as xi = 1 and Y, as xi = 0 for
i = 1, ..., n. Hence, one obtains the boundary condition (i.e. premise) xo, and for i = 1, ... 12,

This gives a total of 4n + 1 input Horn clauses based on n variables indicating whether the
ith bit is 1 (Ai) or 0 (B,) , in addition to n + 1 added variables indicating whether the i th
prefix sub-string is of odd (9;) or even (xi) parity. Given this set of input clauses, it has been
shown that:

Proposition 4 Let F be the parity fl~nction with n val-iables. Then even though a satisfying
assignment can be found for F in O(12) time, a minimal expression F consists of 2" prime
implicates of length n each.

Proposition 4 was first proven by Lupanov [Lupanov, 19651. It has been cited in the A1
literature by McAllester [McAllester, 19853, and discussed by de Kleer [de Kleer, 1986~1. This
proposition shows yet another expression F with size O(n) such that any minimal expression
F which computes F must have O(.Sn) size. An inlmedia.te corollary is:

Corollary 5 Enumerating the set of miniinal support clauses for the parity problem is of
complexity exponential in th,e number 12 of components.

A solution to this exponential blowup, generating the labels for the variables one-by-one
on demand, has been proposed in [de I<leer, 1986~1; this solution does have nice complexity
properties, even though it is ad hoc and does not generalize to other problems.

Diagnostic Reasoning
Diagnostic reasoning from first principles has been an area of intensive research [de Kleer

and Williams, 198713; Reiter, 19871 and many of the existing diagnostic systems employ an
ATMS in actual implementations [de Kleer and Williams, 1987b; de Kleer and Williams,
19891. A recent formal study of diagnostic reasoning [de Kleer et al., 19901 has character-
ized the diagnosis problem as computing the prime implicants of the system description
and set of observa.tions. This characterization of the diagnosis task in terms of prime im-
plicates/implicants makes it not a surprise that the ATMS solving this task is usually of
exponential complexity. For instance, consider a circuit inspired by the pathological exam-
ple used in the proof of Proposition 2. This is shown in figure 1.

Figure 1: A circuit with an exponential number of conflicts

In this problem, the output of the circuit (0) does not correspond to the expected output
(1). One can deduce from this observation that the collection of conflict sets is {{AB(X~), . . . ,
AB(X,), AB(C,), . . . ,AB(C,), AB(D)) I Xi G Ai or Xi Bi) which is exponential in size.
However, the set of kernel diagnoses is {{AB(A,) ,AB(B~)} I 1 5 i 5 n,} u {{AB(C;)) I 1 5 7: 5
n) U {AB(D)} which is linear in size. Therefore, to generate all minimal/kernel diagnoses by
calculating the hitting sets of conflict sets [de I<leer et nl., 19901 is bound to be inefficient.
We will propose a solution to this problem in a. later section.

Nonmonotonic Encodings
In [Dressler, 19901, the following set of justifications are added to an ATMS to help

calculate the coherent extensions of non-monotonic reasoning problems:

where each Ai represents an assumption and B, represents the corresponding out-assumption,
usually referred to as out(A;).

Observe that the above clauses are merely a restatement of the pathological case we used
to prove Proposition 2. In particular, the former is equivalent to the transformation of the
latter by eliminating the need of having justified assumptions, i .e. assumptions which are
also consequences of some justifications. This is usually accomplished by having all justified
assumptions replaced by new non-assumptions and adding new justifications which justify
the new non-assumptions by the assumptions that they replace. In this case, we replace
every B; by a distinct non-assumption qi and add the new justification Bi + q; to the set of
clauses.

This observation tells us that the price of adding the above clauses to simulate non-
monotonic reasoning in an ATMS is inherently expensive. In particular, in the absence of
other justifications, the label of q will be {{XI, . . . , X,) 1 Xi - A; or Xi r Br } , which is of
size 2n.

5 IMPOSING BOUNDS O N T H E ATMS

We now consider restrictions intended to curtail the worst ca,se behavior of an .4TMS. In
particular, we will describe several global bounds which one can impose on the problem so
that the ATMS algorithm will terminate in polynomial time.

Given a justification XI,. . . , Xk -Y, the environments contributed by this justification
to the node X can be as large as N,\., x . . . x Nx, where Nx,, 1 < i 5 k , is the label size
of Xi. Therefore, it is undesirable to have long justifications in general. The "obvious" fixes
turn out to be ineffective. In particular, even if we restrict all the justifications to be short,
e.g. of maximum length 3, we can still get expo~iential blow up in the size of a la.be1 due to
some long chains of justifications.

Proposition 6 Imposing a constant bound on the length of justifications does not solve the
ATMS label explosion problem.

Proof: Consider the following input formu1a.s to an ATMS:

where b: B; and all other b's are non-assumptions. Note that the number of justifications
is 2 * n - 1 = O(n) . However, it is not hard to see that the label of b:"gn is

{{XI,. . . , X,} 1 Xi = Ai or Xi = B;, 1 5 i 5 n}

which is O(2") in size. Therefore, having a constant bound on the length of justifications
does not solve the label explosion problem.

Moreover, imposing a constant bound on the length of a chain of justifications does not
help either:

Propositioil 7 Imposing a constant bound on the length of the longest chain of justi.cations
does not solve the ATMS label explosion problem.

Proof: Consider the example we used to prove Proposition 2 where the longest chain of
justifications is only 2:

We know that the label of z is

Therefore, the label of z is of size 3," for an input forn~ula of size n + 1. Thus, having a
constant bound on the length of a justifica.tion chain does not curtail the exponential blow
up in label size.

If we impose a constant bound on both the length of justifications and the length of
chains of justifications, then we can indeed ensure that the label size will not blow up
exponentially. This is because such cases can only arise when the size of assunlption-support
for each proposition is also bounded by a constant. Hence, there can be a t most a (possibly
large) constant number of environnlents in ea,ch label. Unfortuna.tely, not many interesting
problems can be encoded with such constraints. In the following, we describe other more
successful attempts.

Small Assumption Sets
The complexity analysis of the basic ATMS algorithm shows that its worst ca.se com-

plexity grows polynomially with respect to the number of nodes and justifications, and
exponentially only with respect to the number of a.ssumptions. Therefore, if we can con-
trol the number of assumptions in a problem, then we can manage to get away from the
exponential blow up problem. An obvious situation is when the number of assumptions is
always bounded by a small constant. In this ca,se, the complexity of the ATMS algorithms
are simply quadratic. Even if the nurnber of assumptions grows logarithmically with respect
to the number of justifications or the number of nodes, the ATMS algorithm will still have a
worst case complexity that is polynomia,l with respect to the number of justific,a,tions or the
number of nodes.

