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The kinematics of bend-induced mixing in micro-conduits

Abstract
The absence of turbulence and the difficulty associated with introducing moving components into
microfluidic systems make the mixing problem in microdevices challenging. We studied steady, laminar,
incompressible flow through a sequence of conduits with rectangular cross-sections aligned to form 90o with
each other. The feasibility of taking advantage of bend-induced vortices to stir the fluid and enhance the
mixing process was evaluated theoretically and experimentally. Since at very low Reynolds numbers the bend-
induced vortices decay rapidly, it was necessary to utilize a large number of bends to achieve the desired
effects. Since it is not practical to directly simulate the flow through a large number of bends, we borrowed
Jones et. al.'s (1989) idea of constructing a two-dimensional map to project fluid particles from a cross-section
upstream of the bend to a cross-section downstream of the bend. This map was then applied repetitively to
trace particle trajectories in various bend arrangements. Under certain conditions, chaotic advection was
predicted. A prototype of a stirrer was fabricated with low temperature co-fired ceramic tapes.
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The Kinematics of Bend-Induced Mixing in Micro-Conduits 

Mingqiang Yi and Haim H. Bau* 
Department of Mechanical Engineering and Applied Mechanics 

University of Pennsylvania,  
Philadelphia, PA 19104-6315, USA 

E-mail: bau@seas.upenn.edu 

ABSTRACT 

 The absence of turbulence and the difficulty associated with introducing moving components into 

microfluidic systems make the mixing problem in microdevices challenging.  We studied steady, laminar, 

incompressible flow through a sequence of conduits with rectangular cross-sections aligned to form 90o with each 

other.  The feasibility of taking advantage of bend-induced vortices to stir the fluid and enhance the mixing process 

was evaluated theoretically and experimentally.  Since at very low Reynolds numbers the bend-induced vortices 

decay rapidly, it was necessary to utilize a large number of bends to achieve the desired effects.  Since it is not 

practical to directly simulate the flow through a large number of bends, we borrowed Jones et. al.'s (1989) idea of 

constructing a two-dimensional map to project fluid particles from a cross-section upstream of the bend to a cross-

section downstream of the bend.  This map was then applied repetitively to trace particle trajectories in various bend 

arrangements.  Under certain conditions, chaotic advection was predicted.  A prototype of a stirrer was fabricated 

with low temperature co-fired ceramic tapes. 

 

Keywords: microfluidics, chaotic advection, mixing, stirrer, laboratory on a chip, micro total analysis 
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Nomenclature 

Re:  Reynolds number 

LDL:  Flow development length 

DH:  Hydraulic diameter 

DAB:  Diffusion coefficient 

Sc:  Schmidt number 

x, y:  Cartesian coordinates within the conduit’s cross-section 

z:  A coordinate along the channel’s length 

Ω:  Vortex strength 

u, v, w: Velocity components 

zyx &&&  , , : Tracer particle velocity components 

εL:  Relative pressure drop 

ΔPL:  Pressure drop in L-shaped channel 

ΔP||:  Pressure drop in straight channel 

L:  Channel length 

IL:  Relative interface length 

Z=x+iy: Points in the inlet (A) cross-section 

W=ξ+iη: Points in the exit (B) cross-section 

S:  Mapping Z to W 

R:  Rotational transformation 

s:  One dimensional coordinate along the cross-section’s edge 

n:  Number of generations 
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1.  INTRODUCTION 

 In recent years, there has been a growing interest in developing minute laboratories on a "chip" and micro 

chemical reactors1.  Often, in order to facilitate chemical and biological reactions, one needs to mix various reagents 

and chemicals.  Although the characteristic lengths associated with micro-devices are small, typically on the order of 

100μm, in the case of large molecules, diffusion alone does not provide sufficiently rapid means for mixing.  For 

example, at room temperature, myosin's coefficient of diffusion in water is about 10-11m2/s, and the time constant for 

the diffusion along a length of 100μm is intolerably large, about 103s.  Commonly, one encounters only low 

Reynolds number flows in micro devices, and turbulence is not available to provide stirring.  Moreover, it may not 

be feasible to incorporate moving components such as stirrers into microdevices.  Thus, one is forced to look for 

alternatives in order to make the mixing process more efficient. 

 Our work was motivated by flow visualization experiments that we carried out in our laboratory.  Using 

ceramic tapes2,3, we fabricated "Y-L" shaped conduits and capped them with glass slips.  See Fig. 1.  The conduits 

had square cross-sections with a 200μm edge-length.  We introduced, respectively, clear and dyed water into legs A 

and B of the "Y" driven by the same pressure head (Fig. 1).  At Reynolds numbers of 10 or less, the dye and clear 

water remained well separated both upstream and downstream of the bend.  At a Reynolds number of about 30, the 

dyed and clear water still remained separated in the straight segment upstream of the bend (Fig. 2).  Once the flow 

passed the bend, however, the red dye spread to cover the entire conduit's width.  This spreading was facilitated by 

the bend-induced counter-rotating vortices.  Such vortices may assist the stirring process and enhance mixing. 

