Penn

: : ) University of Pennsylvania
Libraries

S UNIVERSITY of PENNSYLVANIA y ScholarlyCOmmonS
Technical Reports (CIS) Department of Computer & Information Science
January 2001

Optimization Properties for Classes of Conjunctive Regular Path
Queries

Alin Deutsch
University of Pennsylvania

Val Tannen
University of Pennsylvania, val@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation

Alin Deutsch and Val Tannen, "Optimization Properties for Classes of Conjunctive Regular Path Queries", .
January 2001.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-01-20.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/9
For more information, please contact repository@pobox.upenn.edu.


https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/9
mailto:repository@pobox.upenn.edu

Optimization Properties for Classes of Conjunctive Regular Path Queries

Abstract

We are interested in the theoretical foundations of the optimization of conjunctive regular path queries
(CRPQs). The basic problem here is deciding query containment both in the absence and presence of
constraints. Containment without constraints for CRPQs is EXPSPACE-complete, as opposed to only NP-
complete for relational conjunctive queries. Our past experience with implementing similar algorithms
suggests that staying in PSPACE might still be useful. Therefore we investigate the complexity of
containment for a hierarchy of fragments of the CRPQ language. The classifying principle of the
fragments is the expressivity of the regular path expressions allowed in the query atoms. For most of
these fragments, we give matching lower and upper bounds for containment in the absence of
constraints. We also introduce for every fragment a naturally corresponding class of constraints in whose
presence we show both decidability and undecidability results for containment in various fragments.
Finally, we apply our results to give a complete algorithm for rewriting with views in the presence of
constraints for a fragment that contains Kleene-star and disjunction.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-01-20.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/9


https://repository.upenn.edu/cis_reports/9

Univ. of Pennsylvania Technical Report MS-CIS-01-20. Extended version of DBPL 2001 contribution 1

Optimization Properties for Classes of Conjunctive Regular Path Queries

Alin Deutsch

Val Tannen

University of Pennsylvania

Abstract

We are interested in the theoretical foundations of the op-
timization of conjunctive regular path queries (CRPQs).
The basic problem here is deciding query containment both
in the absence and presence of constraints. Containment
without constraints for CRPQs is EXPSPACE-complete,
as opposed to only NP-complete for relational conjunctive
queries. Our past experience with implementing similar al-
gorithms suggests that staying in PSPACE might still be
useful. Therefore we investigate the complexity of contain-
ment for a hierarchy of fragments of the CRPQ language.
The classifying principle of the fragments is the expressivity
of the regular path expressions allowed in the query atoms.
For most of these fragments, we give matching lower and up-
per bounds for containment in the absence of constraints.
We also introduce for every fragment a naturally corre-
sponding class of constraints in whose presence we show
both decidability and undecidability results for containment
in various fragments. Finally, we apply our results to give a
complete algorithm for rewriting with views in the presence
of constraints for a fragment that contains Kleene-star and
disjunction.

1 Introduction

Semistructured data models and query languages [1]
have become a very active area of interesting research in
databases In this paper we are interested in semistruc-
tured query languages, more precisely in theoretical
foundations of query optimization for such languages.
We concentrate on two computational problems:

e The problem of query equivalence (more gener-
ally, query containment), with or without integrity
constraints.

e The problem of rewriting queries to make (some)
use of views, again with or without integrity con-
straints.

For queries on relational, complex values, dictionary
and OO data, these problems can be solved nicely and
uniformly with a strengthening of the classical ideas
on tableaux and chase. (See the chase & backchase

technique in [9] and some of its theoretical foundation
in [22].) Although the problems have theoretically in-
tractable lower bounds, these bounds are in terms of
query and constraint size. It turns out that these tech-
niques are in fact practical for practical-size queries and
constraints [21]. Our experience with implementing
them suggests that a necessary condition for practical-
ity is the ability to decide containment in polynomial
space. Can this be done for semistructured languages?

At the theoretical core of such languages lie the con-
junctive regular path queries (CRPQs) of [11, 6]. Here
is an example:

QY,Z) + start (a*|b).c X, X ab* Y, X ¢ Z

This is interpreted in a graph whose edge labels are
taken from a set containing a, b, ¢ while start is a con-
stant node. The query returns the set of pairs (Y, Z)
of nodes such that for some node X there are paths
start - X, X = Y, X — Z whose labels belong to
the regular languages (a*|b).c, a.b* , ¢* respectively.

However, containment of general CRPQs is EXPSPACE-

complete [6, 11]! Therefore, in this paper we pay at-
tention to restricted fragments of CRPQs. This a an
approach validated by practice: typical users exploit
only a fraction of the expressive power of regular ex-
pressions. This is based on the experiences of users
of the semistructured query language StruQL [10], but
also of the XML query language XML-QL [8], and it is
supported by the restrictions on path expressions im-
posed by the XPath standard [26]. Here is a very sim-
ple example of query optimization in such a fragment.
Consider the query

A(N) « start * X , X name.John Y, X x.tells.name N

which returns the names of persons who find out a se-
cret from somebody connected directly or indirectly to
John. Assume that the following view is materialized

Divulge(V,W) < start = U, U nameV , U tells W
and the following integrity constraint holds

(tellAll) VX, Y [ X =.tells.* Y = X tells Y ]



saying that our database models a society in which
whenever two of its members share a secret, eventu-
ally everybody connected to them shares that secret.
Under this constraint, the query A can be equivalently
rewritten to use Divulge:

A'(N) < Divulge(X,Y) , X John Z, Y name N.

Depending on the storage schema, A’ may be cheaper
to evaluate. In appendix D we show in detail how the
methods we develop in this paper succeed in finding
this rewriting.

To study various fragments of CRPQs we develop a
novel technique. [6, 11] use automata-theoretic tech-
niques but here we will try something different: re-
ductions to problems formulated in the relational set-
ting. The fragments for which we prove upper bounds
and decidability results are such that we can translate
queries and dependencies into relational versions, over
a special relational schema. For example, the query @
shown above translates to the following union of rela-
tional conjunctive queries:

Q'(y,2) = Cily,2) U Ca(y,2)

Ci(y,2) + a*(start,w;), clw,X), a(z,ws),
b* (w2, y) , c*(z,2)

Ca(y,z) + b(start,wr), c(wi,X), a(X,ws),
b* (w2, y) , c*(z,2)

We think of C, C5 as ordinary relational conjunctive
queries over a schema containing a,a*,b*,c,c*. A pri-
ori @ and a* etc., are independent binary relation sym-
bols, but we interpret them only in relational instances
in which certain relational constraints hold. The con-
straints are first-order and they say, for example, that
a* is transitive, reflexive, and includes a. Of course,
transitive closure itself cannot be expressed in first-
order logic. It is therefore remarkable that first-order
reasoning suffices for some of the semistructured lan-
guage fragments we consider in this paper. However, we
also provide undecidability results that together with
the aforementioned EXPSPACE lower bound [6] show
some of the theoretical limits of what can be done about
optimization in semistructured languages.

Organization of the remainder of this paper.
In section 2 we define the classes (language fragments)
of queries and dependencies under study here, as well
as their translation into relational correspondents. In
section 3 we summarize our results and discuss some
related work. Section 4 contains our results on upper
bounds for pure query containment while section 5 con-
tains the corresponding lower bound results. Section 6
presents our results on deciding (or not!) containment
of queries in the presence of dependencies. Section 7

extends the chase & backchase technique [9] to two of
the fragments we study. We conclude in section 8.

We have relegated some proofs and a worked exam-
ple to the appendices, to be consulted at the discretion
of the reader. We have also put in an appendix the
extension to unions and disjunction of the chase. Al-
though this extension, in the form that we need, has
not—apparently—been published previously, it will not
suprise anyone with an understanding of the classical
chase.

2 Queries and Constraints

Databases. Let £ be a set of labels. For technical rea-
sons we assume that £ is infinite, but of course only a
finite number of labels will occur in a given database,
query, or constraint. A semistructured database is a fi-
nite directed graph whose edges are L-labeled. Equiva-
lently, we can be given a set N (the nodes of the graph)
and a finite set of labels from £, each interpreted as a
non-empty binary relation on N.

A word about constants denoting nodes. The upper
bound and decidability results do not, as stated, assume
the presence of such constants. Equalities between dis-
tinct constants cause the usual problem [2] and our re-
sults can be extended straightforwardly to deal with
this. For clarity of exposition we have omitted this ex-
tension. On the other hand, some of our examples and
even some of the constructions used in lower bounds
and undecidability results do use constants denoting
nodes. Such use is in fact inessential and is made for
the same reasons of clarity.