Bounded Environment Length
If one knows more about the problem domains tha.t one is dealing with, then one may

be able to predict if the ATMS algorithms are going to blow up exponentially or not. There
are also those cases where one is only interested in some particu1a.r subclasses of all possible
solutions computable by the ATMS or interested in only approximate solutions. A particular

case is when one is only interested in bounded length environments. By considering all the
environments with a constant bound in their length, one is interested in having only short
explanations for nodes in the ATMS. One can easily modify the ATMS algorithms so that
they will only generate environments with length shorter than the bound (see Section 7
below) and hence make the ATMS algorithms more efficient.

It is easy to see that an ATMS with a bound on environment length can be incomplete.
As a simple example, consider the parity problem, where each literal has the same label
length a. The total size of the label is 2" where n is the number of assumptions. Enforcing a
small label, say k < n, can ensure every label is of manageable size, but will fail to produce
any solutions. In an analogous manner, any restriction on the number of assumptions may
prevent certain solutions (and possibly all solutions) from being discovered.

However, there is no underlying theory for most focusing strategies [Dressler and Farquar,
1990; Forbus and de I<leer, 19%; Ng and Mooney, 19911. In the following, we show that
the efficient examples just discussed, bounded assumption sets and environment lengths, are
not merely ad hoe, but are examples of a broader theory. We introduce the notion of a cost
function which subsumes these focusing techniques. This integration of cost functions into
the ATMS can be done in a semantically consistent manner, given the semantics described
in section 2.

COST FUNCTIONS

Polynomial-time behavior in the ATMS can be achieved by enforcing some form of cost
function on the ATMS. The general theory of a cost function is first described, followed by
some examples of different types of cost function.

Definition: A cost function e : A' -+ IR assigns a real-valued cost to any set A' of assump-
tions. p induces a total ordering 5 onto assumption sets. A cost function Q is said to satisfy
the monotonicity critel-ion if A 2 B + @ (A) 5 p(B).

ATMS labels naturally observe the monotonicity criterion, since label minimality is de-
termined by set inclusion. Assigning a pa.rtia1 ordering on assumption sets allows search to
be focused on the least-cost environments. In any such search, it is desirable to maintain
the important ATMS label properties, which were defined in [de Icleer, 1986al: For every
propositional atom X the ATMS is mid to have the property

Soundness: if for all p E Lx, 3- U p X;

Consistency: if every p E LAY is consistent, i . e . F U p kl;
Minimality: if for all p f Lx, there exists no p' A such that p' C p a,nd F U p' + X;
Completeness: if for all p such that F U p X, there exists p' E Lx such that p' C p.

Of these, it is most important to maintain soundness, consistency and minimality. If
completeness is sacrificed, "approximate" solutions can be computed; even so, it is desirable
to maintain admissibility (an optimal solution will be found if it exists). One such ap-
proximation is to maintain a "bounded" completeness in the solutions computed, in which
environments with costs lower than a given bound are guaranteed to be generated. The
BF-ATMS algorithm described in the next section is an efficient method for computing such
approximate solutions.

Two broad classes of cost function, probabilistic and integer-valued, can be defined. A
probabilistic cost function takes [0,1] values, and an integer-valued function takes value in
IN. Both cases have advantages and disadvantages, some of which are summarized in Table
1.

I Cost t v ~ e 11 Advantages I Disadvantages 1
I .J 1 I I u I u I

I Probabilitv 11 Exact-comnleteness preserved I Inefficient; Intlei,ende~~ce assuln~,tions 1
I

Efficient Heuristic-may be incomplete 1
Table 1: Advantages and disadvantages of proba.bilistic and integer-valued cost functions

These two classes of cost function are briefly exa.mined, and their application to the
ATMS is discussed.

Probabilistic Cost Functions
Consider the case of assigning a probability (i.e. [0,1] weight) to each assumption. A

formal uncertainty calculus, Dempster-Shafer Theory, is obtained [Laskey and Lehner, 1990;
Provan, 19891 by imposing certain restrictions on the problem description, such as assump-
tions being mutually exclusive and exhaustive, and computing the weights of labels exactly
without pruning environments.

For this calculus, the cost of the label for literal x corresponds to the Dempster-Shafer
Belief assigned to x, Bel(s). The benefit of this approach is the precise semantics associ-
ated with Belief assignments. However, the drawback is that the #P- hardness of calculating
Bel(x) [Or~onen , 1990; Provan, 1990al. Hence, simulation, e.g. Monte-Carlo simulation
[Wilson, to appear 19921, must be used to efficiently compute either of these tasks. However,
this probabilistic approach has several drawbacks. Unless simulation is used, the compu-
tational savings of cost-based focusing lnay be lost due to the computational demands of
computing the costs. In addition, the independence assumptions required are stringent, and
may be unreasonable for many domains.

Heuristic methods of assigning weights to labels are an alternative means of efficiently
computing a probabilistic partial ordering on labels. One suggested heuristic [de Kleer and
Williams, 19S7bI is to make the followirlg assign~ne~lt: for assumption set A', set @(A') =
1 - JJCEAt p(c), where ~ (c) is the probability of c , 0 < p (c) < 1. In addition, one must assume
that the c,'s are all mutually independent. The goal of this approach is to minimize @(A1).

Note, however, that this heuristic is just the dual to maximizing @(A1) = nCEdI p(c). In
other words, one is approximating Bel(x) using ~ ~ X A , E L , ~ (d ,) , where @(A,) = nCEd, p(c).

This cost function, however, may not help improve problem-solving efficiency if the indepen-
dent assumption fails, e.g. if we are only interested in environments resulted from the cross
product of some assumption sets [de Kleer and Williams, 19S7al.

Integer-Valued Cost Functions
Another heuristic approach is to assign integer-valued weights to assumption sets, i.e. p :

A -t IN. The advantages of this approach over the case of probabilistic weights include
avoiding required independence assumptions, or weight normalization. The disadvantage of
not normalizing the weights is that only the induced total ordering of label costs is mean-
ingful, and the relative magnitudes of the costs of the labels are not necessarily meaningful.
In some cases, this is greatly outweighed by the efficient computation of partial orderiilgs
possible with this approach.

Simple cost functions, such as p(A) = CA,EA e(Ai) , can be very effective. A particular
instance of this cost function is @ (A ;) = 1 for all i, i.e. the cost is the length of an envi-
ronment. In this case, the BF-ATMS a.lgorithm described in the next section will find the
minimum-length environments first. Furthermore, the time required to find a solution of
length I is polynomial in n if I is constant.

