View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

Penn

University of Pennsylvania

Libraries _
UNIVERSITY 0f PENNSYLVANIA ScholarlyCOmmonS
Technical Reports (CIS) Department of Computer & Information Science
July 1998

PLAN Security System

Michael Hicks
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Michael Hicks, "PLAN Security System", . July 1998.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-25.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/108
For more information, please contact repository@pobox.upenn.edu.

https://core.ac.uk/display/76359588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/108
mailto:repository@pobox.upenn.edu

PLAN Security System

Abstract

Active Networks offer the ability to program the network on a per-router, per-user, or even per-packet
basis. Unfortunately, this added programmability compromises the security of the system by allowing a
wider range of potential attacks. Any feasible Active Network architecture therefore requires strong
security guarantees. Of course, we should like these guarantees to come at the lowest possible price to
the flexibility, performance, and usability of the system.

The PLAN system is a distributed programming framework we have used to build an Active Network,
PLANet [4]. In the PLAN system, code implementing distributed programs is broken into two parts: the
PLAN level, and the Service Level. All programs in the PLAN level reside in the messages, or packets, that
are sent between the nodes of the system. These programs are written in the Programming Language for
Active Networks [6] (or simply, PLAN). PLAN programs serve to "glue" together Service level programs;
PLAN may be thought of as a network scripting language. In contrast, Service level programs (or simply,
services), reside at each node and are invoked by executing PLAN programs. Services are written in
general-purpose languages (in particular, the language that the PLAN interpreter is written in) and may be
dynamically loaded.

The current Internet (IP and its supporting protocols) allows any user with a network connection to have
some basic services. In addition to basic packet delivery provided by IP, basic information services like
DNS, finger, and whois, and protocols like HTTP, FTR, TCP, SMTP, and so forth are provided. Similarly, a
goal of PLANet is to allow any user of the network to have access to basic services; these services should
naturally include some "activeness." This goal implies that some functionality, like packet delivery in the
current Internet, should not require authentication; in PLANet, we allow "pure” PLAN programs to run
unauthenticated. A PLAN program is considered "pure" if it only makes calls to services considered safe;
for example, determining the name of the current host is a safe operation, while updating the host'’s router
table is not. Successfully calling unsafe services would require proper authorization. This security policy
is stated more formally in the following subsection.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-98-25.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/108

https://repository.upenn.edu/cis_reports/108

PLAN System Security

Michael Hicks
July 14, 1998

1 Introduction

Active Networks offer the ability to program the network on a per-router, per-user, or even
per-packet basis. Unfortunately, this added programmability compromises the security of
the system by allowing a wider range of potential attacks. Any feasible Active Network
architecture therefore requires strong security guarantees. Of course, we would like these
guarantees to come at the lowest possible price to the flexibility, performance, and usability
of the system.

The PLAN system is a distributed programming framework we have used to build an
Active Network, PLANet [4]. In the PLAN system, code implementing distributed programs
is broken into two parts: the PLAN level, and the Service Level. All programs in the PLAN
level reside in the messages, or packets, that are sent between the nodes of the system. These
programs are written in the Programming Language for Active Networks [6] (or simply,
PLAN). PLAN programs serve to ‘glue’ together Service level programs; PLAN may be
thought of as a network scripting language. In constrast, Service level programs (or simply,
services), reside at each node and are invoked by executing PLAN programs. Services are
written in general-purpose languages (in particular, the language that the PLAN interpreter
is written in) and may be dynamically loaded.

The current Internet (IP and its supporting protocols) allows any user with a network
connection to have some basic services. In addition to basic packet delivery provided by IP,
basic information services like DNS, finger, and whois, and protocols like HTTP, FTP,
TCP, SMTP, and so forth are provided. Similarly, a goal of PLANet is to allow any user
of the network to have access to basic services; these services should naturally include some
‘activeness.” This goal implies that some functionality, like packet delivery in the current
Internet, should not require authentication; in PLANet, we allow all ‘pure’ PLAN programs
to run unauthenticated. A PLAN program is considered ‘pure’ if it only makes calls to
services considered safe; for example, determining the name of the current host is a safe
operation, while updating the host’s router table is not. Successfully calling unsafe services
would require proper authorization. This security policy is stated more formally in the
following subsection.

