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Abstract 

In this paper we present a system for tactile object exploration. 
The system is built using a gripper with two parallel fingers, each 
equipped with a tactile array and a force/torque sensor. We have de- 
signed and implemented a set of exploratory procedures for acquiring 
the following properties: weight, shape, texture, and hardness. The 
system is successful at extracting these properties from a limited do- . 

main of objects. We present a detailed evaluation of the system and 
the causes of its limitations. The manipulation, motion, and, sens- 
ing primitives we have developed in the process of this work could be 
used for a variety of other tasks, such as model-based recognition, tool 
manipulation,'and assembly. 

1 Introduction 

In this paper we present a system for tactile object exploration. The system 
is built using a gripper with two parallel fingers, each equipped with a tactile 
array and a force/torque sensor. 

We view object exploration as suggested by psychological studies of [Klatzky 
and Lederman 861, [Loornis and Lederman 861. These studies suggest that  



properties of objects are acquired by stereotypical hand movements called 
"exploratory procedures". According to their model, the haptic system com- 
putes the following properties of objects: a) structural properties: size, shape, 
and weight, b) surface properties: hardness, elasticity, textbre and tempera- 
ture, and c) functional properties such as part motion. 

In our system, we have designed and implemented a set of exploratory 
procedures for acquiring the following properties: weight, shape, texture, and 
hardness. For temperature we would require a thermal sensor such as the 
one described in [Siegel et a1 861. The work presented in this paper follows 
the work of [Stansfield 86, 871, where a set of exploratory procedures was 
developed for exploring an object using a single finger. It is important to 
note that in a robotic system, the implementation of exploratory procedures 
depend on the geometry of the end effector, its degrees of freedom, and 
the distribution of sensors. In this respect, some of the issues that we are 
investigating are the following: 

Advantagesldisadvantages of using a gripper vs a probe. 

Advantagesldisadvantages of force and torque sensor on the fingers. 

Integration of tactile data with force/torque information. 

Distribution of sensors in a gripperlhand. 

Previous work in tactile sensing falls into three major ciasses: develop- 
ment of tactile sensors, tactile recognition, and tactile exploration. For a 
review of tactile sensor technology see [Hamon 841. 

Although there are many similarities between tactile recognition and ex- 
ploration, the difference lies in the fact that for recognition a model of the 
object is assumed to be available. As a consequence, the recognition task 
aims at extracting and matching some predetermined features. It should 
also be noted that work in tactile recognition has concentrated on extract- 
ing local features related to shape, while other properties, which could only 
be obtained through tactile information, such as hardness, elasticity, surface 
texture and temperature, are rarely addressed. 

In the area of tactile recognition/exploration, a first distinction we could 
make is the size of the objects. Objects which are smaller than the tactile 
pad can be recognized/explored, usually, by obtaining a single tactile image 



[Hillis 821. Larger objects require the temporal integration of more than one 
tactile image, and thus require the employment of a manipulator. There 
are four different approaches we can distinguish [Shen et al. 861 in the area 
of tactile recognition/exploration. The first approach is a probabilistic ap- 
proach: statistical parameters obtained from a tactile image are compared to 
reference object statistics [Briot et a1 781, [Togai 821. The second approach 
is based on a feature extraction methodology: features of an object are ex- 
tracted from tactile images and compared to stored models [Hillis 821, [Luo et 
a1 841. The third approach uses positional (kinesthetic) information to com- 
pute the coordinates of contact points and deduce the shape of the object 
[Allen 851. Finally, the fourth approach, which is only applicable to object 
recognition, is basically a combinatorial approach: a set of local constraints 
on identity and location of the objects is developed, and these constraints 
are pruned in order to eliminate models which are inconsistent with the ob- 
tained constraints [Grirnson and Lozano-Perez 841, [Ellis 86b], [Browse and 
Lederman 851, [Grimson 861. 

The exploration sys tem presented has been developed under the following 
two assumptions: 

a Some apriori knowledge of object is available. This should include 
its approximate location and its extent. Currently this information is 
available from a laser range finder [Tsikos 871. 

The objects to be explored can be grasped by the gripper, i.e. they are 
smaller than the opening of the gripper at least in one dimension. The 
objects are, however, larger than the tactile pads in general. 

