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Feasible Learnability of Formal Grammars and the 

Theory of Natural Language Acquisition 

Naoki Abe 

Department of Computer and Information Science, 
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ABSTRACT 

We propose to  apply a complexity theoretic notion of feasible learnability called "polynomial learnability" 

to the evaluation of grammatical formalisms for linguistic description. Polynomial learnability was originally 

defined by Valiant in the context of boolean concept learning and subsequently generalized by Blumer et 

al. to  infinitary domains. We give a clear, intuitive exposition of this notion of learnability and wha.t 

characteristics of a collection of languages may or may not help feasible learnability under this paradigm. In 

particular, we present a novel, nontrivial constraint on the degree of "locality" of grammars which allows a 

rich class of mildly context sensitive languages to  be feasibly learnable. We discuss possible implicatiolls of 

this observation to  the theory of natural language acquisition. 

1 Introduction 

A central issue of linguistic theory is the "projection problem", which was originally proposed by Noam 

Chornsky [7] and subsequently led to  much of the development in modern linguistics. This problem poses 

the question: "How is it possible for human infants to acquire their native language on the basis of casual 

exposure t o  limited data in a short amount of time?" The proposed solution is that the human infarlt in 

effect "knows" what the natural language that it is trying to  learn could possibly be. Another way to l001i 

at  it is that there is a relatively small set of possible grammars that it would be able to learn, and its 

learning stratergy, implicitly or explicitly, takes advantage of this apriori knowledge. The goal of linguistic 

theory, then, is t o  characterize this set of possible grammars, by specifiying the constraints, often called 

the "Universal Grammar". The theory of inductive inference offers a precise solution to this problem, by 

characterizing exactly what collections of (or its dual "constraints on") languages satisfy the requirement 



for being the set of possible grammars, i.e. are learnable? A theory of "feasible'' inference is part,icula.rly 

interesting because the language acquisition process of a human infant is feasible, not to mention its relevance 

t o  the technological counterpart of such a problem. 

In this paper, we investigate the learnability of formal grammars for linguistic description with respect to 

a complexity theoretic notion of feasible learnability called 'polynomial learnability'. Polynomial lea,rnabilit,y 

was originally developed by Valiant [16], [11] in the context of learning boolean concept from examples, and 

subsequently generalized by Blumer et al. for arbitrary concepts [5]. We apply this criterion of feasible 

learnability to  subclasses of formal grammars that are of considerable linguistic interest. Specifically, we 

present a novel, nontrivial constraint on grammars called "k-locality", which enables a rich class of mildly 

context sensitive grammars called Ranked Node Rewriting Grammars (RNRG) to  be feasibly learnable. 1,Ve 

discuss possible implications of this result t o  the theory of natural language acquisition. 

2 Polynomial Learnability 

2.1 Formal Modeling of Learning 

What constitutes a good model of the learning behavior? Below we list five basic elements that any formal 

model of learning must contain. (c.f. [13]) 

1. Objects t o  be learned: Let us call them 'knacks' for full generality. The question of learnability is 

asked of a collection of knacks. 

2. Environment: The way in which 'data' are available to  the learner 

3. Hypotheses: Descriptions for 'knacks', usually expressed in a certain language. 

4. Learners: In general functions from data to hypotheses. 

5. Criterion of Learning: Defines precisely what is meant by the question; When is a learner said to 'learn' 

a given collection of 'knacks' on the basis of data obtained through the environment ? 

In most cases 'knacks' can be thought of as subsets of some universe (set) of objects, from which examples 

are drawn.' (Such a set is often called the 'domain' of the learning problem.) The obvious example is the 

definition of what a language is in the theory of natural language syntax. Syntactically, the English language 

is nothing but the set of all grammatical sentences, although this is subject to much philosophical controversy. 

'First order structures are an example in which languages are more than just subsets of some set (141. 



