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Harry L. Goldsmith, Ph.D.

Abstract
In honor of Dr. Harry L. Goldsmith's 75th birthday, we present a collection of articles from his collaborators
and colleagues to commemorate Harry's outstanding contributions to the field of Biorheology. On any
particular day, bioengineers around the world may find themselves fortunate enough to peer through a
microscope to observe molecular or cellular level phenomena manifested before their eyes. Such observations
of single molecule mechanics or blood flows or cellular deformation remind us of the power of clever
experimental design and rigorous theoretical constructs as well as the complex beauty of dynamical systems in
nature. In this spirit, the investigations reported in this issue of the Annals entitled Cellular Biorheology and
Biomechanics have followed down many of the research paths pioneered by Dr. Harry Goldsmith.
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Harry L. Goldsmith, Ph.D. 
 
In honor of Dr. Harry L. Goldsmith's 75th birthday, we present a collection of articles 
from his collaborators and colleagues to commemorate Harry's outstanding contributions 
to the field of Biorheology. On any particular day, bioengineers around the world may 
find themselves fortunate enough to peer through a microscope to observe molecular or 
cellular level phenomena manifested before their eyes. Such observations of single 
molecule mechanics or blood flows or cellular deformation remind us of the power of 
clever experimental design and rigorous theoretical constructs as well as the complex 
beauty of dynamical systems in nature. In this spirit, the investigations reported in this 
issue of the Annals entitled Cellular Biorheology and Biomechanics have followed down 
many of the research paths pioneered by Dr. Harry Goldsmith.   
 
Harry Goldsmith, born May 11, 1928 in Nurnberg Germany, obtained his BA (1950), and 
B.Sc. (1951) from Oxford University and his PhD (1961) from McGill University where 
he maintained his entire research career for over fifty years. While at McGill, he worked 
closely with eminent hydrodynamicists and physiologists such as Stanley G. Mason. 
Theo G. M. van de Ven, and Mony M. Frojmovic. Rising to the rank of Full Professor in 
the Department of Medicine, Harry also served as the Director of the Division of 
Experimental Medicine from 1976 to 1995. Notable awards include the Landis Award of 
the American Microcirculatory Society (1984) and the Poiseuille Medal of the 
International Society of Biorheology (1984). He served as President of the International 
Society of Biorheology (1983-86) and President of the North American Society of 
Biorheology (1990-92) and continues to serve as the Editor-in-Chief of Biorheology 
(1994-present). 
 
The flow of ideas and methodologies at work in the scientific investigations captured in 
panoramic view in this issue also is a measure of the breadth of Harry's continuing 
impact. When today’s generation of scientists and engineers see certain images in talks 
and textbooks, it is easy forget that it was Harry who first obtained the data in the days 
before high speed digital cameras and image processing software, off-the-shelf numerical 
packages, and lab-on-a-chip microfluidic devices.   
 
Microrheology of Human Blood 
Through frame by frame tracking (cinephotomicrographs!) of rigid discs, fluid droplets, 
hard spheres, red blood cells (RBC), rouleux, platelets, and red blood cells, Harry helped 
define the microrheology of blood flow. RBC rotational dynamics and deformation, 
liquid droplet deformation, enhanced radial dispersion, inward migrational drift, blunted 
velocity profiles, two-body collisions, and doublet rotation became the tools to 
understand the microscopic forces on particles within flow. In a classic example, Harry 
investigated the migratory paths of rigid and deformable particles in viscous flow both 
when Reynolds numbers was low (negligible inertial effects), and at larger Reynolds 
number when inertial effects are significant.1 These studies demonstrated the importance 
of RBC fluidity and migratory drift in controlling the radial distribution of both the more-
deformable RBCs and less-deformable white blood cells (WBCs) in blood flow.   
 In this issue of the Annals, this attention to particle microphysics is reflected in papers on 
the hematocrit dependence of blood viscometry from the Takeshi Karino laboratory and 
large scale computational simulation of deformable leukocytes from the Michael King 



laboratory. Lance Munn also provides a detailed discussion of blood cell interactions and 
segregation in flow. 
  
