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Microrheology of polyethylene oxide using diffusing wave spectroscopy
and single scattering

Abstract
Experiments investigating the local viscoelastic properties of a simple uncross-linked flexible polymer are
performed on polyethylene oxide solutions in the semidilute regime using polystyrene beads of varying sizes
and surface chemistry as probes. We measure the thermal motions of the beads to obtain the elastic and
viscous moduli of our sample. Two different dynamic light scattering techniques, diffusing wave spectroscopy
and quasielastic light scattering (QELS), are used to determine the dynamics of the probe particles. Diffusing
wave spectroscopy probes the short time dynamics of the scatterers while QELS or single scattering measures
the dynamics at larger times. This results in a larger frequency overlap of the data obtained from the
microrheological techniques with the data obtained from the conventional bulk measurements. The moduli
are estimated using a modified algebraic form of the generalized Stokes-Einstein equation. Comparison of
microrheology with bulk measurements shows excellent similarity confirming the applicability of this method
for simple, uncross-linked polymeric systems.
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Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering
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Experiments investigating the local viscoelastic properties of a simple uncross-linked flexible polymer are
performed on polyethylene oxide solutions in the semidilute regime using polystyrene beads of varying sizes
and surface chemistry as probes. We measure the thermal motions of the beads to obtain the elastic and viscous
moduli of our sample. Two different dynamic light scattering techniques, diffusing wave spectroscopy and
quasielastic light scattering~QELS!, are used to determine the dynamics of the probe particles. Diffusing wave
spectroscopy probes the short time dynamics of the scatterers while QELS or single scattering measures the
dynamics at larger times. This results in a larger frequency overlap of the data obtained from the microrheo-
logical techniques with the data obtained from the conventional bulk measurements. The moduli are estimated
using a modified algebraic form of the generalized Stokes-Einstein equation. Comparison of microrheology
with bulk measurements shows excellent similarity confirming the applicability of this method for simple,
uncross-linked polymeric systems.

DOI: 10.1103/PhysRevE.65.051505 PACS number~s!: 83.85.Ei, 83.85.Cg, 83.10.Pp

I. INTRODUCTION

Soft materials such as gels and polymer solutions can
have complex structures with characteristic length and time
scales. The response of any material to shear strain is an
important way of characterizing and understanding its struc-
ture. On application of a shear strain, solids store energy and
are elastic, while fluids dissipate energy and are viscous.
Some materials exhibit both these properties and arevis-
coelasticin nature. These complex fluids can be character-
ized by the stress relaxation modulusGr(t), which describes
the magnitudes and time scales of the relaxation of the stress
in the bulk material to a fixed strain after a step shear@1#.
The Fourier transform of the stress relaxation modulus is the
frequency-dependent complex shear modulusG* (v). The
real part of the complex modulusG8(v) measures the in
phase response of the medium to an oscillatory strain and
thus gives a measure of the elasticity of the material. The out
of phase response is given by the imaginary partG9(v),
which is related to the viscosity of the material. The elastic
and loss moduli are dependent on each other and are related
by the Kramers-Kronig relations@2#. The measurement of
bulk viscoelastic properties can be accomplished by means
of a mechanical rheometer where, for example, the stress
response of the material to an applied oscillatory strain pro-
vides a measure of the storage and loss moduli. Over the past
few years, other complementary techniques have been devel-
oped, which have permitted the measurement of the local
viscoelastic behavior of soft materials@3–8#. Several of
these entail the use of localized probes of the viscoelasticity
and have come to be calledmicrorheology. Microrheological
techniques typically require a few hundred microliters of
sample as compared to several milliliters of sample as typi-
cally required for conventional bulk measurements; hence
they are extremely useful for the measurement of the vis-
coelastic properties of costly or rare biological materials or
industrial polymers. Microrheological techniques are also in-

trinsically noncontact, equilibrium methods for measuring
the rheological properties of complex fluids. However, de-
spite the great promise of microrheological techniques, the
method has still not been extensively tested in diverse sys-
tems to ascertain that it measures the same response of the
system as does the more traditional, mechanical rheological
measurements.

The goal of this paper is to carefully test the validity of
the microrheological measurements of polymer solutions,
where a low concentration of probe particles are added to the
solution and the thermal motion of these particles is used to
determine the viscoelastic response of the host polymer so-
lution. We focus here exclusively on uncross-linked polymer
solutions, as examples of the simplest systems that can pro-
vide a critical test of microrheology while still exhibiting
interesting behavior.