I , The Environment 

Hypotheses 

The Domain 
The Learner , 

Figure 1: A  earn&^ Model 

The corresponding mathematical notion of a formal language is one that is free of such a controversy. A 

formal language is a subset of the set of all strings in C* for some alphabet C. Clearly C' is the domain. The 

characterization of a knack as a subset of a universe is in fact a very general one. For example, a boolean 

concept of n variables is a subset of the set of all assignments to  those n variables, often written 2". Positive 

examples in this case are assignments to  the n variables which 'satisfy' the concept in question. 

When the 'knacks' under consideration can in fact be thought of as subsets of some domain, the overall 

picture of a learning model looks like the one given in Figure 1. 

2.2 Polynomial Learnability 

Polynomial learnability departs from the classic paradigm of language learning, 'idenitification in the limit',' 

in at least two important aspects. I t  enforces a higher demand on the time complexity by requiring that 

the learner converge in time polynomial, but on the other hand relaxes the criterion of what constitutes a 

'correct' grammar by employing an approximate, and probabilistic notion of correctness, or accracy to be 

precise. Furthermore, this notion of correctness is intricately tied to  both the time complexity requirelnent 

and the way in which the environment presents examples to  the learner. Specifically, the envirolllllc~lt is 

assumed to  present to  the learner examples from the domain with respect to  an unknown (to the learner) 

'Identification in the limit was originally proposed and studied by Gold [a], and has subsequently been generalized in many 

different ways. See for example [13] for a comprehensive treatment of this and related paradigms. 



but fixed probability distribution, and the accuracy of a hypothesis is measured with respect to that same 

probability distribution. This way, the learner is, so to speak, protected from 'bad' presentations of a knack. 

We now make these ideas precise by specifying the five essential parameters of this learning paradigm. 

1. Objects t o  be learned are languages or subsets of C* for some fixed alphabet C. Although we do not 

specify apraon' the language in which to  express these grammars3, for each collection of languages L of 

which we ask the learnability, we fix a class of grammars G (such that L(G) = L where we write L(( ; )  

to  mean {L(G) I G E G ) )  with respect to which we will define the notion of 'complexity' or 'size' of 

a language. We take the number of bits it takes to  write down a grammar under a reasonable4, fixed 

encoding scheme to  be the size of the grammar. The size of a language is then defined as  the size of a 

minimal grammar for it. (For a language L, we write size(L) for its size.) 

2. The environment produces a string in C* with a time-invariant probability distribution unknown to tlie 

learner and pairs it with either 0 or 1 depending on whether the string is in the language in question 

or not, gives it to the learner.5 It repeats this process indefinitely. 

3.  The hypotheses are expressed as grammars. The class of grammars allowed as hypotheses, say X, is 

not necessarily required to  generate exactly the class C of languages t o  be learned. In general, wller~ a 

collection C can be learned by a learner which only outputs hypotheses from a class 31, we say that C 

is learnable by 'H, and in particular, when C = L(G) is learnable by G, the class of representations is 

said t o  be properly learnable. (See [6] . )  

4. Learners passively receive an infinite sequence of positive and negative examples in the ma.nner de- 

scribed above, and a t  each initial (finite) segment of such a sequence, output a hypothesis. In other 

words, they are functions from finite sequences of positive and negative examples6 to grammars. 

5. A learning function is said to  polynomially learn a collection of languages just in case it is comput.a.ble 

in time polynomial in the length of the input sample, and for an arbitrary degrees of accuracy c and 

confidence 6,  its output on a sample produced by the environment by the manner described above 

for any language L in that collection, will be an 6-approximation of the unknown language L with 

confidence probability at least 1-6, no matter what the unknown distribution is, as long as the nun~ber 

of strings in the sample exceeds p(6-1, 6-l, size (L)) for some fixed plynomial p. Here, grammar (7 is 

3Potentially any Turing program could be a hypothesis 

4By a ~ e a s o n b l e  encoding, we mean one which can represent a different grammars using O(1og n)  bits. 
5We hold no particular stance on the the validity of the claim that children make no use of negative examples. \Ye do, 

however, maintain that the investigation of learnability of grammars from both positive and negative examples is a wort,h\vhile 

endeavour for at least two reasons: First, it has a potential application for the design of natural language systems that learn. 