 Unfortunately, at low Reynolds numbers, the bend-induced vortices decayed before they had an 

opportunity to significantly stir the fluid.  In order to increase the effect of these vortices, it was necessary to use a 

large number of bends.  Since it was impractical to study the flow through a large number of bends using direct 

numerical simulations, we followed ideas articulated in Jones, Thomas, and Aref4 (to which for brevity's sake, we 

refer hereafter as JTA).  JTA studied steady, laminar, incompressible flow through a twisted (coiled) pipe with a 

circular cross-section.  Each pipe segment (basic cell) consisted of a semi-circle.  Each cell was rotated (or twisted) 

with respect to the preceding one.  JTA modeled the flow using Dean's perturbation solution and constructed a two 

dimensional map to compute the advection of particles from a cross-section upstream of the unit cell to a cross-

section downstream of the same cell.  The position of the particles was tracked as they advected downstream and 

their location in the pipe's cross-section was marked after they passed each basic-cell to form Poincaré cross-
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sections.  Further insights into the flow dynamics were obtained by constructing a one-dimensional map of the pipe's 

boundary onto itself.  For sufficiently high Reynolds numbers, JTA demonstrated the presence of chaotic advection 

in twisted pipes.  In the context of macro-scale systems, the ideas articulated in JTA have been put into practice for 

heat transfer5,6 and chemical reactions7 enhancement.   

Mircofabrication technology is often planar in nature and the manufacturing of coiled tubes may not be 

feasible.  As an alternative, one may fabricate bends connected with straight tube segments.  Analogous to the case 

of the coiled tubes, the bends induce secondary circulation that enhances the stirring process.  For example, Stremler 

et. al.8 and Liu et. al.9 micro-fabricated two and three-dimensional "twisted" conduits in polydimethylsiloxane 

(PMDS)8 and in silicon9.  The "mixers" consisted of sequences of short, straight conduits having rectangular cross-

sections.  Each conduit formed a 90-degree angle with the preceding one.  The conduits were arranged in various 

ways.  In one configuration (case A), all the conduits lay in the same plane (a "square wave" arrangement with a 

repeating unit cell consisting of four bends)8, 9.  This is analogous to JTA's twisted pipe with zero and 180-degree 

twist angles.  In this arrangement, the symmetry of the flow is preserved.  In another arrangement8 (case B, a 

serpentine conduit with a repeating unit cell consisting of 6 bends), no three adjacent conduits lay in the same plane.  

This is analogous to JTA's twisted pipe with 90 or 270-degree twist angles.  Arrangement B destroys the symmetry 

of arrangement A and therefore makes for a more efficient stirrer.  Arrangement B was found to be too complicated 

to implement in silicon9.  Instead, a third arrangement (C) was designed9, consisting of twisted pairs of bends with 

each pair forming a "C"-shape.  Arrangement "C" provides for better stirring than the planar configuration (A) but 

makes a poorer stirrer than arrangement B.   

In this paper, we conducted a numerical study of the kinematics of the flow through a sequence of bends 

with the bends being arranged in various configurations.  Instead of using periodic boundary conditions to 

investigate the flow in a "unit cell" of the stirrer, we simulated the flow field through a single bend and constructed a 

map that transformed particles from a cross-section upstream of the bend to a cross-section downstream of the bend.  

This method has the advantage that the above described map together with a "rotation" map allows one to simulate 

the kinematics of the flow through a variety of bend configurations.  Here we analyze only arrangements A and B.  

In contrast to JTA, the numerical computations were not restricted to very low Reynolds numbers.  Our approach, 

however, led to a discrete map (in a table format) that necessitated the use of interpolation in order to advance 

passive tracers when their initial positions were not explicitly tabulated.  This interpolation scheme led to some loss 
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of precision.  We believe, however, that at least qualitatively we successfully captured the main features of the flow.  

The maps were then applied repetitively to simulate the process when the fluid passes through a large number of 

both planar and out of plane bends.  We tracked the deformation and elongation of the interface between two 

different fluids.  Like JTA, we also constructed a map of the conduit's boundary onto itself.  Finally, both non-planar 

and planar configurations can be easily manufactured with ceramic tapes.  We fabricated a stirrer of type B and 

crudely tested its performance.  The fabrication procedure is described later in the paper.  An abbreviated version of 

this paper appeared in [10]. 

