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SpectralGradient: A SurfaceReflectanceMeasurementInvariant to

Geometry and Incident Illumination

Technical Report MS-CIS-99-02

Abstract

Althoughphotometricdatais a readilyavailabledensesourceof informationin intensity
images,it is not widely usedin computervision. A majordrawbackis its dependenceon
viewpoint and incident illumination. A novel methodologyis presentedwhich extracts
reflectivity informationof thevariousmaterialsin thesceneindependentof incidentlight
andscenegeometry. A sceneis capturedunderthreedifferentnarrow-bandcolor filters
andthe spectralderivativesof the scenearecomputed.The resultingspectralderivatives
form a spectralgradientat eachpixel. This spectralgradient is a surface reflectance
descriptorwhich is invariantto scenegeometryandincidentillumination for smoothdif-
fusesurfaces.The invariantpropertiesof the spectralgradientsmake thema particularly
appealingtool in many diverseareasof computervisionsuchascolorconstancy, tracking,
sceneclassification,materialclassification,stereocorrespondence,evenre-illuminationof
a scene.

1  Intr oduction

The startingpoint of mostcomputervision techniquesis the light intensity reflectedfrom an imaged

scene.Thereflectedlight is directly relatedto thegeometryof thescene,thereflectancepropertiesof the

materialsin thesceneandthelighting conditionsunderwhich thescenewascaptured.Oneof thecompli-

cationswhichhave troubledcomputervisionalgorithmsis thevariability of anobject’sappearanceasillu-

minationandscenegeometrychange.Slight variationsin viewing conditionsoftencauselargechangesin

an object’s appearance. Consider, for example a yellow car seen in a sunny day, at night, or in dense fog.

Many areasof computervision areaffectedby this problem.Maloney andWandell[19]werethefirst to
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develop a tractable color constancy algorithm. Color constancy is the problem of recognizing colors

despite changes in ambient lighting conditions. They modeled both the surface reflectance and the incident

illumination as a finite dimensional linear model. This basic principle was further explored in the color

constancy work of Forsyth[8], Ho et al.[13], Finlayson et al.[7, 9, 6, 1] and Healey and Slater[11]. At the

same time, Swain and Ballard[29] showed that it was possible to correctly identify objects by using color

cues only. Healey and Slater[11, 27], Funt and Finlayson[9] and Finlayson[6] made object recognition by

color even more widely applicable, by cancelling variations in color appearance caused by illumination

changes.

In object recognition Nayar and Bolle[22], Slater and Healey[25, 26], Lin and Lee[18] and Jacobs et

al.[16], among others concentrated in identifying reflectance-based object properties that are invariant to

illumination. Another school of thought in object recognition, influenced by the work of Turk and Pent-

land[30], developed appearance-based models which embed the variability of the imaging conditions to

the model of the object[21, 24, 2, 3, 5]. In texture recognition, Healey and Wang[12] developed an illumi-

nation invariant distance function for comparing color textures. In real-time tracking Hager and Bel-

heumer[10] adapted the sum of squared differences (SSD) algorithm to handle variations in illumination.

All these systems in order to handle the variations in viewing conditions had to introduce some addi-

tional constraints that are often limiting their applicability. For example, most color techniques assume that

the spectral reflectance functions have the same degrees of freedom as the number of photoreceptor classes

(typically three.) Thus, none of these methods can be used in greyscale images for extracting illumination

invariant color information. Furthermore, a considerable body of work on color assumes that the incident

illumination has two or three degrees of freedom. However, Slater and Healey[28] showed that for outdoor

scenes, the illumination functions have seven degrees of freedom. On the other hand, greyscale object rec-

ognition methods[22, 16] take advantage of the invariance in the color distribution on an object and can not

handle very well non-textured scenes. As for appearance based approaches, as Mundy et al.[20] pointed

out, they do not render themselves in generalizations of identifying objects or materials that should logi-

cally belong to the same class but appear different.