1.1 Security Architecture

For the current PLAN system we propose (and have partially implemented) a hierarchical
security infrastructure in which privilege can be viewed as a poset, as shown in Figure 1.
Here, L represents privilege allowed to all unauthenticated PLAN programs, while T rep-
resents privilege allowed to the node administrator. Intermediate nodes represent varying
levels of privilege such that a principal with privilege level m may additionally invoke ser-
vices with levels < m. Privilege is checked and enforced when a service routine is called
from a running PLAN program.

Most privilege

Authenticated /

Unauthenticated

Least Privilege

Figure 1: Security Architecture as a Poset

There are important ramifications of this architecture. The privilege provided to any
particular set of principals at level m (represented by a node in the poset) draws on the
privilege the children of m. In particular, a breach in security at any point in the poset
affects all all parents of that point. Therefore, the foundation of our security policy is the
safety and security of unauthenticated PLAN programs.

This paper presents a series of additions and changes to the PLAN system to implement
this security architecture. In particular, we desire to

1. strengthen the security of PLAN programs, the foundation of the architecture.
We do this by

a. further restricting the PLAN language to a ‘safer’ subset

b. allowing node policy-specified bounds on elapsed time and memory consumable
by a PLAN program.

2. add trust management services to manage security at the higher layers. In
particular, we make use of the Query Certificate Manager [9] to add mechanisms to
PLAN to

a. describe the sets of principals associated with the nodes in the poset

b. describe and enforce privilege allowed each set of principals

We first present the perceived threat model to PLANet followed by the motivation for the
particular solutions we present. We then fully describe the design and implementation of
our changes, including performance analysis.

2 Threat Model

The two major threats to the PLAN system are to the public resources of the system: the
CPU, memory, and network; and to the contents of the system: the packets themselves and
the information stored on routers. The more specific forms these threats might take are
outlined below.

¢ Denial of Service. This boils down to resource control. Because of the potentially
resource-intensive nature of active programs, the resource control model of an active
node must be different from a traditional passive one. We want to strictly control:

— CPU time. This is a question of program execution time and proper schedul-
ing. All programs should only have a limited number of CPU cycles (they must
terminate), and each program should have “fair” access to the node CPU. In
particular, we would like those programs which require minimal servicing to have
priority over those which are more computationally intense: “dumb” packets
which require only a routing service should preferentially processed over all oth-
ers. Furthermore, when the node is processing some “active” packet, it should
not deny service to other packets which arrive in the meantime. We might also
like to provide a more liberal environment to authorized users.

— Memory. While a program executes, it occupies memory which is released upon
termination, termed ephemeral state. If a program is allowed to occupy too much
memory, even for a finite period, service could be denied to other programs.
Therefore memory allocation must be controlled. One policy might be to allow
a program only to allocate an amount of memory proportionate to its own size.

Furthermore, an active program might reserve memory on the node beyond the
program’s own execution, termed resident state. Such state may reside on the
node until explicitly removed (persistent state), or it may last only a finite period
(temporary state). As examples, resident state could be the result of adding
entries to a routing table, installing new services on a node, or marking nodes
as part of DFS. We would likely want newly installed services to persist, while
application-specific data would be temporary (such as node marking for a network
DFS). The allocation of resident state must be strictly controlled, probably via
authentication, if memory resources are to be available to all packets.

The worth of memory allocated is tied to the running time of a program. For
example, if two programs P and @ allocate n bytes of memory, but P terminates
quickly while @ retains its memory for a much longer period (say, because it
is blocked on a synchronization primitive), then @ will have a greater system
impact. This is because it is more likely that other programs will arrive while @
is still running and thus contend for that memory. It may therefore be desirable
to have a memory control policy which is tied to CPU time.

e Snooping. This boils down to isolation and authorization. In particular, one program
should not be able to look at data private to another program unless it has been
authorized to do so. This data could be resident state, left by a previously running
program, or it could be state from a concurrently-running program. It should also be
possible to protect packets from snoopers while in transit.

e Spoofing. Some desirable security policies (such as the control of memory and CPU,
or access to sensitive information) require that the packet associate itself with a par-
ticular principal so that privilege due that principal can be enabled. Therefore, it is
particularly important that the identity of the principal cannot be spoofed. This is also
important for distributed protocols, such as routing protocols: information claiming
to be from a particular node/service should be authentic.