The next section discusses the incorpora.tion of the ATMS with cost functions in which
the monotonicity criterion is satisfied, and the application of integer-valued cost functions
to examples.

7 ATMS FOCUSED SEARCH ALGORITHM

Consider each application of a justification (XI , . . . , X, + Y) in the basic ATMS algorithm.
First, we need to check the following condition:

where

Lx A LY = MAzY({p, U py I p, E Lx ,py E Ly}), (6)

and MAX performs the subsumption checking a.nd returns the maximal environments (min-
imal subsets) in the set. If equation (5) is found to be true, the ATMS algorithm proceeds
to update the label of Y to L y V (Lx, A ' . - Lx,) [and removing L y from every other Lx if
Y rl], where L x V L y = M A X (L x U L y). In ea,ch of the A operations, an environment in
the first set is unioned with an environment in the second set as in equation 6, to produce a
new environment. Hence, by the monotonicity criterion of a cost function and the abstract
definition of the basic ATMS algorithm, it is clear tha.t:

Lemma 8 In each step of the basic '4TilLS algorith,rn.: tlze cost of every newly generated
environment is alulays larger than op. equal to tlze costs of the e n v i ~ * o ~ ~ n z e , ~ z t s which generate
it.

The above lemma is of great significance if we wish to set a cost upper-bound on the
environments generated by the ATMS. It tells us that we will never block the generation
of a desirable environment due to the elimination of environments which exceed the upper
bound. Therefore, we may immediately disregard, during each step of the basic ATMS algo-
rithm, many of the environments that would otherwise be generated by the standard ATMS
algorithm and incur heavy (probably exponential) computational cost later. Consequently,
the bounded basic ATMS algorithm defined below is guaranteed to generate all and only the
correct environments with costs lower or equal to a given cost bound, and at the same time,
achieve greatly reduced run time.

Definition: A Bounded Basic ATMS algorithm is the basic ATMS algorithm modified to
accept a cost bound B , a cost function p , and with the A operation changed to:

Lx ALy = M A X ({ p X U P, 1 P, E Lx, p, E LY and ~ (p , U p,) 5 B}). (7)

Note that Lemma 8 is not generally true for other similar algorithms. In particular, it
is neither true for the extended ATMS a.lgorithm [de Kleer, 19S6bI nor the consensus-based
CMS algorithm [Kean and Tsiknis, 19901. Therefore, if we wish to retain the completeness
property, it is not possible to incrementally eliminate environments which exceed a bound
in the extended ATMS or CMS algorithms; thus, a cost bound is not helpful in expediting
solution computation.

In the following, we outline a best-first like sea.rch st,rategy for finding the minimum cost
environments for any node Y in a basic ATMS using the bounded basic ATMS algorithm.

Procedure BF-ATMS (Y)

1. set the bound to be the lowest possible, i .e . the empty environment cost;

2. introduce all assumptions with cost lower or equal to the current bound;

3. run the bounded basic ATMS algorithm with the current cost bound;

4. if an environment appears in the label of Y , stop and report the result;

5 . increase the bound to the next higher cost, goto step 2.

The above algorithm is a simple application of the heuristic search rnethod using the
bounded basic ATMS algorithm as an environment generator and a non-redundant cache for
the environments generated. However, note that a direct incorporation of heuristic search
methods (such as A*) into the standard ATl'vlS is not possible because of the enormous
number of environments generated simultaneously, and it is not obvious how this proliferation
of environments can be curtailed without a deep understanding of the algorithm. This
difficulty has lead to the proposal of various much more specific focusing methods in the
past [de Kleer and Williams, 1987a; Forbus and de I<leer, 19SS; Dressler and Farquar, 19901.

The most significant feature of the BF-ATMS algorithm is that it generates each valid
environment in a best-first fashion, i . e . it will generate all correct environments with lower
costs before it generates the environments with next higher cost. In particular, the envi-
ronments with minimum cost will always be generated first. Note that the environments

generated during each run of the bounded basic ATMS algorithm are cached and need not
be generated again when the cost bound is increased.

Again, we would like to point out that the improved efficiency of the BF-ATMS algorithm is
largely due to the ability of the bounded basic ATMS algorithm (while remaining correct) to
ignore environments over the cost bound in each of its execution steps and hence, to prevent
them from incurring heavy costs in all later computation. Also, the compactness of the label
representation helps to eliminate many representational and computational redundancies
(see [de Kleer, 1986aI) which is why the BF-ATMS algorithm is superior to a simple generate-
and-test best-first search algorithm.

In terms of the four desirable properties defined in Section 6, a characterization of the
BF-ATMS algorithm is the following:

Proposition 9 At the termination of each loop in the BF-ATMS algorithm, the labels gener-
ated will satisfy the sound, consistent and n~ in i~na l properties of an ATMS. Furthermore, the
labels also enjoy the "bounded" completeness property which means that they contain every
environment (consistent or inconsistent) with cost lower or equal to a given bound.

Proof: The modification to the meet opera.tion as specified in equation (7) generates only
a subset of what the normal meet opera.tion generates. Hence, the soundness property still
holds.

The modified meet operation also ensures that no environment of cost greater than the
current bound will be generated. Furthermore, as a direct consequence of Lemma 8, the
algorithm does not prevent environment of cost less than or equal to the current bound from
being generated. Hence, consistency, nlinimality and l3ouncled completeness follow. CI

In some applications, we may want to find more than one solution. This can be achieved
by changing the termination condition t,o:

4'. if enough environments for k' a.re found, stop and report the result.

Other similar variations can also be made to the algorithm. For instance, if we have a better
understanding of the possible solution cost, we can set the initial bound of the algorithm
closer to the solution instead of starting from scratch. Furthermore, with a better under-
standing of the solution space, it is also possible to incorporate heuristics which control the
cost increment so as to obtain a faster convergence in running the algorithm.

One observation about the algorithm is that after the initial loop of the algorithm, one
can check if the empty set { } is in the label of I. If so, we call conclude immediately that
the system is inconsistent and abort.

We shall use the example shown in equation (4) with n = 16 to illustrate some of
the complexity issues regarding the BF-ATMS algorithm. Initia.lly, we used the number of
assumptions in an environment as its cost and obtained the empirical results shown in
Table 2.

'The system ran out of memory after about 100 minutes of CPU-t,ime.

