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Hybrid Languages and Temporal Logic

Abstract

Hybridization is a method invented by Arthur Prior for extending the expressive power of modal languages.
Although developed in interesting ways by Robert Bull, and by the Sofia school (notably, George Gargov,
Valentin Goranko, Solomon Passy and Tinko Tinchev) the method remains little known. In our view this has
deprived temporal logic of a valuable tool.

The aim of the paper is to explain why hybridization is useful in temporal logic. We make two major points,
the first technical, the second conceptual. First, we show that hybridization gives rise to well-behaved logics
that exhibit an interesting synergy between modal and classical ideas. This synergy, obvious for hybrid
languages with full first-order expressive strength, is demonstrated for a weaker local language capable of
defining the Until operator, we provide a minimal axiomatization, and show that in a wide range of temporally
interesting cases extended completeness results can be obtained automatically. Second, we argue that the idea
of sorted atomic symbols which underpins the hybrid enterprise can be developed further. To illustrate this,
we discuss the advantages and disadvantages of a simple hybrid language which can quantify over paths.
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In memory of George Gargov

Abstract

Hybridization is a method invented by Arthur Prior for extending the
expressive power of modal languages. Although developed in interesting
ways by Robert Bull, and by the Sofia school (notably, George Gargov,
Valentin Goranko, Solomon Passy and Tinko Tinchev), the method re-
mains little known. In our view this has deprived temporal logic of a
valuable tool.

The aim of the paper is to explain why hybridization is useful in tem-
poral logic. We make two major points, the first technical, the second
conceptual. First, we show that hybridization gives rise to well-behaved
logics that exhibit an interesting synergy between modal and classical
ideas. This synergy, obvious for hybrid languages with full first-order ex-
pressive strength, is demonstrated for a weaker local language capable of
defining the Until operator; we provide a minimal axiomatization, and
show that in a wide range of temporally interesting cases extended com-
pleteness results can be obtained automatically. Second, we argue that
the idea of sorted atomic symbols which underpins the hybrid enterprise
can be developed further. To illustrate this, we discuss the advantages
and disadvantages of a simple hybrid language which can quantify over
paths.

1 Introduction

Arthur Prior proposed using modal languages for temporal reasoning more than
40 years ago, and since then the approach has become widespread in a variety
of disciplines. Over this period, a wide range of (often very powerful) modalities
has been used to reason about time. This is unsurprising. After all, different
choices of temporal ontology (such as instants, intervals, and events) are rel-
evant for different purposes, and (depending on the application) considerable
expressive power may be needed to cope with the way information can be dis-
tributed across such structures. But inventing new modalities is not the only
way of boosting modal expressivity. There is a largely overlooked alternative



called hybridization, and this paper explores its relevance for temporal logic.!
Hybridization is best introduced by example. Consider the following sen-
tence from the language we call ML + V:

Ve(z — -0x).

The z in this expression is a state variable, and all its occurrences are bound
by the binder V. Syntactically, state variables are formulas: after all, the ex-
pression z — =<z is built using —, — and < in the same way that p - —=<Cp
is. Semantically, however, state variables are best thought of as terms. Our
semantics will stipulate that state variables are satisfied at exactly one state in
any model. In effect, state variables act as names; they label the unique state
they are true at.

The use of ‘formulas as terms’ gives hybrid languages their unique flavor:
they are formalisms which blend the operator-based perspective of modal logic
with the classical idea of explicitly binding variables to states. Unsurprisingly,
this combination offers increased expressive power. The above sentence, for
example, is true at any irreflexive state in any model, and false at all reflexive
ones. No ordinary modal formula has this property.

Now, the language ML + V is not the only hybrid language, and for many
purposes it is not the most natural one. One of the key intuitions underlying
modal semantics is locality, and it is intuitively clear (we shall be precise later)
that V is not local; as our notation suggests, V quantifies across all states. So,
if we want a local hybrid language, ML + V is not a suitable choice.

But what are the alternatives? To the best of our knowledge only one has
been considered, namely the binder we here call |. Now, | does something
simple and natural: it binds a variable to the current state. Unfortunately,
while ML+ | is a local language, it has two drawbacks. First, it is not expressive
enough for many applications (for example, we shall show that it is not strong

IThe literature on hybrid languages consists of a handful of papers published over the last
thirty years by researchers with very different interests. Confining ourselves to the main line
of development, the idea can be traced back Prior (1967), and the posthumously published
Prior and Fine (1977) contains some of Prior’s unfinished papers on the subject together with
an appendix by Kit Fine. Prior’s concerns were largely philosophical; technical development
seems to have started with Bull (1970). Bull investigated a hybrid temporal language con-
taining the V binder and the universal modality A, and introduced the idea of quantification
over paths. In addition, he initiated the algebraic study of such systems. The paper never
attracted the attention it deserved; in fact, apart from citations in the hybrid literature, the
only mention we know of is from Burgess’s survey of tense logic:

Other hybrids of a different sort — not easy to describe briefly — are treated
in an interesting paper of Bull [1970]. (Burgess (1984, page 128)).

(This is probably the first use of ‘hybrid’ in connection with such languages.) The idea was
independently invented by the Sofia School as a spin-off of their investigation of modal logic
with names. The best guide to the Bulgarian tradition is the beautiful and ambitious Passy
and Tinchev (1991), drafts of which were in circulation in the late 1980s. Hybridization is
discussed in Chapter III and deals with Propositional Dynamic Logic enriched with both V
and the universal modality; see also Passy and Tinchev (1985) and the brief remarks at the
end of Gargov, Passy and Tinchev (1987).

Recent papers on the subject include Goranko (1994) (probably the first published account
of hybrid languages containing the | binder), Blackburn and Seligman (1995), and Selig-
man (1997) (which investigates hybrid natural deduction and sequent calculi for applications
in Situation Theory), and Blackburn and Tzakova (1998,1998a,1998b). Also relevant are Gar-
gov and Goranko (1993), Blackburn (1993,1994); these look at modal and tense logics enriched
with nominals (in effect, the free variable fragments of hybrid languages).



enough to define the Until operator). Second, in stark contrast to ML +V which
has an elegant axiomatization, axiomatizing ML + | seems to require complex
proof rules.

What are we to do? Here we show that introducing an operator @ which
retrieves the value stored by | solves these problems: it offers the expressivity
we need, the minimal logic is elegant, and we automatically get completeness
results for a wide class of interesting frame classes, many of which are not
modally definable. All this without sacrificing locality.>

These results are the technical core of the paper, but to close our discussion
we change gears — there is an important conceptual point to be made about
hybridization and its relevance to temporal logic: hybridization is not simply
about quantifying over states. Rather, hybridization is about handling different
types of information in a uniform way. We illustrate this idea by discussing a
simple hybrid language for quantifying over paths.

But we are jumping ahead. There is much to be done before we can usefully
discuss such ideas, so let’s call a halt to our introductory remarks and start
developing the idea of hybridization systematically.

2 The basic modal language

One of the simplest languages for temporal reasoning is the propositional modal
language that contains just two modalities: an operator O (read as: at all future
states) together with its dual operator < (read as: at some future state). For
most of this paper we will be working with various hybrid extension of this
simple language (which we will call ML). The purpose of the present section
is to fix notation and terminology, to remind the reader of various standard
concepts (in particular, generated submodels and bisimulations), and to present
a wish-list of properties for hybrid temporal languages.

Given a (countable) set of propositional symbols PROP = {p,q,r,...} the
well-formed formulas of ML are defined as follows:

WEFF :=p | =¢ [ ¢ At | Op.

Other Boolean operators (V, —, «», L, T, and so on) are defined in the usual
way, and we define G to be =O-p.

ML is interpreted on models. A model M is a triple (S, R, V') such that Sisa
non-empty set of states, and R is a binary relation on S (the temporal precedence
relation); the pair (S, R) is called the frame underlying M. The valuation V is a
function with domain PROP and range Pow(S); this tells us at which states (if
any) each propositional symbol is true. Depending on the application, additional
properties may be demanded of R: in temporal logic (various combinations of)
such properties as transitivity, irreflexivity, density, discreteness, trichotomy,
no-branching-to-the-right, and many others, are common. We shall deal with
such demands later.

2Blackburn and Tzakova (1998a), an extended version of the present paper, examines two
other local solutions in detail: (1) adding {}!, a universal quantifier over accessible states, and
(2) changing the underlying language from modal logic to tense logic. This version will be
made available at http://www.coli.uni-sb.de/"patrick/. An earlier version which contains
solution (1) is already available.



The satisfaction definition for ML is defined as follows. Let M = (S, R, V)
and s € S. Then:

M,sEp iff seV(p), where p € PROP
M,s |- iff M,slEe

M,S':(,O/\i/l iff M,S':(,O&M,S|:’(/J
M, s |EQp iff Vs'(sRs' = M,s' = ).

If M, s |= ¢ we say that ¢ is satisfied in M at s. If ¢ is true at all states in a
model M we say it is valid in M and write M |= .

