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Analysis of lateral flow biodetectors: competitive format

Abstract
Lateral flow (LF) biodetectors facilitate low-cost, rapid identification of various analytes. The LF cell consists
of a porous membrane containing immobilized ligands at various locations. Through the action of capillary
forces, a mixture of sample and reporter particles is transported to the ligand sites, where the target analytes
and the reporters bind to the immobilized ligand. The concentration of the reporters is measured with a
scanner. A mathematical model for two different competitive assays is constructed and used to study the
performance of LF devices under various operating conditions. The model predicts the signal magnitude as a
function of target analyte, reporter, and ligand concentrations, reaction rate constants, and flow rate. The
predictions are compared and qualitatively agree with experimental data. The model provides insights into
various experimental observations. Furthermore, the model can be used to optimize the performance of LF
devices and to inexpensively and rapidly test the system under various operating conditions.
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Analysis of Lateral Flow Bio-detectors: 
Competitive Format  

 
Shizhi Qian and Haim H. Bau* 

Department of Mechanical Engineering and Applied Mechanics, 
University of Pennsylvania 

Philadelphia, PA 19104-6315 
 
ABSTRACT 
 

Lateral Flow (LF) bio-detectors facilitate low-cost, rapid identification of various 

analytes. The LF cell consists of a porous membrane containing immobilized ligands at various 

locations.  Through the action of capillary forces, a mixture of sample and reporter particles is 

transported to the ligand sites, where the target analytes and the reporters bind to the 

immobilized ligand. The concentration of the reporters is measured with a scanner. A 

mathematical model for two different competitive assays is constructed and used to study the 

performance of LF devices under various operating conditions. The model predicts the signal 

magnitude as a function of target analyte, reporter, and ligand concentrations, as well as reaction 

rate constants and flow rate.  The predictions are compared and qualitatively agree with 

experimental data.  The model provides insights into various experimental observations. 

Furthermore, the model can be used to optimize the performance of LF devices and to 

inexpensively and rapidly test the system under various operating conditions. 

 

Key words: lateral flow test, point of care testing, immunoassay test strips, lateral flow 

immunoassay, competitive format 
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1. Introduction 

In recent years, there has been a growing interest in developing low-cost techniques for 

inexpensive, rapid diagnosis of analytes. The Lateral Flow (LF) immunoassay is a popular 

diagnostic tool because it eliminates the need for trained personnel and expensive equipment.1-15 

Briefly, the LF cell consists of a porous membrane or strip often made out of nitrocellulose. 

Various antibodies and/or oligonucleotides, to which we refer collectively as ligands, are 

immobilized at predetermined locations (capture zones) along the porous membrane.  A sample 

containing target analytes is mixed with a buffer solution and pre-engineered reporters such as 

colloidal gold, carbon black, dyed polystyrene, phosphor, and dye-encapsulating liposomes. The 

mixture then is introduced into the membrane by capillary forces.  As the mixture flows along 

the capture zones, the analytes and/or the reporters bind to the immobilized ligands.  Two 

common formats are the sandwich and the competitive assays. 

When the sandwich assay is used, some of the target analytes bind to the reporters and 

some remain free in the solution.  When the mixture passes through the capture zone, both 

unbound analytes and bound analytes bind to the ligands.  After some time, the LF strip is 

scanned and the concentration of the reporters is measured as a function of location.  An elevated 

concentration in the capture zone indicates the presence of the target analytes.  The sandwich 

assay has the advantage that the presence of a signal indicates the presence of target analytes.  

Unfortunately, this is not true at high target analyte concentrations.  Once the target analyte 

concentration exceeds a certain critical value, further increases in the target analyte concentration 

lead to a reduction in the signal16. Another disadvantage of the sandwich assay is that the target 

analytes must be able to bind simultaneously to both the reporter and the immobilized ligand. 

This feat typically cannot be accomplished with small analyte molecules that may have a single 
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antigenic determinant. Additionally, steric hindrance may prevent simultaneous binding of the 

analyte to both the reporter and the ligand.  For an analysis of LF bio detectors operating with 

sandwich assays, see Qian and Bau.16 

Given the limitations of the sandwich assays listed above, when the target analytes 

consist of small molecules, competitive assays are often preferred.  In the competitive format, the 

reporter can bind directly to the immobilized ligands; they do not require the analyte to provide 

the linkage between the reporter and the ligand as in the sandwich assay.  In different 

manifestations of the competitive format, the target analytes can bind either to the reporter 

particles15, 17
 or to the immobilized ligands18-20.  In either case, the presence of target analytes 

interferes with the binding of the reporter to the test ligands.  Thus, when the solution does not 

contain any target analytes, one would observe a signal at the capture (test) strip. A diminishing 

or non-existent signal indicates the presence of target analytes in the sample.  In order to verify 

that the device does, indeed, function, a control line is often added to provide a control signal.  

The control line consists of an immobilized (control) ligand that can bind to the reporter but not 

to the target analytes. 

In the first format of competitive assay, the target analytes bind to the ligands and block 

the ligands from binding to the reporters.18-20 For example, Ho et al.18 use liposome particles 

conjugated with aflatoxin B1 (AFB1) to detect AFB1. AFB1 antibody is immobilized at the 

capture zone, where competition occurs between the AFB1-conjugated liposomes and analytes 

(AFB1) in the sample for binding sites on the AFB1 antibody.   

In the second format of competitive assay, the target analytes bind to the reporters and 

block these reporters from binding to the immobilized ligand. This format is used, for example, 

by Esch et al.15 to detect water-borne cryptosporidium parvum oocysts, and by Niedbala et al.17 
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to detect drugs of abuse. Esch et al.15 immobilize oligonucleotides (compatible with amplicons 

produced from C. parvum mRNA) and biotin to the surface of dye-entrapping liposomes.  The 

capture (test) ligand and the control ligand consist, respectively, of antisense oligonucleotides 

and antibiotin antibodies. In the experiments by Niedbala et al.17, the test ligands consisted of 

BSA labeled with the drug hapten and the control line consisted of anti-mouse IgG.  

LF immunoassay technology is widely used in hospitals, laboratory medicine, life science 

research, and the monitoring of water and food quality.  Currently, it appears that the developers 

of LF reactors rely mostly on empirical data to design their devices.  Although experiments are 

indispensable to verify that a device meets expectations, it would be useful to have a predictive 

tool that allows simulation and optimization of a device, and limit laboratory experiments to the 

most promising cases.  In this paper, we describe such a simple model for a LF competitive 

assay. 

 

2. MATHEMATICAL MODEL 

We consider a lateral flow (LF) reactor that consists of a flat, porous membrane. 9-15, 17-24 

The LF cell is schematically diagrammed in Fig. 1. A sample containing target analytes (A), 

reporters (P), and buffer solution is introduced in a reservoir that is in contact with a dry porous 

membrane (typically made of nitrocellulose). The solution flows through the membrane by 

capillary action. Various (test) ligands (RT) are immobilized typically in strip transverse to the 

flow direction.  Additionally, the membrane is equipped with a control line to which reporters 

(but no target analytes) can bind. We denote the immobilized (control) ligand in the control line 

as RC.  For simplicity, we consider a single target analyte. The analysis can be readily extended 

to account for multiple target analytes. 
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Two different competitive formats are often used.  In the first format, both the reporters 

(P) and the target analyte (A) can bind to the immobilized ligand to form, respectively, the 

complexes RTP and RTA.18-20 Once the ligand has formed the complex RTA, it is no longer 

available to bind with a reporter. Only the reporters (but not the target analyte) can bind to the 

control line to form the complex RCP.  Thus the target analytes compete with the reporters for 

binding sites. We refer to this format as RPA to indicate that both reporter particles (P) and 

target analyte (A) can bind to the test ligand (R). 