 

2. FLOW AROUND A SINGLE BEND 

Consider short, straight flow conduits with square cross-sections.  The basic cell consists of two straight 

conduits connected at a 90o-angle.  The "basic cell" and the coordinate systems are depicted in Fig. 3.  The cross-

section's edge length is the length scale.  The x-y coordinates, 
2
1

2
1

≤≤− x  and 
2
1

2
1

≤≤− y , span the inlet's 

cross-section.  The z-coordinate is aligned with the conduit's axis, and its origin is located at bend's center.  Fully 

developed flow conditions are specified at both the inlet and the exit.  The inlet and exit are located at distances 

|z|>LDL=0.1DHRe, where LDL is the development length for laminar flow.  The Navier-Stokes equations were solved 

with the commercial software package CFD 200011.  Computations were carried out with various mesh sizes to 

ensure that the results were reasonably mesh size-independent.  Typically 30*30*160 grid points were used, 

respectively, in the x, y, and z directions. 

 When Re=80, Figs. 4a and b depict, respectively, the transverse velocity field at two cross-sections 

downstream of the bend and the streak lines as the flow passes through the bend.  Upstream of the bend, the flow 

was unidirectional.  As the flow approached the transverse bottom plane, the fluid was deflected (Fig. 4b) and 

formed two symmetric, counter-rotating, transverse vortices (Fig. 4a).  These vortices advected downstream with 

their intensity diminishing rapidly and their center of rotation migrating upwards.  This vortex pair existed even 

when the Reynolds number was very small.  We defined the vortex strength,  

 dxdy
x
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∂
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∂
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where u and v are, respectively, the velocity components in the x and y directions.  Fig. 5 depicts on a semi-log scale 

the ratio Ω(Re,z)/Ω(Re,0.5) as a function of (z) when Re=1, 5, 10, 20, 40, and 80.  z=0.5 is the entry cross-section to 

the conduit's segment downstream of the bend.  Witness the nearly exponential decay of the vortex.  Using least 

squares, the data in Fig. 5 was fitted with 

 ))
2
1(Re)(exp()

2
1(Re,)(Re, −−Ω=Ω zfz . (2) 

Both Ω(Re, 0.5) and f(Re) are depicted as functions of the Reynolds number in Fig. 6.  The symbols and solid lines 

correspond, respectively, to best-fit curves and to computational results. 

f(Re)~7.5Re-0.27 

⎩
⎨
⎧

<<+
<<++•

=Ω
−

)80Re10(41.0Re18.0
)10Re0 (84.0Re058.0Re107

)5.0(Re,
23

 

Since we are considering very low Reynolds numbers, viscous effects dominated and the vortices decayed rapidly.  

For example, when Re=80, the vortex strength decayed 1000 fold within 6 hydraulic diameters from the corner.  

Thus, for the range of Reynolds number considered in this work, it was reasonable to assume fully developed 

conditions about 10 hydraulic diameters downstream from the corner. 

 At very low Reynolds numbers, the presence of the bend did not contribute significantly to pressure losses.  

Fig. 6 also depicts the relative pressure drop εL=(ΔPL-ΔP||)/(ΔP||*DH/L) for flow through a L-shaped bend as a 

function of the Reynolds number.  To improve visibility, the relative pressure drop was multiplied by a factor of 5.  

ΔPL and ΔP|| denote, respectively, the pressure drop in the L-shaped bend and in a straight conduit of equivalent 

length.  The straight conduit's length was measured along the L-shaped conduit's axis.  At very low Reynolds 

numbers, the pressure drop in the L-shaped conduit was actually smaller than in the straight conduit.  This can be 

attributed to the bend providing a larger cross-sectional area for the flow than the straight conduit does.  When 

Re>~15, the secondary flow started to take its toll and the pressure loss in the L-shaped conduit increased above the 

corresponding value for the straight conduit.  The pressure "penalty" was correlated (solid line in Fig. 6) as  

 

||

||

 

  

p
L

D
pp

H

L
L

Δ

Δ−Δ
=ε ~1.27×10-4Re2+0.025Re-0.334. (3) 
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 The two vortices that formed at the bend deform material lines.  To illustrate this effect, consider two 

immiscible fluids entering the bend through cross-section (A) and being initially separated by the interface y=0 

(Figs. 3 and 7a).  The two fluids are identical except for their "color."  As the two fluids emerge through the exit 

cross–section B, the interface between them stretches, deforms, and folds.  Figs. 7b, c, and d depict, respectively, the 

areas occupied by the two fluids in cross-section B when Re=10, 40, and 80.  As the interfacial length increases, the 

two materials are brought into closer contact, making inter-diffusion more effective.  The same mechanism is likely 

to enhance transport of mass and heat between the fluid and the conduit's walls.  Fig. 8 depicts the relative length of 

the interface (IL) as a function of the Reynolds number when the fluids emerge from cross-section B.  The length of 

the interface (IL) is nearly a linear function of the Reynolds number, IL~1+0.04*Re, when 0<Re<80. 