In the next section we give a general overview of the system, both in terms 
of the hardware configuration and the overall software control structure. In 
section 3 we present a general description of the implemented exploratory 
procedures. Section 4 describes the basic primitive actions which are used 
in the exploratory procedures. In section 5 we describe our methods for 
analysing force/torque and tactile array data in order to extract the desired 
properties. In section 6, we evaluate the performance of the system. Finally, 
in section 7 we summarize our results and describe our current and future 
work. 
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Figure 1: System Configuration 

2 System Overview 

In this section we present a conceptual overview of the system and its current 
implementation. We have built the system in a such a way that it is device 
independent as much as possible. Obviously, the exploratory procedures 
depend on the geometry of the gripper. But the system is general enough 
in the sense that it could work with any parallel jaw gripper with tactile 
sensors. 

2.1 System Configuration 

Figure 1 shows a block diagram of the system configuration. The system is 
made up of three components: 

1. Robot (PUMA 560) and its controller running VAL-11. 

2. LORD gripper with tactile and vector sensing, and its controller (Mo- 
torola 68000) running UNIX. 

3. Supervisor computer (Microvax-11) 

The components communicate via three separate interfaces. The super- 
visor machine coordinates the whole task. 



1. VAX-LEGS interface: 
This is a synchronous interface based on a kermit-like protocol. The 
supervisor (master) sends manipulation and sensing commands to the 
gripper and sensors controller (slave). The protocol is responsible for 
detecting transmission errors, and asking for a packet to be resend, if 
necessary. On completion of the command, the slave reports to the 
master the achieved results or, in case of failure, the errors and their 
cause. 

2. VAX-PUMA interface: 
This is based on the supervisor mode of communication of VAL-11. 
[Izaguirre 861. The most common way of using the interface is for the 
supervisor to ask the robot controller to execute a VAL-I1 program. 

3. LEGS-VAL interface: 
This interface is used for pseudo-force servoing of the robot and for 
termination of a robot motion upon contact with the environment. 
The robot reads from the parallel port the forces and torques applied 
to the fingers, and adjusts its motion accordingly. 

Below we give some technical data for the gripper and sensors of the 
LORD Experimental Gripper System (LEGS-I). 

Gripper Data 

A schematic of the gripper is shown in Figure 2. The gripper components 
include: two fingers, each with independent DC servo motor drive; array and 
vector contact sensing on each finger; a system controller with VME based 
computer. Some important characteristics of the gripper to note are: 

- normal working clamp force: lOlbs (sensor limit) 
- maximum clamp force, 201bs. (sensor limit) 
- operating travel: 1 in per finger 
- finger separation: 0.125 in min., 2.125 max. 

Sensor Data 

The sensor we are using is the LTS-200. Some important data about the 
sensor follows. 
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Figure 2: The Lord Experimental Gripper System (LEGS-I). 



1. Array sensing 

The tactile pad consists of sensitive sites embedded in an elastomeric 
touch surface, organized as a 10 x 16 orthogonal array with 0.071 in 
between sites. The physical size of the pad is 1.8 x 1.1 x 0.83 inches. 
The deflection at  each site is deternined using optical sensors. The 
range of deflection is 0 to 0.030 inches, measured in 16 increments. 
The site force sensitivity is a few grams. 

2. Vector sensing 

The sensor measures force and torque components along and about X, 
Y, and Z axes of the coordinate system located at the center of the 
pad. The operating range of the vector sensor is f 20 lb., f 35 lb-in, 
and the resolution is 0.01 lb for force, and 0.01 lb-in for torque. 

2.2 Software Overview 

Figure 3 shows the conceptual organization of the system software. The 
software is made up of three layers. At the bottom layer are the robot and 
gripper controllers. At the next level there are robot / gripper / sensing 
primitives, which we refer to as actions. At the top level there are the 
exploratory procedures. Each stage of the exploratory procedure is guided 
by a model of the object that is built during exploration. At the top level, 
we need only specify a particular exploratory procedure, and some estimate 
of the object's size and location, which we get from a 3D laser range finder 
[Tsikos 871. This high level specification then translates to a series of actions, 
which in turn, at the lowest level, is translated into a series of commands to 
the robot and gripper controllers. Only the software written for the lowest 
level is device dependent. 
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3 Exploratory Procedures 

We have developed and implemented a set of exploratory procedures for 
obtaining properties of objects. In this section, we give an overall description 
of each procedure. The underlying primitive actions, methods for analysing 
the tactile data, and evaluation of the implemented exploratory procedures 
are discussed in detail in later sections. 

3.1 Structural Properties 

Weight To determine the weight of an object, we enclose the object, grasp 
it, lift it, and then measure the forces in the downward direction. 