Second, it is possible that children do make use of indsrect negative information. 

61n the sequel, we shall call them 'labeled samples' 



an r-approximation of language L, if the probability distribution over the symmetric difference7 of L 

and L(G) is at  most r .  

2.3 Occam Algorithm 

Blumer et al. [5] have shown an extremely interesting result revealing a connection between reliable data 

compression and polynomial learnability. Occam's Razor is a principle in the philosophy of science tvl~ich 

stipulates that a shorter theory is to  be preferred as long as it remains adequate. Blumer et al. define a 

precise version of such a notion in the present context of learning which they call Occam Algorithm, and 

establishes a relation between the existence of such an algorithm and polynomial learnability: If there exists 

a polynomial time algorithm which reliably "compresses" any sample of any language in a given collectioi~ 

to  a provably small consistent grammar for it, then such an alogorithm polynomially learns that collectioil 

in the limit. We state this theorem in a slightly weaker form. 

Definition 2.1 Let C  be a language collection with associated represenation 'H with sire function "szze". 

(Define a sequence of subclasses of'H by 31, = {G E 'H I s i ze (G)  < n).)  Then A is an Occam algor.llhiiz for 

C with range sire f (m, n)  if and only if? 

V L E C  

VS c graph(L) 

2f size(L) = n and 1 S  I =  m then 

A(S) is consistent with S  

and 4s)  6 'Hf(n,m) 
and A rxns in time polynomial in the length of S 

Theorem 2.1 (Blumer et al.) I f A  is an Occam algorithm for C with range size f ( n ,  m) = O ( n k m a )  for 

some t > 1 ,  0 < a < 1 then A polynomially learns L in the limit. 

We give below an intuitive explication of why an Occam Algorithm polynomially learns in the limit. Suppose 

A is an Occam Algorithm for C, and let L E C be the language to be learned, and n its size. Then for an 

arbitrary sample for L of an arbitrary size, a inini~nal consistent language for it will never have size larger 

than s i ze (L)  itself. Hence A's output on a sample of size m will always be one of the hypotheses in 3-If(,,,), 

 h he symmetric difference between two sets A and B is ( A  - B) U (B - A). 

'For any langugage L, graph(L) = { ( I ,  0)  1 x  E L )  U {(x, 1 )  I x  $! L). 



whose cardinality is a t  most 2f("ln). As the sample size rn grows, its effect on the probability that any 

consistent hypothesis in 'Hf(,,,) is accurate will (polynomially) soon dominate that of the growth of the 

cardinality of the hypothesis class, which is less than linear in the sample size. 

3 Ranked Node Rewriting Grammars 

In this section, we define the class of mildly context sensitive grammars under consideration, or Ranked Node 

Rewriting Grammars (RNRG's). RNRG's are based on the underlying ideas of Tree Adjoining Grammars 

(TAG's) ', and are also a specical case of context free tree grammars [15] in which unrestricted use of 

variables for moving, copying and deleting, is not permitted. In other words each rewriting in this system 

replaces a "ranked" nonterminal node of say rank j with an "incomplete" tree containing exactly j edges 

that have no descendants. If we define a hierarchy of languages generated by subclasses of RNR,G's havillg 

nodes and rules with bounded rank j (RNRLj), then RNRLo = CFL, and RNRLl = TAL.1° We fornlally 

define these grammars below. 

Definition 3.1 (Preliminaries) The following definitions are necessary for the sequel. 

( i)  The set of labeled directed trees over an alphabet C is denoted Tc. 

(ii) The rank  of an uincomplete7' tree is the number of outgoing edges with no descendents. 

(iii) The rank of a node is the number of outgoing edges. 

(iv) The rank of a symbol is defined if the rank of any node labeled by it is always the same, and equals that 

rank. 