Note the locality of the satisfaction definition: formulas are evaluated inside
models at some particular state (called the current state), and the O and ¢
operators scan the states accessible from the current state via the precedence
relation R. This locality intuition is arguably the central intuition underlying
modal approaches to temporal logic; it is certainly the intuition which prompted
Arthur Prior to pioneer the “modal logic of time” (which he called tense logic).
As he observed, we are situated inside the temporal flow, and many aspects of
language (for example, the use of tense, and temporal indexicals such as now)
reflect this internal perspective. Accordingly, he believed that modal analyses
of temporal logic were likely to be most revealing.?

The locality of ML has an obvious mathematical consequence: satisfaction
of ML formulas is preserved under the formation of generated submodels. To be
more precise, given a model M = (S, R,V) and a state s of S, the submodel
of M that is generated by s contains just those states of M that are accessible
from s by a finite number of transitions along R. It follows by an easy induction
that for all formulas ¢:

M, sl=p iff M® s .

In what follows, we use preservation under generated submodels as a key crite-
rion for judging hybrid temporal languages. We are interested in local temporal
languages, and will reject hybrid extensions which lead to a loss of the generated
submodel preservation results.

Now for a key question: does ML have the expressivity needed for temporal
reasoning? There is no absolute answer: it depends on the application. For some
applications, ML will often be too strong. For example, if one is interested in
using modal languages to characterize various types of bisimulation invariance, it
may be necessary to work with sublanguages of ML containing no propositional
symbols (wifs would be built using the constant 1) or to shed some Boolean
expressivity.

But for many other applications, ML is too weak.* For a start, as has
already been mentioned, no formula of ML is capable of distinguishing irreflexive
from reflexive states in all models; this means that a fundamental constraint on
temporal precedence simply isn’t reflected. Moreover, consider the definition of

3The best introduction to Prior’s views is Prior (1967).

4A very obvious weakness is that ML offers us no way of looking backwards along R;
for that we need Prior’s language of tense logic. However, while useful in natural language
semantics, in many applications in Al and theoretical computer science, backward looking
operators don’t play a prominent role. Apart from occasional remarks we won’t discuss tense
logic here, but Blackburn and Tzakova (1998a), the extended version of the present paper,
contains a full treatment.



the Until operator:
M, s = Until(p,p) iff Is'(sRs' & M,s' = ¢ & Vi(sRt & tRs'" = M, t|=))

This is an extremely natural local operator (note that formulas built using Until
are preserved under the formation of generated submodels) and has proved a use-
ful tool for temporal reasoning in computer science (indeed, computer scientists
usually regard Until as the fundamental modality). However the Until operator
is mot definable in ML. As the non-definability of both Until and irreflexivity
follows from the fact that ML formulas are preserved under bisimulations, and
as we will later make use of special bisimulations called quasi-injective bisimu-
lations, it will be useful to prove these non-definability results here.

A bisimulation between two models My = (S, Ry, V1) and My = (Sa, Ra, Va)
is a non-empty binary relation Z between S; and S, such that:

1. For all states s; in S7 and s in S5, if s1Zs, then s; and so satisfy the
same propositional symbols.

2. For all states s1, s’ in S and s» in S, if s R1s1" and sy Zs, then there
is a state sy’ in S such that sy Raess’ and s1'Zss’.

3. For all states s, s’ in So, and s1 in Sy, if s5R2s2’ and s;Zss then there
is a state s;’ in S7 such that s;Rys;’ and s1'Zss'.

The fundamental result concerning bisimulations (which follows straightfor-
wardly by induction on the structure of ML formulas) is that if Z is a bisimula-
tion between models M; and M5 and s;Zs» then sy and s» satisfy exactly the
same ML formulas.

It follows that neither Until nor irreflexivity is definable — indeed the follow-
ing counterexample (which we believe is due to Johan van Benthem) establishes
both points simultaneously. Let M; be an irreflexive model containing just two
states s; and so, let sy Rss and s Rs;, and suppose all propositional symbols
are true at both states. Let M5 be an reflexive model containing just one state
s, and suppose all propositional symbols are true at s. Clearly the relation Z
which links both s; and s2 to s and vice-versa is a bisimulation, hence all states
in both models satisfy exactly the same ML formulas. So, as M/ is irreflexive
and My reflexive, it follows that no ML formula succeeds in distinguishing ir-
reflexive and reflexive states. Moreover, observe that Until(T, 1) is false in My
(at both s; and s2) but true in M. It follows that the Until operator cannot
be expressed in ML.

Thus, ML has expressive weaknesses that are relevant to temporal reasoning,
and one of the key goals of this paper will be to repair them by hybridization.
But what should a hybrid temporal language look like? It is time to draw up a
wish-list.

First, we would like our hybrid language to be local. Second, we would like
our hybrid language to be expressive enough to detect irreflexivity and define
Until. Third, we would like to find hybrid languages in which the central ideas
of modal and classical proof systems can be clearly combined. Indeed, we would
like to exhibit a synergy between modal and classical ideas; we want the whole,
so to speak, to offer more than the sum of its parts. Let’s now examine the two
hybrid binders that have previously been studied and see how they measure up
against these demands.



3 Two hybrid binders

Syntactically, hybridizing ML involves making two changes. First, we sort the
atomic symbols; instead of having just one kind of atom (namely the symbols
in PROP) we add a second sort called state symbols. For reasons we shall soon
explain, it is convenient to divide state symbols into two subcategories: state
variables and nominals. Second, we add binders. The binders will be used to
bind state variables, but not nominals or propositional symbols.

Let PROP be as described before. Assume we have denumerably infinite
set SVAR of state variables (whose elements we typically write as u, v, w, x, y
and z), and a denumerably infinite set NOM of nominals (whose elements we
typically write as i, j, k and [). We assume that PROP, SVAR and NOM are
pairwise disjoint. We call SVAR U NOM the set of state symbols, and PROP U
SVAR U NOM the set of atoms. Choose B to be one of V or |. We build the
well-formed formulas of the hybrid language (over PROP, SVAR, NOM, and B)
as follows:

WEF ¢ = a|-¢ | @At | Op | By

Here a € ATOM, and z € SVAR. If B was chosen to be V, we obtain the
language ML +V, and if B was | we get ML + |. (Strictly speaking, different
choices of PROP, SVAR and NOM give rise to different languages, but we ignore
this whenever possible.)

A full discussion of the syntax of these languages would need to define such
concepts as ‘free’, ‘bound’, ‘substitutable for’, and so on. But experience with
classical logic is a reliable guide, and anyway the relevant definitions may be
found in Blackburn and Tzakova (1998), so we’ll simply remark that a sentence
is a formula containing no free variables or nominals, and that we use the nota-
tion ¢[s/v] to denote the formula obtained by substituting the state symbol s
for all free occurrences of the state variable v in .

As promised in the introduction, our hybrid languages use formulas as labels:
in the semantics presented below, both state variables and nominals will be
satisfied at exactly one state in any model. Now, the role of the state variables
should be clear; but what is the point of having nominals? Simply this: it is
convenient to have a supply of labels that cannot be bound by the binders;
this simplifies some of the technicalities, for it saves us having to worry about
accidental binding. In short, nominals are reminiscent of the ‘parameters’ used
in classical proof theory.

Now for the semantics. The key idea is straightforward: we are going to
insist that state symbols are interpreted by singleton subsets of models. We’ll
also need a smooth way to handle the fact that state variables may become
bound, whereas this is not possible for nominals or propositional symbols. But
there is an obvious way to do this: we’ll let the state variables be handled by a
separate assignment function in the manner familiar from classical logic.

Definition 1 (Standard models and assignments) Let £ be a hybrid lan-
guage over PROP, SVAR and NOM. A model M for L is a triple (S, R, V) such
that S is a non-empty set, R a binary relation on S, and V : PROPUNOM —
Pow(S). A model is called standard iff for all nominals i € NOM, V(i) is a
singleton subset of S.

An assignment for L on M is a mapping g : SVAR — Pow(S). An assign-
ment is called standard iff for all state variables © € SVAR, g(x) is a singleton



subset of S. The notation g' ~ g (g' is an xz-variant of g) means that g' and g
are standard assignments (on some model M) such that g’ agrees with g on all
arguments save possibly x.

Let M = (S,R,V) be a standard model, and ¢ a standard assignment. For
any atom a, let [V, g](a) = g(a) if a is a state variable, and V(a) otherwise.
Then interpretation of our hybrid languages is carried out using the following
definition:

M,g,sl=a it se€[V,g](a), where a € ATOM

M, g,s = iff  M,g,s o

M,g,sEeny . M,gsEp& Mg sEY

M, g,s |=0p iff Vs'(sRs" = M,g,s' = ¢).

M,g,sl=vVep  iff Vg9~ g = Mg sk o)

M, g,s |=lzp iff M,g' sk o, where ¢ ~ g and g¢'(z) = {s}

Let M be a standard model. We say that ¢ is valid on M iff for all standard
assignments g on M, and all states s in M, M, g, s = ¢, and if this is the case
we write M |= ¢. We say that a formula ¢ is valid on a frame (S, R) (written
(S,R) = o) iff for all standard valuations V' and standard assignments g on
(S,R),and all s € S, (S,R,V),g,s = .