Two different dynamic light scattering~DLS! techniques,
traditional quasielastic light scattering~QELS! @9# and dif-
fusing wave spectroscopy~DWS! @10–12#, are used to mea-
sure the dynamics of the tracer particles suspended in the
polymer solution. Quasielastic light scattering measure-
ments, which are made in the single scattering limit, deter-
mine the dynamics of the particle at larger length scales and
longer time scales than DWS, where measurements are made
in samples where multiple scattering dominates. Combining
the two techniques allows us to probe frequencies ranging
from 1021 to 105 rad/s. The extended frequency range is a
key advantage of microrheology; traditional measurements
using a rheometer can be extended over a limited range,
determined primarily by the inertia of the measuring tool,
and extending the frequency range is only possible in a lim-
ited number of cases though the use of time-temperature su-
perposition@1,13#. We use two different molecular weights
of polyethylene oxide~PEO! at different concentrations
above the overlap concentrationc* to obtain samples with
different viscoelastic properties. Polystyrene beads of differ-
ent sizes and chemistry are used as our probe particles to test
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the effect of particle size and surface properties on the mea-
surement. We introduce a modified form of the method of
analysis first proposed by Mason@14# to obtain the elastic
and viscous moduli from the light scattering data. In our
method, a different algebraic form of the generalized Stokes-
Einstein equation is used to calculate the frequency depen-
dent moduli. This eliminates the need for numerical trans-
forms of the experimental data and does not require an
arbitrary functional form to fit the data and calculate the
moduli @4,15#. Our modifications include a more accurate
algebraic representation of the generalized Stokes-Einstein
equation. To check the microrheology measurements, we
compare the results from our light scattering measurements
with those obtained using a strain-controlled rheometer.

II. THEORY AND METHOD OF ANALYSIS

Dynamic light scattering experiments can measure the
time evolution of the mean square displacement^Dr 2(t)& of
the probe particles suspended in a polymer solution. The
mean square displacement~MSD! of the beads reflects the
response of the material to the stress applied to it by the
thermal motion of the beads. We can understand the relation-
ship between the MSD and the response of the material quite
clearly for two limiting cases: a purely viscous fluid and a
completely elastic medium. If the material is purely viscous,
the probe particles will diffuse through it and the MSD will
increase linearly with timêDr 2(t)&56Dt. By determining
the diffusion coefficientD, one can calculate the viscosity of
the materialh5kBT/6pDa wherea is the radius of beads.
By contrast, the motion of the probe particles in an elastic
medium will be constrained and the MSD will reach an av-
erage plateau valuêDr p

2& that is set by the elastic modulus
of the material. By equating the thermal energykBT of each
bead with its elastic energy12 k^Dr p

2& wherek is the effective
spring constant that characterizes the elasticity of the sur-
rounding medium, an expression for the spring constantk
;kBT/^Dr p

2& can be obtained. The elastic modulusG8(v) is
related to the spring constant by a factor of length, which is
the bead radius,a. Using such an energy balance argument,
we can obtain a relation between the elastic modulus and the
MSD, G8(v);kBT/^Dr p

2&a. This simplified picture high-
lights the essential physics behind this technique.

In general, the full frequency dependence of the vis-
coelastic moduli is obtained from the MSD by using the
generalized Stokes-Einstein equation@4,15#,

G̃~s!5
kBT

paŝ D r̃ 2~s!&
, ~1!

where^D r̃ 2(s)& is the Laplace transform of the mean square
displacement̂Dr 2(t)& andG̃(s) is the viscoelastic spectrum
as a function of the Laplace frequencys. Using Eq.~1!, we
can determine the macroscopic viscoelasticity of the material
from the local response assuming that the bulk stress relax-
ation has the same behavior as the local relaxations that af-
fect the bead dynamics.

In earlier implementations of this data analysis@4,15#, the
MSD in real space is transformed into Laplace space to ob-
tain G̃(s) using Eq.~1!. An arbitrary functional form is fit to
G̃(s) and the modulus is expressed as a complex function in
Fourier space by substitutings→ iv in the functional form
used for fitting the experimental data. The modulus in
Laplace frequency space,G̃(s), is transformed to Fourier
frequency space to allow comparison with bulk mechanical
measurements where the elastic and the viscous moduli are
expressed in the Fourier frequency domain. It is important to
note, however, that no additional information about the vis-
coelasticity of the material is gained by using insteadG* (v)
instead ofG̃(s) because both representGr(t) after either a
Fourier or a Laplace transformation. The method is essen-
tially an analytic continuation of the real data into the com-
plex plane. Limitations of this scheme include truncation er-
rors introduced by numerical transformation of data over a
limited range, and the requirement of an appropriate func-
tional form to fit toG̃(s).

Recently, Masonet al. @8,14# developed an alternative
method of obtaining the viscoelastic moduli from the dynam-
ics of the probe particles. In this method, the complex shear
modulus is estimatedalgebraically by using a local power
law to describe the mean square displacement of the beads in
the complex fluid. This method of analysis eschews the use
of any numerical transforms or arbitrary functional forms.
The power law behavior is determined from the logarithmic
time derivative of the MSD. For a particle in a purely vis-
cous medium undergoing diffusive motion, the slope of the
logarithmic time derivative of the MSD will be one, whereas
for a probe in an elastic environment, where its motion is
completely arrested, the slope of the MSD will be zero.
Therefore, for a complex viscoelastic fluid, the logarithmic
time derivative of the MSD will lie between zero and one. In
this method, the Fourier space representation of the general-
ized Stokes-Einstein equation given in Eq.~1! is used@14#,

G* ~v!5
kBT

paivI$^Dr 2~t!&%
~2!

where I$^Dr 2(t)&% is the Fourier transform of the MSD.
Assuming a local power law form for̂Dr 2(t)& leads to the
elasticG8(v) and the lossG9(v) moduli, which are given
by @14#

G8~v!5G~v!cos@pa~v!/2#, ~3!

G9~v!5G~v!sin@pa~v!/2#,

where

G~v!5
kBT

pa^Dr 2~1/v!&G@11a~v!#
. ~4!