(v) A ranked alphabet is one in which every symbol has a rank. 

(vi) We  write rank(x)  for the rank of anything x, i f  it is defined. 

Definition 3.2 (Ranked Node  Rewri t ing Grammars )  A ranked node rewriting grammar G is a quin- 

( a )  CN is a ranked nonterminal alphabet. 

(iz) CT is a terminal alphabet disjoint from EN. W e  let C = CN U C T .  

(iii) # is a distinguished symbol distinct from any member of C ,  indicating "an outgoing edge with n o  

gTree adjoining grammars were introduced as a formalism for linguistic description by Joshi et al. [lo], [9]. Various formal 

and computational properties of TAG's were studied in [17]. Its linguistic relevance was demonstrated in [12]. 

'O~his hierarchy is different horn the hierarchy of "meta-TAL's" invented and studied extensively by Weir in [20]. 
''In context free tree grammars in [15], variables are used in place of fl. These variables can then be used in rewriting rules 

to move, copy, or erase subtrees. It is this restriction of avoiding such use of variables that keeps RNRG's within the class of 

efficiently recognizable rewriting systems called "Linear context free rewriting systems" ([18]). 



(iv) IG is a finite set of labeled trees over C .  We refer to IG as the "initial trees" of the grammar. 

(v)  RG is a finite set of rewriting rules: RG C { ( A ,  a )  I A E CN & a E TCuItll  & rank(A) = rank(a)) .  (Iu 

the sequel, we write A -+ a for rewriting rule (A,  a).) 

(vi) rank(G) = m a x  {rank(A) I A E E N ) .  

We emphasize that the nonterminal vs. terminal distinction above does not coincide with the internal node vs. 

frontier node distinction. (See examples 2.1 - 2.3.) Having defined the notions of 'rewriting' and 'derivation' 

in the obvious manner, the tree language of a grammar is then defined as the set of trees over the terminal 

alphabet, which can be derived from the grammar.12 This is analogous to  the way the string language of a 

rewriting grammar in the Chomsky hierarchy is defined. 

Definition 3.3 (Tree  Languages a n d  S t r ing  Languages)  The tree language and strang lang,uaye of a 

RNRG G, denoted T(G) and L(G) repectively, are defined as follows; 

T ( G )  = {/3 E Tc,  1 3a E IG such that cr t& P )  

L(G) = {yield(P) I P E T ( G ) ) .  

If we now define a hierarchy of languages generated by subclasses of RNRG's with bounded ranlts, cont,est 

free languages (CFL) and tree adjoining languages (TAL) constitute the first two members of the hierarchy. 

Definition 3.4 For each j E N RNRGj = {G 1 G E RNRG & rank(G) < j ) .  For each j E N ,  

RNRLj  = { L ( G )  1 G E R N R G j ) .  

T h e o r e m  3.1 RNRLo = C F L  and RNRLl  = TAL.  

We now give some examples of grammars in this hierarchy,13 which also illustrate the way in which the ~veali 

generative capacity of different levels of this hierarchy increases progressively. l4 

Example  3.1 L1 = {anbn  1 n E N )  E C F L  is generated by  the following RNRGo grammar, where a is 

shown in Figure 2. 

G1 = (is), is, a, b ) ,  f f ,  I S ) ,  { S  + a,  S + s(X)))  

12This is how an "obligatory adjunction constraint" in the tree adjoining grammar formalism can be simulated. 

13Simpler trees are represented as term structures, whereas more involved trees are shown in the figure. Also note that we 

use uppercase letters for nonterminals and lowercase for terminals. 

'*Some linguistic motivations of this extension of TAG'S are argugued for by the author in [I]. 



a : Y :  derived : 

S - 
a s f  - 
a s f  - 

b s c d s e  - - 
b h c d h e  

Figure 2: a,P,  y and deriving 'aabbccddeef f' by G3 

Example 3.2 L2 = {anbncndn 1 n E N )  E TAL is generated by the following RNRGl grammar, where P 
is shown in Figure 2. 