16

Cost bound

0
1

Table 2: Example run of BF-ATMS with various bounds

8
16

One can observe that the BF-ATMS algorithm has enabled us to generate the ATMS labels
in an incremental fashion and the algorithm terminates rather rapidly for a low cost bound.
However, the simple cost function is not very helpful in efficiently finding the minimum cost
environments for all the nodes in our example, because the cost of every environment in
the node b: is 16. But we can solve this problem by changing the cost function to indicate
the preference of choosing assumptions of type A instead of type B. In particular, we can
assign to each assumption the cost of 1 if it is of the form A,, otherwise, the cost of 100.
The sum of assumption costs is then used as the cost of an environment. With this modified
cost function, the BF-ATMS can compute a minilnum cost environment for every node in less
than 0.2 second. With exactly the same cost function, albeit not a very efficient one, we can
also generate an even parity and several odd parity 20-bit strings in about 0.5 second and 3
seconds respectively. In conclusion, the selection of a good (but not necessary the best) cost
function for the given problem is essential for deriving the desirable solutions in a reasonable
amount of time.

The question is: what type of cost function would induce the assignment of an order-
ing over the environments to guarantee polynomial performance in the ATMS? To ensure
polynomial-time performance, no more than a polynon~ial number of environments can be
explored. Since environments are constructed beginning with the empty environment {) and
incrementally following the cost ordering, a good cost fiinction for a problem is therefore one
that induces a metric with the property that an acceptable solution set is a t polynomial
(with respect to the size of assumptions) distance away from the empty environment.

In many applications, we know a pr701-1 some characterization of the solution sets. For
instance, we may know that at least one solution set comes froill a small subset of assuinp-
tions; or there exists a solution environment with less than 1 assumptions. Consequently,
good cost functions can be designed accordingly:

Total labels size

0
48

1. e (p) = 0 if p A', co otherwise;

Time (seconds)

0.00
0.02

656
66192

where the assumption sets is A, the snla.11 subset of assuillptions is A' C A, and p C A is
any environment. Observe that the combination of these cost functions with the BF-ATMS
algorithm subsume the focusing strategies described in Section 5.

15.0
> one hour6

8 DIAGNOSIS FROM FIRST PRINCIPLES

In [Reiter, 19871, Reiter described an algorithm for generating diagnoses in which conflicts
of a system are generated incrementally. At each stage, one computes the hitting sets of
the conflicts to find possible diagnoses of the system. However, missing in the paper is an
efficient conflict generator. In addition to being an efficient (minimal) conflict generator, the
BF-ATMS algorithm can also be used as an efficient consistency checker (see Section 3) . In
the following, we describe a diagnostic algorithm in which the BF-ATMS algorithm plays an
important role.

As a motivating example, consider the circuit in Figure 1. Notice that the number of
conflicts is 2n even though there are only 2n + 1 kernel diagnoses. Using a cost function
similar to the above, one can efficiently find a conflict. On the other hand, to find the
entire set of conflicts would have taken too much time. This clearly demonstrates that it
is not a good idea for any diagnostic system, e.g. GDE [de Weer and Williams, 1987b] and
Sherlock [de Kleer and Williams, 19893, to take the approach of first generating the entire
or a large collection of conflicts before the generation of diagnoses.

The following are the formal definitions relevant to our study of diagnosis. Most of them
are borrowed directly from [de Kleer et nl., 19901.

Definition: A system is a triple (SD, COMPS, OBS) where:

a SD, the system description, is a set of first order sentences;

a COMPS, the system components, is a finite set of constants;

OBS, a set of observations, is a finite set of first order sentences.

Definition: An AB-literal is AB(C), or TAB(^) for some c E COMPS. An AB-clause is a
disjunction of AB-literals containing no complementary pair of AB-literals. A conflict of (SD,

COMPS, OBS) is an AB-clause entailed by SD U OBS. A minimal conflict is a conflict where no
proper subset of it is a conflict.

We will adopt a result (Corollary 1) from [de Kleer et al., 19901 as our definition of kernel
diagnosis:

Definition: The kernel diagnoses of (SD, COMPS, OBS) are the prime ilnplicants of the min-
imal conflicts of SD U OBS.

Note that the prime irnplicants of the nliniillal conflicts a.re precisely the minimal hitting
set of the minimal conflicts, i.e. the sma,llest sets in the cross product of the minimal conflicts.
One usually multiplies the minimal conflicts in a.n i?zcrem.ental fashion in deriving the desired
kernel diagnoses. The following definition a.llows us to describe such a process more precisely:

Definition: An incomplete diagnosis is a subset of a diagnosis. The expansion of an incom-
plete diagnosis p by a conflict C is the set of new incomplete diagnoses {p U {c) I c E C},
while the process of deriving this set is called expandi~zg the incomplete diagnosis p by C.

The process of generating diagnoses as described in [Reiter, 19871 is to: (1) start from
the empty set as the only incomplete diagnosis, and (2) replace elements in the collection
at each step by their expansions (with some suitable conflicts), until we obtain the desired
diagnoses.

Using essentially the same approach, we consider the following algorithm for generating
kernel diagnoses :

Procedure GEN-DIAG

1. Check if the current ATMS is consistent. If so, report that the only kernel diagnosis
is the empty set and quit.

2. Initialize the incomplete diagnoses database to contain the empty list as the only
element.

3. Retrieve an element p from the incomplete diagnoses database. If none exists, then
quit.

4. Generate a minimal conflict C.

5 . Consider every element in the expansion of p by C. If it is consistent with the system,
insert it into the diagnoses databa.se, otherwise insert it to the incomplete diagnoses
database.

6. Repeat from step 3.

In this discussion, we will only be interested in systems that can be encoded in finite
propositional Horn clauses for which we have an efficient conflict generator and consistency
checker. In particular, in an actual implementation of the above algorithm, the BF-ATMS

algorithm is used to check both the consistency for verifying a diagnosis and to generate
a conflict for expanding an incomplete diagnosis. Note that the conflict returned by the
BF-ATMS algorithm is always minimal.

A major difference between the GEN-DIAG algorithm and Reiter's HS-tree algorithm is
that for each expansion of an incomplete diagnosis, we generate a new minimal conflict.
This contrasts with using the same conflict to expand every incomplete diagnosis in Reiter's
approach. At first glance, this appears to be a more expensive approach. But there are
several reasons why we do this. In particular, we have a conflict generator which generates
minimal conflicts with great efficiency. Furthermore, as we shall see later, we can focus the
ATMS to return a good conflict for each incomplete diagnosis so that the search space for the
diagnoses can be greatly pruned. Another important reason is that this incremental fashion
of expanding incomplete diagnosis allows us to incorporate a cost function into the system
so that lower-cost kernel diagnoses can always be generated before the consideration of the
higher-cost ones, as in the case of label generation in the BF-ATMS algorithm.