 Figures 7 and 8 illustrate that the corner-induced vortices provided a means for fluid stirring and explain 

the experimental observation (Fig. 2) of the blending of the dyed and clear fluids downstream of the bend.  This 

mixing enhancement increased as the Reynolds number increased.  Unfortunately, flows in micro-channels are 

typically at very low Reynolds numbers and the stirring induced by a single bend may not be sufficient to ensure 

efficient mixing.  A fairly large number of bends are likely to be required to achieve desired effects.  It would not be 

practical, however, to study the flow through a large number of bends using direct numerical simulations.  One 

would typically use periodic boundary conditions to simulate the process that takes place in a single cell.  Instead, 

following JTA, we constructed the map, W=S(Z), that transforms points from the entry cross-section (A) to the exit 

cross-section (B).  In the above, Z=x+iy and W=ξ+iη refer, respectively, to points in the inlet (A) and exit (B) 

cross-sections.  Once the map S is available, it can be manipulated in conjunction with a rotational map (see below) 

to study the flow field through various bend configurations. 

 

3.  MAPPING OF POINTS FROM THE ENTRY TO THE EXIT CROSS-SECTIONS 

In this section, we describe the construction of the map, S, that transforms points from the inlet to the exit 

cross-sections.  In contrast to JTA, a simple analytic expression capable of describing our flow field is not available, 

and we were forced to resort to numerical techniques in order to construct the map, S. 

The trajectories of individual fluid particles were obtained by integrating the equations: 

 ),,(          );,,(     );,,( zyxwzandzyxvyzyxux === &&& . (4) 
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In the above, u, v, and w are, respectively, the velocity components in the x, y, and z directions, and the dot 

represents a time-derivative.  We divided the entrance cross-section (A) into a square grid consisting of 21*21 grid 

points.  Then, we followed the trajectories of particles starting at each of the grid points, i.e., at Z=x+iy, and 

tabulated the corresponding location at which the trajectories penetrated the exit cross-section B: 

W=S(Z)=ξ(x,y)+iη(x,y).  Note that time is excluded from the map.  Trajectories starting simultaneously at different 

points in (A) penetrated cross-section (B) at different times.  The map is symmetric with respect to the y-axis, i.e., 

S(-x+iy)=-ξ(x,y)+iη(x,y). 

 Since the map, S, was discrete, we were forced to construct an interpolation scheme to map points that were 

not explicitly tabulated.  Each of the square grid elements in the entrance cross-section (A) was endowed with local 

coordinates with the corner points being denoted as {0, 0}, {1, 0}, {0, 1}, and {1, 1}. The corresponding mapping of 

these points in the exit plane (B) was explicitly available in the table and was denoted as {ξ(0, 0), η(0, 0)}, {ξ(0, 1), 

η(0, 1)}, {ξ(1, 0), η(1, 0)}, and {ξ(1, 1), η(1, 1)}.  The mapping of any point {x, y} within the square was computed 

by an interpolating formula similar to what is being used in finite element algorithms: 

 ξ(x, y)=(1-x)(1-y) ξ(0, 0)+(1-x)y ξ(0, 1)+x(1-y) ξ(1, 0)+xy ξ(1, 1) 

 η(x, y)=(1-x)(1-y) η(0, 0)+(1-x)y η(0, 1)+x(1-y) η(1, 0)+xy η(1, 1) (5) 

The interpolation scheme assumed that small area elements deformed in such a way that straight lines 

connecting two nearby grid points in cross-section (A) remained nearly straight under the transformation.  This is 

not strictly correct.  One can eliminate this shortcoming through the use of nonlinear (higher order) interpolation 

schemes.  At low Reynolds numbers, the error resulting from this quasi-linear approximation (5) appeared, however, 

to be tolerable.  We validated the mapping by comparing results that were obtained by repetitive use of the map with 

results of direct numerical simulations.  For example, when Re=10, Fig. 9 depicts the predicted deformation of the 

line y=0 as the flow goes around 2 and 3 bends.  The line was mapped using both direct numerical simulation 

(squares) and repetitive use of the map S(Z) (triangles).  The results obtained from these two techniques were in 

reasonable agreement. 

 Not surprisingly, the map S(Z) did not preserve area.  Since fluid particles in the vicinity of the cross-

section's center experience higher axial velocity than particles close to the conduit's walls, mass conservation 

dictated that the area of a material's blob should shrink as the material migrated towards the cross-section's center.  

The quantity that was preserved under the map was the volumetric flow rate, .  For example, in a ∫
ΔA

dxdyyxu ),(
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few calculations (not shown here), we demonstrated that 
∫

∫

Δ

Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

A

A

n

dxdyyxu

dxdyyxuS

),(

),(
~1 when plotting the above ratio as 

a function of (n) for various small area elements (ΔA). 