In the second format, the reporter particles can bind with either the target analyte or the 

test ligand (RT)15, 17.  Once the target analyte (A) binds to the reporter (P) to form the complex 

PA, the reporter cannot bind to the ligand RT.  It can, however, still bind to the control line to 

form the complex RCPA.  The free reporters (P), but not the complex PA, can bind to the 

immobilized test ligand (RT) at the capture zone to form the complex RTP.  The free reporters (P) 

can also bind to the immobilized ligand (RC) at the control line to form the complex RCP. The 

target analytes can bind neither to the test ligand nor to the control ligand.  We refer to this 

format as RPNA to indicate that the reporter particles (P) but Not the target analyte (A) can bind 

to the test ligand (R). 

     

2.1 RPA Format: both target analytes and reporters bind to the test ligand  

A solution containing the target analytes (A) with initial concentration [A0], reporters (P) 

with initial concentration [P0], and buffer solution flows up the membrane to the capture zone 

(test section).  Typically, the porous membrane is narrow and thin. The sample moves as a slug 

with a distinct liquid-air interface at average velocity U.  The ligands at the test site are 

immobilized uniformly in the strip xT1<x<xT2.  Consequently, we need to consider only one space 
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dimension (x) that is aligned along the membrane’s length.  To the first approximation, we 

assume that the captured reporters do not significantly affect the porous membrane’s 

permeability to liquid flow.  

We use square brackets ([]) to denote concentrations. The concentrations of the various 

reagents are functions of both space and time. For example, [A](x,t) is the concentration of the 

target analyte at location x and time t. In the capture (test) zone, the target analytes (A) and the 

reporters (P) bind to the immobilized ligands to form, respectively, the complexes RTP 

(P+RT RTP) and RTA (A+RT RTA). We assume reversible interactions with 1:1 kinetics.  Once 

a ligand has formed the complex RTA, it is no longer available to bind with a reporter. 

The rate of formation (FRTA) of the ligand-analyte complex (RTA) in the capture (test) 

zone is proportional to the product of the free analytes ([A]) and unbound (free) ligand:  

 ][])[][]]([[ 101 ARkPRARRAkF TdTTTaRTA −−−= . (1) 

Similarly, the rate of formation (FRTP) of the ligand-reporter complex (RTP) at the capture (test) 

site is: 

 ][])[][]]([[ 202 PRkPRARRPkF TdTTTaRTP −−−= . (2) 

In the above, [RT0] is the initial concentration of the test ligand (prior to the binding events). 

[RT0]-[RTA]-[RTP] is the instantaneous concentration of free ligands that is available for binding.  

kai and kdi are, respectively, the appropriate association and dissociation rate constants.  

 After going through the capture (test) zone, the mixture passes through the control line 

that is located at xC1<x<xC2.  At the control site, the reporters interact with the immobilized 

ligand (RC) to form the complex RCP (P+RC RCP).  The rate of formation (FRCP) of the ligand-

reporter complex (RCP) is: 

 ][])[]]([[ 303 PRkPRRPkF CdCCaRCP −−= . (3) 
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 In the above, [RC0] and [RC0]-[RCP] are, respectively, the initial ligand concentration and the 

instantaneous concentration of the (free) ligand available for binding at the control line.  The 

complex PA does not bind to the control ligand. 

The concentrations of the free target analyte ([A](x, t)), the free particle reporters 

([P](x,t)), the ligand-analyte complex at the test site ([RTA](x,t), the ligand-reporter complex at 

the test site ([RTP]), and the ligand-reporter complex at the control site ([RCP]) are described, 

respectively, by the convection-diffusion-reaction equations:  

 RTAA F
x
AU

x
AD

t
A

−
∂

∂
−

∂
∂

=
∂

∂ ][][][
2

2

, (4) 

 )(][][][
2

2

RCPRTPP FF
x
PU

x
PD

t
P

+−
∂

∂
−

∂
∂

=
∂

∂
, (5) 

                       RTA
T F
t
AR

=
∂

∂ ][
,   (6) 

 ,][
RTP

T F
t
PR

=
∂

∂
 (7) 

and 

 RCP
C F
t
PR

=
∂

∂ ][
. (8) 

In the above, we assume that the cross-section averaged fluid velocity is obtained from 

experimental data (U~0.2 mm/s).  Time-dependent velocity can be readily incorporated into the 

model.  DA and DP are, respectively, the molecular diffusion coefficients of the analyte and the 

reporters. We assume that the analyte’s molecular mass is ~47kg/mol and the equivalent 

molecular mass of the reporters is 7000kg/mol. Accordingly, we use the Stokes-Einstein 

equation to estimate DA~1.0×10-10 m2/s and DP~2.0×10-11 m2/s. The values of the diffusion 
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coefficients affect the process dynamics but not the equilibrium states. FRTA and FRTP occur and 

[RTA] and [RTP] exist only in the capture (test) zone and are equal to zero elsewhere. Similarly, 

FRC

porters is introduced into a chamber that is in contact with the 

(9) 

t the membrane exit (x=L), we specify the customary outflo

P occurs and [RCP] exists only at the control site and are equal to zero elsewhere. 

We consider the case when the reporters are premixed with the sample prior to their 

introduction into the membrane. Specifically, a sample containing concentrations [A0] and [P0] of 

the target analyte and re

membrane. Thus, at x=0, 

 [A](0,t)=A0 and  [P](0,t)=P0.   

A w conditions: 

0),]([),]([
= 

∂
∂

=
∂ xx

. (10) 

Given the smallness of the diffusion coefficients, the outflow boundary conditions

∂ tLPtLA

 do not affect 

upstrea ny significant effect on the model’s predictions. 

S0 as the background s

index 

m events and do not have a

The initial conditions are: 

 [A](x,0)=[P](x,0)=[RTA](x,0)=[RTP](x,0)= [RCP](x,0)=0.   (11) 

 The total reporter concentration is typically detected with a scanner.  The scanner 

measures either the fluorescent or phosphor emission intensity or color intensity. At the capture 

(test) site, the scanner’s signal is proportional to ST=[P]+[RTP]. At the control site, 

SC=[P]+[RCP]. Away from the interaction zones, the scanner’s signal is proportional to S0=[P].  

We refer to ignal. We define the amplitude ΔST=ST-S0 and the contrast 

0ST
0SS

DS T −
= .  We denote the signal levels (S0) in the absence of target analyte ([A0]=0) 

with superscript 0.    
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Before concluding this section, we consider the simplified special case of the well-mixed 

uniformly distributed in space (

capture (test) zone. When the flow rate is relatively high, the various species are nearly 

0=
∂
∂
x

) and the interaction has little effect on the concentrations 

of the target analyte and the reporters in the solution. Furthermore, we assume that the 

interactions have reached an equilibrium state. It is instructive to consider this idealized case 

since it allows us to derive relatively simple algebraic expressions for the equilibrium 

concen

 At the well-mixed capture (test) site, the equilibrium concentrations of the ligand- 

reporter (RTP) and ligand-analyte (RTA) complexes are, respectively, 

 

trations of the test ligand-analyte (RTA), test ligand-reporter (RTP), and control ligand- 

reporter (RCP) complexes, and gain a few important insights.  