Lemma 2 (Substitution lemma) Let M be a standard model, let g be an
assignment on M, and let ¢ be a formula of any of the hybrid languages defined
above. Then, for every state s in M, if y is a variable that is substitutable for
 in @ and i is a nominal then:

1. M,g,s E ply/z] iff M,g',s | ¢, where g' < g and g'(z) = g(y).
2. M, g,s | li/z] iff M,g',s |5 ¢, where g ~ g and g'(z) = V(i).
Proof. By induction on the complexity of ¢.

This concludes the preliminaries; it’s time to take a closer look at the binders.

The V binder

The V binder is the stronger, more classical, of our binders: indeed it’s just the
familiar universal quantifier in a modal setting. Note that if we define Jzp to
be the dual binder =Vz—¢, then:

M, g,s | Jzpiff 3g'(¢' ~g & M,g',s E ).

ML + V is a powerful language. We saw in the introduction that it can
distinguish irreflexive from reflexive states. Moreover it can define the Until
operator:

Until(p,v) = Fy(CyAp) AOCYy = ).

This definition says: it is possible to bind the variable y to a successor state
in such a way that (1) ¢ holds at the state labeled y, and (2) % holds at all
successors of the current state that precede this y-labeled state. In addition,



the minimal temporal logic of ML 4 V has a simple axiomatization that can be
proved complete reasonably straightforwardly. All in all, it’s a lovely language.

But there’s a snag: it isn’t local. To see that satisfaction of ML +V sentences
need not be preserved under the formation of generated submodels, consider the
following counterexample (taken from Blackburn and Seligman (1995)). Let M
be the following two-element model where S = {s,t}, and R = {(s,s)}:

Hr—-<x

sO ol

Then Jz—-<Cx is true at s in M, for we can assign the state ¢ to x and (s,t) € R.
However it is not true at s in the submodel M? generated by s, for as M?
contains only the state s, all assignments assign s to z. As s is reflexive, =Ox
will always be false. In short, 3 detects ¢ from s, even though ¢ and s are
completely disconnected.

If you want a strong hybrid language and are not interested in maintaining
locality, then ML + V is probably an excellent choice. Indeed, you may wish to
consider working with a hybrid language even less local, namely ML + V en-
riched with the universal modality A.> The universal modality has the following
satisfaction definition: M,s = Ay iff M, s’ |= ¢ for all states s’ € M. It is
not hard to see that adding the universal modality yields a hybrid language
with first-order expressive power (Prior knew this result, and formulated it in
a number of ways). Moreover, the A and V work together extremely smoothly,
making elegant axiomatizations possible (see Bull (1970)). But while such rich
systems are interesting, they are far removed from the local temporal languages
we wish to develop.

The | binder

If one is interested in local hybrid languages, the | binder is the most natural
starting point. Quite simply, | binds a variable to the current state; it creates
a label for the here-and-now. Let’s look at it more closely.5

First, note that | is self-dual; that is, at any state, in any standard model,
under any standard assignment, |z is satisfied if and only if =]x—p is satisfied
too. To put it another way, we are free to regard | as either a “universal
quantifier over the current state” or as an “existential quantifier over the current
state”; as there is exactly one current state, these amount to the same thing.

Next, note that |z is definable in ML +V; we can define it either as Va(z —
@) or z(x A p), thus ML + | is a fragment of ML + V. It’s quite an interesting

5Virtually the entire literature on hybrid languages is devoted to such systems. For exam-
ple, both Bull (1970) and Passy and Tinchev (1991) make use of V and A.

6Tncidentally, while | is a relative newcomer to hybrid languages (Goranko (1994) seems to
be the first published account) essentially the same binder has been introduced to a number
of different non-hybrid languages for a wide variety of purposes; see for example Richards et
al (1989), Cresswell (1990), and Sellink (1994). Labeling the here-and-now seems to be an
important operation.



fragment. For a start, sentences of ML 4 | are preserved under the formation of
generated submodels. (We leave the simple proof to the reader. Essentially it
boils down to the observation that the only states that | can bind to variables in
the course of evaluation must be states in the generated submodel. For example,
in the previous diagram, if we evaluate a sentence at s, the only state that we
can bind to any variable is s itself; ML+ cannot detect ¢, which is what we
want.) Moreover, adding the | binder boosts the expressive power of ML in
temporally interesting ways. In particular, note that the sentence

JeOd-x

is true in a model at a state s iff s is irreflexive.

Unfortunately, ML + | has two drawbacks. First, there is no obvious way
to provide a complete axiomatization without resorting to a fairly complex rule
of proof.” Second, for many purposes it simply isn’t expressive enough. Let’s
examine this second problem more closely.

Although adding | increases the expressive power, Until still isn’t defin-
able. To see why, we make use of the quasi-injective bisimulations introduced
in Blackburn and Seligman (1997). Let us say that states s and s’ in a model
M = (S,R,V) are mutually inaccessible iff s is not in the submodel generated
by s’ and s’ is not in the submodel generated by s. We then define:

Definition 3 (Quasi-injective bisimulations) Let Z be a bisimulation be-
tween M1 and Ms; Z is a quasi-injective bisimulation iff:

1. For all states si, s1’ in My, and ss in Ms, if s1Zsy and s1'Zss, and
s1 # s1' then s1 and s1' are mutually inaccessible, and

2. For all states so, s3' in Mo, and s; in My, if s1Zsy and s1Zs3', and
so # s3’ then sy and ss' are mutually inaccessible.

Now, ML + | sentences need not be preserved under arbitrary bisimulations
(the fact that |zO-z picks out irreflexive states shows this), but Blackburn
and Seligman show that they are preserved under quasi-injective bisimulations.
That is:

Proposition 1 Let Z be a quasi-injective bisimulation between models M and
My, and let s1 and so be states in My and My respectively such that s1Zss.
Then for all sentences of ML + |, My, s1|=p iff Ma, s2l=p.

We can use this result to show that no sentence of ML + | defines the Until
operator. To be more specific, let p and g be propositional symbols. Then, even
over strictly partially ordered models, there is no sentence U@ of ML + |

"Blackburn and Tzakova (1997) axiomatize the set of valid ML + | by making use of the
COV rule (see Gargov, Passy and Tinchev (1987), Passy and Tinchev (1991), Gargov and
Goranko (1993)). Unfortunately, the COV rule is rather complex: it employs arbitrarily deep
nestings of modalities.

The only other work on axiomatic systems for |, we know of are Goranko (1994) and
Goranko (1996a). However Goranko’s investigations have little bearing on the concerns of the
present paper, for Goranko investigates a language containing both the universal modality
and |. Note that the V binder is definable in this language by Vzy := lyAlzA(y — ¢), thus
Goranko’s language has full first-order expressive power.



that is satisfied in a model M at a state s iff Until(p, q) is satisfied in M at s.
To see this consider the following two models:

p p p

=Until(p, q) Until(p, q)

(In both models, the relation we are interested in is the transitive closure of
the relation indicated by the arrows, thus both models are strict partial orders.)
Note that Until(p, q) is false in the left-hand model at the root node, and true
in the right-hand model at the root. Hence if some sentence V("9 of ML + |
expressed Until(p, q), it would be false at the root of the left-hand model, and
true at the root of the right-hand side one. But this is impossible, for the obvious
‘unraveling’ relation between the two models is a quasi-injective bisimulation.

Summing up, previously studied hybrid systems don’t meet our three wish-
list criteria. The V binder is interesting and elegant — but to adopt it is to
abandon locality. The | binder is far more promising — binding to the current
state is such an intrinsically modal idea that it deserves further attention. But
can we overcome its expressive weakness? And are there natural ways to avoid
dependence on complex rules of proof? The answer is “Yes”. As we shall now
show, we can do this by adding a retrieval operator @ to match the action of |;
for two further solutions, consult the extended version of this paper.

4 The @ operator

Suppose we were given a brand new web-browser to test, and we discovered
it had the following limitation: although it allowed us to bookmark URLs, it
didn’t allow us to jump to these locations by clicking on the stored bookmark.
Frankly, we wouldn’t dream of working with such a browser; we’d demand that
this shortcoming be fixed right away.

ML+] is rather like this (hopefully non-existent) browser: < pushes us
through cyberspace, and | allows us to label the states we visit on our travels
— but ML+] doesn’t offer us a general mechanism for jumping to the states we
label. Let’s put this right. We shall allow ourselves to construct formulas of the
form @Qgp. To evaluate such a formula we will jump to the state s labels and
see whether ¢ holds there; in effect, @ will enable us to use the values | has so
carefully stored for us.

Let’s make this precise. If s is a state symbol and ¢ is a formula then Q¢ is
a formula. It is possible to think of @ as a binary modality whose first argument
is a state symbol and whose second argument is a formula — but as will soon
become clear, it is more natural to view the composite symbol @, as a unary
modal operator. If we add all these state-symbol-indexed unary modalities to
ML+/], we obtain ML+]+@. Most syntactic aspects of ML+/+@ are obvious,
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though the following point is worth stressing: @ does not bind variables. Only
the | binder does that.