In Eq. ~4!, ^Dr 2(1/v)& is the magnitude of̂Dr 2(t)& evalu-
ated at t51/v. The local power lawa(v) is given by
u@] ln^Dr2(t)&/] ln t#ut51/v and G denotes the gamma func-
tion. The gamma function is a result of the Fourier transform
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of the power law behavior of the mean square displacement.
These functions are chosen to satisfy the Kramers-Kronig
relations.

While this scheme is convenient to use, Eqs.~3! and ~4!
fail to give an accurate estimate for the moduli when the
MSD is highly curved and its slope is changing rapidly. This
region is one of particular interest, since it occurs where the
value of the two moduli are equal, reflecting an important
relaxation time of the sample. In addition, the algebraic es-
timate of the smaller of the two moduli can be in error by a
factor of almost two at the extremes of the frequency range.
To redress these shortcomings we have empirically modified
Eqs.~3! and ~4! by including second-order logarithmic time
derivatives of the MSD@16#. This modification helps account
for the curvature, gives a better estimate of the moduli in the
curved regions of the data, while also improving the results
for the smaller modulus. This scheme works best with at
least 7 to 10 data points for each decade; however, it is
sensitive to long wavelength ripples in the data. The modi-
fied equations that are used for extracting the moduli are

G8~v!5G~v!$1/@11b8~v!#%

3cosFpa8~v!

2
2b8~v!a8~v!S p

2
21D G , ~5!

G9~v!5G~v!$1/@11b8~v!#%

3sinFpa8~v!

2
2b8~v!@12a8~v!#S p

2
21D G ,

where

G~v!5
kBT

pa^Dr 2~1/v!&G@11a~v!#@11b~v!/2#
. ~6!

The second-order logarithmic time derivative of the MSD
data is denoted byb(v), while a8(v) andb8(v) denote the
local first- and second- order logarithmic derivatives of
G(v), respectively. A second-order polynomial fit using a
sliding Gaussian window is used to numerically calculate the
local first- and second-order logarithmic derivatives and to
smoothen the data. We use Eq.~6! to obtainG(v) from the
MSD data using the above procedure. We then use the re-
maining two equations given in Eq.~5! and repeat the local
power law fitting onG(v) to obtain the elastic and loss
moduli. The expressions in Eqs.~5! and~6! are based on the
approximate algebraic expression for the storage and loss
moduli given in Eqs.~3! and~4! and have been derived em-
pirically.

In order to check the accuracy of the expressions in Eqs.
~5! and ~6!, we test them with simulated data of the form

G* ~v!5~ iv!a1~ iv!b, ~7!

with each of the exponents varying from 0 to 1 in steps of
0.05. The frequency range chosen for our test ranged from
1025 rad/s to 105 rad/s. This particular form of the modulus
is chosen because it broadly captures the nature of the ex-
perimental data. Slopes of one and zero correspond to vis-

cous fluids and elastic materials, respectively. The sum of
two exponents enables us to simulate the crossover or the
knee region between the two extreme limits. Materials that
are neither strongly elastic nor predominantly viscous will lie
in this knee region of the complex modulus. We compare the
approximate results obtained from Eq.~5! with the exact
values obtained from Eq.~7! for both the real and the imagi-
nary parts.

Figure 1 is a three-dimensional plot of the maximum error
over the entire frequency range in the estimation of both the
elastic@Fig. 1~a!# and the viscous@Fig. 1~b!# moduli for each
set of exponents. Thex and y axes in the graph denote the
exponents and of the simulated function given in Eq.~7!. The
error at each frequency is calculated by taking the difference
between the approximate and the exact values of the moduli,
and is normalized by the larger of the two moduli at that
frequency. The maximum error in each modulus is less than
4% over the whole frequency range for the family of curves
represented by Eq.~7!. The maximum curvature for the set of
curves obtained from the simulated function is 0.19, indicat-
ing that our method of analysis will result in reliable values
of the moduli for any curve with a smaller radius of curva-
ture. When one component of the modulus is much weaker
than the dominant component, the relative errors can be
larger than the error quoted above; however, these data are
generally less reliable and are typically neglected. This
method is sensitive to rapid fluctuations of the MSD data
which occur at the two frequency extremes and which affect

FIG. 1. Surface plot of the maximum error over the entire fre-
quency range in the estimation of the~a! elastic@G8(v)# and ~b!
viscous@G9(v)# moduli obtained from data simulated using Eq.
~7!. Thex andy axes denote the exponents used in Eq.~7! and the
z axis denotes the difference between the values calculated using
Eqs. ~5! and ~7!. The accuracy of the estimated elastic and loss
moduli lies within 4% of the exact value over the entire parameter
space. The error is normalized by the larger of the two moduli.
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the last few measurements at either end of the frequency
range. Since our analysis uses the local power law fitting
twice to obtain the moduli in frequency space from the MSD
data, the error in the estimation of the moduli is less than 6%
of the large modulus. For comparison, we also calculated the
moduli using Eqs.~3! and ~4! for data simulated using Eq.
~7!. In this case, the maximum error for each modulus over
the entire simulated space was approximately 40% of the
bigger modulus. This highlights the improved estimation of
these modified algebraic forms.