3 PLAN

For PLAN programs to run unrestricted as the foundation of our architecture, there must be
some properties of the language itself that prevent attack; that way all programs written in
PLAN are ‘safe.” The language is resource- and expression-limited, thus preventing certain
types of denial of service and safety-compromising attacks. For example, all PLAN programs
are guaranteed to terminate!, since PLAN does not provide a means to express non-fixed-
length iteration or recursion. Additionally, PLAN programs are isolated from one another,
since the language’s strong typing prevents pointer-swizzling or other attempts to get at the
underlying representation of objects, and because there is no means of direct communication
among PLAN programs.

While PLAN language restrictions can bound execution on a single node, they are not

sufficient in restricting use of network resources. Consider the following program?:

fun ping_pong(pingHost:host, pongHost:host) : unit =
OnRemote (|ping_pong (pongHost, pingHost)|,
pongHost, getRB (), defaultRoute)

Unchecked, this program will jump back and forth between two nodes forever. To alleviate
this problem, PLAN packets have a resource bound counter which is decremented each

'PLAN programs terminate as long as the services called also terminate.
2 A basic knowledge of PLAN is assumed. See [5] for a detailed description of programming with PLAN.

time a new packet is sent. Therefore, the number of hops that a PLAN program or any
of its progeny may take are limited by the initial value of this counter. This mimics the
functionality of the IP TTL field.

However, PLAN alone, even with the resource bound counter, is not adequate. For in-
stance, while PLAN programs will terminate eventually, nothing in the language guarantees
when. Consider the following program:

fun £1() :unit = ()

fun £2() :unit = (£1(); £10)
fun £3() :unit = (£20); £20)
fun f4() :unit = (£3(); £30))

fun exponential():unit =

(£40; £40)

This program (beginning at the exponential function) executes an exponential number of
function calls compared to the number of function definitions. Furthermore, memory can
be allocated at an exponential rate as well:

fun exponential() :unit =
let val a:int list = [1;2;3]
val b:int list = a @ a
val c:int list b@b
val d:int list c @ cin
O

end

Each call to the append function (written here as @) will essentially copy the current list and
then append the two lists together. @ can be written in PLAN, though it is not shown here.

Unrestricted exponential allocation and execution are clearly unacceptable. The question
is, what is a more acceptable policy? Looking to the current Internet, we see the resources
required to process a packet are linear in the size of the packet. In particular, in a store-and-
forward router, the router must allocate enough space to queue the packet for processing;
this requires time and space in proportion to the size of the packet. On a cut-through
router, only the header is stored while the packet itself is ‘cut-through’ the router based on
the forwarding decision; this is a constant time operation. The forwarding process itself is
(in general) constant in relation to the packet.?

To force PLAN programs to execute in time linear to their size, we could do a number
of things:

e Further restrict PLAN. For instance, we could limit all functions in a PLAN pro-
gram to calling at most one other PLAN function. This would prevent the exponential
growth we saw earlier, and based on our current experience, would not be overly re-
strictive to PLAN programmers. Furthermore, compliance could be checked statically
by a simple compile-time flow analysis. Of course, the drawback is decreased program-
ming convenience.

e Use scheduling tricks. Programs can run for a long time, but they obtain the CPU
exponentially less often (when there is contention for it). This can be implemented
using a priority scheduler with an aging policy. The problem is that this turns the
termination question back on the user: rather than the router being unconvinced

3This is for the general case, not including features such as source-routing, fragmentation, options pro-
cessing, etc.

about when a program will terminate, now the user has the same problem. As time
passes, this scheme resembles CPU limits (see below) enough that it may not be worth
the added complexity of implementing it.

¢ Add CPU and memory allocation limits. This has the advantage that packet
execution and allocation is comnstant in relation to the size of the packet, as in the
cut-through router case. The major drawback is that limits remove any correctness
guarantee from the PLAN program, since it may terminate adversely without complet-
ing its task. Of course, such a guarantee is already absent thanks to the resource bound
counter, and the fact that remote evaluation is unreliable. However, this counter-based
uncertainty is more easily managed and understood by the programmer, and is also
architecture-independent. Implementing CPU and memory limits efficiently is also
not straightforward.

One question still remains: is a linear resource bound enough? In the case of IP routers,
the coefficient is likely to be very small: just the copying cost. With a PLAN program,
this constant is likely to be much higher. In some sense, the termination question comes up
again: is it enough to know the asymptotic bound on resource usage, or is a tighter bound
required? We believe that to answer this question requires experimentation.

In the next subsection we present one possible PLAN restriction. In the following sub-
section we present the implementation and performance of CPU and memory restrictions.