We propose a novel method for cancelling variations in geometry and incident illumination by examin-

ing the rate of change in reflected intensity with respect to wavelength. The only assumption that we make

is that incident illumination remains stable over small intervals in the visible spectrum. It will be demon-

strated that this is a reasonable assumption. We take a greyscale image of a scene under three different nar-

row-band color filters and compute the spectral derivatives of the scene. The resulting spectral gradient is a

surface reflectance descriptor, invariant to scene geometry and incident illumination for smooth diffuse

surfaces. Experiments on surfaces of different colors and materials demonstrate the accuracy of our

method in both: a) identifying materials with the same reflectance under variable viewing conditions and b)

discriminating materials with distinct reflectance functions.
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2  Spectral Derivative

The intensity images that we process in computer vision are formed when light from a scene falls on a pho-

tosensitive sensor. The amount of light reflected from each point in the scene depends on the

light illuminating the scene,  and the surface reflectance  of the materials composing the scene:

where λ, the wavelength, shows the dependency of reflected light on wavelength. The reflectance function

may depend on the surface material, the geometry of the scene and the viewing and incidence

angles.

When the spectral distribution of the incident light does not vary with the position of the light, the geo-

metric and spectral components of the incident illumination are separable:

where are the spherical coordinates of the unit-length light-direction vector and is the illumi-

nation spectrum. Note that, the incident light intensity is included in and may vary as the position

of the illumination source changes.

The scene brightness then becomes:

By taking the logarithm of the image irradiance equation we alter the multiplicative effect into an addi-

tive effect:

We are interested in investigating the behavior of the natural logarithm of an image as we vary the wave-

length in the visible range, i.e., 400nm to 700nm. Thus, we compute the partial derivative of the logarith-

mic image with respect to wavelength λ:

where is the partial derivative of the incident illumination with respect to wave-

length and is the partial derivative of the surface reflectance with respect to wave-

length. Ho, Funt and Drew[13] have shown, that for natural objects the surface spectral reflectance curves,

i.e. the plots of versus λ, are usually reasonably smooth and continuous over the visible spectrum,

400nm to 700nm.
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3  Invariance to Incident Illumination

Althoughthespectraldistribution of themostcommonlyusedindoor-sceneilluminationssources(i.e.,

tungstenandfluorescentlight) is notconstant,onecanassumethate changesveryslowly oversmallincre-

ments ofλ. This means that its derivative with respect to wavelength is approximately zero.

Thus, the partial derivative of the logarithmic image depends only on the surface reflectance:

4  Invariance to Geometry and Viewpoint

4.1 Lambertian Model

A very simplemodelthat is oftenusedby both thecomputervision communityandthegraphicscom-

munity is the Lambertianreflectancemodel.Lambert’s law describedthe behavior of a perfectlydiffuse

surface,wherethe reflectedlight is independentof viewpoint. For a homogeneoussurface,the reflected

light changesonly whentheangleof incidence betweensurfacenormalandtheincidentillumination

changes.

where  is the albedo or diffuse reflection coefficient at pointp.

Since,by definition, Lambertianreflectanceis independentof viewpoint, the spectralgradientis also

independentof viewpoint.Thescenegeometryis independentof wavelength.Therefore,whenwe take the

partial derivative with respect to wavelength, the geometry term vanishes. Thus, for Lambertian surfaces:

where  is the partial derivative of the surface albedo with respect to wavelength.

4.2 Smooth Diffuse Reflectance Model

In reality thereare very few objectsthat exhibit perfectly Lambertianreflectance.The light that is

reflectedfrom a smoothdiffuse object varies with respectto viewpoint. Wolff[31] introduceda new

smooth diffuse reflectance model that incorporates the dependence on viewpoint:

eλ p λ,( ) 0≈

L λ p λ,( )
Sλ p λ,( )
S p λ,( )
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where and are the incidence and viewing angles respectively, is the surface albedo, F()

is the Fresnel reflection coefficient, and n is the index of refraction.