Shape We only extract shape information for reasonably hard objects. To 
determine the shape of an object, we first enclose the object, grasp it, 
and obtain tactile images. We then analyse the images to determine 
what type of surface contact we have. If we cannot detect an edge, we 
move the gripper up and re-grasp. If we can detect an edge, we extract 
the orientation of the edge, and follow the edge until all "grippable" 
surfaces have been explored. 

3.2 Surface Properties 

Hardness The hardness of an object is a measure of strain/stress. In order 
to measure hardness, we enclose the object, move the fingers so as to 
just touch the object, and measure the distance, D l ,  between the two 
fingers. Then we grasp the object with force F, and again measure the 
distance, D2, between the fingers. The hardness is the strain, Dl-D2, 
divided by the stress, F divided by the area of the pad. Clearly, this 
gives us just an estimate of the hardness of the object, since we do not 
take into account the elasticity of the pad. We are, however, able to 
distinguish between such materials as a sponge, a plastic bottle, and a 
hard block. 

Texture We distinguish between smooth and rough surfaces by conducting 
a statistical analysis of the grey level data in the tactile array. 



4 Actions 

Exploratory procedures are made up of actions. An action is either a prim- 
itive action or a sequence of actions. The actions defined here are specific 
to the parallel jaw gripper; a set of generalized actions independent of the 
manipulation tool is undefinable. Following is a description of the actions 
that have been implemented. 

4.1 Motion Primitives 

Motion primitives are primitive actions that refer to the motion of the robot. 
We use three motion primitives: absolute move, relative move, and guarded 
move (move until force/torque thresholds are exceeded). 

An other important primitive which would be useful for manipulation 
and exploration is compliant motion. Compliant motion is motion which 
complies with constraints imposed by the geometry of the task. This means 
that we maintain contact (i.e., forces and torques) while moving. Examples 
of such motions include sliding and rolling. This would be a useful action 
for contour following, for example. However, the design principles of the 
employed tactile pad do not allow for such motion. 

4.2 Manipulation primitives 
Manipulation primitives are primitive actions that refer to the action of the 
gripper. There are six major manipulation primitives: 

move Move one or two fingers. 

The one degree of freedom linear motion of the gripper can be used for 
a) moving one finger until it contacts the object or b) moving a grasped 
object. 

center Center the fingers. 

Move the fingers so that the distance between them does not change, 
but so that the distance from each finger to the edge of the gripper is 
the same. 



squeeze Squeeze object until distance or force exceeds threshold. 

This primitive is used in order to detect the elasticity of the object and 
decide, accordingly, the best way of picking it up. A rough measure of 
elasticity is obtained by measuring the distance between the fingers on 
various applied forces. It is also used to adjust the grasping force, in 
order to obtain better tactile images. It fails when the required force 
or distance cannot be achieved. 

release Release object, while monitoring forces. 

By controlling the speed and the opening of the gripper, we can guide 
the object's release. This can fail if the specified force is very small, 
due to sensor hysteresis. 

grasp Grasp object with specified force. 

Given the limited geometry of the gripper (ie, two parallel fingers with 
one degree of freedom), there is obviously one basic grasping method. 
However, even within this scheme, there are a number of ways to grasp, 
and how we want to grasp depends on a number of factors. First, the 
clamping force used to grasp a glass object ought to be different from 
the clamping force used to grasp a metal block. Second, in grasping 
an object, we might have different objectives. We might, for example, 
want to explore the contours of the object, or we might want to pick 
it up. Each of these intentions require different applied forces and 
approach vectors. Finally, in grasping an object, we may or may not 
have the restriction that the object is not allowed to be moved. So we 
distinguish between centered and off-centered grasping: in off-centered 
grasping, we move one finger until it touches the object, and then the 
other finger until some specified clamping force is achieved; in centered 
grasping, both fingers move simultaneously. 

Given these considerations, the grasping primitive allows the user to 
specify the required forces at the fingers (with the required degree of 
precision), as well as centered or off-centered grasping. 

Re-orient Re-orient a grasped object such that the center of gravity of the 
object lies on the downward axis. 



Suppose we have a tight grip on an object such that its center of grav- 
ity is not on the downward axis. (Imagine holding a rectangular block 
at one end of the longer side so that the longer side extends in the 
horizontal direction.) We can detect that this is the case by the mea- 
sured torques on the fingers. This primitive reorients the object in the 
hand by reducing momentarily the clamping force and then increasing 
it again to the original force. 

4.3 Sensing Primitives 

Sensing primitives are primitive actions that refer to operations of the sensor 
and are specific to LTS-200 sensors. These include: 

Scan tactile array pads. 