3.1 PLAN Language Restrictions

Semantically speaking, language restrictions would be the most ideal solution to the prob-
lem of resource usage since program correctness could be preserved. The difficulty is in
formulating restrictions that are adequate, that do not overly limit expressiveness, and are
not too costly to enforce. We propose one such restriction here, but acknowledge more work
in this area is needed.

Execution and allocation exponential in the length of the program can be attacked by
further restricting what constitutes a legal PLAN program.

1. Limit all PLAN functions as follows:

Given function f which calls functions g1, g2, -.. gn:

f € validiff g1, g2, ... gn € valid and
calls(f) =0 or
calls(gy) + calls(gz) + ... + calls(g,,) <1

where calls(g) is the number of PLAN functions called from function g.

This could be checked at runtime with a simple counter initialized at function entry,
and a compile-time flow analysis could be used to check for a priori compliance.

2. Make it so that each call to the function given to fold subtracts 1 resource bound. This
can be thought of as a call to OnRemote for each iteration. In fact, we might extend
this analogy further: allow recursive function calls in PLAN such that each recursive
call subtracts one resource bound. Given either restriction, writing a function like
append will subtract one resource bound for each allocation. This prevents exponential
allocation.

Each of these restrictions assume that no (unauthenticated) service call will execute in
time exponential to its input, or worse, return an output that is exponential in its input
size.

Table 1: Summary of Changes to Thread Scheduler

Thread datastructure extended to contain
e Memory consumed (updated on CS and query)
e CPU time consumed (updated on CS)
e Cleanup handlers invoked on thread death

Thread interface extended:

push_handler : (unit — unit) — unit
pop_handler : wunit — (unit — unit)

running_time : t— float
allocwords : t — int

3.2 CPU and Memory Limits

In this subsection, we describe the implementation of imposing CPU and memory limits on
PLAN programs. The required changes were all to the OCaml thread scheduler, and are
summarized in Table 1.

PLANet implementation

A few details about the current PLANet implementation are in order. PLANet is imple-
mented in OCaml, a byte-code interpreted dialect of ML. Services may be dynamically
loaded into running nodes by delivering (via PLAN packets) and installing OCaml byte-
code. Our testbed consists of 300 MHz Pentium-II’s connected by Fast Ethernet, running
Redhat Linux, kernel version 2.0.30.

The implementation makes use of threads. While POSIX-based threads are available,
the implementation is buggy; we instead use the user-level threads package provided by the
distribution. Threads are preemptive, and the quantum is set to 50 ms. Unfortunately, the
scheduler is not well-tuned, and so context switch times are rather high—around 110us. It
turns out that the threads system is a major bottleneck in our performance.

OCaml is a garbage collected language. OCaml uses a generational collector in which
each thread has its own allocation area which is copy-collected into a single, shared major
heap. The major heap is managed by an incremental mark-and-sweep collector. This fact
allows us to (relatively) easily track per-thread allocation.

CPU limits

Once a PLAN program has executed past its allowed limit, it must be killed. This implies
that the PLAN interpreter must be able to:

1. Track the time spent executing a given PLAN program.
If multiple PLAN programs may execute concurrently, each one should only be charged
for the time it has the CPU, not while it is in the scheduling queue or blocked on I/0O.

2. Halt the program execution, even while in a service call.
This implies that it is not enough to have instruction counters within the interpreter—
services themselves must be interrupted to halt execution.

The first requirement implies that we need to obtain information from the OCaml thread
scheduler about per-thread execution times. Therefore, we have extended the information
stored by the scheduler about each thread to include the amount of CPU time used thus
far. This value is updated each time a context-switch occurs and is made available in the
threads package interface.

The second requirement implies that a thread running PLAN programs can be killed
safely. The issue here is that the PLAN program could be in the middle of a service call
which is executing within a critical section. If the program is killed, then mutex guarding the
section is never released, preventing other programs from accessing the data. Furthermore,
it is not enough to simply keep track of mutex variables and release those at thread-death.
The reason is that a critical section presumably guards a transaction in which all or none
of the operations should take place to preserve consistency.