By taking the logarithm of the surface reflectance function, we simplify the underlying model, by alter-

ing multiplicative terms into additive terms:

The next step is to compute the partial derivative with respect to wavelength. Once again, all the terms

except the albedo are set to zero:

The index of refraction depends theoretically on wavelength, but in the visible range it changes by a very

small amount. Thus, it is commonly treated as a material constant under visible light.

5  Spectral Gradient

For smooth diffuse surfaces the partial derivative with respect to wavelength of the logarithmic image

is a function of only the surface albedo. Consider now a collection of spectral derivatives of a log-

arithmic image at various spectral locations , . The resulting spectral gradient is an M-

dimensional vector which is invariant to illumination, surface geometry and viewpoint.

All it encodes is information at discrete spectral locations about how fast the surface albedo changes as the

spectrum changes. It is a profile of the rate of change of albedo with respect to wavelength over a range of

wavelengths.

6  Experiments

In order to compute the spectral derivatives we took images of each scene under three different narrow-

band filters: a Corion S10-570-F, a Corion S10-600-F and a Corion S10-630-F. Each of these filters has a

bandwidth of approximately 10nm and a transmittance of about 50%. The central wavelengths are at

570nm, 600nm and 630nm respectively. The images were captured with a Sony XC-77 camera using a

25mm lens.

The only source of illumination was a single tungsten light bulb mounted in a reflected scoop. For each

scene we used four different illumination setups, generated by the combination of two distinct light bulbs,

a 100W bulb and a 200W bulb and two different light positions. One illumination position was to the left

θ p( ) ϕ p( ) ρ p λ,( )

Sln p λ,( ) θ p( )cosln ρ p λ,( ) 1 F θ p( ) n p( ),( )–( ) 1 F
ϕ p( )sin

n p( )
-------------------- 
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n p( )
-----------, 

 – 
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L λ p λ,( )
Sλ p λ,( )
S p λ,( )
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ρλ p λ,( )
ρ p λ,( )
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of the camera and at about the same height as the camera. Its direction vector formed approximately a

angle with the optic axis. The other light-bulb position was to the right of the camera and about 10" above

it. Its direction vector formed roughly a angle with the optic axis. Both locations were 22" away from

the scene.

The imaged objects were positioned 30" from the camera/filter setup. We tried four different types of

materials: foam, paper, ceramic and plastic. Foam and paper came in a variety of colors. In foam we had

green, magenta, orange, pink, red, white and yellow samples. Our pieces of paper came in brown, green,

orange, pink, red white and yellow. We used two ceramic objects, a pink plate and a white mug, and one

rectangular piece of plastic.

Fig. 1. shows in the top row and from left to right small samples of green foam, yellow foam and red

paper. On the bottom row are images of the ceramic and plastic objects. These images were taken using the

Corion S10-600-F filter.

6.1 Computing the Spectral Gradient

Once a filtered image was captured, its logarithmic image was generated. In a logarithmic image the

value stored at each pixel was the natural logarithm of the original image intensity. For example,

, where was the image of a scene taken with the S10-570-F filter and was its log-

arithmic image.

As fig. 2 shows, the logarithmic images preserved the overall appearance of the original image. How-

ever, the intensity values were scaled down significantly. From a maximum of 255 in an 8-bit image we

went down to a maximum of 5.54. The images shown in fig. 2 were linearly scaled for display purposes.

20°

55°

Fig. 1. A small sample of the colors, materials and
shapes that we experimented with.

L 570 I570( )ln= I570 L 570
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The last step was the computation of the spectral derivatives of the logarithmic images. Differentiation

was approximated via finite-differencing. Thus, was computed over the wavelength interval

by subtracting two logarithmic images taken under two different color filters which were

30nm apart:

Typically, the resulting derivative images have a median value around 0.2 with minimal variation on

smooth materials like glossy ceramic and plastic. The best way to depict this minimal variation was to

show the reverse video of the derivative image. Again, this was done for display purposes only. Fig. 3

shows the derivative images of a piece of green foam and the ceramic and plastic objects.