We employ two different DLS techniques, QELS and
DWS, to measure the bead dynamics and to obtain the evo-
lution of the MSD with time. Diffusing wave spectroscopy
extends the application of QELS to samples dominated by
multiple scattering, using adiffusive approximation to de-
scribe the propagation of light through the sample. Similar to
QELS, the decay of the autocorrelation function of the mul-
tiply scattered light, which is measured with DWS results
from the change in the phase of the scattered light by;p.
However, here the change in phase of the scattered light is
caused by a change in the total path length of the light
through the sample by one wavelength. Because the light is
scattered many times in each path, any individual scatterer
need move only a small fraction of the total wavelength of
the incident light; nevertheless, the aggregate change of the
total path length is one wavelength. As a result, this tech-
nique is sensitive to motion at shorter length scales and
hence faster time scales than conventional light scattering. In
DWS, all scattering-vector information is lost; as a result,
only two experimental geometries, transmission and back-
scattering are used@11#. The field autocorrelation function at
a delay timet is @11#

g1~t!}E
0

`

P~s!expF2ko
2^Dr 2~t!&

s

3l *
Gds, ~8!

where P(s) is the probability of light traveling a path of
lengths, and is determined by solving the diffusion equation
for the propagation of light for the relevant geometry and
with the correct boundary conditions,ko52p/l is the wave
vector of the incident light andl is the wavelength of light
in the medium. The transport mean free path of the light,l * ,
is a characteristic of the sample itself and reflects the amount
of scattering; it is the length light must travel before its di-
rection is randomized. The transport mean free paths for the
samples used in these experiments are roughly four to ten
times smaller than the cell thickness depending on the bead
size used, ensuring strong multiple scattering. The expres-
sion for the field autocorrelation function given in Eq.~8!
represents an incoherent sum over all light paths weighted by
the probability of the light having a path of that length. A
path of lengths corresponds to a random walk ofs/ l * steps
and each step contributes a decay of exp@2ko

2^Dr2(t)&/3# to
the decay of the correlation function of that path.

Quasielastic light scattering measurements are performed
on samples with weaker scattering ensuring only a single
scattering event; they extend the time scales probed, enabling
us to investigate a wider range of frequencies. In QELS, the

individual scatterers must move a length scale set by the
inverse of the scattering vectorq in order to cause a change
in the path length of the scattered light by one wavelength.
Since the scatterers must move larger distances, the charac-
teristic decay times are larger than those obtained in DWS.
In this case, the field autocorrelation function is given by@9#

g1~t!5exp@2q2^Dr 2~t!&/6#, ~9!

whereq5(4np/l)sin(u/2), u is the scattering angle, andn
is the refractive index of the medium.

For both light scattering techniques, the time averaged
intensity correlation functiong2(t) is measured and the time
averaged field correlation functiong1(t) is obtained by us-
ing the Siegert relation@9#. The mean square displacement
^Dr 2(t)& of the probe particles for the single scattering ex-
periments is calculated from the field correlation functions
using Eq. ~9! above. For DWS experiments, the MSD is
calculated by numerically inverting the field correlation
functions and using the measured transport mean free path
l * .

III. EXPERIMENTAL DETAILS

We use PEO of two molecular weights, 200 kDa and 900
kDa, each at three different concentrations that range from
15 to 45 times greater than the overlap concentration,c* ; at
these concentrations the solution begins to exhibit significant
viscoelasticity due to the entanglement of the polymer coils.
The overlap concentration marks the onset of the semidilute
regime of a polymer solution and is defined as the concen-
tration at which the neighboring polymer coils start to over-
lap with each other. It is approximately 0.48 wt % and 0.16
wt % for the 200 and 900 kDa PEO samples, respectively
@17,18#. The stock solutions of the two species are prepared
by mixing the PEO powder in deionized water that has been
filtered using 0.2-mm-pore-size aqueous filters. The solution
is kept in an incubator for 10 days at;40°C to allow the
polymer to dissolve completely. The stock solution is shaken
very gently to help homogenize the solution. A drop of chlo-
roform is added to prevent bacterial growth in the polymer
and sodium chloride is added to ensure consistent salt con-
centration for all our samples. The salt concentration for all
samples reported here is 25 mM.

Polystyrene ~PS! spheres with diameters of
0.46 mm, 0.64 mm, 0.65 mm, 0.97 mm, and 2.0mm are
used as probe particles. The 0.65mm PS beads are sulfate
modified while the other sizes of beads are carboxylate-
modified latex ~CML!. All of the beads are significantly
larger than the mesh size, which is a few nanometers for the
polymer at these concentrations and is calculated using the
following equation@18#:

j5Rg~c* /c!0.75, ~10!

where,Rg is the radius of gyration of the polymer,c* andc
denote the overlap concentration for the polymer and the
concentration of the sample, respectively, whilej denotes
the mesh size of the semidilute polymer solution. The mo-
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lecular weight dependence on the radius of gyration has been
experimentally found to be@17#

Rg50.215Mw
0.58360.031 Å, ~11!

where, Mw denotes the molecular weight of the polymer.
Since the individual polymer coils are contiguous to each
other atc* , the radius of gyration can be related to the over-
lap concentration using the following equation@18#

c* 5
Mw

4
3 NApRg

3
, ~12!

whereNA is the Avogadro’s number.
Previous experiments@19# have shown that there is an

adsorbed layer of polymer on the bead surfaces, which de-
pends on the bead size. We use different bead sizes to check
whether this adsorbed layer of polymer affects the mi-
crorheological measurements.