Now for the semantics. Let M = (S, R,V') be a standard model, let g be a
standard assignment on M, and let Den(s) be the denotation of the state symbol
s (that is, Den(s) is g(s) if s is a state variable, and V(s) if s is a nominal).
Then:

Magvt ': @S(p lff Maga Den(s) |: p-

As promised, @, jumps to the denotation of s and evaluates its argument there.

Sentences of ML+]+@ are preserved under generated submodels. After all,
in a sentence, the only occurrences of @ will be of the form @,, where y is a
state variable bound by some occurrence of |, and as | binds locally, the result
follows. Second, @ can define Until.® As we have already seen, Until is not
definable in ML+, but it certainly is in ML+/+@:

Until(p,¢) = JzOly@,(O(y Ap) AD(CY = ¢)).

Note how this works: we label the current state with z, use ¢ to move to an
accessible state, which we label y, and then use @ to jump us back to . We
then use the modalities to insist that (1) ¢ holds at the state labeled y, and
(2) ¢ holds at all successors of the current state that precede this y-labeled
state. Note the similarities (and differences) with our earlier 3-based definition
of Until.”

As this example shows, | and @ make a great team; they communicate
smoothly and their cooperation gives rise to an axiomatization called H[{, Q](K).
This axiomatization is an extension of the minimal modal logic K. Recall that
K is the smallest set, of formulas containing all propositional tautologies, and all
instances of O(p — ¥) — (Ogp — O¢), that is closed under modus ponens (if ¢
and ¢ — 9 are both provable, then so is 1) and necessitation (if ¢ is provable
then so is Oy). To the axioms and rules of proof of K we add axioms and rules
governing both | and @. Let’s deal with | first. First, we have all instances of
the following schemas:!?

8 A lot more could be said about @, and we can’t say it all here. But two things should be
said. First, the reader has almost certainly seen something like @ in non-hybrid languages: for
example it’s Prior’s T'(s, ) construct in third grade tense logic, it’s the Holds(s, p) operator
introduced by Allen (1984) for temporal representation in AI, and it is the characteristic
operator of the Topological Logic of Rescher and Urquhart (1971). Note that the @ operator
supports a variety of natural interpretations: for example, computationally it can be viewed
as a goto instruction.

But one perspective is particularly relevant here: @Q can be viewed as a restricted version of
the universal modality. First, note that @Qs¢ can be defined as either A(s — @) or E(s A ¢),
where E is the dual if A. In short, @ allows limited access to the power of A, and the limitation
results in a generated submodel for sentences. But as we shall see below, @ has enough power
to support elegant proof theories.

9Note that the prenex block |z y@, defines an existential quantifier over states reachable
in 1 R-step: i;np = JzOlyQ,p; this binder is discussed in detail in the extended version
of the paper. Similarly, we can define an existential quantifier over states accessible in 2 R-
steps: igcp = JxOOlyQgp. Indeed, for any natural number n we can define an existential
quantifier over states accessible in n R-steps. Note that we also have simple definitions of the
universal quantifiers over states reachable in n R-steps: for example, Ugnp = J2000yQup.
It is easy to see that |™ and {}" are dual binders, for any natural number 7.

10These axioms were used as part of the COV-based axiomatization of Blackburn and
Tzakova (1998). In Blackburn and Tzakova (1998a), the extended version of the present
paper, these axioms are discussed further, and analogs of Q1-Q3 are given for the {J! binder
mentioned in the previous footnote.
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Q1 Wip = 9) = (¢ = lvi)
Q2 v = (s = pls/v])

Q3 (v =)= lve
Self-Dual  |vip > =lv-p

(Here v is a metavariable over state variables, s a metavariables over state
symbols, and ¢ and 1 metavariables over arbitrary wffs. In @1, ¢ cannot
contain free occurrences of v; in 2, s must be substitutable for v in .)

Q1 and Q2 are obvious analogs of familiar first-order axiom schemas. The
major difference is that the present version of @2 only lets us substitute state
symbols for binders when the obvious locality condition is fulfilled: s must be
true in the current state. This restriction motivates the introduction of @3,
which allows us to eliminate bound occurrences of state variables in antecedent
position. In addition to these axioms we have the rule of state variable local-
ization; that is, if ¢ is provable then so |zy. Summing up: | supports a local
form of classical reasoning. But in spite of the locality restriction, the axioms
just introduced are strong enough to support many classical principles such as
a-conversion. As an illustration (for full details, see the extended version) we
show:

Lemma 4 (Normality) For all formulas ¢ and ¢ we have: + lz(p — ¢¥) —
(lap — Jap).

Proof. Note that Jz(¢ — ) = (x — (¢ — )) is an instance of @2, asis |z —
(x = ¢). Hence F ({xz(e = ¥) Alzp)) = (x — ¢). Use localization to prefix
this formula with |z, and then Q1 to distribute |x over the main implication
to get F (Jxz(p = ¥) Alzp) = Jo(x — ). Note that Jz(x — ) — lay is
an instance of 3, so we can simplify the consequent and so obtain the result.
(Using Q8 in this way to simplify the conditionals produced by applications of
Q2 is typical of H[|, Q](K) proofs.)

Let’s turn to @. For every state symbol s, we have the rule of Q,-necessitation
(if ¢ is provable then so is @zp). In addition we have the rules Paste-0 and
Paste-1; these will be introduced below. In addition, we have all instances of
the following schemas. These fall naturally into three groups. The first identifies
the basic logic of Q.

K Qs(p = ) = (Qsp = Qgy))
Self-Dual Qgp & Qg

Introduction s Ay — Qgp

Note that K is simply the familiar modal distribution schema; hence as we
have the rule of @Qg-necessitation, @, is a normal modal operator. Obviously
Self-Dual states that Qg is self-dual; but note that, viewed in more traditional
modal terms, it tells us that @, is a modality whose transition relation is a
function: one direction is the modal determinism axiom, while the other is
the characteristic axiom of deontic logic. Given the jump-to-the-labeled-state
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interpretation of @, this is exactly what we would expect. Introduction tells
us how to introduce information under the scope of the @ operator. Actually,
it also tells us how to get hold of such information, for if we replace ¢ by —p,
contrapose, and make use of Self-Dual, we obtain (s A @Qgp) — ¢; we call this
is Elimination schema.

The next group is a modal theory of labeling (or to put it another way, a
modal theory of state equality).

Label Qgs
Nom Qgt — (Qpp — Qgp)
Swap Qgt <> Qs

Scope Qi Qg p < Qg
The final group tells us how @ and < interact:

Back  OQgp — Qgp
Bridge <sAQgp — Op

And (apart from the Paste rules) that’s [, Q](K). We leave the soundness
proof to the reader, and turn straight to the issue of completeness. Essentially
we're going to adapt the modal canonical model method to our new language
(we assume the usual notions of consistency, Maximal Consistent Sets (MCSs)
and so on; see the extended version for further details).

Definition 5 (Canonical Models) For a countable language L, the canonical
model M€ is (S¢, R¢, V), where S¢ is the set of all L-MCSs; R is the binary
relation on S° defined by TRCA iff Op € T implies p € A, for all L-formulas
@; and V° is the valuation defined by V°(a) = {T' € S° | a € T'}, where a is a
proposition symbol or nominal.

We begin by proving a key lemma without the help of the yet-to-be-introduced
Paste rules. Let us say that an MCS is labeled if and only if it contains a state
symbol; if a state symbol belongs to an MCS we call it a label for that MCS.

Lemma 6 Let T' be a labeled MCS, and for all state symbols s, let Ag; be
{¢ | @9 € T'}. Then:

1. For every state symbol s, Ay is a labeled MCS that contains s.
For all state symbols s and t, Qzp € A iff Qg € T.
There is a state symbol s such that T' = A,.

For all state symbols s, Ay = {p | Qs € A }.

For all state symbols s and t, if s € Ay then Ay = Ag.

13



Proof. Clause 1. First, for every state symbol s we have the Label axiom Qgs,
hence s € A;. Next, A, is consistent. For assume for the sake of a contradiction
that it is not. Then there are 0y, ...,0, € Ay such that F —(6; A ... Ad,). By
@g-necessitation, - @s—(d1 A...Ady), hence @s— (61 A...Ady) is in T, and thus by
Self-Dual =Qg(p1 A ... A py) is in T too. On the other hand, as di, ..., 0, € Ag,
we have @04, ...,@,6, € I'. By simple modal argumentation (all we need is the
fact that @, is a normal modality) it follows that @4(d; A ... A d,) € T as well,
contradicting the consistency of I We conclude that A; must be consistent
after all.

It remains to show that Ag is maximal. So assume it is not. Then there
is a formula y such that neither x nor —x is in A,. But then both =@,y and
=@y belong to T', and this is impossible: if =Qgy € T', then by self duality
@;—y € I' as well, and we contradict the consistency of I'. So Ay is maximal.

Clause 2. We have Qzp € A; iff @;Q;p € I'. By Scope, @;Q,p € T iff
@Qsp € T. (We call this the @-agreement property; though simple, it plays an
important role in our completeness proof.)

