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Pyrolysis Temperature and Time Dependence of Electrical Conductivity
Evolution for Electrostatically Generated Carbon Nanofibers

Abstract
Carbon nanofibers were produced from polyacrylonitrile/N, N-Dimethyl Formamide (PAN/DMF)
precursor solution using electrospinning and vacuum pyrolysis at temperatures from 773-1273 K for 0.5, 2,
and 5 h, respectively. Their conductance was determined from I – V curves. The length and cross-section area
of the nanofibers were evaluated using optical microscope and scanning probe microscopes, respectively, and
were used for their electrical conductivity calculation. It was found that the conductivity increases sharply
with the pyrolysis temperature, and increases considerably with pyrolysis time at the lower pyrolysis
temperatures of 873, 973, and 1073 K, but varies, less obviously, with pyrolysis time at the higher pyrolysis
temperatures of 1173 and 1273 K. This dependence was attributed to the thermally activated transformation
of disordered to graphitic carbons.
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Pyrolysis Temperature and Time Dependence
of Electrical Conductivity Evolution for

Electrostatically Generated Carbon Nanofibers
Yu Wang, Jorge J. Santiago-Aviles, Rogerio Furlan, and Idalia Ramos

Abstract—Carbon nanofibers were produced from poly-
acrylonitrile/N, N-Dimethyl Formamide (PAN/DMF) precursor
solution using electrospinning and vacuum pyrolysis at temper-
atures from 773–1273 K for 0.5, 2, and 5 h, respectively. Their
conductance was determined from – curves. The length and
cross-section area of the nanofibers were evaluated using optical
microscope and scanning probe microscopes, respectively, and
were used for their electrical conductivity calculation. It was
found that the conductivity increases sharply with the pyrolysis
temperature, and increases considerably with pyrolysis time at the
lower pyrolysis temperatures of 873, 973, and 1073 K, but varies,
less obviously, with pyrolysis time at the higher pyrolysis temper-
atures of 1173 and 1273 K. This dependence was attributed to
the thermally activated transformation of disordered to graphitic
carbons.

Index Terms—Carbon, conductivity measurement, electrostatic
processes, nanotechnology.

I. INTRODUCTION

E LECTROSTATIC generation, or electrospinning, uses
electrostatic forces to spin fibers from a precursor solu-

tion. So far, the technique has been mostly used to produce
ultrafine polymer fibers [1]–[3]. Chunet al. [4] and Wanget
al. [5] pyrolyzed electrospun polyacrylonitrile (PAN) fibers in
the vacuum into carbon nanofibers, whose diameter is in the
range of 100 nm, much less than that of carbon fibers produced
by other methods of spinning [6]–[8]. Wanget al. [9] also
synthesized ultrafine piezoelectric (PZT) fibers by sintering
electrospun metal alkoxide fibers. Because of their high spe-
cific surface area, electrospun ultrafine fibers can be used as
high performance filters, scaffolds in tissue engineering, and
sensors. These applications become possible only after enough
knowledge of the electrostatically generated fibers is gained.
However, many properties remain to be investigated. Take
electrical conductivity as an example. Although these fibers
can be very important in sensor applications, so far only a few
investigators have looked into it. Norriset al. [10], using the
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indirect four-point probe method, measured the conductivity
of their electrospun nonwoven ultrafiber mats of polyaniline
doped with camphorsulfonic acid blended with polyethylene
oxide (PEO). MacDiarmidet al. [11] obtained – curves of
single 50 wt%PAn.HCSA/PEO fibers. The lack of conductivity
data of electrospun carbon nanofibers can, to a large degree,
be attributed to the difficulties in evaluating the cross-section
area of the fibers. The authors evaluated the cross-section
area using scanning probe microscope (SPM), and measured
the room temperature electrical conductivity of PAN-based
carbon nanofibers pyrolyzed at 1073 K [5]. This paper reports
pyrolysis temperature and time dependence of the electrical
conductivity evolution of carbon nanofibers.

II. EXPERIMENT

Commercial PAN powder and N, N-Dimethyl Formamide
(DMF) (Aldrich), in a ratio of 800 mg PAN to 10 cmDMF,
were used to prepare the precursor solution. Thermal gravi-
metric analysis (TGA) and thermal differential analysis (DTA)
were conducted in Argon atmosphere, using a Simultaneous
Differential technique module (SDT 29600, TA Instrument),
from room temperature to 1573 K at a heating rate of 10 K/min.

Single crystal silicon wafers (p-type, 0.1cm), with an sil-
icon oxide layer 150 nm thick, were used as substrates. Be-
fore the deposition, arrays of 1 mm1 mm or 50 m 50 m
gold contacts were fabricated onto the oxidized surface using
lithography and vacuum evaporation. The large sheet resistance
of silicon oxide makes contacts almost electrically insulated to
each other. In fact, there is no detectable conductance between
two neighboring contacts without any fiber. Electrospinning was
conducted in a homemade setup reported in details previously
[5]. The deposition was conducted for a very short time so that
only single fibers ran between two neighboring gold contacts.