Disturbed Flow and Vascular Disease 
By tracking individual cells within complex flows in flow expansions and arterial 
bifurcations, the resolution of fluid mechanics on the length scale of single cells was 
united with large scale macroscopic hemodynamics. For example, in one of many 
publicationswith T. Karino2 on platelet deposition downstream of a sudden expansion, a 
stenosis analog, the enhanced accumulation of platelets on collagen within the 
recirculation zone was studied as a function of flow pulsatility, Reynold’s number and 
hematocrit. In other work, particle trajectories in 30o, 90o and 150 o T-junctions were 
visually striking with spiraling vortexes set up opposite the flow divider with well 
defined flow separation and reattachment points, a site prone to early plaque formation 
(Fig. 1). This dynamical complexity was fully apparent well before its use for chaotic 
laminar mixing now exploited in microfluidic devices.  In contrast, rather orderly 
streamlines were often found at the flow divider in many configurations, a region spared 
of early disease in coronary atherosclerosis but susceptible to cerebral aneurysm. 
 
In understanding the geometric localization of boundary layer attachment, vortices, and 
reversing flows, endothelial function became an interest in the context of atherosclerotic 
plaque localization, intimal hyperplasia, and graft distal anastomotic hyperplasia. 
Research of flow on endothelial function, in laminar or disturbed flows, as well as large 
scale simulation of oscillatory flow through flexible bifurcations is now common.  In this 
issue, papers from the laboratories of Peter F. Davies, Shu Chien, Scott L. Diamond, and 
Larry V. McIntire provide coverage of topics in endothelial mechanobiology.Collisions 
of Activated Cells in Sheared Suspensions 
In activated blood flow, platelets moving in faster streamlines will have collisions with 
platelets in slower streamlines.  The rate of single cell consumption into aggregates can 
be measured in linear shear fields or parabolic shear fields. On estimating the rate of 
collisions, the sticking probability can be determined.  For activated platelets undergoing 
aggregation in tube flow, Bell et al.3found that activated platelets are fabulously sticking, 
with about up to 3 of 10 collisions resulting in adhesion due to GPIIb/IIIa-fibrinogen 
cross-bridging. 
 
Harry contributed to studies of cell and particle interaction under flow by developing two 
novel and clever experimental systems. In the first setup called the ‘travelling microtube 
apparatus4, cell suspensions were subject to laminar viscous flow through a glass tube 
using gravity feed between infusion and collecting reservoirs. The slide and reservoirs 
were mounted on a jig and attached to the vertically sliding platform of a hydraulically 
driven traveling microtube apparatus. The translational and rotational motion of doublets 
could be viewed in this system with a camera attached to a horizontally positioned 
microscope by moving the sliding platform upward at a velocity equal to that of the 
downward-flowing particles. In another novel experimental setup, Harry and colleagues 
developed a rheoscope which consists of a counter-rotating transparent cone and plate 
viscometer mounted on the stage of an inverted microscope. In this system, the cone and 
plate were rotated with equal angular velocity in opposite directions such that a layer of 
zero translational velocity was located in the midplane between the cone and plate. Cell 
collisions and doublet could be viewed for extended periods of time at this midplane. 



Aggregation kinetics, collision efficiency, doublet lifetime and period of rotation data 
could be collected using high-speed videomicrosopy. 
 
To complement these experimental systems, existing hydrodynamic theorywas extended 
to derive explicit expressions for the nature and magnitude of normal and shear forces 
applied in the above experimental systems. These experiments and theory together 
provided some of the first estimates on the magnitude of hydrodynamic forces that 
prevail at the cellular level various human vascular pathophysiologies during 
inflammation and thrombosis.  The continual development of defined flow systems for 
blood diagnostic testing relies on controlling the frequency of cellular collisions and the 
forces applied upon adherent cells. In the current issue, Mony Frojmovic presents 
detailedarguments outlining the rationale supporting the application of flow devices and 
biorheology principles in the clinical setting to assess the drug and clinical outcome 
efficacy. 
 