Queries: CRPQs. A conjunctive regular path query
(CRPQ) [11, 6] has the general form

Q(:cl,...,:cn) (—Al,...,Am (].)

Here the atoms (conjuncts) A; are either equalities y =
z or reqular path atoms of the form y R z where R is a
regular expressions defined by !

R = 1 | _ | R* | Ri.R> | (R1|R2) (2)

where [ ranges over labels in £ and _ means any (single)
label. Of course, each distinguished variables z; must
also occur in the right hand side. As indicated, we
follow [11] in using the shorthand x for _*.

If B is a semistructured database, an atom z R y is
satisfied by a valuation that maps x,y to nodes s,tin B
if there is a path from s to ¢ in B which spells out a word
in the language denoted by the regular expression R.

We ask the reader to distinguish between the | in regular
expressions and the meta use of | as part of the BNF for the
syntax.



We extend this definition of atom satisfaction to give
semantics to whole CRPQs in the way that is usual for
conjunctive queries. Query containment is also defined
as usual.

Unions of CRPQs. In spite of being called “con-
junctive” , CRPQs contain implicit forms of disjunction,
most glaringly because of the | operator in regular ex-
pressions. In fact, we are naturally led to consider
unions of CRPQ)s as the class of queries of interest.
It is easy to see that the EXPSPACE upper bound on
containment [11, 6] still holds for unions of CRPQs.

Containment and Dependencies. Much of the
early relational database theory dealt with conjunctive
(tableau) queries and embedded dependencies [2] which
are logical assertions of the special form

VZ [C1(Z) = 37 Ca(E, )] ©)

where C7,Cy are conjunctions of relational atoms or
(in C3) equalities 2. Such dependencies are tightly re-
lated to containment assertions [27]. Given two (type-
compatible) conjunctive queries 1, Q2 it is easy to con-
struct an embedded dependency that is equivalent (in
each database instance) to the containment Q1 C Q-.
It is equally easy to construct an equivalent contain-
ment assertion from any given embedded dependency.

In this paper we will consider several classes of queries,
and for each of them we will identify a class of depen-
dencies (constraints) that has this kind of tight cor-
respondence with the containment of queries from the
associated class.

Add Disjunction: DEDs. Generalizing from con-
junctive queries to unions of conjunctive queries, we
consider the associated class of disjunctive embedded de-
pendencies (DEDs) which are logical assertions of the
form

m
VE [C1(&) —» \/ Twi Coa(#, 0] (4)
i=1
where Ci,C>,; are as in (3). We don’t need disjunction
in the premise of the implication because it is equiva-
lent to conjunctions of DEDs. We have the following
tight correspondence: the containment of two unions of
conjunctive queries is equivalent to a finite number of
DEDs, and a single DED is equivalent to the contain-
ment of a conjunctive query into a union of conjunctive
queries.

A DED is full if it does not have existentially quanti-
fied variables. The chase [3] can be extended to DEDs,
giving a decision procedure for containment of unions of
conjunctive queries under a set of full DEDs (see [13, 14]
for a partial treatment and appendix A for a sketch of
the results we use.)

Semistructured Constraints: DERPDs. As with
DEDs, we define the class of dependencies that corre-

2The notation # abbreviates z1,...,Zn.

sponds to unions of conjunctive regular path queries
(CRPQs). We call such dependencies disjunctive em-
bedded regular path dependencies (DERPDs) and they
are defined as assertions that have the same logical form
as DEDs, see (4), but in which Cy,C5; are conjunc-
tions of regular path atoms z R y or equalities. The
definition for satisfaction of a given DERPD in a given
semistructured database follows from the usual mean-
ing of logical connectives and quantifiers and from the
satisfaction for regular path atoms given earlier.

When the regular expressions are restricted to single
labels in £, CRPQs are equivalent to the usual con-
junctive queries and DERPDs to just DEDs seen over
a relational schema consisting of binary symbols from
L.

Examples. DERPDs can express a large variety of
constraints on semistructured data. As we saw, they
generalize most relational dependencies of interest. In
addition we can express constraints similar to the ones
DTDs [25] specify for XML. The first two below say
that “any person has exactly one social security num-
ber”. The third says that “telephone numbers can only
be of two (if any) kinds, voice or fax” while the fourth
is a kind of generalized join-like dependency.

Vz [start x.person © — Jy x ssn y]
VaVy, Yy [start x . person x A

Az ssnys N T Ssnys — Y1 =yz]
VaVyVz [z telNoy A y -z — ywoice z V y fax 2]
VaVyVz [z child y A y child z — z grandparent z)

Fragments: F-queries and F-dependencies Since
containment of CRPQs is EXPSPACE-complete [6] we
study fragments of the language defined by restricting
the regular expressions allowed in atoms (conjuncts).
The simplest fragment, allowing just labels and con-
catenation, is equivalent to conjunctive queries over bi-
nary relations. Between these and general CRPQs we
consider the following fragments



Fragment name | Regular expressions syntax
conj. queries R —1]| Ri.R,
(%) R—1]| % | Ri.R2
(%) R—1]| * | Ri.R2 | (R1|R»)
(*,-) R—1]|_| * | Ri.R2
) R—1|I"| Ri.R
(%, 5 0%,]) R—1| % |_|U"| Ri.R: | (R1|R2)
w R—1]|_|S"| Ri.R: | (Ri|R2)
S—1]|-]51.5:2
Z R—>S|S*
S —=1]81.52] (5152)
CRPQs R—1|_|R"| Ri.Ry | (Ri1|R2)

For any fragment F', we call the corresponding queries
F-queries. Applying the same restriction to the atoms
that appear in dependencies, we define corresponding
classes of DERPDs, calling the respective constraints
F'-dependencies. The correspondence discussed above,
between containment assertions and dependencies, con-
tinues to hold for each fragment F. The fragments
called W and Z have technical importance but their
definitions did no suggest anything better than choos-
ing these arbitrary names.

First-Order Relational Translation. At the core
of our technique is a translation of semistructured queries
and dependencies into first-order logic, namely into (uni-
ons of) conjunctive queries and DEDs over a special re-
lational schema that includes [ and [* as well as _ and
* as separate binary relation symbols. A priori these
symbols are independent, but we will try to capture
some of the Kleene star semantics through relational
dependencies.

Our translation is designed for the (x, _,1*, |)-fragment
only. It relies essentially on the fact that in this frag-
ment concatenation and | are not nested inside Kleene
stars.

The first thing we do is translate away |. Using
the equivalence (a|b).c = (a.c)|(b.c) we move | in the
outermost position in the (x, _,1*,|)-regular expressions.
Then, we note that @ « ...,z Ri|Rs y,... is equiv-
alent to Q1 U Q2 where Q; « ...,z R; y,.... For
dependencies, we note that = R;|Ry y is equivalent to
z Ry y V x Ry y after which logical equivalences bring
the disjunctions out. A disjunctions in the premise of
the implication in a dependency is equivalent to a con-
junction (a set) of dependencies. To summarize:

Remark 2.1 By translating away the |, any (x, _,1*,])-
query becomes an equivalent union of (x, -, 1*)-queries.

Similarly, any (x,_,1*,|)-dependency becomes an equiv-
alent set of (x,_,1*)-dependencies.

Next, we translate any (x,_,l*)-queries and depen-
dencies into (relational) conjunctive queries and DEDs
over the special schema

L-Rel = {I|lel} U {I*|lleLl} U {,*}U{N}

in which all symbols are binary relations with the ex-
ception of N which is unary (the need for N is explained
below).

The translation 7(Q) of a (x,_,1*)-query @ is de-
fined by translating its conjuncts according to the rules
(for each binary r in £-Rel)

T@ry) = r(z,y)
T(x Ri.R2y) = T(z R v), T(v Ra y)

The variable v is (implicitely) existentially quantified
and so it must be fresh each time its rule is applied. For
example, Q(z,y) + = a.*.b y, translates to Q'(z,y) +
a(z,2), *(z,u), b(u,y).

The translation 7 (d) of a (x,_,1*)-dependency d is
defined similarly. The presence of concatenation in the
conclusion of the implication in d will add existentially
quantified variables, while the presence of concatena-
tion in the premise of the implication in d will add
universally quantified variables.