21012021

0012

][][
]][[ Tda RPkk][

dddada
ET kkPkkAkk

PR
++

=  (12) 

and  

 
21012021

0021

][][
]][[ Tda RAkk][

dddada
ET kkPkkAkk

AR
++

= . (13) 

In the 

]=[RTA]=0. 

At the control site, the equilibrium concentration of the ligand- reporter ([R P]) complex 

is: 

 

above, the subscript E indicates equilibrium conditions.  Away from the test site, 

[RTP

C

303

003

][
]][[

da

Ca
EC kPk

RPk
+

][ PR =  (14) 
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In the well-m portional to ixed case, at the capture (test) site, the scanner’s signal is pro

ST=[P]+[PA]+[RTP]E=[P0]+[RTP]E. At the control site, SC=[P]+[PA]+[RCP]E=[P0]+[RCP]E. Away 

e contrast index from the interaction zones, the scanner signal is S0= [P0].  Thus, th

 
21012021

02 ]][ TdET
T

RPRDS ==  (15) 1

0 ][][
[

][ dddada

a

kkPkkAkk
kk

P ++

ST~

and ΔST =[RTP]E.  The signal level ST-S0 at the capture (test) zone 

 Δ
21012

0012

][
]][[

ddda

Tda

kkPkk
RPkk

+
 (16) 

is nearly constant when the target concentration is below the threshold [AC].  When [A0]<<[AC], 

 2 1 0 1 2

1 2

[ ]k k P k k[ ] a d d d
C

a d

A
k k

+
= . (17) 

In othe

creasing [P0].   

tration exceeds the threshold ([

magnitude is inversely proportional to the target analyte’s concentration in the sample.  When 

[A0]>> 

 ΔST~

r words, target analyte concentrations below the threshold [AC] will not be detectable. 

Witness that the magnitude of the threshold depends on the reporter concentration, and can be 

lowered by de

When the target analyte concen AC]), the signal’s 

[AC],  

][
]][[

021

0012

Akk
RPkk

da

Tda . (18) 

Next, we examine the effect of the reporter concentration on the signal. When the 

 ΔST~

reporters’ concentration ([P0]) is small,  

][
][

][Rkk
0

21021

012 P
kkAkk ddda

Tda

+
 (19) 
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increas

Finally, witness that under equilibrium conditions

es nearly linearly as the reporter’s concentration increases.  One should bear in mind, 

however, that as [P0] increases so does [AC].  Hence there are tradeoffs between signal intensity 

and detector sensitivity. 

, the control signal’s magnitude is 

e establishment of 

equilibr

independent of the target analyte concentration (equation 14).  Prior to th

ium, however, the control signal increases as the target analyte concentration increases.  

   

2.2 RPNA Format: target analytes bind to reporters but not to the test ligand  

In this competitive assay format,15 the target analyte (if present) would bind to a reporter 

to form the complex PA.  The target analyte-reporter complex (PA) cannot bind to the test ligand 

RT.  Only free reporters (P) can bind to the test ligand (RT). Both the analyte-reporter complex 

(PA) an

e case to another, we 

consider here just one extreme case. We assume that the mixture of the target analytes and 

d the free reporters (P) can bind to the immobilized ligand (RC) at the control site. As was 

the case with the previous format (section 2.1), as the target analyte concentration increases, the 

signal level in the capture zone decreases.   

In the RPNA competitive format, a sample containing, respectively, concentrations [A0] 

and [P0] of the target analytes and reporters is introduced into a chamber that is in contact with 

the membrane.  Since the reporters and target analytes are premixed, the interaction A+P PA 

takes place prior to the solution’s entry into the membrane. In other words, the sample entering 

the membrane consists of free target analytes (A), free reporters (P), and analyte-reporter 

complex (PA).  The concentration of each of the above depends on the residence time and the 

stirring conditions in the chamber. Since these conditions may vary from on
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re to entering the capture (test) zone. The porters was allowed sufficient time to equilibrate prior 

sponding equilibrium concentrations are denoted with the subscript e: corre

 
2

][ 11PA aa
e

⎠⎝=  (20) 

 ][][][ 0 ee PAAA

]][[4]
2

1 PA
k d −⎟

⎞
+[][][][ 0000

1
00 k

PA
k
k

PA d
⎟⎜⎜

⎛
+−++

−=  (21) 

and 

 ][][][ PAPP 0 ee −= . (22) 

A+P PA.  In the capture (test) zone, reporters bind to the immobilized (test) ligand (

In the above, ka1 and kd1 are association and dissociation rate constants for the reaction 

RT) through 

the reversible interaction (P+RT RTP). At the control site, the analyte-reporter complex (PA) 

binds to the immobilized (control) ligand (RC) to form a ligand-analyte-reporter complex RCPA 

C RCPA). Additionally, free reporters can also bind 

he rate of formation (FPA) of the analyte-reporter complex (PA) is proportional to the 

roduct of the free analyte ([A]) and free reporters ([P]) concentrations

(PA+R to the control ligand to form the 

complex RCP through the reversible interaction   (P+RC RCP). 

T

p :  

 ][]][[ 11 PAkPAkF daPA −= . (23) 

Similarly, the rate of formation (FRTP) of the ligand-reporter complex (RTP) in the capture (test) 

one is: z

 ][])[]]([[ 202 PRkPRRPkF TdTTaRTP −−= . (24) 

t the control site, the rate of formation (FRCPA) of the ligand-analyte-repoA rter complex (RCPA) 

is: 

 ][])[][]]([[ 303 PARkPRPARRPAkF CdCCCaRCPA −−−= , (25) 
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and the rate of formation (FRCP) of the ligand-reporter complex (RCP) is: 

 ][])[][]]([[ 404 PRkPRPARRPkF CdCCCaRCP −−−= . (26) 

In the above, kaj and kdj are, respectively, the appropriate association and dissociation rate 

constants. 