Diffusing wave spectroscopy experiments are done in the
transmission geometry using an Ar1 laser operating in the
TEM00 mode with laser emission atl5514.5 nm~in vac-
uo!. A convex lens is used to focus the beam to a point on the
sample cell. Glass cells~Vitrocom, NJ! with 2.00 mm inter-
nal thickness are used for our measurements. Since multiply
scattered light is depolarized, the intensity of the scattered
light with polarizations both parallel and perpendicular to
that of the incident beam will have equal intensities. Since
each of these intensities is independent, the signal to noise
ratio of the correlation function is reduced, causing the inter-
cept to fall. To circumvent this, a polarization analyzer is
placed before the detection system; this restricts the signal to
a single polarization, thereby increasing the signal to noise
ratio. Scattered light is collected by an optical fiber, and then
split by a fiber optic beam splitter and directed to two pho-
tomultiplier tubes ~PMT’s!. This pseudo-cross-correlation
mode is used to help circumvent the dead time of the detec-
tor electronics and to reduce after-pulsing effects, making it
possible to measure correlations at very short delay times
@20#. The signals from the PMTs are directed through a pair
of amplifier discriminators, which are connected to a cor-
relator.

The concentrations of the polymer solutions used for our
DWS measurements are 2.2, 4, and 6 wt % of the 900 kDa
and 6.7, 12.2, and 21.6 wt % of the 200 kDa PEO. These are
prepared by diluting more concentrated stock solutions for
both molecular weights of the polymer. Polystyrene beads
are added so that the bead concentrations in all the samples
used in the DWS experiments are at 1 wt %. The samples are
thoroughly mixed using a rotator for a period ranging from a
few days to about two weeks. This high bead concentration
is used to ensure strong multiple scattering for the DWS
measurements. The polymer stock and the samples are
wrapped in an aluminum foil to avoid photodegradation of
the polymer during storage, which ranges from a few days to
several weeks. All samples are checked under a microscope
for bead aggregation to avoid erroneous DWS results. Inten-
sity correlation functions are collected for 1 h at room tem-

perature. Several of the measurements were repeated to
check the reproducibility of the data.

The transport mean free pathsl * of the samples are de-
termined by a separate measurement of the transmitted inten-
sity of light @11#. The transmitted intensityT through a non-
absorbing slab of thicknessL is proportional to (l * /L)(1
14l * /3L) @11#, and is obtained by assuming diffusive
propagation of light through the sample. This expression for
the transmitted light intensity assumes absorbing boundary
conditions, with no diffuse flux into the sample from the
outside at the boundaries, zero reflectivity at the sample
walls, and the absence of any ballistic photons transmitted
through the sample. We further assume that the incident flux
appears as a diffuse source at a distancel * inside the sample.
Rigorous derivations of the transmitted intensity of the dif-
fused light have been done@21# where the above assump-
tions have been investigated in detail. In particular, the ef-
fects of internal reflections at the sample cell walls,
refraction at the interfaces, anisotropic scattering, and the
extrapolation length ratio, have all been investigated, and the
consequences for the intensity of the transmitted light have
been probed experimentally and compared with the theoret-
ical simulations. However, since all our samples are very
strongly multiply scattering, the approximate form used in
this paper is sufficient, and our experimental error in the
estimate of the transport mean free path is approximately
10%. By measuring the ratio of the transmitted intensity of a
reference sample whosel * is known to the transmitted in-
tensity of the PEO/PS sample, we can find the unknown
transport mean free path for each PEO/PS sample. As a ref-
erence sample, we use solutions of polystyrene beads in wa-
ter at the same concentration by weight as in the PEO
samples. We use the same geometry to measure the transmit-
ted intensity for both the reference and the unknown sample.
To determine the value ofl * for the reference sample, we
measure the correlation function, acquiring data for 1 h. The
functional form of the correlation function for a freely dif-
fusing particle@11# is fit to the data to obtainl * , the only
parameter in the fit, yielding the reference value. The trans-
mitted intensityT for each sample is averaged for 15 min.
The time dependent mean square displacements of the beads
in the polymer network are then extracted from the correla-
tion functions using these measured transport mean free
paths@11#.

The single scattering or QELS experiments are performed
using a goniometer with a fiber optic detection system and an
Ar1 laser emitting light at 514.5 nm~in vacuo! operating in
the TEM00 mode. Glass tubes with a diameter of 0.5 cm are
used as sample cells for these experiments. Quasielastic light
scattering measurements are made on 4 wt % 900 kDa PEO
sample with three different bead sizes; 0.46mm, 0.65 mm,
and 0.97 mm. The bead concentration that is used for these
experiments is;0.0025 wt %; it is adjusted to ensure that
scattering from the beads is predominant over that of the
polymer itself, while limiting multiple scattering. In order to
increase the probability that only singly scattered light is
detected, we use a polarizer before the detection optics to
block any depolarized light, which arises from remnant mul-
tiple scattering. The time averaged intensity correlation func-
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tions are collected for two to three hours at room tempera-
ture. We use Eq. ~9! to extract the mean square
displacements of the probe particles from the measured cor-
relation functions.