Scan force/torque vectors. 

Set threshold for forces/torques. 

Continuous scan until threshold exceeded. 

Differential scan of array pads. 

4.4 Combined Actions 

The following actions combine two or more primitive actions. 

enclose Enclose an object between the two fingers of the gripper. 

We use information about the object size and location to enclose an 
object. This information is currently acquired from a 3-D laser range 
finder. The errors in the measured size and location would be of no 
consequence if the object is small relative to the size of the maximum 
opening of the gripper: by moving the gripper above the object and 
then lowering the gripper, we would successfully enclose the object. 
However, if the object is relatively large, an error in position, orien- 
tation, or size would result in a collision between the gripper and the 
object. Therefore, we use a combination of guarded move, move, and 
re-orient in order to grasp an object. 



We can enclose objects of maximum width 38 mrn. For the widest 
possible object, we can can accomplish the enclose action given that 
the error in orientation is less than 6 degrees and the error in position 
is less than 5 mm. 

pick up Enclose, grasp and move the robot up. 

follow contour Move the gripper along the contour of an object. 

We determine the direction of motion according to the edges detected 
by the sensor. To follow the contour, we actually grasp, open the 
gripper, move the gripper, and re-grasp. The procedure ends when one 
of the following happens: 

1. We meet an obstacle. 

2. The object no longer fits between the two fingers of the gripper. 

3. We return to the starting position (in the case of a closed curve). 

This action involves "active" sensing, in the sense that at each step we 
determine what to do next based on the tactile information we have 
just acquired. We have two sources of information, i.e., the two tactile 
arrays. At any point, only one finger is considered to be the active 
one. One advantage of using two sensors is that if we fail to obtain 
a recognizable feature using the data from the active sensor, we can 
make the non-active sensor the active one, and continue the exploration. 
Another advantage of using two sensors is the fact that we can easily 
detect asymmetry, simply by comparing the features extracted from 
the two tactile arrays. 

The problems/difficulties in this procedure arise when dealing with 
non-planar surfaces. With the gripper we are currently using, what 
we are specifically interested in finding out is if the curvature of the 
surface is at least as large as that of a cylinder, since the procedure for 
following the contours for such surfaces will be different from the pro- 
cedure for following the contours of a surface that is nearer to planar. 
For a planar, or almost planar surface, the gripper is moved in a plane 
parallel to the surface tangent. In the case of an almost planar surface, 
this motion will result in a partial contact of the tactile arrays with the 
surface and eventually to non-contact at all, since the two fingers are 



always parallel. At that point we have to rely on force/torque infor- 
mation exclusively for feature extraction. The procedure for following 
a cylindrical-like surface is to repeatedly rotate the gripper 45 degrees 
along the edge until we reach the starting position. 

One thing we conclude from our experiments in contour following is 
that the gripper we are using imposes a lot of constraints on the ways 
we can position the tactile arrays with respect to the object. A single 
probe or multi-fingered hand with retractable fingers is better suited 
for this task. 



Data Analysis 

In this section we describe how we analyse the data acquired during the 
exploratory procedures in order to extract object properties. At the low 
level, the available data is the following: 

position and orientation of the robot; 

position of the fingers with respect to the gripper; 

force/torque information on the fingers; 

tactile array images. 

5.1 Force/Torque Analysis 

There are several approaches to using force/torque information. In one ap- 
proach, force/torque information is used essentially for positioning the grip- 
per. For example, we could use the measured torques to position the tactile 
pad flush against a planar surface in order to obtain surface information such 
as bounding edges and texture. Or we could use force/torque information to 
perform motions such as guarded and compliant motions. 

In another approach forces and torques are used to extract contact in- 
formation [Salisbury 851. What has not yet been sufficiently researched is 
the use of both the tactile array and force/torque data for finding contact 
information and therefore feature extraction. This would be useful in two 
instances. First, we could use such a scheme to check that the features we 
extracted through tactile information are consistent with force/torque data. 
Second, there might be cases where we cannot place the tactile pad on the 
object we wish to explore, either because of the constraints imposed by the 
environment of those imposed by the gripper itself. In these cases, we can 
either use the force/torque data extracted from placing the sides of the finger 
on the object or we can use force/torque data acquired from a probe held 
between the two fingers. 