The spatial-temporal concentrations of the free target analyte ([A](x, t)), the free reporters 

P](x,t)), the analyte-reporter complex ([PA](x,t), the test ligand-

(test) site ([RTP]), the control ligand-analyte-reporter complex at the control site ([RCPA]), and 

e control ligand-reporter complex at the control site ([RCP]) are describ

convection-diffusion-reaction equations:  

 

([ reporter complex at the capture 

th ed, respectively, by the 

PAA F
x
AU

x
AD

t
A

−
∂

∂
−

∂
∂

=
∂

∂ ][][][
2

2

, (27) 

 RCPRTPPAP FFF
x
PU

x
PD

t
P

−−−
∂

∂
−

∂
∂

=
∂

∂ ][][][
2

2

, (28) 

 RCPAPAP FF
x

PAU
x
PAD

t
PA

−+
∂

∂
−

∂
∂

=
∂

∂ ][][][
2

2

, (29) 

                     ,][
RTP

T F
t
PR

=
∂

∂
   (30) 

RCPF
t

RcP
=

∂
∂ ][

 , (31) 

and 

RCPAF
t

RcPA
=

∂
∂ ][

 . (32) 

x=0 are: The boundary conditions at 

 [A]( 0,t)=[Ae],  [P]( 0,t)=[Pe], [PA](0,t)=[PAe].   (33) 

 
 

13



Qian S., and Bau, H., H., 2004, Analysis of Lateral Flow Bio-detectors: Competitive Format, 
Analytical Biochemistry 326, 211–224 

At the membrane exit (x=L), as before, we specify the customary outflow conditions: 

 0),]([),]([),]([
=

∂
∂

=
∂

∂
=

∂ tLPAtLPtLA . (34) 
∂ xxx

The initial c

 [A](x,0)=[P](x,0)=[PA](x,0)=[RTP](x,0)= [RCPA](x,0)= [RCP](x,0)=0.   (35) 

  a u

elsewhere. Similarly, FRCPA and FRCP form and [RCPA] and [RCP] exist only at the control site 

nd are equal to zero elsewhere. 

Under well-mixed conditions, we have [P]=[Pe], [A]=[Ae], and [PA]=[PAe],  

onditions are: 

FRTP forms and [RTP] exists only in the c pt re (test) zone. Both are equal to zero 

a

  
22

02

][
]][[][

da

Ta
T kPk

RPkPR
+

= , (36) 

 
434343

043

][
]][[

da

Cda
C PAkk

RPAkk
][

][
ddad kkPkk

PAR
++

= , (37) 

and  

 
434343

043

][][
]][[][

ddadda

Cad
C kkPkkPAkk . (38) 

In the above, the analyte concentration [A0] does not appear explicitly.  [Pe] and [PAe] are, 

however, functions of [A0] (equations 20-22).   

At low target analyte concentrations, equation 

RPkkPR
++

=

20 can be simplified, 

1

1

1
000 ][]][[[

−

⎟⎟
⎞

⎜⎜
⎛

+
a

dk
PPAPA , and ]

⎠⎝
≈e k ⎟⎟

⎞
⎜⎜
⎛ +−

≈
01

1001
0

])[]([
][][

da

da
e

kAPk
PP . The background signal 

⎠⎝ + 1][ kPk

S0=[P]+[PA]=[P0], and the signals in the capture zone and at the control site are, respectively, 

T T 0 T C=[P]+[PA]+[RC ]+ C 0 C C

DST=[RTP]/[P0], and DSC=([RCPA]+ [RCP])/[P0].   

S = [P]+[PA]+[R P]=[P ]+[R P] and S PA [R P]=[P ]+[R PA]+[R P]. The 

contrast index 
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 The signal level ST-S0 in the capture (test) zone is nearly constant when the target 

concentration is below the threshold [ACT].  When [A0]<< [ACT], 

 ΔST~ 2 2 0 0
0

2 2 0

([ ] [ ])
[ ]d a

k k P R
k k P

[ ]d a T P+ +
+

In the above,  

. (39) 

 { }2 2 0 0 1 1 0 2 2 0

1 2 2 0

([ ] [ ]) ( [ ])( [ ])
[ ]

[ ]
d a T d a d a

a a d T

k k P R k k P k k P
A

k k k R
+ + + +

= . (40) 

In othe

CT

r words, target analyte concentrations below the threshold [ACT] will not be detectable. 

Witness that the magnitude of the threshold depends on the reporter concentration and can be 

lowered by decreasing [P0].   

e target analyte in the sample.  When [A0]>> 

 ΔST~

When the target analyte concentration exceeds the threshold ([ACT]), the signal’s strength 

is inversely proportional to the concentration of th

[ACT],  

2 2 0 0 1 2 2 0 0
0 02

2 2 0 2 2 0 1 1 0

([ ] [ ]) [ ][ ][ ] [ ]
[ ] ( [ ]) ( [ ])

d a T a a d T

d a d a d a

k k P R k k k P RP A
k k P k k P k k P

+ +
−

+ + +
 (41) 

The signal level SC-S0 at the control site is nearly constant when the tar

is below the threshold [ACC].  When [A0]<< [ACC], 

 ΔSC~

 get concentration 

4 4 0 0
0

4 4 0

([ ] [ ]) [ ]
[ ]

d a C

d a

k k P R P
k k P

+ +
+

. (42) 

In the above,  

 { }3 4 4 0 0 1 1 0 4 4 0

1 4 3 4 4 3 0

([ ] [ ]) ( [ ])( [ ])
[ ]CC

a d a d a d C

k k k P R k k P k k P
k k k k k k R

+ + + +
−

When [A0]>> [ACC],  

 ΔS ~

[ ] d d a C d a d aA = . (43) 

C
4 4 0([ ]d ak k P+ + 0 1 4 3 4 4 3

0 0 0 02
4 4 0 3 1 1 0 4 4 0

[ ]) ( )[ ] [ ][ ][ ]
[ ] ( [ ])( [ ])

C a d a d a d
C

d a d d a d a

R k k k k k kP P R A
k k P k k k P k k P

−
+

+ + +
 (44) 
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When k

 intensity decreases 

ncentration increases. When ka3kd4=ka4kd3, S -S

target analyte concentration.  

. When the reporter concentration ([P0]) is small,  

 ΔST~

a3kd4>ka4kd3, the signal’s intensity at the control site increases as the concentration of the 

target analyte increases.  When ka3kd4<ka4kd3, the converse is true; the signal’s

as the target analyte co C 0 is independent of the 

Next, we examine the effect of the reporter concentration on the signal in the capture 

zone and at the control site

1 2 0 1 2 2 0
0

1 2 0 1 2

[ ] ( [ ])k k A k k k R [ ]
[ ]

a d d d a T

a d d d

P
k k A k k

+ +
+

 (45) 

increases nearly linearly as the reporter concentration increases. However, as [P0] increases so 

At the control site, when the reporter concentration ([P0]) is small,  

 ΔS ~

does [ACT] (equation 40). 

1 4 0 3 3 0 1 3 4 4 0[ ](k k A k
C 0

3 4 1 0 1( [ ] )d d a dk k k A k
[ ]) ( [ ]) [ ]a d d a C d d d a Ck R k k k k R P+ + +  (46) 

in the RPA case; and ka1= ka2 =ka4=106 (1/MS), ka3=107(1/MS), kd1=kd2=kd3=kd4=10-

) in the RPNA case. [P0]=[RT0]=[RC0]=[A0]=10nM, L=0.04m, xL1=L/2, xL2=L/2+0.005, 

ukin-5 (the interaction between scIL5 and sIL5Rα) for which we have BIACORE 

data. 

+

increases nearly linearly as the reporter concentration increases. 

 

3. RESULTS AND DISCUSSION 

 To illustrate the capabilities of the mathematical modeling, the convection-diffusion-

reaction equations were solved numerically using the finite element package FemlabTM.  Unless 

otherwise stated, the results correspond to ka1=ka2=106 (1/MS), ka3=107 (1/MS), kd1=kd2=kd3=10-

3(1/s) 

3(1/s

xC1=3L/4, xC2=3L/4+0.005.  The reaction rate constants are consistent with the kinetics of the 

human interle
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 3.1 LF Detector with RPA Competitive Format: both target analytes and reporters bind to the 

test ligand.   