 Finally, following JTA, we constructed a map of the boundary onto itself.  Owing to the non-slip boundary 

condition, fluid particles attached to the conduit's walls did not move in finite time.  Time was, however, eliminated 

from the map, S.  The mapping of the boundary can be viewed as an asymptotic limit when time goes to infinity.  To 

make the idea more concrete, consider, for example, the conduit's wall located at x=0.5.  We denoted the local 

coordinate normal to the wall as ζ=0.5−x.  Accordingly, the wall was located at ζ=0.  Next, we expanded the three 

velocity components into Taylor series in terms of ζ, about ζ=0.  The expansion revealed that the normal velocity to 

the wall u~ζ2, while the tangential velocity components (v) and (w) in the y and z directions were (generally) 

proportional to ζ.  This is true because of the presence of the secondary, transverse flow.  With the exception of a 

few isolated points, the vorticity was not zero next to the wall.  Therefore, equations (2) suggest that as ζ→0, 

0=
dz
dx

 and 0≠
dz
dy

.  In the context of the mapping S, points on the wall stay on the wall; but they are free to slip 

along the wall.  Similar arguments hold for the symmetry line.  Thus, one can construct a one-dimensional map, T, 

mapping points on the boundary of the inlet cross-section A to points on the boundary of the exit cross-section B.  

We obtained the one-dimensional map, T, by integrating equations (2) and tracking the trajectories starting with an 

initial point, Z, at the wall's vicinity in cross-section A; obtaining the corresponding point W=S(Z) in cross-section 

B; gradually reducing the normal distance from the wall (ζ); and finally extrapolating to ζ→0.  We do not show the 

map here (for additional details, we refer the interested reader to Yi [12]).  The map revealed the presence of a 

number of fixed points.  To identify the location of the various points, we used the "wall" coordinate (s).  The 

intersection of the symmetry line with the bottom boundary (point P1 in Fig. 3) is located at s=0 and s=3.  s=0.5 and 

1.5 correspond, respectively, to the lower (P2) and upper (P3) corners. s=2 corresponds to the intersection of the 

symmetry line with the upper boundary (Point P4 in Fig. 3).  The segment 2<s<3 corresponds to the symmetry line.  

Points P1 and P4 are saddle points with the symmetry line forming an hetroclinic connection and serving as an 

unstable manifold for P4 and the stable manifold for P1.  The map T reveals the presence of two additional fixed 
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points, P5 and P6.  The approximate location of these points is sketched in Fig. 3.  The sink, P5, was located on the 

side-wall at 0.5<s5<1.5.   The source, P6, was located on the top-wall at 1.5<s6<2.  The presence of these two fixed 

points suggests the existence of a corner eddy with the hetroclinic connection between P5 and P6 serving as a 

separatix between the main vortex and the corner vortex.  Surprisingly and perhaps due to lack of precision, we were 

not able to observe this vortex in our numerical simulations.  As the Reynolds number increased, P5 and P6 migrated 

towards each other until, at Re~40, both fixed points collapsed to form a single saddle point at the corner s=1.5.  

JTA also observed the presence of fixed points in their one-dimensional map of the boundary.   

 The availability of the one (T) and two (S) dimensional maps together with the rotational map 

)
2

exp( πimR = , where m is an integer, allows us to study the flow as it goes through a large number of bends 

with the bends being arranged in different ways.  For example, Fig. 10 depicts a number of possible arrangements 

and the corresponding mappings.  In most of these studies, we followed the evolution of the interface y=0.  This 

interface can be envisioned as if it were separating two different fluids entering through cross-section A (Fig. 1).  

Furthermore, we focused only on kinematic effects (stirring) and ignored diffusion.   

 

4. PLANAR CONFIGURATION 

Consider the planar structure depicted in Fig. 10a.  A large number of bends were placed in series.  The straight 

segments between the bends were sufficiently long to assure that the secondary flows died out and the flow became 

fully developed before it entered the subsequent bend. 

We first traced the intersection points of the trajectories with the conduit’s cross-section after each unit cell 

(Poincare maps).  When Re=10, Fig. 11 depicts the intersections of four trajectories with initial positions at (±0.4, 0) 

and (±0.3, 0).  Witness the presence of the closed (periodic) orbits.  The periodic orbits were preserved for all the 

Reynolds numbers (0<Re<80) that we considered in this paper. 

In order to illustrate the stirring effect of the bend-induced vortices, we considered two fluids (light and dark) 

that were separated by the line y=0 when entering cross-section A.  We then applied repetitively the mapping S.  