For each scene taken under the three narrow-band color filters we had two derivative images, and

. The spectral gradient at a pixel was the vector . This vector was expected to remain constant

for materials with the same reflectance function, independent of variations in viewing conditions. At the

same time, it should differ significantly for materials that exhibit distinct surface reflectance functions.

6.2 Comparing Spectral Gradients

The desired goal was to determine whether two regions (in the same or different scenes) are depicting

objects with the similar or distinct reflectance functions. We performed a pixel by pixel comparison. Let

and be two pixels belonging to these two regions and let and be their respective

spectral gradients. The metric we used was the absolute difference vector, after it was normalized for vari-

ations in intensity level:

Fig. 2. Sample logarithmic images.

L λ

λδ 30nm=

L λ1
L 600 L 570–= L λ2

L 630 L 600–= (7)

Fig. 3. Sample derivative images.

L λ1

L λ2
L λ1

L λ2
,( )

p

p′ L λ1
L λ2

,( ) L λ1
′ L λ2

′,( )

d1 d2,( ) L λ1
L λ1

′– L λ2
L λ2

′–,( ) Iavg⁄= (8)
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where was the average value of the intensities registered in

these two pixels in the original filtered images.

The pixel metric of equation (8) was the basis for comparing regions. The metric was computed

for all the corresponding pixels in the two regions, i.e. pixels which had the same coordinates (for instance,

both in position ) in the local coordinate system of each region. The median of all the pixel measure-

ments became the region distance metric:

Typically, the values of and were very small, mainly because the spectral gradients themselves

were small. Hence, subtraction and normalization of such derivative values resulted in values for and

 that ranged in our experiments from 0.001 to 3.898.

6.2.1 Same Material and Color
According to our theory, materials with the same reflectance function should generate the same spectral

gradient resulting in a tuple that is almost equal zero. Indeed, we observed that when we were

comparing the same material and the same color, independent of illumination conditions and surface orien-

tation, the average of and was consistently less than 0.2. More precisely, out of 28 such compari-

sons, 27 times both and . There was a single case, when we compared two regions of

orange foam illuminated under two different light intensities (same light position), that and

, but still their average was less than 0.2.

We compared different regions of the ceramic mug, with distinct viewing and incidence angles. The

resulting spectral gradients differed by less than 0.1. A similar behavior was observed around the smooth

corners of the plastic container. The specular region on the white mug did not affect the stability of spectral

gradients. For example, comparing the shiny region in the center of the mug with a region in the right side

of the mug generated the following tuple . In general, same color and same

material comparisons generated very stable spectral gradients. Some sample comparisons can be found in

Table 1.

Table 1: Same Material and Color

Material

magenta foam (0.0126,0.0333)

yellow foam (0.0010, 0.0036)

red paper (0.1472, 0.0209)

green paper (0.0788, 0.0519)

white mug (0.0262, 0.0558)

Iavg i570 i600 i630 i′570 i′600 i′630+ + + + +( ) 6⁄=

d1 d2,( )

x0 y0,

D1 D2,( ) median d1∀ median d2∀,( )= (9)

D1 D2

D1

D2

D1 D2,( )

D1 D2

D1 0.2< D2 0.2<

D1 0.2564=

D1 0.0057=

D1 D2,( ) 0.0288 0.0402,( )=

D1 D2,( )
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6.2.2 Same Material but Different Colors
Surfaces made out of different colors of the same material follow the same reflectance model, but have

distinct spectral responses. Thus, their spectral gradients should be distinguishable, at least over some part

of the visible spectrum.

We performed 35 comparisons between distinct colors of the same material under similar or different

illumination conditions. The spectral gradients were distinguishable 34 out of the 35 times. The average of

both and was larger than 0.2 in these cases. Examples of for different colors of the same

material are shown in Table 2.

The two times that the spectral gradients were very similar, were when we compared a piece of pink

foam with a piece of magenta foam under 200W illumination. These two materials have very similar

reflectance spectra that vary the most around 550nm (see fig. 4). The spectral gradients that we used didn’t

cover that part of the spectrum and the difference between the two materials went undetected.