Fig. 2 depicts the sequence of events when the analyte and reporters are pre-mixed prior 

to their introduction into the membrane. Since the reporters do not interact with the target 

analyte, the various species’ concentrations in the sample remain unaltered until the sample’s 

arrival in the capture (test) zone. We assume that a sufficient amount of analyte is available to 

eventually achieve equilibrium conditions in the capture (test) and control zones. The figure 

depicts the signal S as a function of the location x at various times t=2 (a), 3(b), 4(c), 5(d), 6(e), 

and 10(f) minutes in the absence ([A0]=0, blue dashed line) and presence ([A0]=10nM, red solid 

line) of target analyte. Away from the capture and control zones, S=S0=[P].   In the capture (test) 

zone, S=ST=[P]+[RTP]. In the control zone, S=SC=[P]+[RCP].  Time t=0 corresponds to the 

instant when the solution starts flowing up the membrane.  At time t=2 minutes (Fig. 2a), the 

solution has passed through the capture (test) site. Due to the interactions between the 

immobilized ligand and the reporters at the capture (test) and control sites, the concentration of 

the reporters at the capture (test) site (ST) and at the control site (SC) increases gradually over 

time until equilibrium conditions have been established.  Once the sample arrives in the capture 

(test) zone (t>2min), upstream of the capture zone S0=[P0].  Since some of the reporters are 

retained in the interaction zones, initially the reporter concentration downstream of the 

interaction zones is smaller than upstream of the interaction zones. This downstream 

concentration increases, however, as time goes by, and once equilibrium conditions have been 

established, it is equal to the reporter concentration (S0=[P0]) upstream of the interaction zones. 

We refer to S0 as the baseline. Once the equilibrium state has been reached, the signal contains 
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two peaks located at the capture (test) site and the control site. The amplitude of ST-S0 depends 

on rate constants ka1, ka2, kd1, and kd2, and the concentrations of the test ligand [RT0], target 

analyte [A0] and reporter [P0]. Witness that ST is smaller in the presence of the target analyte (red 

line) than in its absence (blue line).  Before equilibrium conditions have been established, the 

magnitude of SC-S0 depends on [A0], the rate constants ka3 and kd3, and the concentrations [RC0] 

and [P0

(red line) than in its absence (blue line).  Once equilibrium has been reached, S  is independent 

of [A0]. 

Next, we examine the kinetics of the binding 

average reporter concentration 

]. During the transient, the control signal is higher in the presence of the target analyte 

C

process.  To this end, we calculate the 

∫−
112 Lx

T
LL

T xx
=

2

),(1)(
Lx

dxtxStS  at the capture (test) site and 

∫−
=

2

1

),(1)(
12

C

C

x

xCC

dxtxS
xx

tS  at the control site.  Fig. 3 depicts CC )(tS (solid line) and T

)(tS C (dashed line) as functions of time for the same reaction constants as in Fig. 2 and various 

target analyte concentrations, [A0]=0, 5, and 10nM. There is no signal before the sample arrives 

at the interaction zones. Once the sample has arrived at the interaction zones, the signal increases 

as time increases until it reaches a plateau that corresponds to the equilibrium state. Since the 

control zone is located downstream of the test zone, there is a time lag between the control and 

test signals. Fig. 3 illustrates that the lateral flow assay must be allowed sufficient time to 

“develop” before being read. The figure also shows the penalty associated with premature 

reading of the signal.  The time required to reach the equilibrium state depends on the rate 

constan ytets and the flow rate. As the target anal  concentration increases, the magnitude of the 
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test signal decreases.  The magnitude of the equilibrium signal at the control site is independent 

of target analyte concentration. 

Fig. 4 depicts Δ TS   (solid blue line), Δ CS  (dotted blue line), and the difference between 

the control signal and test signal CS - TS  (dash dotted black line) on a log-log scale as functions 

of the target analyte concentration ([A0]) once equilibrium conditions have been established 

when k = k = 106 (1/MS), k = 107 (1/MS), k =k =k =10-3 (1/s), [P ]=10nM and [R ]= 

[RC0]=10nM.  Under equilibrium condition, solutions of the well mixed and the full 

mathematical models are same (comparisons are not shown here), and the results depicted in 

Fig.4 are obtained from the simple 

a1 a2 a3 d1 d2 d3 0 T0

well-mixed model. Unfortunately, at low target analyte 

concentrations, the signal at the capture zone is relatively flat and insensitive to the an

concentration.  There is a concentration threshold or a critical target analyte concentration [AC] 

that must be exceeded before there is a noticeable effect on the test signal.  The magnitude of the 

threshold target analyte concentration 

alyte 

21

21012 ][
][

da

ddda
C kk

A
kkPkk

 
+

≈   (47)  

depends both on the reaction rate constants and the initial reporter concentration ([P0]).   When 

the target analyte concentration increases above the threshold, the signal is inversely proportional 

to the target analyte’s concentration. The dashed red line depicts the asymptotic behavior at large 

target a  and thenalyte concentrations (equation 18). In contrast, when a sandwich assay is used  

target analyte concentration is relatively small, the signal increases nearly linearly with the 

analyte concentration.16 The contrast index DST (not shown here) behaves similarly to the 

amplitude ΔST. At equilibrium, ΔSC is independent of the target analyte concentration.  
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Fig. 4 also depicts the difference between the control signal and the test signal, TC SS −  

(dash-dotted black curve), as a function of the target analyte concentration ([A0]). The curve 

“S” sh ound from below and above with two horizontal asymptotes.  

When the target analyte concentration is very low, 

assumes a ape, and it is b

TC SS −  is nearly independent of [A0]. When 

[A0] is larger than the critical concentration [AC1], TC SS −  increases as [A0] increases. As the 

target concentration increases further beyond a second critical value [AC2], TC SS − saturates.  

This saturation is simply due to the fact that at high analyte concentrations, the test signal 

[ ]PS T → , and CTC0 SSS Δ→− , which is independent of [A0] as depicted in Fig.3. In the range 

[AC1]<[A0]<[AC2], one can estima analyte concentration from the difference between 

the control and test signals. 

The predictions in Fig. 4 are in qualitative agreement with experimental observations. 

Rigorous comparison with experiments was not possible due to a lack of information on the 

relevant reaction rate constants in the experiments.  Instead, we compare relative quantities.  Fig. 

5 depicts the relative signal 

te the target 

max/T TS SΔ Δ  as a function of the relative target analyte 

concentration [A ]/[A ]. The solid line corresponds to our theoretical predictions with well-0 C

mixed to

m et al.20 (MCLR 

is the target analyte). The predicted trends are consistent with the experimental data. 

model. The squares correspond  the experimental data taken from Fig. 3 in Ho and 

Waychope18 (aflatoxin B1, AFB1, is the target analyte). The upright triangles correspond to the 

experimental data taken from Fig. 6 in Martorell et al.19 (biotin is the target analyte), and the 

inverted triangles correspond to the experimental data taken from Fig.4B in Ki

Fig. 6 depicts the equilibrium Δ TS  as a function of the reporter concentration ([P0]) and 

the test ligand concentration [RT0] on a log-log scale when ka1=ka2=106 (1/MS), ka3=107 (1/MS), 
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and kd1=kd2=kd3=10-3 (1/s). At small [P0], TSΔ  (red-dashed line, [A0]= [RT0]=10nM) increases 

nearly linearly as [P0] increases. Once a certain critical value ([PC]~
12 da kk

been exceeded, 

21011 ][ ddda kkAkk +
) has 

TSΔ  saturates and achieves a plateau. At relatively small reporter concentration, 

increasing the inventory of reporters increases the concentration of ligand-reporter complexes 

and contributes to the signal’s magnitude. Once the critical reporter concentration has been 

exceeded, further increases in the concentration of the reporters do not add to the signal intensity 

and will have an adverse effect on the signal contrast. 