In order to compare the results of microrheology measure-
ments to bulk measurements of viscoelasticity, bulk rheologi-
cal measurements are performed with a strain-controlled rhe-
ometer using double-walled couette geometry for all the
polymer concentrations. These measurements are performed
in the absence of the probe particles and are done at room
temperature. The presence of polystyrene beads has no effect
on the bulk rheology measurements and is confirmed by
comparing the results for a 4 wt % 900 kDa PEOsolution
mixed with 1 wt % PS beads with a similar polymer solution
without beads. Strain sweeps@G8(v),G9(v) as functions of
the maximum applied strain# of the polymer solutions are
carried out to determine the linear region of measurement of
the moduli. All subsequent measurements of the frequency
dependence of the storage and loss moduli are done at strains
sufficiently low to ensure linear response. The measurements
are repeated several times to check their reproducibility.

IV. RESULTS

The MSD measured using DWS for different probe sizes
suspended in a 2.2 wt %, 900 kDa PEO solution is shown in
Fig. 2. Using Eq.~10!, we calculate a mesh size of 8 nm for
this sample. The horizontal dotted line in the figure depicts
the square of the mesh size. The MSD for the different bead
sizes show the same trend witht, with the bigger ones mov-
ing over smaller distances than the smaller ones. The plot
illustrates the sensitivity of the DWS measurements that can
detect bead motions as small as;1 nm, which is a few
hundredths of their own size. The smallest displacements we
can detect are less than the mesh size while the largest dis-
placements are greater by an order of magnitude. The MSDs

for the different probes in Fig. 2 scale very nicely with the
bead radius as is shown in the inset. The MSDs for the dif-
ferent probes in Fig. 2 scale with the bead size, which is an
initial indication of the independence of the probe size when
measuring the moduli of the viscoelastic materials. Figure 3
shows the MSD data for 0.65mm PS beads in the six dif-
ferent polymer solutions. The data for the 900 kDa PEO
solutions are shown by lines while the data for the 200 kDa
PEO solutions are shown by symbols. The MSD data for the
higher molecular weight polymer concentrations have a
smaller logarithmic slope at shorter lag times indicating a
more elastic response of the material. At longer lag times, the
same species of the polymer show a more viscous like be-
havior. By contrast, the MSD curves for the lower molecular
weight show a more viscous like behavior when compared to
the 900 kDa samples. A more elastic response at shorter lag
times is evident in the highest concentration of the 200 kDa
PEO used in our experiments and is shown in Fig. 3 by open
triangles. The monotonic decrease in the MSD with increas-
ing polymer concentration reflects an increase in the com-
plex modulusG* of the samples, as expected.

Since DWS is able to probe the viscoelastic behavior of
our samples at frequencies ranging from;101 rad/s to
;105 rad/s the data does not always result in a significant
overlap with bulk mechanical measurements, which gener-
ally lie between 0.01 rad/s and 100 rad/s. Thus, in order to
extend the range of our measurements to lower frequencies,
the DWS data are complemented by QELS measurements.

The usefulness of QELS can be seen in the results for the
4 wt % 900 kDa PEO sample. This particular polymer con-
centration is chosen as it exhibits an elastic behavior at
shorter lag times. Since the 2.2 wt % polymer concentration
is predominantly viscous at the time scales probed by QELS
and the 6 wt % polymer solution has a larger polymer back-
ground scattering we find this particular concentration to be
ideal to test this technique. Figure 4 is a plot of the mean
square displacements obtained from single scattering experi-
ments at scattering angles of 20° (n) and 90° (s), and the

FIG. 2. Plot of the probe dynamics measured by using DWS in
a 900 kDa PEO sample solution at a concentration of 2.2 wt % by
weight for four different polystyrene~PS! bead sizes. The results for
different bead sizes are depicted by the different line styles,
0.46 mm ~dotted line!, 0.65 mm ~dot-dashed line!, 0.97 mm
~dashed line!, and 2.0 mm ~solid line!. The horizontal dotted line
depicts the square of the mesh size for the 2.2 wt % polymer solu-
tion calculated using Eq.~10!. The scaled mean square displace-
ments are shown in the inset.

FIG. 3. Mean square displacements for different concentrations
of PEO with 0.65 mm PS beads using DWS. The results for the
900 kDa PEO solutions are shown by lines, 2.2 wt %~solid line!, 4
wt % ~dashed line!, and 6 wt %~dotted line! while the 200 kDa
PEO solutions are plotted using open symbols, 6.7 wt % (h), 12.2
wt % (s), and 21.6 wt % (n). For the 200 kDa PEO samples every
third data point is plotted for clarity.
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corresponding DWS measurement~solid line! for a 4 wt %
solution of 900 kDa PEO containing 0.97mm beads. The
plot illustrates the different time scales probed by the two
light scattering techniques and shows that the results agree
very well except in the smallt limit of the QELS data. The
MSD is very sensitive to measurement ofg1(t) at short lag
times where a small change in the value of the intercept of
the correlation function will introduce a significant change in
the MSD, leading to considerable experimental uncertainty.
The plot also shows that the QELS data taken at different
angles overlap with each other, with the data taken at the
lower scattering angle extending the measurement by almost
a decade. The slope of the MSD data at longer lag times
approaches one, indicating a predominantly diffusive behav-
ior of the probe particles, while at early lag times it is ap-
proximately equal to 0.4, indicating the presence of a signifi-
cant elastic component in the response of the polymer. The
data taken for 4 wt % 900 kDa PEO samples containing dif-
ferent bead sizes varies in the same manner as seen in the
data shown in Fig. 2.