In this study we use force/torque data in a number of ways. First, we use 
it in positioning operations such as guarded motion and grasping. Second, 
we use forces and torques measured on the sides of the fingers in the enclose 
action, as discussed earlier. In addition, we use force/torque data to verify 



Figure 4: Point contact - In both (a) and (b) the tactile array is in con- 
tact with a sphere of 2.5 mm radius. The location of the point contact 
is determined both by analysis of the tactile array, and by analysis of the 
force/torque information. The distance between the location of the points 
found by the two methods is in (a) 1.23mm, and in (b) 1.13 mrn. Note that 
the distance between sites is 1.75mm. 

the data in the tactile arrays in the case where we have a point or line contact. 
Figure 4 shows two tactile arrays obtained by contact with a spherical surface 
of 2.5 mm radius. The coordinates of the contact point are calculated fro& 
the force/torque measurements using the method described in [Salisbury 851. 
The location of the contact point is also computed from an analysis of the 
tactile image. We have compared the results obtained by these two methods, 
and we have found that the average distance between the two estimated 
points is 2.10rnm. This error is greater than the expected error due to sensor 
noise (see [Salisbury 85]), which would be less than 1 rnrn for normal forces 
greater than 0.8 lbs. We have attributed this discrepancy to the elasticity of 
the sensor array pad. And finally, we have begun a series of experiments to 
study the force/torque data obtained when handling tools such as spatulas 
and probes. 



5.2 Tactile Image Analysis 

In this section we discuss the static image analysis we perform on the tactile 
array for each finger in order to extract the following information: 

Type of contact (point, partial contact, full contact, ridge). 

Surface type (planar vs. curved). 

Surface texture (smooth vs. coarse). 

Feature extraction (edges, corners, holes). 

Tactile image analysis differs from image analysis for computer vision in 
several ways. First, a tactile array, because it measures deflection, directly 
gives three-dimensional information. Also, in a tactile array, the data is 
sparse, which makes image analysis computationally simpler, but the infor- 
mation is less detailed. This means that the vast literature on computer 
vision is not directly applicable to the problem of analysing tactile arrays. 

There are two approaches to improving tactile image analysis. We could 
ensure that we get the best possible tactile image, by carefully monitoring 
the orientation of the tactile pad to the surface being explored. This would 
involve re-adjusting the orientation whenever we found a "bad" image, a 
time-consuming procedure. We could also invest effort in the feature detec- 
tion algorithm, so that it could analyse data with more imperfections. This 
is algorithmically complex. The robustness of the system described relies on 
a combination of these two approaches. 

The rest of this section details the tactile image analysis methods that 
have been implemented. 

5.2.1 Feature extraction 

We categorize the type of contact encountered and extract the features of the 
object according to (a) the proportion of the tactile pad which registers force 
information (b) the elongation of the area in contact, i.e. the ratio between 
major and minor axes. (c) the centroid of the area in contact, and (d) the 
orientation of the area in contact. 

We also compute the first- and second-order moments of the regions. But 
we have found that because of the sparse tactile data and the small grey-scale 



range, the features we extract through moment information are most often 
erroneous. 

We have extended the work of [Stansfield 871 in this area in order to ex- 
tract hole information, and the bounding polylines of the object. The bound- 
ing polylines of the object are found by applying the fit-and-split method on 
the boundary points of the contact area. 

The different types of contact and the corresponding extracted features 
are described below: 

Full contact: This means that almost all the tactile sites are registering 
force information. In this case, we check whether or not there is a hole. 
Figure 5 shows full contact with a planar surface having a hole of radius 
3.5mm. From the analysis of the tactile data, we obtain the centroid 
and the area of the hole. Theoretically, the smallest hole which can 
be detected has radius equal to the distance between adjacent sites 
(1.7mm). The interdependence of adjacent sites, however, as well as 
possible imperfections of the surface of the object impose additional 
limitations. Through a number of experiments, we have concluded 
that the minimum hole, in terms of its radius, which can be reliably 
detected is a hole with r = 3.4mm. 

Partial contact: A substantial part of the sensor pad is in contact with 
the object. In this case we further categorize the contact as: 

- Boundary edge contact: An object is partially in contact with the 
pad, and the boundary between contact/non-contact is a single 
edge. The location, orientation and extent of the edge is recorded. 
See Figure 6. 

- Corner contact: An object is partially in contact with the pad, 
and the boundary between contact/non-contact is a corner. See 
Figure 7. 

- General partial contact: This case takes care of the remaining 
possibilities. We extract the bounding edges and holes. As an 
example, Figure 8 shows the tactile image of washer (4mm radius) 
and the detected bounding edges. 