Example of translation. Let d be the dependency

VaVy [z (alb).x y — Tz y *.(a|d) 2]
It translates to the following set of two DEDs

VeVyVu [z au A u x y = [Fz1301 ¥y *x v1 A v1 a 2]

V [Fz2Fve y * va A w2 b 29]]

VaVyVu [z bu A uw x y = [Fz13v1 y *x v1 A v1 a 2]

V [Fz2Fve y * va A v2 b 29]]

Now, T(Q) is a relational query and 7 (d) is a rela-
tional dependency, both over the schema L-Rel. How-
ever, we will use them not over arbitrary instances of
L-Rel but only over instances that satisfy specific sets
of relational dependencies. To deal with the various
fragments, we consider two such sets

The X, dependencies:

(node;) VaVy [I(z,y) = N(z) A N(y)]
(node,) VzVy [*(z,y) = N(z) A N(y)]
(base) VaVy [l(z,y) = *(z,y)]
(refly) Vz [N(z) — *(z,z)]
(trans,) VaVyVz [*(z,y) A x(y, 2) = *(z, 2)]

where [ ranges over £. (This is an infinite set of de-
pendencies but of course only finitely many matter for



Containment of Upper bound ‘

Containment of

Lower bound

conjunctive queries NP [7] conjunctive queries NP [7]
(*)-queries NP [11] or corollary 4.3 (*)-queries 4

unions of conj. queries Iy [23] unions of conj. queries | II5 [23]

unions of (%, |)-queries T (*, |)-queries I remark 3.1
unions of (x, _)-queries 0 (*, -)-queries II5 theorem 5.1
unions of (I*)-queries 0 (I*)-queries II5 theorem 5.1

unions of (%, _,1*,|)-queries | II5 theorem 4.8

(¥, , 1", |)-queries

P

unions of W queries ? W queries PSPACE theorem 5.2
unions of Z queries 1 7 queries EXPSPACE [6] and remark 3.2
unions of CRPQs EXPSPACE [11, 6] CRPQs J

Figure 1: Upper and lower bounds for containment

a given database, query, or dependency.) Here we see
how we use N: we want the chase with (refl,) to apply
only to variables x that are already present.

The ¥;- dependencies: are obtained by replacing
* with [* in ¥, above.

The intention behind these dependencies is to nar-
row the gap between the semistructured meaning of
the Kleene star and the arbitary interpretation that
could be given to the relational schema L-Rel. We can
associate directly to each semistructured database a re-
lational £-Rel-instance that satisfies ¥, U X+ (call it a
¥, U Xj:-instance). But this will not cover X, U X--
instances containing pairs of distinct nodes which are
not connected by any path with labels from £. Of
course, it is not possible to close the gap this way,
since transitive closure is not first-order definable. It is
therefore remarkable that first-order reasoning suffices
for some of the semistructured language fragments we
consider in this paper.

Full Dependencies. Relational dependencies (3)
and DEDs (4) are called full when they do not have ex-
istentially quantified variables. In the case of DERPDs
fullnes must be more complicated because concatena-
tion in regular expressions introduces an implicit exis-
tential. Here we take a very simple approach.

Let d be an (x,_,1*,|)-dependency and let 7(d) be
the set of DEDs into which d translates. We say that d
is a full dependency if each DED in T (d) is full.

3 Summary of Results

Containment for F-queries. We summarize in fig-
ure 1 our new results on the complexity of deciding con-
tainment for queries in the various fragments, putting
them in the context of known results.

The upper bounds are for containment of unions of
F-queries, with the remarkable exception of the (x)-
fragment for which containment of (¥)-queries is in NP,
just like containment of conjunctive queries. This was
already shown in [11]. Motivated by the study of con-
tainment under dependencies, the new technique intro-
duced here reproves, along the way, this NP bound, see
corollary 4.3. 3

Our new upper bound result is that containment of
unions of (*,_,1*,|)-queries is in IT5 (theorem 4.8). It
can be seen from the lower bounds table that this is a
tight bound.

We have tried to state our lower bound results in their
strongest form, for F-queries rather than unions of F-
queries. It is not suprising to see a II5 lower bound in
the presence of |. This does not follow directly from [23]
but we have

Remark 3.1 The I15-hardness proof in [23] for the lower
bound on containment of unions of conjunctive queries
can be adapted to containment of F-queries provided
that F includes |.

It is suprising however what happens in the absence
of |. While containment of (x)-queries is in NP, we show
in theorem 5.1 that containment of (I*)-queries is II5-
hard. Moreover a simple variation of the same proof
applies to the (x,_)-fragment. Therefore, we find that
the increase in complexity does not stem from the mere
presence of the Kleene star in the query, but from the
interaction between [ and [* or between _ and _*.

A more liberal nesting of regular expressions within
the Kleene star increases complexity. If we allow con-
catenation inside the Kleene star, we get the W-fragment,

3 Although we do not consider it explicitely here, the fragment
obtained by adding just - to labels and concatenation is easily
seen to yield no suprises: containment is still in NP.



Containment of Under what | Decidable?
constraints
conjunctive queries full  relational | YES ([3])
dependencies
unions of conjunctive | full DEDs YES (theo-
queries rem A.3)
unions  of  (x,[)- | full (x,])-deps. YES (theo-
queries rem 6.1)
unions  of  (x,_)- | full V-deps. YES (theo-
queries rem 6.2)
(*,-)-query in union | full DEDs over | NO (theo-
of (*,_)-queries special models rem 6.3)
(I")-query in union of | full DEDs NO (theo-
(I")-queries rem 6.4)

Figure 2: Results for containment under dependencies

for which we show in theorem 5.2 a PSPACE lower
bound on containment. We don’t know (mainly be-
cause of difficulties with a relational translation) if this
bound is tight, which is why we put a question mark
in the corresponding upper bound entry. If in addition
we allow disjunction within the Kleene star, we obtain
the Z-fragment which is as bad as general CPQRs:

Remark 3.2 The EXPSPACE-hardness proof in [6] ap-
plies to containment of Z-queries.

Containment under dependencies. The chase
technique in classical relational theory gives us the de-
cidability of containment of conjunctive queries under
full dependencies [2]. Decidability extends straightfor-
wardly to containment of unions of conjunctive queries
under full DEDs (theorem A.2).

This nice situation for relational languages contrasts
with the situation for semistructured languages, as sum-
marized in figure 3. The general problem studied is con-

tainment of unions of F-queries under full F-dependencies.

It turns out that even containment of (I*)-queries under
just full DEDs is undecidable (theorem 6.4).

There is some good news, as our technique carries
through in theorem 6.1 to prove decidability for the
(*,|)-fragment.

We leave open the general problem corresponding to
the (x,_), but we have two partial results that sug-
gest that the problem might be complicated. We show
decidability in the case of a restricted class of (x,_)-
dependencies, that we call V-dependencies (definition
in section 6). And we show wundecidability with just
DEDs in the case of a class of special models (also de-
fined in section 6).

In our two undecidability proofs, just like in the proof
of theorem 5.1, we make essential use of of the interac-

tion between [ and [* or between _ and _*.

Rewriting with Views under Dependencies. Given
a set V of views, a set D of dependencies expressing in-
tegrity constraints, and a query (), we are interested
in finding “rewritings” @' which mention some of the
views (but may still contain labels from @) and are
ezactly equivalent to ().

We do not study this problem in its full generality,
but rather we look at extending to some of the F-
fragments the chase&backchase (CE€B) algorithm that
we introduced in [9]. This algorithm relies on the chase
with dependencies. In view of the undecidability re-
sults we have obtained for other F-fragments, we have
have looked at rewriting with views only for the (x)-
and (%, |)-fragments.

In theorem 7.1 we show that (essentially) the C&B
algorithm is complete for the (x)-fragment, in the sense
that it finds all rewritings that are minimal in a precise
sense.

For the (x,|)-fragment we extend the original C&B
algorithm to account for disjunction, and we prove that
this extended version is also complete.

Related work. Perhaps the closest in spirit is [4],
which gives an EXPTIME-complete decision procedure
for containment of queries and constraints expressed in
a different fragment of CRPQs, which corresponds to
description logics. This fragment allows unrestricted
regular expressions in the conjuncts, but restricts the
shape of the query graph (thus being incompatible with
our classification principle for query fragments). The
corresponding dependencies allow unrestricted regular
path expressions and even cardinality constraints, but
have restricted shape and in particular cannot express
functional dependencies. As a matter of fact, [12] shows
that, when adding functional dependencies to a gener-
alization of description logics called the Guarded Frag-
ment of first order logic, satisfiability (and hence con-
tainment) becomes undecidable. None of our query
fragments is contained in description logics.