When Re=10, Fig. 12 depicts the structure of the interface after the flow has passed through 1, 3, 5, 7, 20, and 40 

bends.  Through the action of the counter-rotating vortices, the interface between the two fluids elongated, 

deformed, and folded.  The relative length of the interfacial line as a function of (n) is depicted in Fig. 13.  The 

length of the interface (IL) increased nearly linearly with the number of bends and with the Reynolds number,  

 IL~1+0.04*Re*n.   (6) 
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In order to achieve the same elongation of the interface, one can either increase the number of bends or increase the 

Reynolds number in the same proportion.  At low Reynolds numbers, the deformation induced by a bend could be 

nearly undone by aligning the subsequent bend in the opposite direction, i.e., ( )( ) ZeZeSS ii ≈ππ .  In other words, 

( )ππ ii ZeSeS ≈−1 . 

When the bends were arranged in the plane, the symmetry with respect to the x=0 axis was preserved.  Fluid 

elements that started on one side of the symmetry line remained on the same side of the symmetry line indefinitely.  

In order to achieve a more efficient stirring, it was desirable to break this symmetry.  This can be accomplished by 

introducing "out-of-plane" bends (i.e., Fig. 10c). 

 

5. THREE-DIMENSIONAL CONFIGURATIONS 

Fig. 10c depicts a sequence of two bends with the three conduit segments being perpendicular to each other.  

The presence of the "out-of-plane" conduit destroyed the symmetry that existed when all the conduits were aligned 

in the same plane.  To model the flow through the sequence of these two bends, we combined the map S with the 

rotation map )
2

exp( πiR = that rotates a cross-section by 90o.  For the geometry depicted in Fig. 10c, the map 

S2=R-1SRS describes the transformation from the inlet cross-section to the exit cross-section.  When Re=10, Figs. 

14a and b describe the deformation of the interfacial line between two fluids that initially entered the device with a 

flat interface (y=0).  Fig. 14a depicts the results of a single application of the map S2.  Fig. 14b depicts the shape of 

the interface after the map S2 was applied 5 times (i.e., S2
5).  Witness that the presence of the "out-of-plane bend" 

eliminated the symmetry that was inherent in the planar case. 

The basic cell depicted in Fig. 10c can be extended in different ways.  Fig. 15 depicts one example of such a 

three-dimensional configuration.  The unit cell of this configuration is modeled by the application of the map 

S6=RSR-1SRSR-1SR-1SRS. 

When Re=10, 20, and 40, Figs. 16a, b, and c depict the results of repetitive application of the mapping S6.  In 

Fig. 16a (Re=10), we depict the penetration points of trajectories starting at Z=(-0.2, 0), (±0.3, 0), and (0.3, 0.1).  

The trajectories seem to approximate periodic orbits with a periodicity of about 20.  In other words, after 20 

applications of the map S6, the penetration points start to nearly repeat tracing what appears to be a chaotic cloud   

centered around a periodic orbit.  
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In Fig. 16b (Re=20), we depict the penetration points of trajectories starting at Z=(±0.3, -0.1).  The cross-

section seems to be divided into two parts.  The trajectories in one part of the cross-section appear to form a chaotic 

cloud about a periodic orbit with a periodicity of 10.  The trajectories in the other part of the cross-section appear to 

be chaotic.  In Fig. 16c (Re=40), we depict the subsequent penetration points of trajectories starting at Z=(0.3, -0.1).  

The figure represents 104 applications of the map S6.  The trajectories appear to be very irregular or chaotic.  The 

chaotic behavior is present throughout most of the cross-section, and each fluid particle appears to visit almost every 

part of the cross-section.  Such behavior is likely to lead to effective stirring. 

The appearance of chaotic behavior is hardly surprising.  We denote the secondary flows induced by two 

subsequent bends as B1 and B2.  A passive tracer particle will alternately be trapped in flow fields B1 and B2.  

When the two flow fields are rotated, the passive tracer will follow a zigzag path common to chaotic advection.  

This is very similar to the case when two different flow fields are alternated periodically in time.  It is well known 

that the latter leads to Lagrangian chaos14-17. 

We also examined the elongation of the interfacial line y=0 under the mapping S6.  When Re=1 and 5, Fig. 17 

depicts the relative length of the interfacial line as a function of the number of units, n.  The symbols in the figure 

represent the measured line length, and the solid lines are best-fit curves.  It appears that the line elongated slightly 

faster than linearly and that the line length correlated well with IL~f1(Re)*n*ln(n)+f2(Re), where f1(1)~0.04, 

f1(5)~0.28, f2(1)~1.07, and f2(5)~1.9.   

When the Reynolds number was further increased (i.e., Re>20), we were no longer able to track the entire 

length of the interfacial line because of the very rapid stretching and folding.  Instead, we selected individual 

segments, i.e., (a) 0.35<x<0.4 and (b) –0.45<x<-0.4.  When Re=40, Fig. 18 depicts the length of these line segments 

as functions of (n).  The length grew like eλn, where λ>0.  For example, λ∼1.12 (a) and  1.45 (b).  The magnitude of 

λ depended on the initial conditions, i.e., different line segments were elongated at different rates.  λ can be 

interpreted as the Lyapunov exponent, and its being positive is indicative of chaotic advection. 