The approach that we take resembles that taken by POSIX threads. With each thread
we associate a stack of cleanup handlers. When the thread is killed, each handler is popped
off and executed. Using this mechanism, we can code critical sections as follows. We alter
the call to lock a mutex to also push a handler to unlock that mutex. If the thread is killed
during the critical section, the mutex will be unlocked by the cleanup handler. If the critical
section completes normally then rather than calling unlock directly the cleanup handler is
popped off of the stack and invoked. By allowing only critical sections to be coded we can
be sure that the stack semantics of the cleanup handlers will be correct.

Another possibly more elegant solution would be to cause a thread to asynchronously
raise an exception when it is killed. The exception could then be caught by contextual code
to perform cleanup. This is the approach taken by Java. The difficulty here is that the death
of the thread depends on the exception reaching the top-level, which can be prevented by
catching and not rethrowing the exception.

Another approach that we’ve thought about to make thread-killing safe is to eliminate
blocking synchronization entirely, in favor of non-blocking synchronization (NBS) [2]. A
convenient atomic operation needed by NBS algorithms is DCAS (“Double Compare and
Swap”), which we believe can be safely coded in the context of the OCaml threads system.
More research is needed in this area.

Finally, we must decide when and how to halt a misbehaving program. The question of
when is decided by node policy — currently we allow the specification of both an elapsed time
(which counts time spent blocked in a service or on I/O) and a CPU time limit. Enforcement
is done via a ‘watchdog’ thread which runs in parallel with executing PLAN program. The
watchdog thread wakes up in short increments and polls the current memory (see below),
CPU, and elapsed time statistics of the thread evaluating the PLAN program. Once that
thread surpasses a specified threshhold, the thread is killed.

Memory limits

Just as it is not enough to have a PLAN instruction counter to track execution time, it is
not enough to have a PLAN allocation counter; this is because memory may be allocated
as a result of a service invocation. Therefore, we rely on the OCaml runtime system to
track systemwide allocation. The runtime currently tracks garbage collection and memory
allocation information on a system-wide, rather than per-thread basis. Therefore, we have
extended the information stored by the scheduler about each thread to include the amount
of memory allocated thus far. This value is updated each time a context-switch occurs
and is made available in the threads package interface. We additionally update the counter
whenever its current value is queried; this enables a thread to check its own allocation as it
goes.

As indicated above, the watchdog thread polls the memory counter at regular increments

and compares it against the allowable threshhold, killing the PLAN thread if necessary.
Since PLAN programs can allocate exponentially (as we saw earlier), there is the worry
that the threshhold will be non-trivially exceeded before the watchdog checks the counter.
We haven’t found this to be a problem in practice.

One problem with this approach is that the kind of memory allocated by the node due
to a particular PLAN program is not classified in any way. This prevents the node from
making use of classification-based policies. For example, we might want to say that a PLAN
program can allocate n bytes of temporary state (GC’ed when the PLAN program finishes),
and m bytes of resident state (state that remains when the PLAN program halts). We might
also like to make further sub-classifications, such as: all resident state allocated by service
X should not be attributed to the PLAN program (since the service presumably manages
its own state).

Performance

We ran some performance tests to determine the overhead imposed by these changes. We
first ran some microbenchmarks to determine basic overheads. We found that, as expected:

e The basic cost of a thread context switch was increased from 110 to about 115 us since
it has the additional task of updating CPU and memory information.

e The cost of a entering and leaving a critical section was higher, up to 7 us from 3
us, since the appropriate handlers must be pushed on and popped off of the thread
handler stack.

To understand the effect of these additional overheads, consider that the per-packet process-
ing time of our router is currently about 240 us, with 150 us being spent in the code itself
(the rest is due to kernel crossings). During this time, we enter five critical sections, so these
overheads are increased by 20 ps. In addition, we can expect that a single thread of execu-
tion from packet arrival to packet delivery will only be affected by a context switch every
294 packets, so the minimal addition to the context switch overhead should be negligible. If
these were the only overheads, we would expect our switching performance to drop by about
8%. However, as Figures 2 and 3 show, performance was degraded significantly more than
this. Both figures compare performance with hop count, where one hop away signifies the
machines are on the same LAN, and two hops means that the packets are routed. Numbers
for versions of PLANet are shown with the additional overhead of the timing mechanisms
appearing in white.