The as-deposited samples were pyrolyzed in a Brew Model
466-S vacuum furnace at 773, 873, 973, 1073, 1173, and 1273 K
for 0.5, 2, and 5 h, respectively. The vacuum was maintained
at pressures lower than 1.33 10 Pa. The substrates, with
50 m 50 m gold contact pad arrays, were used only for
fibers pyrolyzed at 773 and 873 K. All other samples, pyrolyzed
at higher temperatures, used 1 mm1 mm gold contact pad
arrays.

An HP Model 4145B semiconductor parameter analyzer
was used to measure the– characteristics of the carbon

1536-125X/03$17.00 © 2003 IEEE
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(a)

(b)

Fig. 1. (a) TGA and (b) DTA curves of the precursor PAN/DMF solution.

nanofibers at room temperature. The testing voltage ranged
from 20 to 20 V, with a step of 0.1 V. Measurements were
conducted on the same segment of fiber for 10–20 times under
the same conditions.

An optical microscope was used to observe the fiber after
pyrolysis and to measure their length. A Digital Instruments
Dimension 3000NS-III SPM, operated in tapping mode, was
used to record the height and amplitude images of the fibers
as data files. Offline image processing software was used to
obtain the average cross-section profile, from which cross-sec-
tion area was evaluated. To ensure reliable results, a scanning
electron microscope (SEM) was used to record the image of
fibers, from which the horizontal diameter of the imaged fibers
was also evaluated. The gold contact pads served as excellent
internal length references. The conductivity was finally deter-
mined using , where , , and are conductance,
average cross-section area and length of the fibers, respectively.

III. RESULTS

The TGA-DTA curves (Fig. 1) show a dramatic weight loss
and an endothermic DTA peak between room temperature and
473 K, indicating the solvent (DMF) evaporation. Beyond 473
K, weight decreases at a much slower rate, from 8.34 wt% at 473
K to 3.88 wt% at 873 K, and to 3.35 wt% and 2.62 wt% at 1273
and 1573 K, respectively. The exothermic DTA peak centered

Fig. 2. I–V curves of carbon nanofibers pyrolyzed at different temperatures.

around 570 K [Fig. 1(b)] is produced by PAN decomposition
[12].

Fig. 2 shows the – curves of carbon fibers pyrolyzed at
different temperatures for 0.5 h. Their linearity implies an ohmic
contact between the contact pad and the fibers. The linear slope,
or the conductance of the fibers increases sharply with the
pyrolysis temperature.

Fig. 3 shows SPM height and amplitude images of a typical
single fiber. The apparent semicircular profile of the cross-sec-
tion [Fig. 3(c)] may be misleading because the cone-shaped tip
could not track the lower half of the cross-section [Fig. 3(d)].
However, the height of the fiber, or the vertical diameter, is real.
The full width at half maximum (FWHM) was taken as the hor-
izontal diameter of the fibers, since the measured values of ver-
tical and horizontal diameters on the same cross-section are dif-
ferent, and the cross-section is elliptical rather than circular, as
previously supposed.

The SEM image of the fiber revealed by SPM in Fig. 3 clearly
shows its irregularity (Fig. 4). The average horizontal diameter
of the fiber was measured to be 120 nm, approximately the same
as the FWHM value obtained from SPM cross-section profile,
justifying the use of FWHM as the horizontal diameter. This
paper uses the diameter values measured from SPM height im-
ages since they give both horizontal and vertical diameters.

Pyrolysis at 773 K did not generate a conductance high
enough as to be detected. Since the detection limit of the
measurement system is estimated to be 0.2 S/m, the conduc-
tance of the fibers pyrolyzed at 773 K must be lower than this
value. At temperatures higher than 873 K, the conductivity
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Fig. 3. SPM micrograph of carbon nanofiber and its cross-section profile.

Fig. 4. SEM image of the same fiber revealed by SPM in Fig. 3.

increases sharply with pyrolysis temperature. It also increases
with the pyrolysis time at lower pyrolysis temperatures (873,
973, and 1073 K) [Fig. 5(a)], but levels off at higher pyrol-
ysis temperatures (1173–1273 K) [Fig. 5(b)]. In fact, at the
pyrolysis temperature of 1173 K, the conductivity decreases
slightly with the pyrolysis time. Such abnormal independence
may be attributed to the increased porosity, and needs further
investigation.