 Finally, we examined the mapping of the conduit’s boundary (not shown here).  When Re<10, there were 

four fixed points on the boundary.  When Re>20, we observed only two fixed points on the boundary.  We speculate 

that the other two fixed points migrated into the cross-section's interior.  The fact that two fixed points remained 

anchored on the boundary is probably responsible for the complicated hetroclinic tangle and the presence of large-

scale chaos.  For example, in numerical experiments, Aref et al.13 observed that when all the fixed points migrated 
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from the boundary into the cross-section's interior, the chaotic behavior was confined to a small segment of the 

cross-section. 

 

6. DEVICE FABRICATION AND TESTING 

 To illustrate that the ideas articulated here can, indeed, be put into practice, we fabricated a passive stirrer 

with low temperature, co-fired ceramic tapes (LTCC).  Although the stirrer can be fabricated with various substrate 

materials ranging from silicon to polymers, we chose to construct our prototype with LTCCs because they facilitate 

easy, inexpensive, layered manufacturing, and a rapid prototyping platform. 

In their pre-fired (green) state, the ceramic tapes consist of oxide particles, glass frit, and organic binder 

(that can be made from photo-resist). The tapes are typically cast with a thickness starting at 40μm.  Pre-fired tapes 

can be machined by laser, milling, chemical means, and photolithography (when the binder is photo-resist).  

Metallic paths can be either screen-printed or processed photolithographically to form electrodes, resistors, 

conductors, and thermistors.  Conduit sizes may range from ~10μm to a few millimeters.  Upon firing, the organic 

binder burns out, the oxide-particles sinter, and the tapes solidify.  Many tapes (>80) can be stacked together, 

aligned, laminated, and co-fired to form monolithic structures with complex, three-dimensional mazes of fluidic 

conduits, electronic circuits, and electrodes.  Glass windows and other materials can be readily attached to the tapes 

to facilitate optical paths.  Multiple layers of coils can be embedded in the tapes to generate magnetic fields.  For 

additional details, see Bau et al.2. 

 Fig. 19 depicts an exploded view of a stirrer design. The device consisted of 5 layers which in their pre-

fired state were about 225μm thick.  Rectangles of the desired size were blanked from the raw material.  90 degree 

bends were milled in layers 2 and 4.  Layer 3 provided interconnects (vias) between these two layers.  The vias, 

together with the conduit segments in layers (2) and (3), formed "out-of-plane" bends.  The individual layers were 

than stacked, aligned, laminated, and co-fired to form a monolithic block with the conduit geometry depicted in Fig. 

15.   

 To facilitate flow visualization, we fabricated a slightly different device than the one depicted in Fig. 19.  

More specifically, we replaced layers 1 and 5 with glass slides.  In order to bond the glass, layers 2-4 were co-fired.  

Subsequently, the glass (with a matching thermal expansion coefficient) and the fired tapes were stacked and heated 
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above the glass transition temperature.  The glass formed a hermetic bond with the ceramics.  A top view 

photograph of an actual device with a glass cover is shown in Fig. 20.   

Using identical pressure heads, we introduced clear and dyed water into the two legs of the V on the left-hand 

side of Fig. 20.  As the two legs merged into a single straight section, the dye and the clear water remained well 

separated even when the Reynolds number exceeded 40.  When Re=7, the dye and clear water also remained well 

separated after going through a few generations of bends.  In generations A and C (Fig. 19a), the dye is on top of the 

clear water.  In generations B and D, the dye and clear water are side by side.  When Re=20, the clear and dyed 

water appear to be well mixed downstream of the first bend and no separation is evident between them.  

Unfortunately, due to the very small size of the conduits, we were not able to carry out detailed experiments to 

delineate the morphology of the interface between the two fluids. 

 

7. CONCLUSION AND DISCUSSION 

Secondary flows induced by bends can stir fluids, enhance mixing, and under certain conditions induce chaotic 

advection.  A sufficient length was allowed downstream of each bend to allow the establishment of fully developed 

flow conditions.  Shorter lengths than the ones considered here are likely to induce an even more intense stirring 

process.  To be effective, this type of stirrer needs to be operated at Reynolds numbers exceeding 10.  The stirrer can 

be easily fabricated using various layered manufacturing techniques such as ceramic tapes.  Interestingly, the stirrer 

does not significantly increase the pressure drop.  