The modified algebraic form of the generalized Stokes-
Einstein equations given in Eqs.~5! and~6! is used to calcu-
late the elastic and viscous moduli from the MSD data ob-
tained from the light scattering experiments. The noisy
regions of the MSD data are not included in the calculation
of the moduli. The MSD data below;1025 s and above
;1 s are neglected in DWS measurements. For QELS mea-
surements, only the data in the region;1021 s to ;100 s
are used for our analysis. This temporal range corresponds to
the region where the correlation function decays by 95%.
The temporal limits for the data depend on the bead size used
as probes, which determines the characteristic decay times of
the correlation functions. All of these measurements are
compared directly with the bulk rheology measurement. The
three plots in Fig. 5 show the comparison between the
moduli obtained from microrheology using DWS and QELS

to the bulk rheology measurements for the 4 wt % 900 kDa
PEO solutions for three different bead sizes. The DWS mea-
surements are shown by the solid and dot-dashed lines for
the elastic and viscous moduli, respectively. Measurements
of the viscoelasticity of the polymer solution using QELS are
shown by the dotted lines for the elastic and dashed lines for
the viscous moduli. The bulk rheology measurements are
plotted as open symbols using squares for the elastic modu-
lus and circles for the viscous modulus. It is evident from the
plots that light scattering and bulk measurements of the vis-

FIG. 4. Mean square displacements obtained from single scat-
tering ~open symbols! from a 4 wt % 900 kDa PEOsolution with
0.97 mm PS beads and compared with the corresponding DWS
measurement~solid line!. The QELS data is collected at 20° (n)
and 90° (s). Every fourth point is plotted for the QELS data for
the purpose of clarity. The DWS measurement probes much shorter
time scales than QELS. The initial slope of the data is;0.4, indi-
cating that the nature of the polymer solution is predominantly elas-
tic while at larger time scales the slope approaches one indicating a
more nearly viscous behavior.

FIG. 5. Storage and loss moduli for 4 wt % 900 kDa PEO ob-
tained from bulk rheology measurements~open symbols! and mi-
crorheological measurements~lines!. At high frequencies, the elas-
tic and viscous moduli are comparable while the loss or viscous
modulus is predominant at lower frequencies. With the help of the
two light scattering techniques, DWS (G8, solid line; G9, dot-
dashed line! and single scattering at 20° (G8, dotted line; G9,
dashed line!, we are able to obtain data over;6 decades in fre-
quency and a complete overlap with bulk measurements
(G8, h;G9, s). The three graphs@~a! 0.46 mm CML, ~b!
0.65 mm sulfate, and~c! 0.97 mm CML# depict the different bead
sizes that are used as probe particles. The moduli obtained from the
light scattering measurements for all the bead sizes show a good
agreement with bulk rheology measurements.
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coelastic properties of the polymer solutions are consistent.
By combining DWS and QELS results, we obtain the moduli
over six decades in frequency with good overlap with the
bulk measurements. The moduli obtained from the two scat-
tering techniques coincide very well in the region of fre-
quency in which they overlap. We are able to obtain data at
high frequencies where the moduli cross and the elastic
modulus dominates, showing the predominantly elastic be-
havior of the PEO network due to entanglements of the poly-
mer chains. By contrast, at very low frequencies, the re-
sponse of the network is markedly different and the viscous
modulus dominates; this is also evident in the MSD which
has a slope that is very close to the one at longer lag times, as
shown in Fig. 4. This diffusive behavior of the particle re-
flects the relaxation of the polymer chains due to reptation,
freeing the entanglements.

We have compared the results obtained by using Eqs.~3!
and ~4! with the results from the modified algebraic forms.
The modified equations give an accurate estimate for the
moduli when the MSD is highly curved and the slope
changes very rapidly as this corresponds to a crossover point
in the moduli. Since most of our data are not highly curved
the differences in the crossover frequencies between the two
algebraic forms are 10–20%. However, for the data shown
with open triangles in Fig. 3, the difference in the crossover
frequencies is more than 40%.

Local heterogeneities in the polymer solution around the
beads may lead to a different value of the moduli that may
not reflect the bulk viscoelastic response of the polymer. The
heterogeneities might be caused by an adsorbed layer of the
polymer on the surface of the probe particles that could de-
pend on the size or surface treatment of the latex beads and
on the concentration and molecular weight of the PEO@19#.
To investigate the first possibility, we made measurements
using three different beads, with varying sizes and different
surface treatments. We used 0.46mm ~CML!, 0.65 mm
~sulfate!, and 0.97mm ~CML! diameter beads. As shown in
Figs. 5~a!, 5~b!, and 5~c! the moduli measured by light scat-
tering experiments using the different bead sizes as probes
agree with those measured using the rheometer. This sug-
gests that the surface adsorption does not lead to heteroge-
neities that affect the measurement of the viscoelasticity and
that the moduli are not affected by an adsorbed layer on the
surface of the beads. As a further check on the possibility of
polymer adsorption on the beads, we compare particles of
similar size but markedly different surface chemistries. We
use 0.65mm diameter sulfate coated and 0.64mm diameter
CML in a 900 kDa PEO sample at 2.2 wt % and measure the
dynamics using DWS. In Fig. 6 we plot the viscoelastic
spectra obtained from the MSD data. The solid and the dot-
dashed lines denote the elastic and the viscous moduli, re-
spectively, as probed by the sulfate coated beads. The open
symbols denote the moduli obtained by using the CML
coated beads in a solution of the same polymer concentra-
tion. The difference observed between the mean square dis-
placements of the two data sets is;10% and is within the
error of estimatingl * . From the moduli obtained from these
two types of beads, we conclude that the two different bead
chemistries have no effect on the microrheology results.