Next, we examine the effect of the ligand concentration on the signal level ΔST under 

equilibrium conditions ([P0]=10nM).  The dashed blue and solid black lines (in Fig. 6) 

correspond, respectively to [A0]=10nM and [A0]=1nM. Not surprisingly, as [RT0] increases, so 

does the signal level. The predictions of Fig. 6 qualitatively agree with the experimental 

observa

in is

tion of antibiotin on the strip. This is consistent with equation 

17, whic

tions of Martorell et al.19 In their experiments, the strips were coated with 1, 2.5 and 

4.5μg of antibiotin (biot  the target analyte). The strips with 1μg of antibiotin did not provide 

a visually discernible band.  The response curves obtained using the strips containing 2.5 and 

4.5μg of antibiotin had the same detection limit. A slight improvement in the working range was 

observed with the higher concentra

h predicts the threshold [AC] to be independent of the ligands [RT0] concentration.  

The results of figures 4 and 6 can be summarized in a three-dimensional plot.  Fig. 7 

depicts the equilibrium TSΔ  as a function of [A0] and [P0] on a log-log scale when ka1= ka2= 106 

(1/MS), kd1=kd2= 10-3 (1/s) and [RT0]=10nM.  Witness that, consistent with equation 47, the 

ritical target analyte concentration ([AC]) increases, and the device’s sensitivity decrease as the c

reporter concentration increases.   
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Fig. 8 depicts the equilibrium contrast index DST as a function of [A0] and [P0] on a log-

log scale under the same conditions as Fig. 7. The contrast index decreases as the target analyte 

and reporter concentrations increase.  Figs. 7 and 8 illustrate the trade off between signal 

intensity and signal contrast. One may have a high signal level and contrast level near [PC].  

 

3.2 RPNA Format: target analytes bind to reporters but not to the test ligand  

In this section, we discuss briefly the second competitive format in which the target 

analytes bind to the reporters rather than to the immobilized test ligand.  There are many 

similarities between these two formats, but there are also some differences.  In this section, we 

mention briefly the similarities and then f us mostly on the differences between the two oc

formats.  

The transients associated with the RPNA format are similar to the ones depicted in Fig. 2 

and 3 and, in the interest of space, are not reproduced here. Figs. 9a and 9b depict, respectively, 

the test signal’s level 0SS T  and the control signal’s level − 0SS C  as functions of the target 

analyte concentra ium conditions. When the target analyte concentration [A0] is 

CT

−

tion under equilibr

smaller than the threshold concentration [A ] (equation 40), the test signal’s level 0T  

0

The behavior of the control signal in the RPNA format is generally different than that of 

the RPA format. 

SS − is 

nearly independent of [A ]. When the target analyte concentration increases above the threshold, 

the signal decreases as the target analyte concentration increases. Fig. 9a resembles closely Fig. 4 

(the test signal).  

0SS C − (Fig. 9b) in the RPNA format depends on the magnitude of the various 

reaction rate constants.  When the target analyte concentration is small ([A ]<[A ] (equation 0 CC  

43), 0SS C −  is independent of [A0]. Once the target analyte concentration increases above the 

 
 

22



Qian S., and Bau, H., H., 2004, Analysis of Lateral Flow Bio-detectors: Competitive Format, 
Analytical Biochemistry 326, 211–224 

threshold value, 0SS C −  increases when ka3kd4>kd3ka4 (dashed line), remains the same when 

k k =k k  (solid line), and decreases when k k <k k  (dash-dot line). Once a second 

threshold value ceeded, the control signal saturates.  Fig. 9b should be compared 

with Fig. 4 (the control signal).  The behavior of the control signal of the RPNA format 

resembles that of the RPA format only when ka3kd4=kd3ka4.   

The theoretical predictions of Fig. 9a agree qualitatively with the experimental data of 

Fig. 2 in Esch et al.15 and Fig.5B in Niedbala et al.17  Fig. 10 depicts the predicted and observed 

relative signals 

a3 d4 d3 a4 a3 d4 d3 a4

of [A0] is ex

max/T TS SΔ Δ  as functions of the relative target analyte concentration [A ]/[A ] 

(dashed red line and the sym

0 CT

bols o and □). The dashed red line corresponds to our theoretical 

predictions with ka1=2 10 (1/MS), ka2=ka4=10 (1/MS), ka1=2 10 (1/MS), kd1=kd2=kd3=kd4=10

(1/s), [P0]=[RT0]= [RC0]=10nM. The circles (o) correspond to the experimental data taken from 

 (□) correspond

5B in Niedbala et al.17 (PCP is the target analyte).  The theoretical predictions favorably agree 

with the experimental data.   

from Fig.3 in Esch et al.15  The figure depicts the predicted (solid blue line, k k >k k ) and 

× 5 6 × 6 -

3

Fig. 2 in Esch et al.15 and the hollow squares  to experimental data taken from Fig. 

Fig. 10 also compares the theoretical predictions of Fig. 9b with the experimental data 

a3 d4 d3 a4

experimental (symbols ■) relative signal 
minmax

minCC

SS
SS
Δ−Δ

Δ−Δ
as a function of the relative ta

CC

rget 

analyte con 0 CM CM

on [ACM] as the geometric mean of [A+] 

and [A-], [ACM]=([A+][A-])1/2. Witness the good agreement between experiment and theory.  

centration [A ]/[A ].  [A ] is defined below.  The blue curve in Fig. 10 is S-

shaped. In other words, the curve has a lower (y-) and an upper (y+) horizontal asymptote.  Let 

[A+] and [A-] be the respective concentrations at which the curve approaches the upper and lower 

asymptotes within 0.01(y+-y-). We define the concentrati
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In the capture zone, the signal’s amplitude 0SS T − and the contrast index DST, expressed 

as functions of [A0] and [P0], behave similarly to the RPA case (Figs. 7-8). In the interest of 

space, the corresponding figures are not reproduced here. The behavior of the control signal in 

the RPNA case differs, however, from the RPA case.    

Figs. 11 and 12 depict, respectively, the equilibrium control signal amplitude ( CSΔ

.  As lon

) and 

the control signal contrast index DSC as functions of [A0] and [P0] when ka3kd4>kd3ka4 g 

as the reporter concentration is below a certain threshold ([PCC]), the control signal increases as 

the reporter concentration increases, where 
)][(][

][
2021021

10102

dTadda

daTd
CC kRkkAkk

P
++

= . Once this 

threshold value has been exceeded, the signal levels off. At a fixed reporter concentration, the 

curve corresp

)][]([ kAkRk +

onding to the control signal as a function of the target analyte concentration has a 

“S” sha ensipe.  The upper curve in Fig. 9b is a cross-section of the three-dim onal surface at a 

fixed reporter concentration.  Fig. 12 illustrates that increases in the reporter concentration do not 

come without a penalty.  As the reporter concentration increases, the control signal contrast 

decreases.   