The class of (x)-queries was introduced in [11] (un-
der the name of “simple StruQLg queries”) as a class
of semistructured queries using transitive closure and
whose containment problem is in NP. The decision pro-
cedure was based on an automata-theoretic argument
which was applicable to CRPQs with arbitrary regular
path expressions.

[18, 19] study the expressivity and satisfiability of
queries over tree structures, in formalisms that are equiv-
alent to MSO. Classes of tree structures are given as
grammars, which can be viewed as constraints on their
structure in a broader sense.

[5] gives a complete algorithm for finding rewritings of
regular path queries (i.e. single-conjunct CRPQs) with
views defined by regular path queries. The path expres-
sions allowed in the conjunct are unrestricted, but no



constraints are taken into account, and only complete
rewritings are obtained (that is, rewritings mentioning
only views). [16] addresses the problem of finding arbi-
trary rewritings of reqular path queries, and [15] gives
an algorithm for the related problem of answering reg-
ular path queries using incomplete views.

4 Upper Bounds

(¥)-queries. Recall that a (x)-query is a CRPQ whose
atoms allow only regular expressions built from labels,
x, and their concatenation. For example, Q(z,y)
x a.x.by, ycxisa (x)-query, as opposed to Q' (y) +
z a.b*.c y (because of b*) and Q" (y) + z a|by (because
of |).

We have shown in section 2 how to translate any (*)-
query into a conjunctive query T (@) over the schema
L-Rel. While not obvious, it turns out that reasoning
about 7(Q) under the set of dependencies X, intro-
duced in section 2 suffices:

Proposition 4.1 Let Q1, Q2 be two (x)-queries. The
containment Q1 C Q2 is valid if and only if X, E
T(Q1) € T(Q2).

Proof: Tt suffices to show that for any ¥.-instance
I there exists a semistructured database B such that
Qi(B) =T(Q:)I) i=1,2.

Indeed, pick a label I € £ which does not occur in
either @); (infinitely many labels qualify, since the @);s
are finite and £ is not). To obtain B, start by reducing
I to the schema £-Rel Now keep extending B by adding
to I’s interpretation every pair (s,t) € * for which there
is no path from s to ¢ in B. It is easy to see that that
Qi(B) = T(Qi)(I), since the @;s don’t even mention [,
and thus cannot derive answers that rely on the length
or label of the path from s to ¢, for any s,t as above. o

Next, we observe that the dependencies in ¥, are full
hence the chase with them terminates, giving a decision
procedure for ¥, = T(Q1) C T(Q2) [3, 2] We denote
with chases, (@) the result of chasing the query @ with
the dependencies in X,.

Theorem 4.2 The (x)-query Q1 is contained in the
(x)-query Q2 if and only if there exists a containment

mapping (see [2]) from T(Q2) into chases, (T (Q1))-

Corollary 4.3 [11]
(¥)-query containment is NP-complete.

Proof: First notice that the size of 7(Q) is linear in
that of ). The chase takes time polynomial in the size
of the queries, but exponential in the maximum size of
a dependency and the maximum arity of the relations
in the schema [3]. However, the dependencies in ¥,
have fixed size and the maximum arity of a relation

in the schema is 2. The upper bound follows noting
that the containment mapping can be found in NP. For
the lower bound, it can be seen that the proof of NP-
hardness for containment of conjunctive queries in [7]
can be adapted to require binary relations only. e
Example. Consider Q1 (z1,3)  T1 a T2, T2 b.c T3
and Q2(y1,y2) ¢ Y1 *.a. x yo. It is easy to see
that ()1 is contained in ()2. We show how we infer
this using theorem 4.2. The translation to conjunctive
queries yields TQ1 = T(Q1) and TQ> = T(Q2), with
TQ1(x1,x3) < a(x1,x2), b(x2,u1),c(u1, z3) and
TQ2(y1,y2) « *(y1,v1),a(v1,v2),*(v2,y2). Note that
there is no containment mapping from TQ, to TQ;
as the latter contains no *-atoms to serve as image
for the former’s *-atoms. But by chasing T'Q; with
(node,) and then with (refl,), we obtain Q'(x1,z3) «
N(z1),N(z2),*(z1,21),a(x1,22), b(22,u1), c(u1, x3) thus
creating an image for T'Q2’s conjunct *(y1,v1). We con-
tinue chasing with (base?), then (baseS) and (trans,),

obtaining Q" (z1,73) + N(z1), N(22), *(21, 71), a(z1, T2),

b(@2, u1), c(u1, x3), *(w2,u1), *(u1, z3), *(22, 73). Now
{y1 = Z1,¥2 = x3,v1 = Z1,02 — Z2} is a contain-
ment mapping from 7(Q2) into Q”. There are further
applicable chase steps, omitted here as they only add
new atoms and hence do not affect the existence of the
containment mapping. e

Unions of (x, _,1*,|)-queries. The idea we have just
used to handle (x)-queries is easily extended to (x,])-
queries (giving a II5 procedure), but how about other
fragments? Can we deal with (I*)-queries using their
relational translation and the set ¥;+ of dependencies
defined in section 2? The answer is negative, which is
surprising given the syntactic similarity of the (x)- with
the (I*)-fragment.

Proposition 4.4 There exist (I*)-queries Q, Q" such
that Q C Q' but Sy 1 T(Q) C T(Q).

Proof: Here are the queries (see figure 4 for possibly
helpful graph representations of @, Q'):

Q($7y) < T au, Tauz, up CUus, Uy b’LL4, U2 bU5,
Uz € Uug, uz lly, ug LI" y, us ly

Q' (z,y) + Tawvy, vy bvy, v1 cvz, Vo ly, v3 L.II*y

To see that @ is contained in @', observe that [[* =
[UIIl* and @ is equivalent to the union of queries Q1 U@
where (1, Q)2 are obtained by replacing the conjunct
ug II* y with ug [ y, respectively ug [II* y in Q. But
both @1, Q2 are contained in @', as witnessed by the
containment mappings {v; — wuy,vs > ug,v3 > us}
and {v; — u2,vs > us,v3 — ug}. Intuitively, for any
instance I, and any mapping from @) to I, depending on
whether uy4 [.I* y in @ is satisfied by a path of length 1
or at least 2, v; c w3 in Q' is satisfied by the same path
which satisfies either u; ¢ usg or us ¢ uy, respectively.



v3
c NL*
XL» vl y
BN
v2

Q(x.y) Q'(x.y)

Figure 3: Counterexample queries for proposition 4.4

On the other hand, according to the chase theorem [2],
T(Q) is not contained in 7 (Q') under ¥;« because there

is no containment mapping from 7 (Q’) into chases,. (T (Q)).

(Intuitively, what ¥;» does not capture is the minimal-
ity of [*: it only states that [* contains the reflexive
transitive closure of I, but it doesn’t rule out pairs of
nodes that aren’t reachable via a path of l-edges. In-
stances containing such a pair (s,t) are counterexam-
ples for the containment: conjunct u4 II* y in @ is

satisfied by the endpoints of the path r Lsbh q
even if s has no outgoing l-edge, while vs lII* y in Q' is
not.) e

A simple variation of the counterexample above ap-
plies to (x,_)-queries. In any case, if the same idea
would have applied it would have given us NP algo-
rithms, and we show in theorem 5.1 that containment
for both the (I*)- and the (x,.)-fragment is I15-hard!
Therefore, we will take another route towards a con-
tainment test.

We start from the observation that X, U X+ is suf-
ficient in deciding containment of (J; in ()2 in the re-
stricted case in which @); contains no Kleene star (no *
or [*), and Q2 is a (x,_,1*)-query. We call Q; star-free.

Proposition 4.5 The star-free query Q1 is contained
in the (x,_,1*)-query Q2 if and only if there is a con-
tainment mapping from T (Q2) to chases,us,. (T(Q1)).

A proof sketch is given in appendix B.1. Next we
show how to use proposition 4.5 to decide containment
even if (), is a proper (x,_,[*)-query.