We also investigate the effect on microrheology of any
possible polymer adsorption on the surfaces of the beads, as
a function of the molecular weight of the polymer. Dynamic
light scattering experiments@19,22# on polystyrene beads in
dilute solutions of PEO have shown that the polymer chains
are adsorbed on the PS beads, resulting in an increase in the
hydrodynamic radius of the probes. We use DWS to measure
the moduli of solutions of 200 kDa PEO at three different
concentrations, 6.7 wt %, 12.2 wt %, and 21.6 wt %. The
three plots in Fig. 7 show microrheology and bulk rheology
measurements for the 200 kDa PEO polymer sample at these
concentrations. The measurements shown in the figure are
done with polystyrene beads with a diameter of 2.0mm
~CML! for the 6.7 wt % solution and 0.65mm ~sulfate! for
the other two polymer concentrations. The open symbols are
the bulk measurements and the solid and dot-dashed lines
represent the data obtained from the DWS measurements.
The three graphs clearly show the excellent similarity be-
tween the elastic and the viscous moduli obtained from the
two different types of measurement. The DWS measure-
ments are able to extend the frequency range of the vis-
coelastic spectrum by almost three decades. The graphs in
Fig. 5 and 7 together show that light scattering microrheol-
ogy measurements are not affected by any adsorbed layer of
polymer on the beads for the different combinations of bead
sizes, polymer sizes and polymer concentrations investigated
here.

Using different concentrations and molecular weights of
the polymer also enables us to investigate different viscoelas-
tic properties. The lowest concentration of the 200 kDa poly-
mer used here is predominantly viscous over the entire range
of our measurements. The higher frequency DWS measure-
ments only suggest a crossover at even higher frequencies
not probed by our measurements. On increasing the concen-
tration of this polymer, the DWS measurements show the
crossover of the two moduli. By contrast, the 900 kDa poly-
mer solutions show a distinct crossover at all the three con-
centrations investigated. The crossover frequency is shifted
to lower frequencies for the higher molecular weight poly-

FIG. 6. Effect of different bead surface chemistry. Comparison
of storage and loss moduli probed with 0.65mm sulfate coated
(G8, solid line; G9, dot-dashed line! and 0.64 mm carboxylate
modified (G8, h;G9, s) beads in 2.2 wt % 900 kDa PEO solution
measured using DWS. For clarity, every third data point is plotted
for the 0.64 mm diameter bead size.
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mer. This shift of the relaxation time between the two mo-
lecular weights of the polymer is consistent with the repta-
tion models of polymer dynamics. Owing to its larger chain
length, the bigger polymer will take a longer time to reptate
through the network, and this will result in a crossover at a
lower frequency when compared to a polymer with a shorter

chain length. In all cases, the light scattering microrheology
data compares very well with the bulk measurements over
the full region of overlap.

Finally, we compare a PEO solution that was prepared 20
days prior to the experiment to a set of PEO samples that had
been prepared more than three months earlier. The samples
were 900 kDa PEO at a concentration of 4% by weight. The
measurements were all performed with DWS. The correla-
tion functions for the old PEO samples decay a bit more
slowly than the new samples but on extracting the frequency
dependant moduli and comparing them with previous mea-
surements, we observe no significant aging effects of the
polymer that result in changed moduli. We conclude that the
aging of the polymer solution is not a significant factor in our
measurements.

V. CONCLUSIONS

We show that two different dynamic light scattering tech-
niques can be used to measure the viscoelastic properties of a
simple flexible polymer that is not permanently cross linked.
Employing both DWS and conventional single scattering
DLS, we extend the range of the viscoelastic data over seven
decades. We use an algebraic form of the generalized Stokes-
Einstein relation and avoid numerical transformations of our
data or using functional forms to fit the modulus in Laplace
frequency space. As such, no prior knowledge or model for
the viscoelastic behavior is required to interpret and analyze
the light scattering data. The viscoelastic spectra of the poly-
mer obtained from the light scattering measurements agree
with bulk measurements at all polymer concentrations. Our
results show that the viscoelastic response of the probe par-
ticles is independent of its size or surface chemistry. These
experiments demonstrate convincingly that microrheology
works very well when applied to uncross-linked polymer
suspensions, using probe particles as the scatterers. Further
experiments are required to test the validity of microrheol-
ogy for systems that are more complex, where sample het-
erogeneities might limit its validity; in particular, the impor-
tant case of cross-linked polymer suspensions must be
investigated.
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