Figs. 13 and 14 depict, respectively, the control signal amplitude ( CSΔ ) and the control 

signal contrast as functions of [A0] and [P0] when ka3kd4<kd3ka4 and under equilibrium conditions.  

As in Fig. 11, as long as the reporter concentration is below a certain threshold ([PCC]), the 

control

tes that as the reporter concentration increases, the contrast index 

decreas

 signal increases as the reporter concentration increases.  The lower curve of Fig. 9b 

represents a cross-section of the surface in Fig. 13 at a fixed reporter concentration.  Like Fig. 

12, Fig. 14 demonstra

es. 
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When k 3ka4 the target analyte concentration affects both the test and control 

signals in the RPNA format. Thus, one can determine the presence of the target in the sample 

based on both signals.  

Fig. 15 depicts the difference between the equilibrium control signal and the equilibrium 

test signal, 

a3kd4≠kd

TC SS − , as function of [A0] and [P0] when ka3kd4>kd3ka4. For a specified reporter 

concentration, TC SS − increases as the target analyte concentration increases. Once the target 

ration exceeds a certain threshold, the curve saturates. As the reporter 

concen

4. Con

 was hindered by 

the lack of data about the reaction rate constants of the various interacting species and, in 

particu bout the interaction kinetics between analytes in solution and 

flo

ne

analyte concent

tration increases from zero, the signal difference increases (from zero), attains a 

maximum, and then decreases again. Similar phenomena are observed when ka3kd4<kd3ka4 and 

ka3kd4=kd3ka4. 

  

clusions 

Mathematical models for competitive Lateral Flow (LF) assays are proposed. The models 

allow one to predict the test and control signals’ magnitudes as functions of the target analyte 

and reporter concentrations as well as the various reaction constants.  The models’ predictions 

agree qualitatively with experimental observations.  

Unfortunately, quantitative comparison between theory and experiment

lar, the lack of information a

particle-bound ligands and between particles in solution and ligands immobilized to the lateral 

w strip.  In the future, we hope to conduct experiments to measure the reaction rate constants 

eded to carry out a critical comparison between the experiments and theory.  
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The main observations are: 

(i) When the target analyte concentration is below a certain threshold value, the test 

ntration must exceed the threshold 

sting the concentration of the reporters. 

nal level increases as the reporter concentration 

 concentration increases.  

lyte concentration 

increases.  

We hope that the proposed models will be useful for the design of LF reactors operating with 

performance under various operating conditions.  Although the simulations cannot substitute 

signal is nearly independent of the analyte concentration.  In order to be able to detect 

the presence of target analytes, the analyte conce

value.  The threshold’s magnitude depends on the reaction rate constants and the 

concentration of the reporters. Hence, it is possible to adjust the LF detector’s 

sensitivity by adju

(ii) Above the target analyte threshold value, the test signal’s intensity is inversely 

proportional to the target analyte concentration.   

(iii) At low reporter concentrations, the sig

increases. Once a certain threshold reporter concentration has been exceeded, the 

signal saturates.  

(iv) At low reporter concentrations, the contrast index is independent of the reporter 

concentration.  Once a threshold has been exceeded, the contrast index decreases as 

the reporter

(v) In RPA format and equilibrium conditions, the control signal’s level is independent 

of the target analyte concentration.  In contrast, in the RPNA format, depending on 

the relative magnitudes of the various reaction rate constants, the control signal may 

either decrease, remain unchanged, or increase as the target ana

competitive assays. The models can also be used to test inexpensively and rapidly device 
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for experiments, they can help narrow the experimental parameter space.   
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Lists of Captions: 

1. A schematic diagram of the lateral flow bio-detector with a competitive assay format. 

A mixture of target analyte A and reporter particles P migrates by capillary force up 

the membrane towards the test and control sites. 

2. The signal S as a function of the spatial coordinate x at various times t=2(a), 3(b), 

4(c), 5(d), 6(e), and 10(f) min with RPA format. ka1=ka2=106 (1/MS), ka3=107(1/MS), 

kd1= kd2=kd3=10-3(1/s), [P0]= [RT0]= [RC0]=10nM. The red solid line and the blue 

dashed line correspond, respectively, to [A0]=10nM and 0nM. 

3. The averaged test ( S T solid lines) and control ( S C dashed lines) signals as functions 

of time at various target analyte concentrations [A0]= 0, 5, and 10nM. RPA format. 

ka1=ka2=106 (1/MS), ka3=107(1/MS), kd1= kd2=kd3=10-3(1/s), and [P0]= [RT0]= 

[RC0]=10nM. 

4. The test signal ( S T-S0, blue solid line), the control signal ( S C-S0, blue dotted line), 

and the difference between the control and test signals ( S C- S T, black dashed line) as 

functions of the target analyte concentration under equilibrium conditions. RPA 

format. ka1=ka2=106 (1/MS), ka3=107(1/MS), kd1= kd2=kd3=10-3(1/s), and [P0]= [RT0]= 

[RC0]=10nM. 

5. The normalized signal as a function of the normalized target analyte concentration 

[A0]/[AC]. The solid line corresponds to the equilibrium predictions. The symbols (�), 

(Δ) and (∇) correspond, respectively, to experimental data from Fig.3 in Ho and 

Waychope18, experimental data from Fig.6 in Martorell et al.19, and experimental data 

from Fig.4B in Kim et al.20 
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6. The signal’s equilibrium amplitude S T-S0 is depicted as a function of the reporter 

concentration (red dashed line) when [A0]=[RT0]=10nM and as a function of the 

concentration of immobilized test ligand (black solid line, [A0]=1nM, and blue 

dashed line, [A0]=10nM) when [P0]=10nM. RPA format. ka1=ka2=106 (1/MS), 

ka3=107(1/MS), and kd1= kd2=kd3=10-3(1/s).  

7. The test signal’s equilibrium amplitude ( S T-S0) as a function of the target analyte 

concentration [A0] and the reporter concentration [P0]. RPA format. ka1=ka2=106 

(1/MS), ka3=107(1/MS), kd1= kd2=kd3=10-3(1/s), and [RT0]= [RC0]=10nM. 

8. The test signal’s equilibrium contrast DST as a function of the target analyte 

concentration [A0] and the reporter concentration [P0]. RPA format. ka1=ka2=106 

(1/MS), ka3=107(1/MS), kd1= kd2=kd3=10-3(1/s), and [RT0]= [RC0]=10nM. 

9. The test ( S T-S0, a) and control ( S C-S0, b) signals’ amplitudes as functions of the 

target analyte concentration under equilibrium conditions. RPNA format. 

ka1=ka2=ka4=106 (1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and [P0]= [RT0]= [RC0]=10nM. 

The dash line, solid line, and dash dot line in (b) correspond, respectively to 

ka3=107(1/MS), 106(1/MS), and 105(1/MS). 