The sequence of bends that we described in this paper is also useful to enhance the transport between the wall 

and the bulk of the fluid and thus may also be used to enhance heat transfer and mass exchange between the bulk of 

the fluid and the solid wall.   
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Fig. 1: A "Y-L" conduit fabricated in low-temperature,  co-fired ceramic tapes.  The 
conduit’s cross-section is 200�m*200�m.  The conduit is capped with a glass cover 
to facilitate flow visualization.

Fig. 2: A flow visualization experiment.  Re~30.  Clear and dyed water were, 
respectively, injected into legs A and B of the "Y" (Fig. 1).  Upstream of the 
bend, the dyed and clear liquids were well separated.  Downstream of the bend, 
the dye spread to cover the entire width of the conduit.



Fig. 3: The bend geometry and the coordinate system.  Cross-sections A 
and B are, respectively, the inlet and exit cross-sections.  The two 
immiscible fluids are introduced in cross-section A. Initially, one fluid 
occupies the region y<0,  and the other fluid occupies the region y>0. 
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Fig. 4: (a) The velocity vector field is depicted at various cross-sections downstream of the 
bend.  (b) Fluid trajectories are depicted as the flow goes around the bend. Re=80.
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Fig. 6: The vortex’s intensity, �(Re, ½), the vortex’s decay rate f(Re), and the relative
pressure penalty, �L, for flow around a L-shaped bend are depicted as functions of the 
Reynolds number. In the above, DPL and DP|| correspond, respectively, to the pressure 
drop around a bend and in a straight conduit.  The solid lines are best fit curves.
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Fig. 7: Two fluids separated by the interfacial line y=0 enter through inlet A (a).  
The cross-sectional areas occupied by the two fluids as they emerge through cross-
section B downstream of the bend are shown when Re=10 (b), Re=40 (c), and 
Re=80 (d).
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Fig. 8: The length of the interface (IL) in the exit cross-section, B, is depicted as a function
of the Reynolds number for flow around a single bend. The solid line is a best-fit line. 
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Fig. 9: The deformation of the line y=0 when Re=10 and the flow passes through 2 and 
3 bends.  The results of the direct numerical simulations are depicted by squares. The 
results obtained  using the mapping W=S2(Z) and W=S3(Z) are depicted using upright 
triangles.

a

Fig. 10: A sample of various arrangements of conduits and the corresponding 
transformations that can be used to map particles from the inlet to the exit cross-section.

c



Fig. 11:  A Poincaré map of the penetrations of two particles' trajectories 
through subsequent cross-sections downstream of the bend. The mixer’s 
geometry is depicted in Fig. 10a. Re=10.
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b c

Fig. 12: The structure of the interface as the flow passes through n bends: (a) n=1; (b) n=3; 
(c) n=5; (d) n=7; (e) n=20; and (f) n=40.  Re=10.
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Fig. 13: The relative length of the interface is depicted as a function of the number of bends (n)
when Re=5 and 10.  The solid line is a best-fit curve.

a b

Fig. 14: The shape of the interface as the fluid goes through a sequence of three 
conduit segments (a) n=1 and (b) n=5.  Re=10.  The conduit geometry is depicted 
in Fig. 10c.



Fig. 15: The unit cell depicted in Fig. 10c is repeated numerous times to produce a three-
dimensional stirrer. 

(a) (b) (c)

Fig. 16: .The intersection points of the trajectory with the conduit’s cross-section after each 
unit cell (S6). (a) Re=10, starting points: (-0.2, 0), (�0.3, 0), and (0.3, 0.1); (b) Re=20; starting 

point: (�0.3, -0.1); and (c) Re=30; starting point: (0.3, -0.1).
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Fig. 17: The relative length of the interface as a function of the number of units (n).
The solid lines are least square fit curves.
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Fig. 18: The length of the line segment as a function of the number of unit 
cells (n).  The solid lines were best fit curves (IL=IL0e�n). (a) starting line 
segment (0.35, 0) – (0.4, 0). (b) starting line segment (-0.45, 0) – (-0.4, 0).
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Fig. 19: An exploded view describing the 
fabrication of the passive mixer.  Layers 2 
and 4 contain 90-degree bends. Layer 3 
provides vertical interconnects between 
layers 2 and 4.  These vertical 
interconnects, together with the planar 
conduits, form the out of plane bends.  
Layer 1 contains the inlet and exit ports.
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Fig. 20: Photographs of an actual device fabricated with ceramic tapes.  To facilitate flow 
visualization, layers 1 and 5 (in contrast to Fig. 19) were made out of glass slides.  Clear and 
dyed water were introduced through the V-section.  When Re=7, the dye and clear water 
remain well separated even after going through a few generations of bends.  In generations 
A and C, the dyed water is on top of the clear water.  In generations B and D, the dye and 
clear water are side by side.  When Re=20, the clear and dyed water remain well separated 
in the inlet section but appear to be well mixed downstream.  No separation is evident 
between the clear and dyed water in generations A through D.
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