G2 = (is), { s ,  a ,  b, c, d l ,  # 1  {(S(X))), 1s -+ p, S -+ s ( j ) l )  

Example 3.3 L3 = {anbncndnen f n  1 n E N )  $! TAL is generated by the following RNRGB grammar, where 

y is shown in Figure 2. 

G3 = ({S), i s ,  a1 bl c ,  dl e, f 1 ,  #, {(S(X, A))), 1s -+ 71 S -+ s(#, 1))) 

4 K-Local Grammars 

The notion of 'locality' of a grammar we define in this paper is a measure of how much global dependency 

there is within the grammar. By global dependency within a grammar, we mean the interactions that exist 

between different rules and nonterminals in the grammar. As it is intuitively clear, allowing unbounded 

amont of global interaction is a major, though not only, cause of a combinatorial explosion in a search for a 

right grammar. K-locality limits the amount of such interaction, by bounding the number of different rules 

that can participate in any single derivation. 

Formally, the notion of "k-locality" of a grammar is defined with respect to a formulation of derivatioi~s 

due originally to  Vijay-Shankar, Weir, and Joshi ([19]), which is a generalization of the notion of parse trees 

for CFG's. In their formulation, a derivation is a tree recording the history of rewritings. The root of a 

derivation tree is labeled with an initial tree, and the rest of the nodes with rewriting rules. Each edge 



corresponds to  a rewriting; the edge from a rule (host rule) to another rule (applied rule) is labeled with the 

address of the node in the host tree at which the rewriting takes place. 

The degree of locality of a derivation is the number of distinct kinds of rewritings that appear in it. In 

terms of a derivation tree, the degree of locality is tlie number of different kinds of edges in it ,  where t8wo 

edges are equivalent just in case the two end nodes are labeled by the same rules, and the edges themselves 

are labeled by the same node address. 

Definition 4.1 Let V ( G )  denote the set of all derivation trees of G, and let r E D(G) .  Then,, the 

degree of locality of T ,  written local i ty (r ) ,  is defined as follows. local i ty (r )  = card{(p,q,77) 1 there is an 

edge in  r from a node labeled with p to  another labeled with q ,  and is  itself labeled with q }  

The degree of locality of a grammar is the maximum of those of all its derivations. 

Definition 4.2 A R N R G  G is called k-local if rnax{locali ty(r)  ( r E V ( G ) )  5 k .  

W e  write kLocal-RNRG = { G  ( G E R N R G  and G is k-Local} and k-Local-RNRL = { L ( G )  ( G E k-Local- 

R N A G  }, etc.. 

Example 4.1 L1 = {anbnambm I n , m  E N }  E 4-Local-RNRLo since all the derivations of GI = ( { S ) ,  

{ s ,  a ,  b) ,  #, { s ( S ,  S ) ) ,  {S + s ( a ,  S, b) ,  S -+ A)) generating L1 have degree of locality at rnost 4 .  For ezarnple, 

the derivation for the string a3b3ab has degree of locality 4 as shown in  Figure 3. 

Because locality of a derivation is the number of distinct kinds of rewritings, inclusive of the positions at 

which they take place, k-locality also puts a bound on the number of nonterminal occurrences in any rule. 

In fact, had we defined the notion of k-locality by the two conditins: (i) at  most k rules take part in any 

derivation, (ii) each rule is k-bounded.15, the analogous learnability result would follow essentially by t,he 

same argument. So, k-locality in effect forces a grammar to  be an unbounded union of bouudedly sinlple 

grammar, with bounded number of rules each boundedly small, with a bounded number of nonterminals. 

This fact is captured formally by the existence of the following normal form with only a polynomial expansion 

factor. 

Lemma 4.1 (K-Local Normal Form) For every k-Local-RNRGj G, if we let n = s i z e ( G ) ,  the11 there is 

a R N R G j  G' such that 

15'K-bounded' here means k nonterminal occurrences in e a d ~  rule, [4]. For instance, a context free grarnrrlar i n  Cl~onlsky 

Normal Form has only 2-bounded ru les .  