From the definition of kernel diagnosis, we know that the GEN-DIAG algorithm will even-
tually find all the kernel diagnoses of the syqtem. However, Inany improvements to it are
needed to make it efficient. First, we need only to maintain a minimal set of incomplete diag-
noses, i . e . all incomplete diagnoses that are subsumed by another incomplete diagnoses can

be deleted from the incomplete diagnoses database. This is because every kernel diagnosis
that will be generated (via expansion) by an incomplete diagnosis will also be generated by
a smaller incomplete diagnosis. Similarly, since we are only interested in kernel diagnoses,
we need only to maintain a minimal set of diagnoses in the diagnoses database. Therefore,
the insert operation in step 5 of the above procedure should delete elements in the database
which are subsumed by the new element or discard the new element if it is subsumed by an
existing element.

A second improvement for the procedure can be derived from the observation that many
conflicts generated in step 4 may not contribute to the process. In particular,

Proposition 10 Suppose p is an incomplete diagnosis, if p C S COMPS, then 5 is a
diagnosis of (SD,COMPS,OBS) if, and only if, 6 - p contains a hitting set of the set of
conflicts S, that has empty intersection with p. In addition, S is kernel only if S - p is a
minimal hitting set of S,.

Proof: (=+) Given that 6 is a diagnosis, we know that 6 is a. hitting set of all conflicts.
In particular, 5 must hit every conflict in S,. Since each conflict in S, has empty
intersection with p, S - p must hit every conflict in S,, 2.e. 6 - p contains a hitting set
of S,.

(+) Given that S - p contains a hitting set of S,, by definition of S,, we infer that S must
also be a hitting set of all conflicts, i.e. a diagnosis of (SD, COMPS, OBS).

Suppose 6 is a kernel diagnosis of (SD, COMPS, OBS), if S - p is not a minimal hitting set
of S,, then there must exists a H c 5 - p that is a hitting set of S,. But by definition of
S,, p itself is a hitting set of all other conflicts of (sD,COMPS, OBS), i .e. H U p is a hitting
set of all conflicts and hence a diagnosis. But this diagnosis is strictly smaller than S which
contradicts the assumption that 6 is kernel. Hence, S - p must be a, minimal hitting set of
s,.

The above result tells us that the ATMS should avoid considering any environment
which contains an assumption represeilting an element of t,he incomplete diagnosis under
consideration. This can be easily achieved by setting the labels for such assumptions to the
empty set, thereby improving the efficiency of generat,ing the next relevant conflict.

Another simi1a.r improvement is to realize that the kernel diagnoses which are already
generated can also help to focus the BF-ATMS algorithm so that extraneous assumptions can
be excluded from the conflict generation process. In particular,

Proposition 11 Suppose we are expanding an incomplete diagnosis p and A is the current
set of kernel diagnoses, then one ca71 ignore the followirzy set of as.~umytions from the conflict
without affecting the results of expaizdirzg p:

G = { c / 35 E C\ s.t. 6- p = { c))

Proof: By the definition of G, any expansion of p by G will be a diagnosis subsumed by at
least one of the kernel diagnoses already generated. Hence, such elements will be detected
as diagnoses and discarded by the GEN-DIAG procedure. Therefore, we will not miss out any
new kernel diagnoses if we ignore the assumptions in G. CI

The above result allows us to modify the ATMS as follows:

Proposition 12 Assume the same suppositions as in Proposition 11. If we replace every
assumption G in the ATMS b y a premise, i.e. replacing the components set b y COMPS' =
COMPS - {X (AB(X) E G or ~ A B (X) E G) and the observations b y OBS' = oBS U { c (
c E G) , then for every C which has empty intersection with p , we have C is a conflict of
(SD, COMPS, OBS) if, and only if, C > G and C - G is a conflict of (SD, COMPS', OBS').
Furthermore, C is minimal if, and only if, C - G is a minimal.

Proof: For the first part,

(j) Suppose C is a conflict of (SD,COMPS,OBS), first we want to show that C > G. For
every g E G, we know by definition of G that p U ig) is a diagnosis. So the intersection
of p U {g) with C must be non-empty. But p n C = #, so y must be in C , i.e. C > G.
We also know that

S D U O B S U { ~ I C E C)

is inconsistent. Since {c I c E C) is already in OBS', we infer that

is inconsistent. Furthermore, {S I AB(X) E C - G or ~ A B (X) E C - G } C COMPS',
hence, C - G is a conflict of (SD, COMPS', OBS').

(+) Suppose C - G is a conflict of (SD, COMPS', OBS'), we know that

S D U O B S ' U { c) C E C-G)

is inconsistent. By swapping the set { c 1 c E C}, we ha.ve

SD U OBS U { c c E C)

is inconsistent. Hence, C is a conflict of (SD, COMPS, OBS).

To prove the second part of the proposition, suppose C - G is not minimal. Then there
must exist A' c C - G such that A' is also a, conflict of (SD, COMPS', OBS'). Let A = A' U G,
we know from the first part of the proposition that A must be a conflict of (SD, COMPS, OBS).

But C > G implies that A c C, so C is not a minimal conflict of (SD, COMPS, OBS).
Conversely, suppose C is not minimal, then there must exists A c C such that A is a

conflict of (SD, COMPS, OBS). From the first part of this proposition, we know that A' = A-G
must also be a conflict of (SD, COMPS', OBS'). But C > G implies that A' must be a strict
subset of C - G, i.e. C - G is not a n1inima.l conflict of (SD, COMPS',OBS').

Corollary 13 Suppose p 6 C COMPS and 6 fl G = 8 , then 6 is a diagnosis of (SD, COMPS,

OBS) if, and only if, S is a diagnosis of (SD, COMPS', OBS') as defined in Proposition 12.

Proof: We know from Proposition 10 that S is a diagnosis of (SD, COMPS, OBS) if, and only
if, S - p contains a hitting set of S,. Given that 6 n G = 0, it means that S does not hit any
element in G. Therefore, S is a diagnosis of (SD, COMPS, OBS) if, and only if, 6 - p contains
a hitting set of {C - G 1 C E S,) which by Proposition 12 is exactly the conflicts of (SD,
COMPS', OBS'). Hence, S is diagnosis of (SD, COMPS, OBS) if, and only if, S is a diagnosis of
(SD, COMPS', OBS').

Since Proposition 11 ensures that we will not miss anything by ignoring the expansions
which involve elenlents from G, we can restrict our consideration to diagnoses which have
empty intersection with G. But by Corollary 13, we know that this is equivalent to consid-
ering the diagnoses of a reduced syst,em in which con~ponents in G a,re deleted. Hence, at
each stage of expanding an incomplete dia.gnosis p, we can replace all the assuinptions rep-
resenting the elements in G by premises, i . e . repla.ce their 1a.bels by the singleton containing
the empty set environment. This results in a.n ATMS with a smaller set of a.ssumptions, and
which generates smaller conflicts.