Figure 2 illustrates the latency of performing an ‘active ping’ with 0 and 1437 byte
payloads. The white part of each bar is the additional overhead incurred by adding the
accounting mechansims. We can see that the difference in elapsed time for each case is
nearly constant — about 0.3 seconds. This has the effect of degrading latency by between 11
and 18% from the original version. More striking is the contrast shown in Figure 3: 46% less
bandwidth for nodes on the same network (1 hop), and 30% less bandwidth for the routed
traffic (2 hops). Note here that the white part is not the overhead but the total reduced
bandwidth. In both cases, the bandwidth is limited by the receiver. This is because this
is where evaluation of PLAN packets occurs, which is now extremely costly, as explained
below.

The measured loss in performance is much worse than our predicted 8%. This is due
to the overhead in the OCaml user-level thread scheduler. As mentioned, context switch
times are upwards of 110 us, which means we want to minimize them as much as possible.
In the regular implementation, we do this by making packet-processing single-threaded:
a single thread watches all of the network devices, grabs a packet, evaluates the PLAN
program within (or routes it), and then looks for the next packet. No other threads run

[l Ping (0B)
B Ping (1437B)

1 2
Number of Hops

Figure 2: Effect of Resource Bounds on Latency

very frequently, and so this ‘worker-thread’ is not bothered by excessive context switches.
However, when packets are to be evaluated (which occurs in all of our experiments only
on the endpoints), we must additional make use of the watchdog thread to guard resource
use. In order to do so effectively, the worker thread now has to fork two additional threads
for each packet to be evaluated — one to evaluate the packet, and one to be the watchdog
thread. The worker thread then waits for the evaluation thread to complete (which could
happen before the watchdog thread wakes up for the first time at least 50 ms later), and
then continues. This means that at least one context switch will occur per packet, which
nearly doubles the time to process a packet. There is also the additional cost of thread
creation and cleanup added per-packet.

In general, our feeling is that better runtime system support is needed to implement
resource control policies efficiently. We’d like a threads system with small context-switch
times and the ability to associate resource policies (covering memory, CPU, disk, etc.) with
a thread which can be efficiently enforced, either by the system or by the program. Ideally,
these threads would map to OS-level threads to take advantage of multiple processors (not
currently available in OCaml). A QoS operating system such as Nemesis [7] might be a
reasonable basis for such a system. Alternatively, a more suitable implementation language,
such as Erlang [1], might be used.

4 Trust Management

Privilege to invoke potentially unsafe services from PLAN programs is described and en-
forced by a system of trust management. In particular, our architecture makes use of sets of
principals, where each principal is identified by a public key, such that each member of the
set is granted the same privilege. The sets are set up so that they are non-overlapping: more
privileged users expand the trust alloted to their less-privileged counterparts. When a run-
ning PLAN program invokes a service which requires privilege, the principal associated with
the packet is authenticated, and then the operation is authorized. If either authentication
or authorization fails, the operation is not permitted.

In this section, we describe mechanisms used by PLAN programs for authentication
and authorization. For the former, we choose to take an approach in which service calls

10

2]
o
]

mm 1437 B/packet

S
|

Bandwidth (Mb/s)
S
|

1 2
Number of Hops

Figure 3: Effect of Resource Bounds on Bandwidth

requiring privilege must be executed in the context of some authenticated code. For the
latter, we use the Query Certificate Manager [9] to describe sets of principals as well as their
privilege relationships. These two approaches are developed and described in the next two
subsections.

4.1 Authentication

Before a PLAN program may invoke a trusted service, its associated principal must be
determined; this is the process of authentication. Authentication is typically done in a
public-key setting by verifying a digital signature over some piece of data. The first question,
then, is what piece of data will be signed? One thing that suggests itself is a PLAN chunk.

A chunk (or code hunk) may be thought of as a function that is waiting to be applied.
In PLAN, chunks are first-class, and consist internally of some PLAN code (if necessary), a
function name, and a list of values to be used as arguments during the application. Chunks
are specified syntactically in PLAN by surrounding a function call with |’s.. A chunk is
typically used as an argument to OnRemote or OnNeighbor to specify some code to evaluate
remotely. A chunk may also be evaluated locally by passing it to the eval service, which
resolves the function name with the current environment, performs the application, and
returns the result.

We’ve added an additional service called authEval which takes as arguments a chunk, a
digital signature, and a public key, the latter two represented as PLAN values of type blob
(meaning unstructured data). authEval verifies the signature against the binary represen-
tation of the chunk, as defined by the standard PLAN program wire representation. If suc-
cessful, the chunk is evaluated as in eval; otherwise, the exception AuthenticationFailed
is raised. During the evaluation of the chunk, the authentication code keeps track of the
authenticated principal by associating it with the current thread id. When the chunk ter-
minates, the association is removed. This way, if any service invoked as a result of chunk
evaluation wishes to perform authorization, it may ask the authentication service for the
principal. Because a caller’s thread id cannot be forged, this provides a safe way to track
a principal without worry that some malicious service will change the associated principal
after the authentication phase.