Clause 3. By assumption, I' contains at least one state symbol; let us call
it s. If we can show that I' = A, we will have the result. But this is easy.
Suppose ¢ € I'. Then as s € T', by Introduction Qgp € T', and hence ¢ € A;.
Conversely, if ¢ € A, then Qgp € T'. Hence, as s € [, by Elimination we have
pel.

Clause 4. Use Introduction and Elimination, much as in the previous clause.

Clause 5. Let A; be such that s € As; we shall show that Ay = A,. First
observe that since s € A;, we have that Q;s € I'. Hence, by Swap, Q,t € T
too. But now the result is more-or-less immediate. First, A; C A, For if
@ € Ay, then @, € T'. Hence, as Q4t € T', it follows by Nom that Qgp € T,
and hence that ¢ € A; as required. A similar Nom-based argument shows that
Ay CTA; A

This lemma gives us a lot — in essence it says that the subscripted @ op-
erators in any labeled MCS index a well-behaved collection of labeled MCSs.
Now, thinking ahead to the Truth Lemma we will have to prove, it should be
clear why we want to work with labeled MCSs: with the help of 2, we can
use these labels to instantiate state variables bound by |, and hence establish
the inductive step for |. Thus the A, are plausible model-building material;
nonetheless, they don’t yet have all the properties we want.

First there’s a small wrinkle: we would like the MCSs we use to be labeled
by a nominal, not just a free variable; this isn’t crucial, but it saves having to
worry about about accidental binding. But note that even if T itself contains
a nominal (say ¢), we have no guarantee that all the A; do too: for example,
I’ may contain @,—j for all nominals j, in which case A, won’t contain any
nominals at all, though of course it will contain z.

And there’s a second, far more serious, problem. Suppose we take the collec-
tion of Ag yielded by a labeled MCS as the building blocks of our model. Doing
this means we have thrown away MCSs; we will be working in a submodel of the
canonical model. How do we know that a modal style Existence Lemma holds
for this submodel? That is, how can prove the clause of the Truth Lemma for
the modalities? Bluntly, there is no obvious way to do this.
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The Paste rules enable us to fix both problems. Here they are:

FQg(tAyp) — 0 FQsO(tAp) — 6
FQsp — 0 FQsop — 6

The rule on the left is called Paste-0, the rule on the right Paste-1. In both, ¢
must be a state symbol distinct from s that does not occur in ¢ or 6.

The key rule is Paste-1. Read contrapositively (that is, read from bottom
to top) it tells is that pasting a brand new state symbol under the scope of ¢
is a consistency preserving operation — for if we can’t derive a contradiction
(that is, ) without the new nominal, then we can’t derive the contradiction
after we have pasted. We shall leave the reader to ponder the simpler Paste-0
rule (essentially it says that giving a brand new name to a labeled state isn’t
going to cause any problems) and prove the Extended Lindenbaum’s Lemma we
need.!!

Definition 7 (Pasted MCSs) An MCS T is 0-pasted iff Qg € T' implies
that for some nominal i, @4(i A @) € I'. It is 1-pasted iff @Q;Cp € T' implies
that for some nominal i, Q,O(i A ) € I'. We say that T is pasted iff it is both
0-pasted and 1-pasted.

Lemma 8 (Extended Lindenbaum’s Lemma) Let £ and LT be countable
languages such that LT is L enriched with a countably infinite set of new nom-
inals. Then every consistent set of L-formulas can be extended to a pasted

LT-MCS that is labeled by a nominal.

Proof. Enumerate the new nominals. Given a consistent set of L-formulas @,
define ®; to be ® U {j}, where j is the first new nominal. ®; is consistent.
For suppose not. Then for some conjunction of formulas é from ® we have
that - j — —d; as j is from the new-nominal enumeration, it does not occur
in 6. Let P be a proof of F j — = and let x be any state variable that
does not appear in this proof. Then replacing every occurrence of j in P by =
yields a proof of - 2 — —d. Localization then yields - |z(z — —d). By Q3
F Jz—d. Now vacuous occurrences of the | binder are eliminable in H[|, @](K)
(for - —¢p — =, so for any variable z not occurring in ¢, localization and Q1
yield - = — |z—p, whereupon contraposition and the self duality of | yield
the result). Hence F —d, which contradicts the consistency of ®. Thus ®; is
consistent after all.

We now paste. Enumerate all the formulas of £T, define ©° to be &;, and
suppose we have defined O™, where m > 0. Let ¢,,+1 be the m+1-th formula in

HThe extended version of this paper discusses the admissibility of these rules. A semantic
argument is given which strongly suggests that Paste-0 isn’t a genuine enrichment of the
system, though at the time of writing this hadn’t been backed up by a syntactic proof. The
admissibility of Paste-1 is posed as an open problem.

But while interesting, to focus exclusively on the admissibility of Paste-1 over an aziomatic
basis is to miss the true significance of this rule: Paste-I is actually the most natural part
of H[|,@](K) — it’s the other components that should be eliminated! This is the strategy
adopted in Blackburn and Seligman (1998). Drawing on ideas from Seligman (1997) an @-
based sequent system is presented and the idea underlying Paste-1 finds its true home.

Incidentally, Paste-1 is closely related to a rule introduced by Gabbay and Hodkinson (1990)
for Until-Since logic. The Gabbay and Hodkinson method is discussed in detail in the ex-
tended version of the paper, and Paste-1 is introduced as, so to speak, an @-based imple-
mentation of their idea that bypasses the need to work with arbitrary sequences of tense
operators.
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our enumeration. We define @™ as follows. If @™ U{p,1} is inconsistent,
then @™ = ©™. Otherwise:

1. @™t = O™ U {pmi1} if @ms1 is not of the form @,v or @,Op. Here s
is a state symbol, and v is a state variable.

2. O™ = O™ U {pmi1} U{Q,(k Av)}, if oy is of the form @,v. Here k
is the next new nominal that does not occur in ©™.

3. O™ = 0" U {01 U{QsO(kAQ)}, if pmo1 is of the form @;Cp. Here
k is the next new nominal that does not occur in @™ or @< .

Let © = [J,,>,©". It is clear that this set is labeled by a nominal, maxi-
mal, and 1-pasted. Furthermore, it must be consistent, for the only non-trivial
aspects of the expansion are those defined by items 2 and 3, and Paste-0 and
Paste-1 respectively guarantee that these are consistency preserving.

So it only remains to check that © is 0-pasted; because of the rather limited
way item 2 uses Paste-0 this may not be entirely obvious. First, note that by
basic modal reasoning - @Q.0 A Q) — Q,(8 A ¢)). So suppose @ p € X. If s
is a nominal, say i, then because @;i is an axiom, @;(i A p) € ¥ as required.
On the other hand, if s is a variable, say x, then because of the pasting process
carried out in item 2, for some nominal i we have that @, (1 Az) € ©. As Q; is
a normal modal operator, @,i € @, so @, (i A p) € £. We conclude that © is
the required £T-MCS. H

We’re now ready to prove the completeness of H[|, @](K) — in fact we have
everything we need to prove the completeness of many of its extensions as well.

Definition 9 (Labeled models and natural assignments) LetT be a pasted
MCS labeled by a nominal. For all state symbols s, let Ay be {p | Qzp € T},
and define S to be {As | s is a state symbol}. Then we define M, the labeled
model yielded by T', to be (S,R,V), where R and V' are the restrictions of R®
(the canonical relation) and V¢ (the canonical valuation) to S. We define the
natural assignment g : SVAR — S by g(z) ={s € S | z € s}.

Such labeled models have all the structure we want. For a start, by Clause 3
of Lemma 6, I' € S, and by Clause 5, V is a standard valuation and g is a
standard assignment. Further, all states in the model contain nominals (because
[ is 0-pasted), and hence are well-behaved as far as | is concerned. Moreover,
we know from Lemma 6 that M is extremely well-behaved with respect to @.
So it only remains to ensure that such models are well-behaved with respect to
the modalities; that is, we want an Existence Lemma. This, of course, is where
1-pasting comes in:

Lemma 10 (Existence Lemma) Let M = (S,R,V) be the labeled model
yielded by a pasted set T that is labeled by some nominal. Suppose ©® € S
and O € ©. Then there is a ® € M such that ©R® and ¢ € .

Proof. As © € S, for some nominal i we have that ® = A;; hence as Oyp € O,
@;Op € T. But I' is pasted (and hence 1-pasted) so for some nominal k,
@;O(kAp) €T, and so O(kA ) € A;. If we could show that (1) A;RAy,
and (2) ¢ € Ay, then Ay would be a suitable choice of ®. And in fact Bridge
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and Back, aided by the @-agreement property of our model (that is, item 2 of
Lemma 6) will let us establish this.

For (1), we need to show that for any ¢ € Ay, we have that Gy € A;. So
suppose ¢ € Aj. This means that Qg € I'. By @-agreement, @) € A;. But
Ok € A;. Hence, by Bridge, O € A; as required.

For (2), we know that O(k A @) € A;. But - kA p — Qpe (this is an
instance of Introduction), hence ¢GQpp € A;. But then, by Back, Qup € A;.
By @-agreement, Qo € I'. Hence ¢ € A as required.