In the rest of this section [ will denote either a label
in £ or the symbol _. Observe that for any [ € LU {_},
* = Up<, !P, where [P is short for the concatenation
of p successive I’'s. More generally, let Q(IF,...,0l%) be
a (x,_,0*)-query in which (If,...,0}) are all the occur-
rences of starred symbols (the /;’s are not necessarily
distinct). Such a query is equivalent to an infinite union
of star-free queries:

Q... = J  eur,....nm
0<p1,.-,0<pn

The key to our containment test is that this infinite
union can be replaced with a finite one. For any (x, _, [*)-
query @ let sfs(Q) be the star-free size of ), defined as

the count of all occurrences of non-Kleene-starred labels
in Q. For example, for Q(z,y) « z a.b* y, y *.c z we
have sfs(Q) = 2.

Proposition 4.6 Let Q;, Q2 be two (x, _,1*)-queries and
let k °Z sfs(Q2) + 1. Then, Q1 C Q- if and only if

U Q (17, . ..

0<p1<k,...,0<pr <k

7lﬁn) g Q2

The proof is given in appendix B.2. We can now
give our decision procedure for containment of unions
of (*,_,l*,|)-queries, which has four steps:

Step 1: We first translate away the |, obtaining finite
unions Uy, Us of (%, _,[*)-queries.

Step 2: Next we use proposition 4.6 to obtain from
U; a finite union of star-free queries SFj, which must
be checked for containment in Us.

Step 3: Containment of SF; in U, is decided using
the following easy result:

Proposition 4.7 The union of star-free queries J;._, Qi
is contained in the union of (x, _,1*)-queries U;n:l Q} if
and only if for every 1 < i <mn thereisal < j<m
such that Q; C Q.

Step 4: Finally, checking each star-free (); for con-
tainment in @’ is done using proposition 4.5.

The upper bound for this algorithm is straightfor-
ward, and its proof is in appendix B.3:

Theorem 4.8 Containment of unions of (x,_,l*,|)-queries
is in II5.

5 Lower Bounds

(I*)-queries, (x, _)-queries. The | operator corresponds
to the union and containment for unions of conjunctive
queries is IT-complete [23]. But it turns out that even
in the absence of | we have II5-hardness results, with
completely different proofs:

Theorem 5.1 Containment of (I*)-queries is 115 -hard.
Containment of (x,-)-queries is I15-hard.

Proof: Essentially the same proof works for both frag-
ments. We show the proof for the (I*)-fragment (the
proof for the (x,_)-fragment is a straightforward modi-
fication).

The proof is by reduction from the IT%-complete V33—
SAT problem [20]: the instances of this problem are
first-order sentences ¢ of general form
Vey ... Ve, Jyr ... Jym /\221 C;,
where each clause C; is a disjunction of three literals
which are any of the variables z1,...,2pn,y1,...,Ym Or
their complements. The literals are said to be negative



in the latter case and positive in the former. ¢ is a ”yes”
instance if and only if it is valid.

For every instance ¢, we construct the instance @1 C
()2, where ¢’s variables appear as labels, and ()1 con-
tains an occurrence of z} for every 1 < ¢ < n. We
use the notation Qq(z},...,z%) introduced for propo-
sition 4.6. The containment holds if and only if
Q1(zf, ..., 2kr) C Q2 for all 0 < p;. We claim that
the reduction is defined such that the latter holds if
and only if ¢ has a satisfying assignment which makes
x; false if p; = 0, and true if p; > 0. This makes ¢ valid
if and only if @1 C Q2. The claim is proved after we
give the construction.

Both @1,Q2 are boolean-valued queries, i.e. they
have no distinguished variables. J1’s body is constructed
using copies of a universal gadget. The universal gad-
get (defined shortly) is denoted U(vip,vo,v1,1) and it
consists of a set of conjuncts containing the variables
Vin,Vo,v1 (among others) and an occurrence of [* for
some label [. For every z;, @1 contains a copy of U,
in which v;,,vo,v1 are substituted with the variables
v, ugt, vyt 1 is substituted with z;, and the remain-
ing variables are freshly renamed. We denote this copy
with U(vii,vg*,vi*, ;). @1 also contains a conjunct
r z; v;: for every z;.

For every y;, we add the conjuncts r y; v
vy vy to Q1.

Every clause C; is satisfied by 7 distinct truth as-
signments a1, ...,a7 to the variables in its literals. For
every aj, we add a conjunct s; C; t; to (1. For every
literal of Cj, let u be its variable. If a;(u) = true, add
a conjunct v{’ a s; to @1, otherwise add the conjunct
vy a s instead.

This completes the construction of ()1, up to the
specification of the universal gadget. First we show
the construction of (3. ()2’s body contains copies of a
satisfaction gadget (defined shortly). The satisfaction
gadget is denoted S(win, Wout,!) and it consists of a set
of conjuncts containing the variables w;,, Wy, (among
others) and an occurrence of I* for the same label [ as in
the universal gadget. For every x;, Q2 contains a copy
S(wii, wii,, x;) (in the same sense as copies of U). Q2
also contains a conjunct r z; w}:. For every y; in ¢, Q2
contains the conjuncts 7 y; wi ,wi y; w¥,. For every
clause C;, ()2 contains the conjunct s; C; t;, and for ev-
ery variable u corresponding to one of C;’s literals, Q2
contains the conjunct wy,, a s;. The construction so
far is exemplified in figure 5, on a V32 — SAT instance
for simplicity sake.

We now specify the universal and satisfaction gad-
gets. Recalling the counterexample in proposition 4.4,
U (Vin, 0, v1,1) is a copy of the body of Q, with =, u3,u4,!
acting as v, vg,v1,l, respectively. S(wip, Wout,l) is a
copy of the body of Q', with z,y,[ acting as wi,, Woue, I

We still have to prove the claim. Note that Since

Yi

Yi , Y5
in> Vin Y5 Yo >

x /'y z
w\ﬂx w\ﬂ w\nz
Q: Q lz
! Wout wo\{ woﬁt
a a, a /a
.y Cuf
Figure 4: Example reduction for
¢ =VaVy3z (xVY) A (yV 2)
—— ~——
C1 Co
Q1(z, ..., zb~) contains no Kleene star, T(Q1 (2}, ..., zP))

can be regarded as a semistructured instance, whose
nodes are the variables. Hence Qq(z*,...,207) C Q2
if and only if there is a mapping m from the variables of
Q> to those of T(Q1 (", ...,zP»)) which maps distin-
guished variables to distinguished variables, such that
any conjunct R y of Q2 is satisfied by (m(z), m(y)).
Also note that, by construction, m(w?,
v} for every such m and every variable u in ¢, so m
determines a truth assignment (assigns true to wu if
and only if m(w¥,,) = v}*). Moreover, every conjunct
s; C; t; in Q2 is satisfied by (m(s;), m(¢;)) if and only
if ¢’s clause C; is satisfied under the truth assignment
corresponding to m. So every m corresponds to a truth
assignment satisfying all clauses of ¢. But from the dis-
cussion in the counterexample, it follows that for every
universally quantified variable z; of ¢, m(w3i;) = vy’
if and only if p; = 0, and m(wji,) = vf* if and only if
p; > 0, in other words z; is assigned true if and only
if p; > 0. Since containment holds for all values of p;
(including 0), this means that @)1 C Q- if and only if
every truth assignment to the x;s has an extension to
the y;s that satisfies all clauses of ¢ (or, equivalently, if
and only if ¢ is valid). e

As we pointed out in figure 1, the II5 lower bound
for containment of (x,_,1*,|)-queries follows (indepen-
dently) from three sources: the two lower bounds in the
previous theorem and the one in remark 3.1.

W-queries. The following result shows that a more
liberal nesting of regular path expressions withing the
Kleene star is problematic in terms of complexity of
containment. If we allow concatenations of labels with-
ing the Kleene star, we obtain the W-fragment, whose
lower bound for containment is PSPACE (a proof sketch
is in appendix C):

Theorem 5.2 Containment of W-queries is PSPACE-
hard.

As pointed out in remark 3.2, a bit more nesting than
that yields EXPSPACE-hardness!

) = vg or m(wgy,) =



6 Containment Under Dependen-
cies

The (x,|)-fragment. This is where our technique of
relational translation is most effective. First recall that
by translating | away, any union of (x, |)-queries is equiv-
alent to a union of (x)-queries. Recall also that any set
C of (%,]|)-dependencies is translated into a set 7 (C') of
DEDs. By definition, “the dependencies in C are full”
means that the DEDs in 7 (C) are full.

Since the DEDs in X, are all full, the fact that con-

former is not included in the interpretation of _, while
the latter is 4.