IV. DISCUSSIONS

A. Error Analysis

The error in conductivity measurement arose mainly from
two sources: 1) the contact resistance between the fibers and
the contact pads, and 2) the irregularities of the fibers, and con-
sequently, the difficulties in the evaluation of the cross-section
area. To reduce the effect of the contact resistance, gold contact
pads were used. They were heat-treated together with the fibers

during the vacuum pyrolysis. The diffusion of carbon and gold
atoms between the contacts and the fibers not only enabled an
ohmic contact (Fig. 2), but also reduced the contact resistance.
Furthermore, the distance between the neighboring contacts was
intentionally kept not too small: 50m for fibers pyrolyzed at
773 and 873 K and 1 mm for fibers pyrolyzed at higher temper-
atures, so that the resistance of the fibers itself is much larger
than the contact resistance. Fiber samples too irregular were dis-
carded for reliable measurement, and the average cross-section
profiles were used to evaluate the cross-section area.

B. Change During the Pyrolysis of the Precursor Fiber

The pyrolysis process in this paper differs from the gen-
eral case in two respects: the precursor solution contains
92% (weight) DMF and the precursor fibers contain some
residual DMF even if the solvent mostly evaporated during
the electrospinning; the precursor fibers were pyrolyzed in
the vacuum, where the residual oxygen content is minimized.
The dramatic weight loss and endothermic process between
room temperature and 473 K, shown by TGA and DTA curves
(Fig. 1), indicates the evaporation of DMF. Above 473 K,
the weight remains about 8.34 wt%, very close to the PAN
concentration of the precursor solution. Considering the fact
that the volatile DMF kept evaporating as soon as it is loaded
into the pan, and before starting the analysis, it is reasonable to
think that DMF has totally evaporated by 473 K. Although the
DMF content of our precursor solution and precursor fibers are
quite different, the TGA-DTA curves of the precursor solution,
shown in Fig. 1, may truly represent the pyrolysis change of
precursor fibers at temperatures higher than 473 K.

During the complicated pyrolysis process, PAN generally
goes through stabilization between 473 and 673 K, and
carbonization at higher temperatures. Stabilization involves
dehydrogenation, cyclization and, if in the air, oxidation.
The exothermic process is due to the uncontrolled thermal
polymerization of the nitrile group with the release of the
heat of polymerization. During carbonization the fibers lose
noncarbon elements, as well as partial carbon, in the form
of volatile byproduct gases, such as HCN, NH, and H ,
and a graphite-like structure is formed. The basic structural
unit (BSU) of carbon fibers consists of a stack of conductive
turbostratic layers. The BSU can split, twist, fold, and join other
BSUs to form microdomains, which can also split, twist, fold,
and join, etc., to form carbon fibers. Thus, the fine structure
of carbon fibers is not a homogeneous, monolithic carbon but
rather a somewhat chaotic collection of BSUs formed into
microdomains interspersed with uncarbonized intermediate
products and pores [6]–[8]. At low temperatures, or immedi-
ately after stabilization, the oriented BSUs are isolated, and
the fibers are not conductive. After the disappearance of the
heteroatoms, which is believed to take place between 600 and
873 K, isolated columns of materials are formed, followed by
microdomains as the columns form more coherent structures.
Once the microdomains become continuous, and the layers
of turbostratic carbon appear across the fibers, constituting a
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(a)

(b)

Fig. 5. Pyrolysis (a) temperature and (b) time dependence of the conductivity.

conducting channel, the fibers start to be conducting. This takes
place around 873 K.

The formation of graphite carbon at near 873 K was con-
firmed by an earlier Raman scattering investigation. Raman
spectra showed coexistence of graphitic and disordered carbons
[5]. It is interesting that although weight decreases only slightly
from 3.88% at 873 K to 3.35% at 1273 K, the conductivity
increases by almost five orders of magnitude. It is strongly
suggested that the change in this temperature range is not
mainly the extraction of heteroatoms but rather the transfor-
mation of disordered carbons and isolated BSUs to continuous
graphite domains, or the early stage of graphitization. This
process is a kinetically thermally activated process. The higher
pyrolysis temperature and/or the longer pyrolysis time, the
higher graphite molar fraction in the pyrolyzed carbon fibers.
So, the increase of pyrolysis temperature results in a sharp
increase in the conductivity [Fig. 5(a)]. The effect of time is
more pronounced at lower temperatures than at higher temper-
atures, because it takes a longer time for the system to reach its
quasiequilibrium state at lower pyrolyzing temperatures than at
higher temperatures.

V. CONCLUSION

The conductivity of PAN-based carbon nanofibers produced
by electrospinning was measured. It increases sharply with the

pyrolysis temperature, and also increases considerably with py-
rolysis time at lower pyrolysis temperatures (873, 973, and 1073
K), but varies less obviously with pyrolysis time at higher py-
rolysis temperatures (1173 and 1273 K).
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