Lemma 11 (Truth Lemma) Let © be an MCS in M. For all formulas ¢,
Y EB I M,0 = p.

Proof. By induction: the atomic, boolean, and modal steps are standard (we
use the Existence Lemma just proved for the latter).

So suppose |z € A. Since A contains a nominal (say i), by Q2 ¢[i/x] € A.
By the inductive hypothesis M, g, A = ¢[i/z]. Thus, M, g,A = iAy[i/z], and
by the contrapositive of the Q2 axiom, M, g, A |= Lat. For the other direction
assume M, g,A | lz¢p. That is, M,g',A | ¢, where ¢’ ~ g such that
g'(x) = {A}. Now A contains a nominal, say i, so by the Substitution Lemma,
M, g,A = ¢[i/z], hence by the inductive hypothesis ¢[i/z] € A. So, by the
contrapositive of the Q2 axiom, 1) is in A as required.

The argument for @ runs as follows: M, 0 |= Q1) iff M, Ag | ¢ (for by
Clause 5 of Lemma 6, Ag is the only MCS containing s, and hence, by the the
atomic case of the present lemma, the only state in M where s is true) iff ¢ € A,
(inductive hypothesis) iff @) € A, (using the fact that s € A, together with
Introduction for the left-to-right direction and Elimination for the right-to-left
direction) iff @) € © (by the @-agreement property for the MCSs in S). Thus
all cases have been proved, and the Truth Lemma follows by induction.

Theorem 12 (Completeness) Every H[|, Q](K)-consistent set of formulas
in a countable language L is satisfiable in a countable standard model with respect
to a standard assignment function. Moreover, every H[|, Q](K)-consistent set
of sentences in L is satisfiable in a countable connected standard model

Proof. The first is proved in the expected way: given a H[|, @](K')-consistent set
of formulas ¥, use the Extended Lindenbaum Lemma to expand it to a pasted
set X1 labeled by some nominal in a countable language £*. By the Truth
Lemma just proved, the labeled model and natural assignment that ¥ gives
rise to satisfy ¥ at ¥7. This model need not be connected, but the submodel
generated by X1 is, and all sentences in £T are true in this submodel.

But there’s no need to stop here — one of the nicest things about hybrid lan-
guages is the ease with which general completeness results for richer logics can
be proved.'? Moreover, such results typically link completeness and frame-
definability in a very straightforward way.

2Historically, this has been a major motivation for exploring hybrid languages. Bull (1970)
points out (see page 285), that all state-symbol-based extensions of the basic logic are com-
plete, and a neat argument to the same effect is given at the end of Gargov, Passy and
Tinchev (1987). Passy and Tinchev (1991) push matters further; like the earlier Passy and
Tinchev (1985), this paper takes PDL as the underlying modal language and explores what
happens beyond the first-order barrier. The present paper applies similar arguments to weaker
local languages.
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A formula is said to define some property of frames (for example, transi-
tivity) iff it is valid on precisely the frames with that property (recall from
Section 2 that a formula is valid on a frame iff it is impossible to falsify it at
any state in that frame, no matter which valuation or assignment is used). The
sort of results we are after have roughly the following form: for any formula ¢
from some specified syntactic class, if ¢ defines a property P, then using it as
an additional axiom guarantees completeness with respect to the class of frames
with property P. For ordinary modal languages, the Sahlqvist Theorems are the
best known result of this type (see Sahlqvist (1975)); as we shall see, analogous
results for hybrid languages come far more easily. We shall give two. The idea
underlying both is the same: stop thinking in terms of propositional variables,
and start thinking in terms of state symbols.

We say that a formula of ML+|+@ is pure iff it contains no propositional
variables; our first result concerns pure sentences. As the following examples
show, pure sentences are remarkably expressive; each sentence defines the prop-
erty listed to its right. All these properties are relevant to temporal reasoning,
and (with the exception of transitivity and density) none are definable in ordi-
nary modal logic:

JrO-z Irreflexivity
JrO00-x Asymmetry
Jz0(Cx — x) Antisymmetry
Jz0ly@, OOy Density
Jz00y@, Oy Transitivity
1z ly@, (O0-y A Ol2Q, (2 V ©z)) Discreteness

The last three expressions can be simplified using {}™ notation.'3

Let us say that a pure sentential axiomatic extension of H[|, @](K) is any
system obtained by adding as axioms a set of pure sentences of ML+ |+@Q.

Theorem 13 (Extended Completeness I) Let Pure be a set of pure sen-
tences of ML+\|+@, and let P be the pure sentential axiomatic extension of
H[}, Q](K) obtained by adding all sentences in Pure as axioms. Then every
P-consistent set of formulas in a countable language L is satisfiable in a count-
able standard model, based on a frame that validates every axiom in Pure, with
respect to a standard assignment function. Moreover, every consistent set of
sentences in L is satisfiable in a countable connected standard model based on
a frame that validates Pure.

13This notation was introduced in Footnote 9. The definition of density can be rewritten
as U;<><>y (“every state y that can be reached in one step can be reached in two steps”),

the definition of transitivity is Uz Oy (“every state y that can be reached in two steps can be

reached in one step”), while discreteness simplifies to i;(Dl:lﬁy AYLQy(z v ©2)) (“there is a
successor state y, that is not 2-step reachable, from which any successor state z is 0- or 1-step
reachable”).
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Proof. An easy corollary of Theorem 12: given a P-consistent set of formulas
¥, build a satisfying model by expanding ¥ to a set ¥ T in a countable language
L+, and forming the labeled model M = (S, R, V) and the natural assignment
g. Now, the labeled model is built of MCSs, and each axiom in Pure belongs
to every P-MCS, thus by the Truth Lemma, M, g |= Pure. But as Pure con-
tains only sentences, the choice of assignment is irrelevant, hence M |= Pure.
Moreover, as Pure contains only pure sentences, the choice of valuation is also
irrelevant, and (S, R) |= Pure. This proves the first claim. Finally, if ¥ contains
only sentences, we obtain a connected model by restricting our attention to the
submodel generated by X T; the underlying subframe validates Pure.

As a simple application, note that we obtain the logic of strictly partially
ordered frames (which many writers, for example van Benthem (1983), would
regard as the minimal temporal logic) by adding as axioms |xz0O-z and Uj()y;
the previous theorem guarantees that the labeled model validates these axioms,
hence as they define irreflexivity and transitivity respectively, the labeled model
will have these properties.

This is pleasant, but let’s push things further. Theorem 13 requires us to
use sentences as axioms. However it can be more natural to use pure schemas.
Consider, for example, the schema ¢Os — ©s. Any instance of this schema
defines transitivity, and it is easy to verify that including all instances as axioms
guarantees a transitive labeled model. Similarly, any instance of the schema

OsAOt = [O(sACE)VO(sAL)V O(EA Os)]

defines the no-branching-to-the-right property, and including all instances as
axioms guarantees a labeled model with this property. Both transitivity and
no-branching-to-the-right are definable using pure sentences,'* but the use of
schemas can offer more. A simple example is the schema ©s; any instance of
this defines the class of frames (S, R) such that R = S x S, and its inclusion as
an axiom schema imposes this property on labeled models.!®

A pure schematic extension of H[|, @](K) is any system obtained by adding
all ML+/+@ instances of a set of pure schemas of ML+|+@ as axioms to

H[I, QJ(K).

Theorem 14 (Extended Completeness II) Let Schemas be a set of pure
schemas of ML+]+@, and let S be the pure schematic extension of H[|, Q](K)
obtained by adding all instances of the schemas in Schemas as axioms. Then
every S-consistent set of sentences in a countable language L is satisfiable in
a countable standard model, based on a frame that validates all these azioms,
with respect to a standard assignment function. Moreover, every consistent set
of sentences in L is satisfiable in a countable connected standard model based
on a frame that validates all these axioms.

Proof. See the extended version of this paper. -

M The pure sentence U;U}:(Oy ANOz = [O(y A O2z) VO(y Az)V O(z A Oy)]) defines no-
branching-to-the-right.