Theorem 6.3 Containment of a (x, _)-query in a union
of (x,-)-queries under full DEDs, but over attributed
models, is undecidable.

The proof is omitted, but very similar to that of the-
orem 6.4.

The (I*)-fragment. Surprisingly, this problem is
undecidable, despite the syntactic similarity of the (I*)
and (x)-fragments. We show a stronger undecidability

tainment of unions of (x, |)-queries under full (x, |)—dependenciersesult’ which holds even if the dependencies are star-

is decidable follows from theorem A.2 and the following
result:

Theorem 6.1 Let C be a set of full (x,|)-dependencies,
and Uy, Us two unions of (x,|)-queries. Let the equiva-

lent unions of (x)-queries be Ui, Qi, respectively J;_, Q.

Then Uy is contained in Uz under C if and only if for
every 1 < i < n there ezists 1 < j < m such that T(Q;)
is contained in T (Q}) under X, UT(C).

The proof exploits the work we already did in sec-
tion 4 and is omitted.

The (*,_)-fragment. As stated, this problem is
open. However, we have two variations of it, one decid-
able, the other one, surprisingly, not.

Variation 1: V-dependencies. Consider a sub-
class of full (x,_)-depenencies, which disallows

e occurences of the wildcard _ in the premise of the
implication, and

e occurrences of x in the conclusion of the implica-
tion (see formula (4)).

We call them V-dependencies.

Theorem 6.2 Containment of unions of (x,_)-queries
under full V-dependencies is decidable.

The proof is omitted. The decision procedure is ba-
sically the same as the one for deciding containment of
unions of (x,_,1*)-queries without dependencies: con-
sider only a finite union of star-free queries, and check
containment chasing with ¥, and (as only difference

from that case) with the translation of the V-dependencies.

Variation 2: Attributed models. Suppose now
that we restrict the full (x,_)-dependencies even more,
forcing their atoms to be star-free. We obtain precisely
the full DEDs. But assume that we allow a special
class of semistructured databases, in which the data
graph can be “adorned” by attaching attributes to its
nodes. More precisely, attributed models have schema
L-Rel U A), where A is a set of binary relations names,
called attributes, who are disjoint from L£. The only
difference between an attribute and a label is that the

free, thus corresponding to purely relational full DEDs.

Theorem 6.4 The containment of an [*-query in a
union of l*-queries in the presence of full DEDs is un-
decidable.

Proof: By reduction from the following undecidable
problem: Given context-free grammar G = (X, N, S, P)
where ¥ is the set of terminals (containing at least two
symbols), N the nonterminals, S € N the start symbol,
P C N x (XU N)* the productions, and L(G) the lan-
guage generated by G, the question whether L(G) = X*
is undecidable [17].

The reduction. Given context-free grammar G =
(%, N, S, P), we construct an instance of containment

U Qo

Q 1)) QSUQcch

01#02€EX
as follows:
Q) « bH*e (b,econstants,H ¢ X UN)
Qs() —~ bSe
Qcyc() «— z HH 2
Qo1,00() & 201y, x02y (01,00 €X)

D consists of the following full, star-free DERPDs
(DEDs):

(fn) Vz,y,z[z HyAhz Hz —y=2]
(inj) Vz,y,z[yHzxANzHz —y=2]

(symb) Vz,y [z Hy— \/ z oyl
oEX
k
(dp) VZ'(),...,.CL'k [/\ Ti1 M; x; = 9 N.’L‘k]
i=1

(for everyp=N — M;...M; € P)

4This model is similar in spirit to the XML data model and
XPath specification [26], where attribute nodes are not reachable
by navigation along the child axis.




All the queries are binary, so the following holds re-
gardless of their construction:

Q ZD RsU Qcyc U Ugﬁégzez Qm,az

<
AT [TEDAQU) #DAQS(T) = DA Quye(T) = 0
A /\0'1 #02€Y Qal,lfz (I) = @]

(5)

We claim that

I TEDAQU) #ODAQs(I) =0 AQeyc(I) =0
/\/\0'1750'262 Qal,lfz (I) = @]
<~
A(w e ¥*) w & L(G)

(6)

which, together with (5), implies that the construction
is a reduction. The intuition behind the claim is that
the instance I that acts as a counterexample for con-
tainment represents a word w which witnesses the non-
containment of £* in L(G).

Proof of claim: =: Assuming the standard inter-
pretation of H*, Q(I) # () implies that there exists a
path of H-edges from b to e in I. Qcyc(I) = 0 im-
plies that all paths of H-edges are simple (no cycles).
I = (fn) A (inj) implies that there is a unique (simple)
path of H-edges from b to e which we call the H-chain.

I = (symb) says that every H-edge has in parallel
with it a o-edge for some symbol o € X, and it follows
from A Qoy,0,(I) = 0 that this edge is unique. The
H-chain thus corresponds to a string w in %*, of length
equal to that of the H-chain. Each H-edge along the
chain corresponds to a position in w.

We make the following subclaim: let z, y be the source,
respectively target nodes of a subchain of the H-chain,
and let u be the corresponding substring of w. Let NV
be any nonterminal such that there exists a derivation
of u in G starting from N. Then there is an N-edge
from z to y in I. The subclaim is shown by induction
on the length of the derivation, and it uses the fact that
IE Apepldy).

Together with Qs(I) = (), the subclaim implies that
there is no derivation of w in G starting from the start
symbol S, in other words w ¢ L(G).

<«: Starting from w, build the minimal model I con-
sisting of (i) an H-chain of length |w|, (ii) the corre-
sponding parallel edges spelling w, and (iii) for every
subchain from node z to node y corresponding to the
substring u of w, and every nonterminal N from which
there is a derivation of u in G, add an N-edge from z to
y. (i) implies (7 | (fn) A (inf)) AQeye(T) = DAQ(I) #
0, (ii) ensures (I = (symb)) A A\ Qoy,0.(I) = 0 and (iii)
guarantees I = A . p(dp). w ¢ L(G) and the minimal-
ity of the model enforce Qs(I) = (.

11

7 Rewriting With Views Under
Dependenciess

[9] introduces the chaseédbackchase (CEB) algorithm
for rewriting queries with views under dependencies °
Due to space constraints we can only sketch here the
idea and we omit proofs. The strategy of the C&B algo-
rithm is to reduce the problem of rewriting with views
to the problem of rewriting under dependencies. If V;
is a view name and @QV; the query that defines it, we
capture V; by writing a pair of inclusion dependencies
that essentially say V; C QV; and QV; C V;. Denote
the set of all such pairs of dependencies with Dy and
let us also assume that we rewrite under an additional
set D of dependencies.

The C&B algorithm on a query ) has two phases.
First the chase of (Q with D U Dy . The dependencies
in Dy that apply are full, so if those in D are full
too, the chase will terminate, with a query we call the
universal plan UP because it explicitly mentions all
views that can be used to answer Q).

The second phase is the backchase which consid-
ers all subgueries of the universal plan UP (subsets of
its conjuncts, mentioning all distinguished variables).
The output of the algorithm is the set of those sub-
queries equivalent to () for whom the removal of any
conjunct compromises this equivalence. We call such
queries minimal rewritings of Q. ¢ The subqueries of
the universal plan are tested for equivalence to @) again
by chasing.

The (*)-fragment. The C&B algorithm applies
almost directly here. We should point out that the
views may not be binary relations and therefore the
rewritings we obtain will not correspond to pure (¥)-
queries, but rather may contain relational atoms with
the view names. We have the following completeness
result for the algorithm:

Theorem 7.1 Let Q be a (x)-query, V be a set of (x)-
views and D be a set of full (x)-dependencies. Let E =
Y. UT(D)UT(Dy) and let UP = chaseg(T(Q)) (the
chase terminates).

Then, for any minimal rewriting Q' of Q with V,
T(Q") is a subquery of UP.

The (%,|)-fragment. In this case the query and
views translate to unions of conjunctive queries and the
(*,|)-dependencies translate to DEDs.

If we plug into the C&B method the extended chase
with DEDs (see appendix A), we obtain a union of uni-
versal plans Uy,...,U, afer the chase phase. Each U;

5This is done in [9] for path-conjunctive queries and depen-
dencies, which generalize the relational setting to a data model
with dictionaries and complex values that also captures the OO
setting.

8Under a monotonic cost assumption minimal queries are
cheaper.



plan is backchased yielding a set of minimal subqueries
S;. Every entry in the cartesian product Sy x ... x S,
corresponds to a set of queries whose union is a rewrit-
ing of T(Q). We call this extension of the C&B algo-
rithm the disjunctive CéB algorithm.