There are two key advantages to this approach. One is that a principal signs exactly

11

the piece of code he wants to execute, and may only have extra privilege while executing
that piece of code. Secondly, only those programs which require authorization will have the
extra time and space overheads.

There are also three problems with this approach. The first is that the authentication
performed here is one-way authentication. While the program is authenticating itself to the
node, the node never authenticates with the principal. This could be a problem if a program
is diverted from it intended destination and invoked on a different node. The second problem
is that there is nothing guarding against replay attacks. This is exacerbated by the first
problem. Finally, we are using public key operations, which are notoriously slow.

To address these problems, we make use of a protocol in which a user and a node
authenticate each other and generate a shared secret for future communications, identified
by an SPI. The protocol is essentially a signed version of Diffie-Hellman with a few variations,
and works as follows. The principal interested in authenticating itself sends its public key
to the desired node asking to start the protocol. If the node wishes to authenticate with the
requesting principal, it generates its public and private D-H values, signs them, and sends
the response. On receipt of this message, the initiating principal generates its own values,
signs them, and sends the message to the node. At this point, both parties can construct
the shared secret. All messages in the protocol contain expiration timers and nonces to
prevent replay, as well as exchange identifiers. These exchange identifiers are used at the
conclusion of the protocol to create SPI’s for future use of the shared secret.

Once the protocol is complete, parties may use the shared secret to authenticate via
HMAC-SHA1 [8]. To prevent replay, each principal associates a counter with the shared
secret. This counter monotonically increases with each message, so that any message that
is received with a lower counter value is rejected. To deal with out-of-order delivery, a
sliding window scheme may be used rather than a single counter value. We reflect the use of
HMAC-SHA1 in PLAN by altering the signature of authEval to take a chunk and a tuple
consisting of the the SPI, the counter, and the HMAC signature over all of the previously
mentioned items.

4.2 Authorization

Once a PLAN program (more specifically, a chunk) has been authenticated, it must be
authorized before it can use certain services. In our security architecture, each service is
associated with with some level of privilege. These levels form a poset such that if a principal
has a privilege level [, it may invoke services associated with level [, as well as services of
level m such that m <.

This approach has the advantage of scalability. If we have x principals and y protected
services, we may only have to make x + y associations — each service and each principal is
associated with one level of privilege. A more naive implementation might associate up to
y services with each principal, for up to z x y associations. Of course, we could encode this
naive approach with ours by associating each principal with multiples levels of privilege.

We implement this approach in PLAN as follows. When invoked from a PLAN program,
each protected service is required to call an authorization service, providing its level of
privilege I; as an argument. This authorization service queries the authentication service
to obtain the current program’s principal p, and then looks up that principal’s level of
privilege I, (how that “looking up” is done will be explained shortly). If I, < [, then the
service invocation is approved.

To keep track of the privilege allowed to principals, we make use of the Query Certificate
Manager [9] (QCM). QCM provides a means of describing trusted, distributed databases
in the form of sets. Here, we use QCM to describe N sets of principals, where each set is
associated with a node in the poset. The security relationship among the sets as described by

12

the poset is implemented via set inclusion in QCM. For example, if principals p1, pz2, ... Pn
have privilege level I, and [is a child of m, then we specify set [as:

I = {p1, p2, ... pp } union m

This essentially states that all principals allowed to access services at level [are those with
privilege of exactly level I and those with levels higher than [. Using this framework, an
authorization check for p to call a service with level [reduces to set membership test for p
in that set; this is a fairly straightforward operation in QCM.

If used only to specify sets of principals on per-node basis, QCM is probably overkill.
However, it has other properties that make it valuable. For one, sets described in a dis-
tributed manner impose no additonal query complexity on the client (which in our case is
the authorization service). For example, a node A may define a set which refers to a set
resident at another node B:

I = {pi, p2, ... pn } union B.m

If the authorization service on A makes a membership test on set I/, QCM will automatically
query B if necessary. QCM may also makes use of certificates, which are signed assertions
about set relationships, to short-circuit remote queries. This allows QCM to implement
both push- and pull-based information-retrieval. One problem with using certificates in our
current implementation is that they would need to be explicitly passed as arguments to
an authorized service. This problem could be addressed by centralizing the authorization
procedure, as described below. Finally, QCM should be useful in an active node for activities
other than authorization; [3] describes a few examples. While we currently don’t take full
advantage QCM’s features, we expect that QCM’s distributed nature and simple interface
will make it scale nicely as our needs increase.