15We don’t know many temporally relevant examples in ML+|+@ that require the use
of schemas, but examples are easy to find in tense logic enriched with |. For example, the
schema Ps VsV F's guarantees trichotomy (that is, Vey(zRy V © = y V yRz)), while PFs
guarantees us left-directedness (that is, Voy3z(zRz A zRy).
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What sort of coverage do Theorems 13 and 14 offer? For a start, note that
all our examples of frame properties definable by pure sentences or (instances
of) pure schemas were first-order. This is no accident: a simple extension of
the Standard Translation for the basic modal language shows that every pure
formula of ML+|+@ defines a first-order condition on frames. The Standard
Translation for the basic modal language is defined as follows:

ST.(p) = Pz, for all propositional symbols p
STy (=) = STe(p)

STy (e AY) = STy(p) A STe(p)

STo(Op) = Vy(zRy - STy(p))

(In the first clause, P is a monadic second-order predicate variable; each propo-
sitional symbol corresponds uniquely to such a symbol.) Following Blackburn
and Seligman (1998), we extend this translation to ML+|+@ as follows: we
assume that the first-order variables we have available consist of all the usual
state variables, plus a distinct variable z; for each nominal ¢ and define:

ST.(y) = 1z =y, for all state variables y
ST, (7) = 1 = x;, for all nominals ¢
STe(Jwp) = Fylz =y ASTe(p))

ST,(Qyp) = STy(yp)

Suppose @ is a formula of ML+|+@; we suppose that ¢ has been a-converted
so that it contains no occurrences of the variable z (we reserve this variable to
denote the current state). It is easy to see that ST,(yp) will contain at least
one free variable (namely x). It is also easy to see that this extended version of
ST preserves satisfaction. That is for any ML+]+@ formula ¢, any standard
model M = (S, R, V), any standard assignment g, and any s € S:

M;s,9 = ¢ ifft M ST:(p)]s,8(2), V(i), V(p)]

The notation on the right means: assign s to the free variable z, assign the
unique element of g(z) to z if z occurs free in the translation, assign the unique
element of V(i) to z; if ; occurs free in the translation, and assign V'(p) to P
if P is a monadic predicate variable that occurs free in the translation. Now we
can see why it pays to be pure: if ¢ contains no propositional variables, then
the previous expression simplifies to

M,g,s = it M= ST:(p)[s,g(2), V(i)
We are now firmly in the world of first order logic. But let’s carry on. We have:

M,g ¢ iff M VST, (¢)[g(=), V(i),

and hence:
(S,R) E ¢ iff (S,R)|=Vz1---Vz,VaST,(p).

On the righthand side we have simply universally quantified over all the free-
variables in VST, (). In short, the frame property any pure formula defines can
be calculated by applying the standard translation and forming the universal
closure. Thus Theorem 13 and 14 bear a certain family resemblance to the
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Sahlqvist Theorems: all these results cover first-order properties which can be
effectively calculated from the relevant axioms.

There are a host of related questions worth pursuing. For example, we have
seen many examples of first-order properties which are not modally definable but
which are definable using pure formulas; can all modally definable first-order
conditions be captured in this way? And if not, can all Sahlqvist definable
properties be so captured?!®

5 Working with other sorts

Our technical work is done, but our conceptual work is not. The reader may have
gained the impression that hybridization is simply the business of quantifying
over states in a modal setting. But while that’s part of the story, and an
important part too, we believe that a more general idea deserves to be made
explicit.

Our preceding work rested on a simple idea: combining two forms of infor-
mation in a uniform way. Our languages dealt with arbitrary information (via
the propositional symbols) and labeling information (via the state symbols) and
yet we drew no distinction between terms and formulas; both types of informa-
tion were handled propositionally. Now the natural question is: if this works for
state-label information, why shouldn’t it work for other types of information as
well? For example, in some applications we might want to work with intervals,
or events, or paths, or some combination of these entities — so why not intro-
duce special atomic symbols that label such entities and allow ourselves to bind
them? In short, why not attempt hybridization in more ambitious ways?'”

Intriguingly, there are at least two ways of doing this. The first involves little
change to the work of previous sections. For example, working with intervals
in a modal logic standardly means working with richer frames, perhaps frames
of the form (S,<,C). Here S is thought of as a set of intervals, < as the
precedence relation on intervals, and C as the inclusion relation on intervals.'®

16There are first-order properties which are modally definable but not Sahlqvist definable,
which can be defined by pure sentences. For example, transitivity + atomicity (Vz3y(zRy A
Vz(yRz — z = y))) is definable by the conjunction of the modal transitivity axiom (OGOp —
<©p) and the McKinsey formula (OOp — <&Op), but no Sahlgvist formula defines this condition.
Incidentally, McKinsey does not define atomicity, and in fact, no ordinary modal formula does
so; only transitivity 4+ atomicity is modally definable. But the following pure sentence defines
atomicity: ¢JyOy. We have already seen that transitivity is definable by a pure sentence.

171n suggesting this we are merely echoing Arthur Prior, for this idea was an important —
perhaps the dominant — theme in his later work; the key reference here is the posthumous
Prior and Fine (1977), which consists of draft chapters of a book, together with papers, and an
invaluable appendix by Kit Fine which attempts to systematically reconstruct Prior’s views.
Prior attached immense philosophical weight to this project; in his view it showed that that
possible worlds were not needed to analyze modal notions; and indeed, that times were not
needed to analyze temporal expressions. Only (suitably sorted) propositions (and properties)
mattered.

Prior’s philosophical position is interesting: it is strongly information oriented, has natural
affinities with frameworks such as Property Theory and Situation Semantics, and deserves
further exploration. Nonetheless, here we prefer to adopt a neutral perspective on the philo-
sophical significance of hybrid languages: for present purposes, they are simply an elegant tool
for talking about structures locally, and adding further sorts is simply an interesting technical
idea.

18Various constraints would be imposed to make this interpretation plausible. Typically we
would demand that (S, <) be a strict partial order, that (S,C) be partial order, and that <
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Or perhaps we’d prefer working with frames bearing the 14 relations demanded
in Allen (1984). Either way, the fundamental point is that we are enriching
our notion of what a state is by locating it in a richer web of relations. This
mode of enrichment is obviously compatible with the methods discussed earlier;
for example, it is straightforward to work with Allen-style intervals using | and
@.' Such an approach naturally leads to multi-sorted systems. For example, if
we wanted to work with atomic interval structures, it would be natural to have
a sort which labeled arbitrary intervals, and a subsort which labeled atomic
intervals (see Blackburn (1992)).

But there is another way of developing multi-sorted hybrid languages. This
hinges on the following observation: some entities can be thought of as struc-
tured sets of states. For example, an interval is the set of all states between two
end points.?2® Why not add atomic symbols that range over such sets? After all,
we already have propositional symbols ranging over arbitrary subsets, and state-
symbols ranging over singleton subsets — so why not symbols that range over
convex sets too? This is arguably a useful idea (see Blackburn (1990,1992,1993))
and it is certainly simple to handle logically.?! But to illustrate the structured-
set approach to sorting in more detail we want to discuss not intervals but
paths, because this example not only provides a nice illustration of the poten-
tial of sorting for temporal logic, it also makes clear that even simple-looking
extensions can give rise to non-trivial problems.

Many applications of temporal logic demand the use of paths, or courses
of history. For example, for philosophical purposes it is natural to model the
idea that the future is unknown by using tree-like models of time that branch
into alternative futures, and in computer science it is standard to reason about
unravelings of non-deterministic transition systems. On the face of it, these
applications only seem to demand that we work with new classes of tree-like
models, and clearly we can do that with the tools we already have. But this is
only half the story. As well as new models, we are faced with new expressive
demands, and these will lead us to new territory.

For example, in natural language semantics we would like to have a future
tense operator F such that F¢ is true precisely when ¢ holds somewhere in every
possible future (that is, when ¢ holds at least once on every path through the
current state). However we can’t define F in any of our hybrid languages; even
abandoning locality and working with ML+V+A doesn’t help. As a second
example consider fairness. In computer science applications we may want to
insist that a process is activated infinitely often along every possible computation

and C interacted appropriately (for example, we’d want Vstt'((s CtAt < t') = —s C t')); see
van Benthem (1983) for further discussion.

19The ‘straightforward’ is justified: many of the frame properties required are expressible
by pure sentences or schemas, hence completeness will often be automatic. For example, |z[C
|Gly@,—Fy regulates the interaction of < and C (here [C] means “at all super-intervals”).
As a second example, we have already noted that atomicity (which we may want for C) is
enforceable using a pure sentence (see Footnote 15). It would be interesting to compare an |-
and @-based treatment with Yde Venema’s two-dimensional analysis (see Venema (1990)).

200f course, one might want to distinguish between various types of intervals, such as open
and closed, but we won’t do so here.

21 Readers familiar with the representation theorems for abstract interval structures in terms
of point-based structures proved in van Benthem (1983) will (rightly) suspect that in many
cases this structured-set approach to hybrid interval logic will turn out to be equivalent to
the additional-relations approach. Incidentally, this ‘duality’ between the additional-relations
and the structured-set approaches may be relevant for paths too.
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path; but our state symbols won’t help us define a fairness operator. Thus we
have a genuine expressivity shortcoming on our hands. Let’s try to fix it by
hybridization.??

The basic strategy for dealing with paths in hybrid languages should be
clear. First we add a third sort, the sort of path symbols (presumably we want
to keep the state symbols, though this of course is optional). As with state
symbols, path symbols should be divided into two subcategories, namely path
variables (which will be open to binding) and path nominals (which will not).
So we choose PVAR to be a countably infinite set of path variables (whose
elements we typically write as p and p’) and PNOM to be a countably infinite
set of path nominals (whose elements we typically write as 7 and 7'), and of
course we choose these sets to be disjoint from each other and from PROP,
SVAR, and NOM. We define the set of atoms of our enriched language to be
PROP USVAR UNOM UPVAR UPNOM.