The above results guarantee that the new ATMS with lesser assumptions will still provide
us with all the conflicts that are needed for the purpose of diagnosis computation. Thus, the
BF-ATMS algorithm will be more efficient in conflict generation because of a smaller number
of assumptions. Similarly, the generation of diagnoses from the smaller conflicts will also be
more focused and efficient.

In an actual application, we may not want to generate every kernel diagnosis since this can
be very expensive. Therefore, we can learn from our discussion on the BF-ATMS algorithm
and impose a cost function to focus the diagnosis generation process. In particular, we can
select a cost function which satisfies the monotonicity requirement and use it to control
the order in which diagnoses will be generated. This can be achieved by modifying the
incomplete diagnosis retrieval operation to always return a least-cost element. With this
mechanism of generating diagnoses with least cost first, we can impose a cost bound to stop
the system from considering elements in the expansion of an incomplete diagnosis with cost
higher than the bound. In this case, all and only those kernel diagnoses with cost lower than
the bound will be generated. We can a,lso impose a stopping criterion to halt the algorithm
when a desirable number of diagnoses has been obtained, e.g. when the probability mass of
these diagnoses or the number of diagnoses exceeds a, certain bound.

From the discussion above, we can modify the GEN-DIAG algorithm as follows:

Procedure GEN-DIAG

1. Check if the current ATMS is consistent. If so? report that the only kernel diagnosis
is the empty set and quit.

2. Initialize the incomplete diagnosis database to contain the empty list as the only
element.

3. Retrieve a lowest cost element p from the incomplete diagnoses database. If none
exists, then quit.

4. Generate a minimal conflict C which shares no common component with p.

5. Consider every expansion of p by C that is within the cost bound; if it is consistent
with the system, insert it into the diagnoses database, otherwise insert it into the
incomplete diagnoses database.

6. If sufficient kernel diagnoses have been generated, then quit.

7. Repeat from step 3.

The above algorithm controls the diagnosis generation process by imposing a bound on
the cost of a diagnosis and a criterion which indicates whether a sufficient number of diagnoses
have been generated. Even though only the incomplete diagnosis with lowest cost is used
for expansion each time, the diagnoses produced are not guaranteed to be the lowest cost
among the remaining diagnoses. If it is a requirement for the kernel diagnoses to be generated
monotonically with respect to their cost, we can either modify the GEN-DIAG algorithm to
mimic the BF-ATMS algorithm by increasing the cost bound incrementally, or to delay the
consistency check of the elements in the expansion (step 5) until they are retrieved from
the incomplete diagnoses database (step 3) . For the case where the cost of an incomplete
diagnosis is its length, however, no modifica.tion to the GEN-DIAG algorithm is needed to
guarantee that the lowest-cost diagnoses are always generated first.

An important efficiency issue which we have not discussed is the structure of the databases.
In many problems, the incomplete diagnoses database can grow very large in size. It is
therefore important to have an efficient data structure to support the insert operation which
mainly involves subset checkings. A suitable data structure is the discrimination net de-
scribed in [Forbus and de Kleer, 19921, which ha.s very nice complexity behavior in the worst
case situation.

As a conclusion to this section, we note that the major differences between our diagnostic
algorithm and that of Reiter's are:

1. for each expansion of an incomp1et.e diagnosis, we generate a new conflict,

2. the conflict generated is always minimal a,nd sha.res no common literal with the incom-
plete diagnosis, and

3. the notion of cost is used to focus the system so that diagnoses with lower costs (or
higher probabilities) are always generated first.

AN EXAMPLE
As an example, we use the circuit in Figure 1 to illustrate the efficiency of our cost-based
approach. The BF-ATMS algorithm is controlled by a simple cost function, similar to the one
described in Section 7, which prefers the a.ssumptions that are different from A;, 1 5 i 5 n.

The cost function which controls the diagnosis generation process is simply the length of
an incomplete diagnosis. An execution trace of the GEN-DIAG is shown in Figure 2, where
(o), (J) and (x) represent respectively the incomplete diagnoses, diagnoses and incomplete
diagnoses that are subsumed by others, while [A B (. .] represents the conflict generated for
the incomplete diagnosis.

Figure 2: The execution trace of the GEN-DIAG algorithm

First, the empty set was verified to be incoilsistent with SD U OBS and was initialized
to be the only incomplete diagnosis. It was expanded by the conflict [AB(B~) , . . . , AB(B,),
AB(C~) , . . . , AB(C,), AB(D)]. The incomplete diagnoses A B (C ~) , . . . , AB(C,) and AB(D) were
immediately checked out to be the single-fault diagnoses. Then the incomplete diagnosis
AB(B~) was expanded by the conflict [AB(A~) , AB(B2), . . . , AB(B,)]. Note that the single-
fault diagnoses were used to reduce the size of the conflict. Except for ' A B (B ~) , A B (A ~) ' which
was checked out to be a diagnosis, every other element from the expansion was subsumed by
an existing incomplete diagnosis and disca,rded. Other incomplete diagnoses are subsequently
expanded in a similar fashion which produce additional diagnoses and incomplete diagnoses.

One important observation from this example is that the space of incomplete diagnoses
which the algorithm explores is much smaller than the entire set of possible incomplete
diagnoses. In particular, it only explores those of the form AB(B;,)? . . . , AB(B;,) where
1 5 il < . . . , < ik < n instead of the much larger collection AB(&), . . . , AB(X;,) where
X = A o r X - B .

In an experiment to see how a generate-and-test dia.gnostic system will perform, we
modified the GEN-DIAG algorithm by expa.nding each incomplete diagnosis with the set of all
assumptions except those useless ones as indicated in Propositions 10 and 11. An empirical
comparison was made between the GEN-DIAG a.lgorithlr1 a.nd the genera,te-and-test algorithm

GEN-TEST for the above example. The result is shown in Table 3, where ID# is the number
of incomplete diagnoses that were expanded and Time is the execution time in seconds.
It clearly demonstrates that the focusing power of the GEN-DIAG algorithm is superior in
searching for multiple-fault diagnoses.

Table 3: Empirical comparison between GEN-DIAG and GEN -TEST

n

5
10
15

For single-fault diagnoses, there is no significant difference between the two algorithms
and either one may perform better than the other. For instance, if the conflict generated by
the GEN-DIAG algorithm is not significantly smaller than the entire set of assumptions, then
the cost of the conflict generation may outweigh its the focusing advantage. Conversely, if a
small conflict is generated, then the additional cost of consistency checking incurred by the
GEN-TEST algorithill may be more significant.