Namespace-based enforcement

Requiring that each service perform its own authorization by calling the authorization service
with its privilege level is simple, yet redundant in that each service is forced manage its own
security. It would be convenient to instead centralize the mechanisms needed to do service
authorization, but here the worry is that we might impose overhead onto unauthenticated
programs. One approach is to make use of namespace-based enforcement. The idea here is
that a program that wishes to access privileged services must call the authorization service
itself. This service obtains the level of privilege allowed the program and then expands the
program’s namespace to include all of the services it is allowed to call. Once the program
completes, the namespace is thinned to its original form.

A convenient way to implement this is to additionally perform authorization after au-
thentication in the authEval service. To make use of QCM certificates, we could add them
as a third argument to authEval. Once the chunk argument given to authEval finishes
evaluation, the namespace can be thinned. There are a few sticky issues, but this approach
seems promising, so we plan to explor it further.

5 Conclusions and Future Work

Active networks provide the opportunity to increase the quality, efficiency, and usability
of the network. However, for this opportunity to be realized AN’s increased flexibility
must be tempered by improved safety and security. PLANet is an Active Network built
with PLAN distributed programming system which makes use of active packets written in
PLAN, and node-resident services written in OCaml. This paper has described a number of

13

changes to PLANet which improve its security. In particular, we have described a restriction
to PLAN to reduce overconsumption of resources, and we have implemented CPU and
memory counters to bound per-packet resource usage. We have also added to PLANet
an infrastructure to protect access to services. This infrastructure uses a signed version
of Diffie-Hellman to perform node-user authentication, where the generated shared secret
is used with HMAC-SHA1 to sign future PLAN programs requiring authorization. Each
principal is a member of a set where the sets are partially ordered based on privilege. We
use the Query Certificate Manager to resolve queries about a principal’s privilege.

We feel that these mechanisms are useful, but further design and implementation im-
provements are possible. In particular, the overhead of CPU and memory counters seems
excessive. Furthermore, we would also like to further assess the scalability and usefulness of
QCM as an authorization vehicle. Overall, we feel this work is satisfying as a preliminary
study of security mechanisms in PLAN, and that it should lead to more interesting and
well-developed ideas in the near future.

References

[1] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike. Williams. Ceconcurrent
Programming in Erlang. Prentice Hall, second edition, 1996.

[2] M. Greenwald and D. R. Cheriton. The synergy between non-blocking synchronization
and operating system structure. In Proceedings of the Second Symposium on Operating
System Design and Implementation, Seattle, Washington, 1998.

[3] Carl A. Gunter, Trevor Jim, and Bow-Yaw Wang. Authenticated data distribu-
tion using query certificate managers. http:// www.cis.upenn.edu/ “tjim/ papers/
gcm-abstract.html, 1997.

[4] Michael Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter, and Scott
Nettles. Planet: an active networking testbed. http:// www.cis.upenn.edu/
“switchware/ papers/ planet.ps, 1998.

[5] Michael Hicks, Jonathan T. Moore, Pankaj Kakkar, Carl A. Gunter, and Scott Nettles.
Network programming with plan. In IEEE Internet Programming Languages Workshop,
Chicago, Illinois, 1998.

[6] Michael Hicks, Jonathan T. Moore, Pankaj Kakkar, Carl A. Gunter, and Scott Nettles.
Plan: A programming language for active networks. http:// www.cis.upenn.edu/
“switchware/ papers/ plan.ps, 1998.

[7] Eoin Hyden. Operating System Support for Quality of Service. PhD thesis, February
1994. Available as Technical Report No. 340.

[8] H. Krawczyk, M. Bellare, and R. Canetti. Hmac: Keyed-hashing for message authenti-
cation. Technical report, IETF RFC 2104, February 1997.

[9] Query certificate manager home page. http:// www.cis.upenn.edu/ qcm.

14

	PLAN Security System
	Recommended Citation

	PLAN Security System
	Abstract
	Comments

	tmp.1162404147.pdf.Xpn4h