The second step is to add a binder. We shall add a binder called ™, thus
forming the language ML+ +@+{™. As the notation is meant to suggest, {|™ is
a universal quantifier over paths through the current state (that is, ‘local paths’).
The wifs of this language are defined in the expected way, as are such concepts
as free and bound path variables, so let’s proceed straight to the semantics.

We shall work with strictly partially ordered trees (S, R), and adopt Bull’s
definition of a path: a path 7 in (S, R) is a linearly ordered subset of S that
is maximal among the linearly ordered subsets of S. That is, paths are convex
subsets of S that contain the root node and are closed under R-successorship.
We denote the set of paths in (S, R) by II(S, R). If # € II(S, R) and s € w then
we say that m passes through s. Obviously II(S, R) is never empty, and at least
one path passes through every state.

Definition 15 (Standard models and assignments) Let ML+ |+ @+ ™
be a hybrid language built over PROP, SVAR, NOM, PVAR and PNOM. A
model M for this language is a triple (S,R,V) such that (S,R) is a strictly
partially ordered tree, and V : PROP UNOM U PNOM — Pow(S). A model
is called standard iff for all nominals i € NOM, V(i) is a singleton subset of S,
and for all path nominals T € PNOM, V(1) € II(S, R).

An assignment on M is a mapping g : SVAR UPVAR — Pow(S). An
assignment is called standard iff for all state variables © € SVAR, g(z) is a
singleton subset of S, and for all path variables p € PNOM, V(p) € II(S, R).

Now to interpret the language. The atomic clause is automatically taken
care of by our [V, g] notation, and the clauses for the Booleans and modalities
are unchanged. So it only remains to interpret {}":

M,g,s Elyp it M,g' s, forall ¢ £ g such that s € ¢'(p).

That is, |}" is a universal quantifier over local paths; the dual binder |7¢ is an
existential quantifier over local paths.

22We are not the first to do this. Motivated by Prior’s arguments, Robert Bull added a
universal quantifier over paths to TL+V+A in his classic 1970 paper; thus, far from being
the new kid on the block, hybridization is actually one of the oldest approaches to path-
based reasoning we know of. A recent paper by Goranko on hybrid languages strong enough
to embed CTL* (see Goranko (1996b)) is worth noting; Goranko’s language doesn’t contain
path binders, but it does contain path nominals.
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It is easy to see that sentences of this language are preserved under generated
submodels. Moreover, the expressivity has clearly been boosted. For example,
we can now define the F operator:

Fo = ;00N yp).

It is also straightforward to define a fairness operator:

Fair(p) == 4 (C(pAp) ADO((p A ) = CpAy)).

At any state s in a standard model, Fair(p) is true at a state s iff ¢ is true
infinitely often along every path through s.

Moreover, familiar-looking principles of hybrid reasoning extend to our new
binder. For example, the rule of path variable localization (if ¢ is provable then
so is |}, ¢, for any path variable p) preserves validity, and all instances of the
following three schemas are valid:

Q1 Uple =) = (v = Up¥)
Q2 Ipe = (p = »[p/p])
Q3 Uplp =) = Upy

Local-Path Ipp

(Here p and p are used as metavariables across path variables and path symbols

respectively. In @1, p must not be free in ¢; and in @2, p must be substitutable

for pin ¢.) In short, the basic quantificational powers of |} described by Q1-Q3

are analogous to those of |, and Local-Path is analogous to the validity Jzz.
Moreover, we have a Barcan analog:?3

Barcan, UpOp = Ol 5

The contraposed and dualised form <>¢Z<p — LzOLp is perhaps easier to grasp.
Essentially this says: “if we can select a suitable path at a successor state,
then we can select a suitable path at the current state”; it is a path existence
principle.

Our language also supports schemas that reflect path geometry (we use p
as a metavariable over path symbols and s and t as metavariable over state
nominals):

Pl Op—p
P2 pAOT - Op

P3 O(sAP)AC(EADP) > O(sAOE) VO(sAL) VOt A Os)

23The significance of this may not be apparent to readers of this short version. Roughly
speaking, in hybrid languages the validity of Barcan analogs is often a sign that the logic will
be well-behaved. For further discussion, see Blackburn and Tzakova (1998a), the extended
version of the present paper.
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Clearly P1 reflects convexity, P2 reflects R-maximality under successorship, and
P3 reflects linearity; note the way the state and path symbols cooperate here.
Summing up, in many ways ML + | + @ + ||” is a pleasant language.

That’s the good part — let’s turn to the bad. It seems that proving com-
pleteness results for |}™ will require new ideas; the labeled model method used
in the previous section does not automatically give us completeness results for
the new binder, or at least, not with respect to the standard semantics defined
above. What’s the problem? It’s simple, but deadly: although the labeled
model construction will guarantee that all states are labeled, we don’t have any
guarantee that all paths will be labeled by some path symbol.2*

This is not easy to fix. What are we to do? Robert Bull makes an interesting
remark. He comments (see his Footnote 5 on page 292) that although not every
path is the interpretation of some path symbol, his model:

... does provide enough paths V(u) to give a reasonable interpreta-
tion.

With this remark, Bull hints at a line of work that has subsequently become
common in path-based temporal logic. All reasonably expressive path-based
logics we know of (for example, Ockhamist logic or CTL*) face similar dif-
ficulties regarding completeness. A standard response to the problem is to
prove completeness with respect to some suitably liberalized notion of model,
for example models containing ‘bundles’ of paths (see Zanardo (1996)); such ap-
proaches have affinities with the use of generalized models in second-order logic,
or general frames in modal logic. We believe it would be interesting to explore
this landscape using hybrid path languages, and suspect that the labeled model
construction may be useful in such investigations.

But what of the standard semantics defined above? This may call for a
more brutal line of approach: the use of infinitary rules. Intuitively what is
needed is an infinitary extension of the Local-Path schema. From Local-Path
we can deduce that there is a path through the current state; what we also
need is a principle that ensures that given a sequence of states (one of which
is the current state) that satisfies the convexity, R-maximality, and linearity
principles, then there is a path nominal that is true at all the states in this
sequence. Infinitary rules are unpalatable — but a clean infinitary approach
may provide a framework which can (at least, in some cases of interest) be
suitably finitized; however we must admit that at present we don’t know how
realistic the prospects of success here are.

And that’s a taste of the joys and sorrows of hybrid path languages. We have
only scratched the surface of a vast topic, but we hope we have said enough to
indicate why we find this terrain worthy of further exploration. Moreover, we
hope we have given the reader a taste of the variety of options hybridization
offers to the study of rich temporal ontologies.

24ncidentally, we’re not claiming that adding the axioms and rules mentioned above to
H[|,@](K) yields a system complete with respect to the standard semantics — it’s obvious
that it doesn’t. Rather, the point is that even after we plug up all the obvious gaps with
suitable axioms, we’ll still face a tough problem. For further discussion, see the extended
version.
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6 Concluding remarks

We have argued that the hybridization technique introduced by Arthur Prior
and developed by Robert Bull and the Sofia School is a natural tool for temporal
logic. Our argument had both a technical and conceptual side.

Our technical results showed that hybridization is compatible with a tempo-
rally natural locality assumption, namely that temporal operators and binders
should only be able to work with temporally accessible states. We showed that
ML+]+@, a local language in which Until was definable, had an elegant min-
imal logic and that many temporally interesting extended completeness results
could be obtained automatically. In our view, this language meets the three
criteria listed at the end of Section 2; in particular, we feel it exhibits a genuine
synergy of modal and classical ideas.

It’s only fair to warn the reader that we pay a price for this synergy:
H[},Q](K) lacks the finite model and is undecidable, and the same is true
of the logic of strict partial orders.2> Of course, the logics of many interesting
frame classes are decidable (for example, the logics of various classes of trees
can be proved decidable using Rabin-style arguments; see Blackburn and Selig-
man (1998)), nonetheless the fact remains that binding variables to states tilts
the underlying computational properties firmly in the classical direction.

But we believe this is a price worth paying. Labeled deductive systems
(Fitting (1983), Gabbay (1992)) have proved an important technique for au-
tomating modal inference — but labels are usually regarded as a convenient (if
somewhat ad-hoc) metalinguistic tool. Labels are far more important than that;
indeed, if Prior is right, they are fundamental to the entire modal enterprise.
Hybrid languages internalize the notion of label in the object language, and
this internalization can be motivated on grounds that are completely indepen-
dent of the desire for deductive felicity. Nonetheless, as the use of the Paste-1
rule already indicates (see Footnote 11) deductive felicity is there for the tak-
ing: Seligman (1997) discusses natural deduction and sequent-based methods
for global hybrid languages containing both V and @, and Blackburn and Selig-
man (1998a) shows that these methods can be adapted even to weak (decidable)
languages that contain no binders at all. In our view the deductive and concep-
tual clarity offered by internalized labels is more than ample compensation for
the undecidability results just noted.

Our main conceptual argument in favor of hybridization is essentially a sec-
ular version of Prior’s vision of abstract entities as propositions. That is, we feel
that regardless of whether there is an interesting metaphysical sense in which
arbitrary information types should be thought of propositionally, freely com-
bining different sorts of information in one modal algebra is a natural way of
modeling temporal reasoning over rich ontologies.
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