We have presented a diagnostic generator similar in spirit to Reiter's [Reiter, 19871.
Our new contributions include an efficient conflict generator and consistency checker, an
efficient focusing technique for guiding the conflict generator in generating useful conflict
and an incremental cost-based diagnoses generation process which prevents the system from
wasting time on less probable diagnoses.

In a recent work [de Kleer, 19911, de I<leer has also implemented an incremental system
that generates diagnoses in a best first fashion. This system differs from ours in terms of
its focusing techniques. In particula.r, its conflict generator (HTMS) does not guarantee the
conflicts it produces are minimal and thus can lead to additional cost for considering some
useless incomplete diagnoses. Furthermore, the use of existing diagnoses in focusing the
conflict generator is also lacking. On the other hand, de I<leer's work includes a minimum
entropy technique for deciding which new probe can narrow down the space of probable
diagnoses as quickly as possible.

10 RELATED WORK

We have described a general focusing method for the A'l'MS to solve problems efficiently.
With a similar goal, some researchers have described other techniques for focusing the ATMS
label updating process to avoid generating unwanted environments [de I<leer and Williams,
1987a; Forbus and de Kleer, 1988; Dressler a.nd Farqua.r, 1990; Collins a.nd DeCoste, 19911.

The incorporation of backtracking into an ATMS [de I<leer and Williams, 1987al can be
considered as a particular instance of a BF-ATMS where a special cost function is imposed on

Cost bound = 2 Cost bound = 4
GEN-DIAG

ID#
6
11
16

GEN-TEST GEN-DIAG
Time

0.59
3.6
13.6

ID#
11
21
31

ID#
26
176
576

GEN-TEST

Time

0.62
5.4
19.7

Time

3.5
29.5
286

ID#
131
1161
4091

Time

4.0
226

2260

the literals in the task-specific control disjunctions. The backtracking procedure can roughly
be simulated by a cost function which stipulates a preference ordering for the literals in each
of the control disjunctions.

The approach taken by [Forbus and de Icleer, 1988; Dressler and Farquar, 19901 is to
"focus" the ATMS to consider only small assumption sets a t any one time and fix an upper
bound on the length of environments. As described in Section 5, these are very effective
techniques for controlling the label explosion problem. These focusing strategies, however,
have no mean of "refocusing" the ATMS when the current focus is found to be unsatisfactory.
Furthermore, the absence of the notion of a cost function encourages the creation of an ad
hoc and unwieldy control structure in the problem solver itself. This removes one of the
important advantages of using an ATMS: to alleviate the control burden from the problem
solver.

In contrast, with an acceptable cost function for the problem domain, the BF-ATMS

algorithm will independently generate the desira,ble low cost solution with greatly improved
efficiency over the standard ATMS, without a.ny intervention from the problem solver. Of
course, one can also modify the BF-ATMS algorithm so that it can be interrupted, e.y. when
the cost reaches a certain ceiling, and let the problem solver take over. The problem solver
may in turn decide t o run the algorithm with a better cost function. This is a much coarser-
grained and more acceptable control than the previous approaches.

Another interesting approach to avoiding la.bel explosion in an ATMS is to stop the label
propagation at justified assumptions [Collins and DeCoste, 19911. This approach appears
to be very helpful for specific problems where ma,ny assumptions are each a consequence
of some justifications. But as illustrated by some of the examples we gave earlier, there
are problems where assumptions are never justified but still suffer from the label explosion
problem. To make it worse, this explosion can still arise even if some of the assumptions are
justified. In such cases, the avoidance of label propagation at justified assumptions does not
help the combinatorial explosion.

This approach is related to, but different from, t,he simple application of heuristic search
techniques [Pearl, 19841 to the ATMS. A funda,mental problem addressed in this paper is
how to merge the advantages of the efficiency of (a) heuristic search (exploration of a reduced
portion of the search space to hit the solution faster) and (b) the ATMS (saving backtracking
and redundant computation over a single-context TMS). It is the multiple-context search of
the ATMS which makes the applica.t,ion of traditional heuristic search techniques to this task
difficult. Most heuristic search techniques a.ttempt to compute the single best solution, and
keep a stack of next-best solutions if the current best pa,rt,ial solution becomes sub-optima.1.
Hence, for single-context searches, heuristic algorithms are easily defined. In contrast, the
standard ATMS has no notion of best solution, only consistent or inconsistent solutions, and
it computes all consistent solutiolls s imultaneo~~sly.~ Therefore, one needs to have a complete

7 ~ e r e we loosely use solution for context. 'The ATMS lliaintains minimal representations of both consistent
and inconsistent contexts, and the two are dual to one anot.her. Strictly speaking, the ATMS can reason with
either consistent or inconsistent minimal cont,exts. For example, tlie inconsistent contexts, besides performing
the consistency maintenance function of an ATMS, are somet.imes t,he desired solutions: in diagnosis, the

understanding of the fundamental steps of the ATMS algorithm (as in the BF-ATMS) before
general focusing techniques can be devised without destroying the powerful properties of the
ATMS.

CONCLUSIONS

This paper has described the application of a general notion of cost functions to the design
of a new ATMS focusing algorithm. This successful incorporation of cost function into
the ATMS algorithm is made possible because of the better understanding of an ATMS as
described in Section 2.

T h e BF-ATMS algorithm focuses the label generation process t o help the ATMS attain the
efficiency of a traditional single-context TMS [Doyle, 1979; McAllester, 19851. At the same
time, it retains the multiple-context capability of an ATMS and the important properties of
an ATMS like consistency, minimality, a,nd soundness, in addition to the property of bounded
completeness. Experimental results demonstrate that the BF-ATMS algorithm quickly solves
problems proven to have labels which are of size exponential in the number of assumptions.

Moreover, the generality of the cost-function approach as well as the usefulness of the
BF-ATMS algorithm are demonstrated by their applications to consistency-based diagnosis
in which dramatic efficiency improvements, with respect to the simple generate-and-test
technique, are obtained.

References
[Bodington et al., 19901 R.M. Bodington, G.D. Sullivan, and K.D. Baker. Experiments on the Use

of the ATMS to Label Features for Object Recognition. In Proc. of ECCV-90, pages 542-551,
1990.

[Brown et al., 19871 Allen L. Brown, Dale E. Ga,ucas, and Dan Bena.nav. An algebra,ic foundation
for truth maintenance. Proc. of IJC'AI-87, pages 973-980, 1987.