Point: Only a small proportion of the pad is in contact with the object, 
and the elongation of the area in contact is small. Point contact can 



Figure 5: Full contact with a planar wooden surface containing a hole of 
radius 3.5 mm. In (a) the deflections at each site of the array are shown on 
the right part of the 16 X 16 grid. In (b) the intensity of each grid element 
is proportional to the deflection at each site. The computed outline of the 
hole is shown. 



Figure 6: Bounding edge of a block - (b) shows the computed edge of the 
block. 

Figure 7: Corner Contact - In (a) and (b) a corner is identified at the bound- 
ary of the object. 



Figure 8: Tactile images of washer of radius 4mm - (b) shows the found 
bounding edges of the washer. 

result from a vertex contact or spherical contact. We measure location 
of point, and spread of forces. See Figure 4. 

Ridge: This type of contact is characterized by a high elongation, and 
high intensity along the major axis of the contact area. The situation 
can result from an edge or a cylindrical contact. Figure 9 illustrates 
the difference between these two different cases. 

We are able to distinguish between cylinder and edge contact, provided 
that the radius of the cylinder is greater than lmm. In Section 5.2.2 
we discuss methods discriminating between different types of surfaces. 

In the case of ridge contact, we measure the length, thickness, and 
direction (major axis) of the ridge (see Figure 10). 

Multiple contacts: Disconnected regions of the tactile array show posi- 
tive deflection. Currently, we don't analyze the tactile data any further. 



Figure 9: Ridge contact - In (a) the tactile array is contact with a cylinder 
of radius 2 0 m .  In (b) the array is in contact with an edge. 

Figure 10: Ridge contact - Tactile image of a cylinder (radius = 16 mm). 
The bounding edges of the ridge are shown. 



5.2.2 Surface Type 

We are able to classify surfaces as either planar, cylindrical, or spherical. Our 
method will only give accurate results if we are dealing with smooth surfaces 
and we apply sufficient force (6 lbs) to obtain large enough deflections in the 
tactile pads. 

The analysis is based on the grey scale values of the tactile array. We 
assume that the contacted surface is a plane, and then fit a plane to the 
surface using linear regression. If the variance is larger than some threshold 
value we have determined through experimentation, we conclude that the 
surface is not planar. If the surface is determined to be non-planar, and the 
type of contact is a ridge, then we try to fit a cylinder to data. If we cannot 
fit a cylinder, we conclude that the tactile image is that of an edge. Likewise, 
if the surface is determined to be non-planar and we have a point contact, we 
try to fit a spherical section to the data. If we cannot fit a spherical section, 
we conclude that the tactile image is that of a vertex. 

We might want to obtain more accurate surface descriptions, if our goal 
were to build a precise geometric model of the object, or to recognize the 
object in a domain of similar objects. To do this, we would want to construct 
a model of the surface using surface patches, or B-splines, or Bezier surfaces 
[Overton 841, [Shen et al. 861. 

5.2.3 Surface Texture 

We are able to distinguish smooth vs. rough surfaces. To determine this, we 
conduct a statistical analysis of the grey level data. For experimental results 
see [Stansfield 861. For determining more detailed texture properties, a higher 
spatial resolution is necessary [Ellis 86a], or a dynamic type of sensor, which 
recognizes changes in forces as it's moving on a surface. 
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Figure 11: Measured vs. actual weight of object held 

6 System Evaluation 

6.1 Weight 
We have measured the weight of various objects by grasping the object, lifting 
it, orienting the robot so that the y-axes of the sensors point downwards, 
and summing the forces on the y axes. Figure I1  shows measured weight vs: 
actual weight of an object held by the gripper with clamping force 2.5 lbs. 

Range of weights: 0 - 8 lbs (sensor limit). 
Accuracy: f 0.1 lbs 
Independent of grasping force. 

6.2 Hardness 
We measure the hardness of an object by measuring how much the object 
deforms when normal forces are applied. Figure 12 shows the difference in 
measured object width with various clamping forces. In the case of a metal 
block, we would expect a constant width, irrespectively of applied forces. 
But, as can be seen from the figure, this is not the case. What we are really 



Figure 12: Hardness of objects. The graph shows the change in object width 
for different clamping forces. (a) a metal block; (b) a plastic bottle (c) a 
cardboard box; bottle; (d) a sponge. 

measuring is the elasticity of the tactile pad. The strain/stress factors for 
the four objects are: for the metal box, 0.01 - 0.03; for the plastic bottle, 0.1 
- 0.18; for the cardboard box, 0.13 - 0.44; and for the sponge, 0.26 - 0.31. 
We can classify, therefore, an object as hard if the strain/stress factor is less 
than 0.05, and as very elastic if it is more than 0.2. 