10. The normalized test signal as a function of the normalized target analyte 

concentration [A0]/[ACT] (dashed red line and symbols o and □), and the normalized 

control signal as a function of the normalized analyte target concentration [A0]/[ACM] 

(solid blue line and symbols ■).  RPNA format. The solid and dashed lines 

correspond to the equilibrium predictions with ka1=2×105(1/MS), ka2=ka4=106(1/MS), 

ka1=2×106(1/MS), kd1=kd2=kd3=kd4=10-3(1/s), and [P0]= [RT0]= [RC0]=10nM. The 

symbols (o) and (■) correspond, respectively, to the experimental data from Fig.2 and 
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Fig.3 in Esch et al.15
. The symbols (□) correspond to the experimental data from 

Fig.5B in Niedbala et al.17
. 

11. The control signal’s amplitude S C-S0 as a function of the target analyte concentration 

[A0] and the reporter concentration [P0]. RPNA format. ka1=ka2=ka4=106 (1/MS), 

ka3=107(1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= [RC0]=10nM. 

12. The control signal’s contrast index DSC as a function of the target analyte 

concentration [A0] and the reporter concentration [P0]. RPNA format. 

ka1=ka2=ka4=106 (1/MS), ka3=107(1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= 

[RC0]=10nM. 

13. The control signal’s amplitude S C-S0 as a function of the target analyte concentration 

[A0] and the reporter concentration [P0]. RPNA format. ka1=ka2=ka4=106 (1/MS), 

ka3=105(1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= [RC0]=10nM. 

14. The control signal’s contrast index DSC as a function of the target analyte 

concentration [A0] and the reporter concentration [P0]. RPNA format. 

ka1=ka2=ka4=106 (1/MS), ka3=105(1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= 

[RC0]=10nM. 

15. The difference between the control signal S C and the test signal S T as a function of 

the target analyte concentration [A0] and the reporter concentration [P0]. RPNA 

format. ka1=ka2=ka4=106 (1/MS), ka3=107(1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and 

[RT0]= [RC0]=10nM. 
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Fig.1: A schematic diagram of the lateral flow bio-detector with a competitive assay format. 

A mixture of target analyte A and reporter particles P migrates by capillary force up the 

membrane towards the test and control sites. 
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Fig. 2: The signal S as a function of the spatial coordinate x at various times t=2(a), 3(b), 4(c), 

5(d), 6(e), and 10(f) min with RPA format. ka1=ka2=106 (1/MS), ka3=107(1/MS), kd1= 

kd2=kd3=10-3(1/s), [P0]= [RT0]= [RC0]=10nM. The red solid line and the blue dashed line 

correspond, respectively, to [A0]=10nM and 0nM. 
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Fig.3: The averaged test ( S T solid lines) and control ( S C dashed lines) signals as functions 

of time at various target analyte concentrations [A0]= 0, 5, and 10nM. RPA format. 

ka1=ka2=106 (1/MS), ka3=107(1/MS), kd1= kd2=kd3=10-3(1/s), and [P0]= [RT0]= [RC0]=10nM. 
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Fig.4: The test signal ( S T-S0, blue solid line), the control signal ( S C-S0, blue dotted line), 

and the difference between the control and test signals ( S C- S T, black dashed line) as 

functions of the target analyte concentration under equilibrium conditions. RPA format. 

ka1=ka2=106 (1/MS), ka3=107(1/MS), kd1= kd2=kd3=10-3(1/s), and [P0]= [RT0]= 

[RC0]=10nM. 
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Fig.5: The normalized signal as a function of the normalized target analyte concentration 

[A0]/[AC]. The solid line corresponds to the equilibrium predictions. The symbols (�), (Δ) and 

(∇) correspond, respectively, to experimental data from Fig.3 in Ho and Waychope18, 

experimental data from Fig.6 in Martorell et al.19, and experimental data from Fig.4B in Kim et 

al.20 
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Fig. 6: The signal’s equilibrium amplitude S T-S0 is depicted as a function of the reporter 

concentration (red dashed line) when [A0]=[RT0]=10nM and as a function of the concentration of 

immobilized test ligand (black solid line, [A0]=1nM, and blue dashed line, [A0]=10nM) when 

[P0]=10nM. RPA format. ka1=ka2=106 (1/MS), ka3=107(1/MS), and kd1= kd2=kd3=10-3(1/s)..  
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Fig.7: The test signal’s equilibrium amplitude ( S T-S0) as a function of the target analyte 

concentration [A0] and the reporter concentration [P0]. RPA format. ka1=ka2=106 (1/MS), 

ka3=107(1/MS), kd1= kd2=kd3=10-3(1/s), and [RT0]= [RC0]=10nM. 
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Fig.8: The test signal’s equilibrium contrast DST as a function of the target analyte 

concentration [A0] and the reporter concentration [P0]. RPA format. ka1=ka2=106 (1/MS), 

ka3=107(1/MS), kd1= kd2=kd3=10-3(1/s), and [RT0]= [RC0]=10nM. 
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Fig.9: The test ( S T-S0, a) and control ( S C-S0, b) signals’ amplitudes as functions of the 

target analyte concentration under equilibrium conditions. RPNA format. ka1=ka2=ka4=106 

(1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and [P0]= [RT0]= [RC0]=10nM. The dash line, solid line, 

and dash dot line in (b) correspond, respectively to ka3=107(1/MS), 106(1/MS), and 

105(1/MS).  
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Fig.10: The normalized test signal as a function of the normalized target analyte 

concentration [A0]/[ACT] (dashed red line and symbols o and □), and the normalized 

control signal as a function of the normalized analyte target concentration [A0]/[ACM] 

(solid blue line and symbols ■).  RPNA format. The solid and dashed lines correspond to 

the equilibrium predictions with ka1=2×105(1/MS), ka2=ka4=106(1/MS), ka1=2×106(1/MS), 

kd1=kd2=kd3=kd4=10-3(1/s), and [P0]= [RT0]= [RC0]=10nM. The symbols (o) and (■) 

correspond, respectively, to the experimental data from Fig.2 and Fig.3 in Esch et al.15
. 

The symbols (□) correspond to the experimental data from Fig.5B in Niedbala et al.17
. 
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Fig.11: The control signal’s amplitude S C-S0 as a function of the target analyte concentration 

[A0] and the reporter concentration [P0]. RPNA format. ka1=ka2=ka4=106 (1/MS), 

ka3=107(1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= [RC0]=10nM. 
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Fig.12: The control signal’s contrast index DSC as a function of the target analyte concentration 

[A0] and the reporter concentration [P0]. RPNA format. ka1=ka2=ka4=106 (1/MS), ka3=107(1/MS), 

kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= [RC0]=10nM. 
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Fig.13: The control signal’s amplitude S C-S0 as a function of the target analyte concentration 

[A0] and the reporter concentration [P0]. RPNA format. ka1=ka2=ka4=106 (1/MS), ka3=105(1/MS), 

kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= [RC0]=10nM. 
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Fig.14: The control signal’s contrast index DSC as a function of the target analyte concentration 

[A0] and the reporter concentration [P0]. RPNA format. ka1=ka2=ka4=106 (1/MS), ka3=105(1/MS), 

kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= [RC0]=10nM.       
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Fig.15: The difference between the control signal S C and the test signal S T as a function of 

the target analyte concentration [A0] and the reporter concentration [P0]. RPNA format. 

ka1=ka2=ka4=106 (1/MS), ka3=107(1/MS), kd1= kd2=kd3=kd4=10-3(1/s), and [RT0]= 

[RC0]=10nM.   
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