[Chandra and Markowsky, 19781 Ashok K. Chandra and George Markowsky. On the number of
prime implicants. Discrete Mathematics, 24:7-11, 1978.

[Chang and Lee, 19731 C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem-Proving.
Academic Press, 1973.

[Collins and DeCoste, 19911 John W. Collins and Dennis DeCoste. CrZTMS: An ATMS Which
Avoids Label Explosions. In Proc. of AAA I-91, pa,ges 281-287, 1991.

[de Kleer and Williams, 1987al Johan de Iileer and Bria.n C. Williams. Back to backtracking:
Controlling the ATMS. Proc. of AAAI-$7, pages 910-917, 1987.

[de Kleer and Williams, 1987bj Johan de I<leer and Brian C. Williams. Diagnosing multiple faults.
Artificial Intelligence, 32:97-130, 1987.

- -

inconsistent contexts are exactly the lniniinal collflicts used to generate the kernel diagnoses.

27

[de Kleer and Williams, 19891 Johan de Kleer and Brian C. Williams. Diagnosis with behavioral
modes. Proc. of IJCAI-89, pages 1324-1330, 1989.

[de Kleer et al., 19901 Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. Characterizing
diagnoses. Pm. of AAAI-90, pages 324-330, 1990.

[de Kleer, 1986al Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127-162,
1986.

[de Kleer, 1986b] Johan de Kleer. Extending the ATMS. Artificial Intelligence, 28:163-196, 1986.

[de Kleer, 1986~1 Johan de Kleer. Problem solving with the ATMS. Artificial Intelligence, 28:197-
224, 1986.

[de Kleer, 19911 Johan de Kleer. Focusing on probable diagnoses. Proc. of AAAI-91, pages 842-
848, 1991.

[Dowling and Gallier, 19841 William F. Dowling and Jean H. Gallier. Linear-time algorithms for
testing the satisfiability of propositionaJ horn formu1a.e. Journal of Logic Programming, 3:267-
284, 1984.

[Doyle, 19791 Jon Doyle. A truth maintenance system. Artificial Intellige~zce, 12:231-272, 1979.

[Dressler and Farquaa, 19901 0. Dressler a.nd A. Fa.rqua.r. Putting the Problem Solver Back in the
Driver's Seat: Contextual Control of the ATMS. In Second AAAI Workshop on Model-Based
Reasoning, pages 106-1 12, 1990.

[Dressler, 19901 Oskar Dressler. Problem solving with the NM-ATMS. In Proc. European Conf. on
AX, pages 253-258, 1990.

[Forbus and de Kleer, 19881 Kenneth D. Forbus and Jo11a.n de Kleer. Focusing the ATMS. Prm.
of AAAI-88, pages 193-198, 1988.

[Forbus and de Kleer, 19921 Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers. To
be published, 1992.

[Forbus, 19901 Kenneth D. Forbus. The qualitative process engine. In Daniel S. Weld and Johan
de Kleer, editors, Readings in Qualitative Reasoning A b u t Physical ,Systems, pages 220-23.5.
Morgan Kaufmann, 1990.

[Gunter et al., 19901 Carl A. Gunter, Teo~v-Hin Ngair, Prakash Panangaden, and Devika Subra-
manian. The common order-theoretic structure of version spaces and ATMS's. Technical Report
MS-CIS-90-86, University of Pennsylvania, 1990.

[Kean and Tsiknis, 19901 A. Kean aad G . Tsiknis. An Incrementa.1 Method for Generating Prime
Implicants/Implicates. Journal of ,Symbolic Computation, 9:185-206, 1990.

[Laskey and Lehner, 19901 K. Blackmond La,skey a.nd P.E. Lehner. Assumptions, Beliefs and Prob-
abilities. Artificial Intelligence, 41:65-77, 1990.

[Lupanov, 19651 O.B. Lupanov. On the Realization of Functions of Logical Algebra by Formulae of
Finite Classes (Formulae of Limited Depth) in the Basis ., +, -. Problemy Kibernetiki, 6, 1965.

[McAllester, 19851 D. McAllester. A Widely Used Truth Maintenance System. Unpublished, 1985.

[McCarthy, 19801 J. McCarthy. Circumscription: A Form of Nonmonotonic Reasoning. Artificial
Intelligence, 13:27-39, 1980.

[Ng and Mooney, 19911 Hwee Tou Ng and Raymond J . Mooney. An efficient first-order horn-clause
abduction system based on the ATMS. Proc. of AAAI-91, pages 494-499, 1991.

[Ngair, 19921 Teow-Hin Ngair. Convex Spaces as an Order-theoretic Basis for Problem Solving. PhD
thesis, Department of Computer and Information Science, University of Pennsylvania, 1992.

[Orponen, 19901 P. Orponen. Dempster's Rule of Combination is #P-Complete. Artificial Intelli-
gence, 44:245-254, 1990.

[Pearl, 19841 Judea Pearl. Heuristics : intelligent search strategies for comnputer problem solving.
Addison- Wesley, 1984.

[Provan, 19891 G. Provan. An Analysis of ATMS-based Techniques for Computing Dempster-Shafer
Belief Functions. In Proc. of IJCA I-59, pages 11 15-1 120, 1989.

[Provan, 1990a] G. Provan. A Logic-based Ana.lysis of Dempster-Sha.fer Theory. International
Journal of Approximate Reasoning, Special Issue on Belief Functions and Belief Maintenance in
Artificial Intelligence, 4:451-498, 1990.

[Provan, 1990bI G. Provan. Complexity Analysis of Truth ,Maintenance Systems, with Application
to High Level Vision. PhD thesis, Faculty of Mathematics, University of Oxford, 1990.

[Provan, 1990~1 G. Provan. The Computational Complexity of Multiple-Context Truth Mainte-
nance Systems. I11 Proc. of ECAI-90, pa.ges 522-527, 1990.

[Reiter and de Kleer, 19871 R. Reiter and J , de I<leer. Foundations of Assumption-based Truth
Maintenance Systems: Preliminary Report. In Proc. of AAAI-57, pages 183-188, 1987.

[Reiter, 19801 Raymond Reiter. A logic for default reasoning. Artificial fntelligence, 1353-132,
1980.

[Reiter, 19871 Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32:57-95, 1987.

[Wilson, t o appear 19921 N. Wilson. Computa.tional Efficiency and C;eneralisation of the Dempster-
Sha.fer Theory. ArtificiaJ Intelligence, to appear, 1992.

	Focusing ATMS Problem-Solving: A Formal Approach
	Recommended Citation

	Focusing ATMS Problem-Solving: A Formal Approach
	Abstract
	Comments

	tmp.1185302951.pdf.mLmfl