6.3 Contour Following 
We have explored the contour of objects of small weight (less than 0.5 lb). 
Figures 13 - 15 show the edges found by analysing the tactile arrays. Fig- 
ure 13 shows the edges of a block, figure 14 the edges of an arch, and figure 15 
the edges of a cylinder. 

Figures 13 and 14 show the objects placed at 3 different positions. The 
initial grasping location was provided by a laser scanner. The number of 
grasps performed were: for the block, 15-17; for the arch, 17-20; and for the 
cylinder, 13-16. - 



Figure 13: Edges found for a block of dimensions 140 x 30 x 60 mrn, 0.21bs 

Figure 14: Edges found for an arch of dimesions 140 x 30 x 60 mrn, 0.15 lbs 
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Figure 15: Edges found for a cylinder of 20mm radius, 50mm height 

As can be seen from the figures, the obtained segments of the edges fall 
close to the actual edges. But how close? In the next sections we evaluate 
the results of the contour following procedure. In particular, we will address 
the following questions: 

How do results vary for different runs on the same object? 

How much does the object move during tactile exploration? Is this a 
limiting factor in extracting shape information? 

What is the range of features that can be detected? 

Can we construct a model of the object? 

How close are the found edges to the actual edges? How close are the 
found edges to a fitted model? 

6.3.1 Statistical Analysis of the Contour  Following Procedure 

The questions which we will address in this section concern the reliability, 
repeatability, and accuracy of the shape information provided by the tactile 
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Figure 16: Deviations in (a) distance (rnm) and (b) angle (degrees) between 
actual edges and edge segments obtained thought repeated tactile exploration 
of the same block 

exploration system. 
In order to perform this analysis, we explored the same object at the same 

initial location three times. The explored object was the simplest possible, 
i.e., a block. The edges of the block were straight with no observable defects. 

We first compared the obtained segments of the edges with the actual 
edges. The segments of the edges are represented by their two end points.' 
We computed the distance and the angle between every segment and the 
actual edge on which it should lie. The histograms in Figure 16 show the 
computed distance and angles for each of the three measurements. 

As can be seen from the figure, the errors in angle are quantized. This 
is a result of the resolution of the tactile array. Taking into account the 
dimensions of the array and the number of sites, the minimum angle between 
two edges that can be detected is 3.49 degrees. 

We compared the means and the variances of the three cases at  the 0.05 
significance level, using the Bartlett test, and we found that they are the 
same. We conclude, therefore, that the three different experiments yielded 
similar error distributions, and the shape exploration procedure is, thus, 
consistent and repeatable. 



For the case of distances, a 95% confidence interval for the mean of the 
distribution is 1.70 - 2.37, and the estimated variance is 2.45. For the case of 
angles, a 95% confidence interval for the mean is 1.65 - 2.36, the estimated 
variance is 2.745. We conclude that the average error in distance is approxi- 
mately 2mm, and the average error in angle is approximately 2 degrees. 

The main source of error in the location of the found edge segments is 
attributed to the motion of the object during exploration, since the positional 
accuracy of the robot and the gripper, as well as the resolution of the tactile 
array would yield errors below the measured averages. This source of error 
could be eliminated either by holding the object by another gripper or vice, 
or by choosing to explore heavy objects. We chose, however not to restrict 
the motion of the object, because we were interested in assessing the effects 
of the interaction between the robot/gripper and the object, which is one of 
the major characterists of active tactile exploration. 

6.3.2 Contour Models 

Having compared the acquired edge segments with the actual edges, the issue 
that we address here is how to obtain some model of the actual contours. As 
a first step, we concentrated on straight edges. We rejected the least squares 
fitting method on the grounds that a piece of erroneous information, such as 
an edge segment obtained when the object is tilted would have resulted in a 
modelled edge very different from the actual edge. What we basically want 
to do, is filter out segment edges that differ significantly from the rest, unless 
there is evidence that they constitute a feature of the object. The method 
we followed is summarized by the following steps: 

1. Divide all the found edge segments into sets such that within a group 
the angles and the distances between all segment edges are below some 
threshold values. The threshold values are chosen according to our 
knowledge of error distributions. 