We say that a union of queries is reduced if all mem-
bers are minimal and none of them is contained in an-
other member. The following result implies that the
disjunctive C&B algorithm is complete for the (x,|)-
fragment.

Theorem 7.2 Given a (x,|)-query Q, and one of its
reduced rewritings Q' = Q1 U ... U Q) for every 1 <
j < m, there is some 1 < i < n such that T(Q}) is a
subquery of U;.

8 Conclusions

In this work, we propose a classification of conjunctive
regular queries (CRPQ) and the associated constraint
languages by the expressivity of the regular path ex-
pressions allowed in the conjuncts. We have studied the
complexity of containment, with or without integrity
constraints for the various fragments proposed. For cer-
tain fragments we have also studied the completeness
of a specific kind of algorithm (chase & backchase) for
rewriting with views under constraints.

A subtle observation that can be made based on the
results we have obtained is that _is “more” than the
union (the | actually) of the labels that occur in a
given context. Indeed, one might attempt to contra-
dict the decidability for the (x, |)-fragment by reducing
(%, -)-queries and -dependencies to (*,|)-queries and -
dependencies, using a translation like - = Ii|...|l,|f
where ly,...,[l, are all the labels mentioned in the queries
and dependencies and f is a fresh label. This attempt
fails because it does not capture the equivalence x =
U,.>0 -"» which in turn is essential for the undecidabil-
ity result. Of course, the correct translation an infinite
disjunction of labels takes us out of the languages con-
sidered here.

We conclude that as a query language feature regular
expressions are suprisingly ”naughty”, in the sense that
adding supposedly inocuous operators to some frag-
ments causes surprising increases in complexity. (For
example, adding either x or _ to the fragment of con-

junctive queries does not affect complexity of containment—

still NP—, but adding both raises the complexity to II%.)

We are leaving some interesting problems open. One
is the upper bound on containment in the W frag-
ment. Another open problem is the decidability of con-
tainment under constraints in the (x,_)-fragment. The
reader can see that several open questions can be formu-
lated about rewriting with views in certain fragments.

One interesting direction of future work is the appli-

12

cation of our results to conjunctive queries over XML
documents with XPath [26] expressions in their con-
juncts. (We have submitted a couple of preliminary
results on this to a separate conference.)

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:
From Relations to Semistructured Data and XML. Morgan
Kaufman, 1999.

Serge Abiteboul, Richard Hull, and Victor Vianu. Founda-
tions of Databases. Addison-Wesley, 1995.

Catriel Beeri and Moshe Y. Vardi. A proof procedure for
data dependencies. Journal of the ACM, 31(4), 1984.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Queries
and constraints on semi-structured data. In CAiSE, 1999.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi.
Answering regular path queries using views. In ICDE, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi.
Containment of conjunctive regular path queries with in-
verse. In KR, 2000.

Ashok Chandra and Philip Merlin. Optimal implementation
of conjunctive queries in relational data bases. In STOC,
1977.

Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon
Levy, and Dan Suciu. A Query Language for XML. In
Proc. of 8th International WWWW Conference, 1999.

Alin Deutsch, Lucian Popa, and Val Tannen. Physical Data
Independence, Constraints and Optimization with Universal
Plans. In VLDB,1999.

Mary F. Fernandez, Daniela Florescu, Jaewoo Kang,
Alon Y. Levy, and Dan Suciu. Strudel: A web-site man-
agement system. In SIGMOD, 1997.

Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query con-
tainment for conjunctive queries with regular expressions.
In PODS, 1998.

E. Gridel. On the restraining power of guards. Journal of
Symbolic Logic, 64, 1999.

Gosta Grahne. Dependency satisfaction in databases with
incomplete information. In VLDB, 1984.

Gosta Grahne and Alberto O. Mendelzon. Tableau tech-
niques for querying information sources through global
schemas. In ICDT, 1999.

[11

(12]
(13]

(14]

Gosta Grahne and Alex Thomo. An optimization technique
for answering regular path queries. In WebDB, 2000.

Gosta Grahne and Alex Thomo. Algebraic rewritings for
optimizing regular path queries. /CDT, 2001.

J. Hopcroft and J. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley, 1979.

Frank Neven and Thomas Schwentick. Query automata. In
PODS, 1999.

Frank Neven and Thomas Schwentick. Expressive and effi-
cient pattern languages for tree-structured data. In PODS,
2000.

Christos H. Papadimitriou. Computational Complezity.
Addison-Wesley, Reading, Massachusetts, 1994.

Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tan-
nen. A Chase Too Far? In SIGMOD, May 2000.

Lucian Popa and Val Tannen. An equational chase for path-
conjunctive queries, constraints, and views. In ICDT, 1999.



[23] Yehoushua Sagiv and Mihalis Yannakakis. Equivalences
among relational expressions with the union and difference
operators. Journal of the ACM, 27, 1980.

[24] P. van Emde Boas. The convenience of tilings. In
A. Sorbi(Ed.) Complezity, Logic, and Recursion Theory,
pp. 331-363, 2000.

[25] W3C. Extensible Markup Language (XML) 1.0.
W3C Recommendation 10-February-1998. Available from
http://wuw.w3.org/TR/1998/REC-xm1-19980210.

[26] W3C. XML Path Language (XPath) 1.0. Ww3C
Recommendation 16 November 1999. Available from
http://www.w3.org/TR/xpath.

[27] Mihalis Yannakakis and Christos Papadimitriou. Algebraic
dependencies. JCSS, 25, 1982.

A Chasing with Disjunctive Em-
bedded Dependencies

Recall the disjunctive embedded dependencies (DEDs)
defined in section 2 (see formula (4)). Full DEDs are
restrictions of general form (4) to disallow existentially
quantified variables on the right hand side of the im-
plication (k; = 0 for every ). Satisfaction of DEDs is
defined as expected.

Chase with DEDs. Let d be a DED of general form
4, @ be a conjunctive query and let h be a homomor-
phism from ¢ into (). We say that the chase step of
Q@ with d using h is applicable, if h allows no extension
which is a homomorphism from ¢ A 1; into @ for any
1 < i <. In this case, the result of applying this chase
step is the union of queries Uli:1 @;, where each Q); is
defined as @ A ¥;(h(z1),...,h(zn), f1,---, [r;), where
the f;’s are fresh variables.

For example, chasing Q(z,y) + a(z,y) with VuVo [a(u,v) —,

b(u,v) V c(u,v)] results in Qp U Q. with Qu(z,y) +
a(z,y),b(z,y) and Qc(z,y) + a(z,y), c(z,y).

If we continue applying chase steps to each @; (with
DEDs from a set D), we build a chase tree rooted at @,
whose subtrees are the chase trees rooted at the @;’s.
The leaves of the chase tree are conjunctive queries to
which no chase step with any DED from D applies. In
general, the chase may diverge, but when it terminates,
we call its result the set of leaves of the chase tree, de-
noted chasep(Q). If we fix the dependencies and the
schema, arities, the finite tree produced by a terminat-
ing chase has depth polynomial in the size of Q.

Theorem A.1 For a fized set of full DEDs D, given
conjunctive query Q, the chase tree obtained by chasing
Q with D is finite. Moreover, for all instances satisfy-
ing the DEDs in D, @ is equivalent to U;n:1 Qm, where
@1,---,Qm are the leaves of the chase tree.

Theorem A.2 Given conjunctive queries Q1,Q2 and
the set D of full DEDs, Q1 is contained in Q2 under
D if and only if for every leaf QL of the chase tree

13

obtained by chasing Q with D, there is a containment
mapping from Qo into QL.

This extension was already suggested by Beeri and
Vardi in [3], and for a restricted kind of disjunctive
dependencies, it was performed by Grahne [13], and
by Grahne and Mendelzon [14], who generalize chase
-sequences to chase-trees. Containment of unions is re-
duced to containment of single queries:

Theorem A.3 Let D be a set of full DEDs and let
Ui = U, Qi and Uy = U;"Zl QY be two unions of
conjunctive queries. Then, Uy is contained in Uy under
D if and only if for every 1 < i < n there erists a
1 < j <m such that Q; is contained in Q;- under D.