Adhesion: Microrheology and Molecular Mechanics 
With a long track record in single cell tracking and platelet aggregation, it was a natural 
extension of Harry’s interests to begin quantification of the mechanics of receptor 
mediated adhesion.  A small story helps to capture the precision of Harry’s experimental 
approach, the range of his understanding of molecular scale and macroscale phenomenon, 
and his attention to important problems.  In a 1983 study of fixed sphered RBC 
undergoing two-body collision, adhesion, and doublet rotation in the presence of anti-B 
antiserum7, Harry estimated the hydrodynamic force to break up a doublet formed at high 
antibody dilution to be Fh = 6 x 10-11 N and noted that this was appreciably less force 
than necessary to break a C-C bond. The published “Discussion of the Paper” captures a 
moment in time some 25 years ago when 60 pN (or 6 μdynes) became a first estimate of 
the force to break an antibody-antigen bond holding a doublet together in a flow field: 
 

[R. M. Hochmuth (Duke University)]: I am interested in those forces of separation you had 
between your beads. Did they work out to be about 6 x 10-6 dynes? I cannot think in terms 
of nanonewtons, though. 

[Goldsmith]: They were 6 x 10-11 N.  You divide by 105 to get it back to dynes from Newtons. 
[Hochmuth]: Yes…so it is 6 x 10-6 dynes. 
[Goldsmith]: That is correct. 
[Hochmuth]: …What you really need is a force displacement relationship to get the free energy of 

adhesion or disaggregation. 
[Goldsmith]: …People have obtained equilibrium constants from which they can work out 

thermodynamic quantities, but they cannot work out the actual magnitude of the force of 
separation. 

 
In the above discussion, it is no surprise that Harry knew the unit conversion and that he 
anticipated the hard work ahead in relating the dissociation constant measured by 
immunologists to the actual strength of a biological adhesion under hydrodynamic force 
loading.  The “microdynes” of biorheology became the “picoNewtons” of molecular 
biophysics. In fact, Harry had first published in 19818 the observation “forces of the order 
of 0.1 nN were required to break up these [antibody-antigen] linkages”after completing a 
full characterization of the underlying DLVO interactions of latex spheres or fixed RBCs. 
The importance of background forces remains very significant because force loading 
regimes are often used today that can go down to the low pN ranges. 
 



In the later part of his career, the Goldsmith lab would continue research on fibrinogen-
mediated and von Willebrand factor (vWF)-mediated adhesion of platelets, L-
selectin/PSGL-1 adhesion of neutrophils, as well as E-selectin and P-selectin mechanics.  
The exploration of receptor-mediated adhesion under mechanical loading continues to 
fascinate and challenge.  In this issue, the topics of bond mechanics and adhesion are 
presented from the laboratories of:  Cheng Dong, Sriram Neelamegham, Scott Simon, 
David Tees, and Cheng Zhu. 
 
In Closing 
Overall, Harry Goldsmith advanced the use of many novel techniques in microrheology: 
the traveling microscope to image cells in tube flow, the counter-rotation plate flow to 
observe doublet collisions in a linear shear field, T-junctions and sudden expansions and 
vein valves for particle trajectory tracking.  In today’s world of interdisciplinary research, 
we can look to his early example of bridging colloidal hydrodynamics with the study of 
hemodynamics, platelet and neutrophil biology, and bond mechanics.   
 
In a publication record spanning fifty years, Harry has shown himself to be a dedicated 
and meticulous scientist who consistently tackled and elucidated the most fundamental 
principle or phenomenon embedded in the study at hand. Throughout his career, he has 
been a kind mentor and collaborator to many younger scientists, eager to exchange ideas 
and insights. We are enriched by his warmth, his scholarship, and his many long lasting 
contributions to the fields of Biorheology, Physiology and Biophysics. 
 
April, 2008 
 
Scott L. Diamond 
University of Pennsylvania 
 
Michael B. Lawrence 
University of Virginia 
 
Larry V. McIntire 
Georgia Institute of Technology 
 
Sriram Neelamegham 
State University of New York at Buffalo 
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Figure 1.  Particle paths in the rounded T-junction defining locations of boundary 
layer separation (S) and reattachment (R) adjacent to the flow divider. (from Karino 
T, Kwong HH, Goldsmith HL. Particle flow behaviour in models of branching vessels: I. 
Vortices in 90 degrees T-junctions. Biorheology. 16(3):231-248, 1979, used with 
permission. 
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