2. For each set whose cardinality is greater than one, find a nominal seg- 
ment, i.e., a segment for which the sum of distances and angles between 
it and other segments in the same set is minimal. From this segment, 
we obtain the cosines of the fitted line. The endpoints of the line are 
found by projecting the endpoints of the segments on the line, and 
choosing local minima and maxima. 



Figure 17: Edges found for the same block in three instances, and fitted lines 

The three straight line models obtained by this method for the three cases 
of exploration of the block are shown in Figure 17. We compared the edge 
segments to the fitted lines by means of computing the distances and the 
angles. The histograms in Figure 18, show the computed deviations. As 
in the previous section, we compared the distribution of errors in the three 
cases, and we found that tlie means and the variances are the same, at the 
0.05 significance level. The modelling process gives, therefore, consistent 
results. In the case of distances, a 95% confidence interval for the mean is 
0.97 - 1.61, and the estimated variance is 2.35, while in the case of angles, 
the interval for the mean is 0.27 - 1.03, and the variance is 3.17. 

Finally, we compared the obtained models of the edges with the actual 
edges in terms of distances between the edges, angles between the edges, and 
difference in length. The computed results are shown in Figure 19. The 95% 
confidence intervals are (a) for the mean error in distance: 1.19 - 2.08 mm, 
(b) for the mean error in angle: 0.97 - 2.03 degrees, and (c) for the mean 
error in length: 0.97 - 2.03 mm. The estimated variances are 0.92, 1.32, and 
1.48 respectively. 



Figure 18: Deviations in (a) distance (rnrn) and (b) angle (degrees) between 
fitted edges and edge segments obtained thought repeated tactile exploration 
of the same block 
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Figure 19: Deviations in (a) distance (mm), (b) angle (degrees), and (c) 
length (mm) between actual edges and edges fitted to the edge segments 
obtained thought repeated tactile exploration of the same block 



In summary, we can conclude that the contour following procedure gives 
reliable and consistent results. Even though the objects were free to move, 
we were able to construct an edge model of the object within an accuracy of 
approximately 2mm and 2 degrees. Small imperfections on the contour of an 
object, such as a protrusion of less than 2mm, will not, however be detected 
as such. 



7 Conclusions 

We have described a system for tactile exploration of objects using a parallel 
jaw gripper. We have implemented a set of exploratory procedures to be 
used with a two fingered gripper in order to extract object properties such as 
weight, shape, hardness, and texture. The most complex part of this research 
has been the extraction of shape information. 

The system has been shown to be successful at  extracting the above 
properties from a limited domain of objects. We have quantitatively defined 
the range of features that can be reliably detected. And we have presented 
a detailed analysis of the causes of the system's limitations in terms of error 
and range. 

The implementation of the exploratory procedures in any system is de- 
pendent on the employed hand. The basic advantage of the two-fingered 
gripper we have used as compared to a single finger is the fact that we can 
manipulate an object with the gripper. We can therefore extract information 
about an object's weight, center of gravity, and part motion, which we have 
not yet investigated. In addition, we can use one of the fingers to stabilize 
the object, and we can therefore explore objects which are relatively light 
without moving them. We have also demonstrated how it can be useful to 
have two tactile arrays. We can use the data in one array to compensate 
for poor data in the other. Using two tactile sensors also means that we can 
explore the object using fewer motions, thereby obtaining the global shape 
of an object more quickly. 

Yet the gripper has posed its problems. Its constrained geometry in terms 
of the degrees of freedom of motion and the opening of the fingers means that 
only a limited domain of objects can be explored. In addition, exploration 
methods are limited in at least two ways. First, it is not always possible to 
place the tactile pads at the desired location or orientation. And second, 
due to the design of the sensor and its tendency to "blister", it is impossible 
to perform compliant motion, which would be the optimal way to follow a 
contour. These constraints make contour following, and hence extraction of 
local shape, a difficult task. An articulated hand is obviously more suited to 
the task of object exploration. Given the current tactile sensor technology, 
the articulated hand should have force/torque sensors on some fingers which 
would be used when manipulating an object, and tactile array sensors on 
other fingers or the palm, which would be used for feature extraction [Ulrich 



881. Obviously, however, this involves more complex control and sensory 
integration issues. 

The manipulation, motion, and sensing primitives we have developed in 
the process of this work could be used for a variety of other tasks, such 
as model-based recognition, tool manipulation, and assembly. For assembly 
tasks, we could obtain precise information about the location/orientation of 
the part. This information can be extracted either as the part is moved 
to some desired location, or during some initial verification stage. We are 
currently investigating the use of tactile sensing for tool manipulation and 
dis-assembly. 
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