B Upper Bound Proofs

B.1 Proof of proposition 4.5

Proof sketch: The ”if” direction is trivial, because of the
one-to-one correspondence from semistructured databases

to X;+-instances. For "only if”, regard chasey.,uy,. (T(Q1))

as a X, U Xj«-instance whose nodes are T(Q1)’s vari-
ables and whose conjuncts a(z,y) determine that (z,y)
belongs to the interpretation of label a. The crucial ob-
servation is that this instance is minimal, in the sense
that pairs of nodes not connected by a path of l-edges
are ruled out from [*, for any label I € LU{_}. This fol-
lows from the absence of I* from 7(Q1) to begin with,
and from the fact that the chase with X, U ¥« only in-
troduces [* between variables that are connected by I-
edges. But minimal ¥,U3Y;--instances are in one-to-one
correspondence with semistructured databases, which
together with the hypothesis implies the existence of a

containment mapping from 7(Q-) into chases, us,. (T (Q1))-

B.2 Proof of proposition 4.6

The ”only if” part is trivial. For the ”if” part, ob-
serve that each T(Q1(I",...,I2")) can be regarded as
a semistructured database, whose nodes are the vari-
ables. This database contains a simple path simple; of
l;i-edges and length p; for every 1 < i < n. The only
difference between these databases lies in the lengths of
the simple paths simple;.

Denote with B the database corresponding to
T(Qq1(I%,...,IF)). Tt is easy to see that the tuple o con-
sisting of ()1’s distinguished variables is in the answer
of Q1 when applied to B. By hypothesis and by defini-
tion of the answer of a CRPQ, there exists a mapping
m from the variables of ()2 to the nodes of B such that
the distinguished variables of Q2 map to o and every
conjunct z R y of Q2 is satisfied by (m(z), m(y)). Re-



call that this means that there exists a path pathg from
m(z) to m(y), whose labels spell out a word from L(R).

We claim that m determines a mapping from @2
into the databases corresponding to 7(Q1 (17, ...,I2"))
(for p1,...,pn > k), such that every conjunct z R y
of Q2 is satisfied by (m(z),m(y)). This implies the
proposition, because for every database I, each tuple
tin T(Q1(F,...,I12n))(I) is the image of Q1’s distin-
guished variables under some homomorphism A, and
hence ¢ is the image of ()2’s distinguished variables un-
der h om. It is easy to check that h o m satisfies the
conjuncts of Q). Therefore ¢ belongs also to the answer
of Q2. In order to prove our claim, we distinguish two
cases.

Case 1: If every conjunct z R y in Q)5 is satisfied by
a path pathg from m(z) to m(y) which has no edge in
common with simple; for all 1 < ¢ < n, then m is a
mapping into all databases T(Q1(1y*,...,IE*)), where
m satisfies all of (Q2’s conjuncts.

Case 2. Assume now that, given m from Q2 to B, Q2
has a conjunct R y such that for any choice of pathg
from m(z) to m(y), there is a 1 < j < m for which
simple; has at least one edge in common with pathg.
Let s1,. .., sq be the list of nodes from simple; (ordered
by distance from simple;’s source) which are either its
endpoints or are in the image of m (by assumption,
a > 3). For every 1 <r < a—1, define the rth interval
to be the section of simple; starting at s, and ending
at spq1.

We make the subclaim that there existsal < g < a—
1 such that for all conjuncts z R y in ()2, either there is
a path pathg from m(z) to m(y) satisfying the conjunct
and not including the gth interval, or R contains [ as
a subexpression. Indeed, assume the contrary towards
a contradiction: then every interval is included in a
path that satisfies some conjunct z R y where R is
star-free. This means that every one of simple;’s edges
corresponds to at least one occurrence of the label /; in
()2, whence it follows that p;, the length of simple;, is
less than or equal to sfs(@Q2) = k — 1. This contradicts
the fact that for B, p; = k, which proves our subclaim.

By the subclaim, we can extend the gth interval with
arbitrarily many [;-edges without compromising m’s
property of satisfying every conjunct in ()2. This proves
our claim and concludes the proof of the proposition. e

B.3 Proof of theorem 4.8

We prove equivalently that non-containment is in ¥, in
fact we show that it is decidable by an NP machine with
an NP oracle. By proposition 4.6, it is enough if the ma-
chine exhibits a star-free query in the finite union which
is not contained in Us. To this end, the machine guesses
@1 in SFy and Q2 € Us, guesses 0 < p1,...,pp <
sfs(Q2), constructs T = T(Q1(1}*, ..., 12»)) (in PTIME)

14

computes chases,. (T') (in PTIME, because all depen-
dencies in X, U ¥« are full), asks the oracle if there is
a containment mapping from 7 (Q)2) into the chase re-
sult, and answers ”yes” if and only if the oracle answers

” no” )

C Lower Bound Proofs

Proof of theorem 5.2.

Proof sketch: Along the lines of [6], we reduce
containment to the PSPACE-complete ”corridor tiling
problem” (CTP) ([24]).

An instance of CTP is a set A of tile types, along
with two binary relations V', H over A, which specify
the vertical, resp. horizontal compatibility between tile
types. We are also given two special tile types t,,1y,
and an integer n. A solution to the CTP is a tiling of
the corridor of width n in the plane using tiles of types
in A, starting in the top left corner with a tile of type
ts, ending in the bottom right corner with a tile of type
ty, such that the compatibility relations are satisfied.

An instance of the CTP is reduced to an instance of
containment of W-queries as follows:

AllTilings(z,y) =z ts "~ 1)t "ty

n—2
IllegalTilings(z,y) = (U U (M) Ryt TR0
k=0 (t1,t2)¢H

U‘D U @ far etz y

k=0 (t1,t2)¢V
We answer “yes” if and only if

AllTilings(x,y) € IllegalTilings(z,y)

D Rewriting with views: an ex-
ample
Recalling the motivating example from section 1 and
denoting with Div the relational translation T (Divulge),
we have further translate as follows:
Div(v,w) + *(start,u), name(u,v), tells(u,w)
and the inclusion dependencies capturing it are
(cpiw) Yu,v,w [ *(start,u) A name(u,v)
Atells(u,w) — Div(v,w) |
(bpiv) Yv,w [ Div(v,w) — Ju *(start,u)
Aname(u,v) A tells(u,w) ]
Furthermore, we have TA = T(A), TA' =
tell= T (tell All), where:

T(AY,



TA « x(start,z), name(z,z1), John(z1,y), *(z,22),

tells(za, z3), name(z3,n)

tell = Vz,y, w1, ws [ *(z,w1), tells(wy,ws),
*(wa,y) = tells(z,y) ]

TA" + Div(z,y), John(z,z), name(y,n) o

Phase 1: Chase. T(A) chases with (bases),
(refly), then (7 (tellAll)) to:

Ay « x(start,z), name(x, z1), John(z1,y), *(z, 22),
tells(z2,23), N(z2), N(23), *(23,23),

tells(x, z3), name(zs,n)

By bringing the conjunct tells(x, z3) into Ay, the chase
step with (tell) enables a further chase step of A; with
Cpiv, Whose effect is to explicitly “chase-in” the view
Div, adding the goal Div(z1, 23) to A;. Continuing the
chase until it terminates, we obtain the universal plan
U P whose body is defined by

x(start, ), name(z, z1), John(z1,y), *(z, 22),
tells(zz, 23), tells(z,z3), name(zz,n), Div(z1,23),
x(start, start), x(z,x), *(21,21), *(22,22),
*(23,23), *(y,9), *(n,n),

x(x,21), *(21,y), *(22, 23), *(x,23), *(z3,n),
(

(

x(start, z1), *(start,zs), *(start,z3), *(start,y),

.'E',y), *(SL',TL), *(ZQ,TL),
N(start), N(

*

where the conjuncts in the third and fourth lines were
introduced by chasing with (refl;), those in lines 5 to 7
by chasing with (trans;), and in line 8 by chasing with
(base;), for appropriate instantiations of {.

Phase 2: Backchase. Note that, up to renaming
of variables, T(A') is a subquery of UP. It is easy to
check that 7(A') is minimal, and equivalent to 7 (A).
This is done by chasing 7 (A) with (bpiy). We can
straightforwardly retrieve A’ from 7 (A'), thus obtain-
ing a rewriting of A using Divulge.

.CE), N(y)a N(n)a N(zl)a N(Z2), N(Z3)

15



	Optimization Properties for Classes of Conjunctive Regular Path Queries
	Recommended Citation

	Optimization Properties for Classes of Conjunctive Regular Path Queries
	Abstract
	Comments

	tmp.1115571280.pdf.UdAIA