6.2.3 Different Materials but Same Color
Spectral gradients are a measurement of the surface reflectance function, independent of viewing condi-

tions. As such, if two distinct materials have similar reflectance, the respective spectral gradients would be

similar too. Out of the four materials we tested, the foam and the paper, had very similar reflectance behav-

ior. The ceramic and the plastic samples were also very similar in terns of reflectance behavior. Our paper

Table 2: Same Material but Different Colors

Color 1 Color 2

magenta foam  red foam (0.7976, 1.0465)

green foam orange foam (0.6755, 0.2663)

red paper yellow paper (0.1703, 1.1402)

green paper orange paper (0.3806, 1.075)

white ceramic pink ceramic (0.2759, 0.5555)

D1 D2 D1 D2,( )

D1 D2,( )

Fig. 4. The spectrum of pink foam versus magenta foam.
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was a bit smoother than foam resulting in a reflectance function that was close to the that of the ceramic

reflectance. There was also a hue discrepancy between the red paper and the red foam, as well as between

the green paper and the green foam.

Overall, when the materials exhibited clearly distinct reflectance functions, the average of both and

was larger than 0.2. Look for example at pink ceramic versus pink foam in Table 3. Differentiating

between foam and paper of very similar color was very difficult. Both materials exhibit an approximately

Lambertian reflectance. It was interesting to note that small color variations, like different shades of dark

green, were distinguishable across different materials of the same reflectance behavior.

6.3 Error Analysis

Our experimentations showed that spectral gradients achieved a 100% correct identification when it was

comparing the same material, independent of the variations in illumination conditions. The success of

spectral gradients in discriminating between different colors of the same material was good, about 97%,

but it clearly depended on the wavelengths at which we were sampling the partial derivatives. Higher

dimensional spectral gradients should provide better discriminatory power. Finally, spectral gradients can

discriminate between different materials of the same color, only if their surface reflectance behavior dif-

fers.

Note that we have tried a variety of filters with different bandwidths. Since we were approximating a

sampling function (Dirac delta function), the narrower filters gave more consistent results. We also experi-

mented with various over which to perform the finite differencing approximation to partial derivatives.

Again, as expected, the smaller performed better, as long as the two filters did not have overlapping

bandwidths.

7  Conclusions

We developed a surface reflectance measurement that is invariant to changes in illumination and scene

geometry. We made no assumptions about the nature of incident light, other than that its spectrum does not

Table 3: Different Materials but Same Color

Color 1 Color 2

green foam  green paper (0.2365, 0.6161)

orange foam orange paper (0.0120, 0.0765)

pink foam pink paper (0.0767, 0.2968)

pink ceramic pink paper (0.1359,0.1243)

pink ceramic pink foam (0.0331, 0.4527)

D1

D2

D1 D2,( )

λδ

λδ
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changewith its position.Weshowedthatspectralgradientscanbeusedonapixel basisanddonotdepend

onneighboringregions,anassumptionthatis commonin otherphotometricmethodswhichuselogarithms

and/ornarrow-bandfilters[9,22]. Theeffectivenessof spectralgradientsasasurfacereflectancedescriptor

was demonstrated on various empirical data.

The invariantpropertiesof spectralgradientstogetherwith their easeof implementationandthemini-

malismof assumptions,makethismethodologyaparticularlyappealingtool in many diverseareasof com-

putervision.They canbeusedin grey-scalecolorconstancy, or in trackingdifferentregionsundervariable

illumination. They can also be an additional feature used in stereo correspondence.

We believe that spectralgradientsare a powerful tool that shouldbe further investigated.Additional

experimentationunderdifferenttypesandcolorsof light sourcesis underway. Simultaneoususeof multi-

ple lights is anotherissuethat is beingexamined.It is alsovery importantto studymoreextensively the

behavior of spectralgradientsin areaswith specularhighlights.Finally, we would like to studythebehav-

ior of spectral gradient on rough surfaces.
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