Figure 3: Degree of locality of a derivation of a3b3ab by GI 



1. L(G1) = L(G). 

2. G' is in k-local normal form, 2.e. G' = u { H i  I i E IG,) such that: 

(a) each Hi has a nonteminal  set that is: disjoint from any other Hi.  

(b) each Hi is k-simple, that is 

i. each Hi contains exactly 1 initial tree. 

ii. each Hi contains at  most k rules. 

iii. each Hi contains at most k nonterminal occurrences. 

3. s i ze (Gf )  = O(nk+') .  

Crucially, the constraint of k-locality on RNRG's is an interesting one because not only each k-local subclass 

is an exponential class containing infinitely many infinite languages, but also k-local subclasses of the ItNRG 

hierarchy become progressively more complex as we go higher in the hierarchy. In particular, for each j, 

RNRGj can "count up to" 2( j  + 1) and for each k > 2, k-local-RNRGj can also count up to 2 ( j  + 1).l6 We 

summarize these properties of k-local-RNRL's below. 

Theorem 4.1 For every k  E N ,  

1. V j  E N U k E ~  k-local-RNRLj = RNRLj .  

2. V.j E N Vk 2 3 k - l o ~ a l - R N R L ~ + ~  is incomparable with RNRLj. 

3. V j ,  k E N  k-local-RNRLj is a proper subset of (k+l)-local-RNRLj. 

4. V j  V k  >_ 2 E N k-local-RNRLj contains infinitely many infinite languages. 

Informal Proof: 

1 is obvious because for each grammar in RNRLj, the degree of locality of the grammar is finite. 

As for 2, we note that the sequence of the languages (for the first three of which we gave example 

grammars) Li = {aya; ... agi I n E N )  are each in b l o ~ a l - R N R L ~ _ ~  but not in RNRLi-2. 

To verify 3, we give the following sequence of languages Lj ,k  such that for each j and k ,  L j V k  is in k-local- 

RNRLj but not in (k-1)-local-RNRLj. Intuitively this is because k-local-languages can have at most O ( k )  

mutually independent dependencies in a single sentence. 

1 6 ~  class of grammars B is said to be able to "count up to" j, just in case {aya;  ... a; I TI E N) E { L ( G )  ( G E 8 )  but. 

{aya; ... a>, I n E N) $Z {L(G)  1 G E 9).  



Example 4.2 For  each j, k E N, lei Lj,t  = { a;' a:"2...a:::+',,) . a: nk . . . o~ i ; , )  1 n,, nz, ..., n k  E 

N ) .  

4 is obvious because L ,  = UurEC+Lw where L,  = {wn I n E N )  are a subset of 2-local-RNRLo, and hence is 

a subset of k-local-RNRLj for every j and k > 2. C, clearly contains inifinitely many infinite languages. 

5 K-Local Languages Are Learnable 

It turns out that each k-local subclass of each RNRLj is polynomially learnable. 

Theorem 5.1 F o r  each j and k ,  k - loca l -RNRLj  is  polynomial ly  learnable. 

This theorem can be proved by exhibiting an Occam Algorithm (c.f. Subsection 2.3), for this class with 

a range size which is logarithmic in the sample size, and polynomial in the size of a minimal consistent 

grammar. We omrnit a detailed proof and give an informal outline of the proof. 

1. By the Normal Form Lemma, for any k-local-RNRG G, there is a language equivalent k-local-RNRG 

H in k-local normal form whose size is only polynomially larger than the size of G. 

2. The number of k-simple grammars is apriori infinite, but for a given positive sample, the number of 

such grammars that are 'relevant' to that sample (i.e. which could have been used t o  derive any of 

the examples) is polynomially bounded in the length of the sample. This follows essentially by the 

non-erasure and non-copying properties of RNRG's. (See [3] for detail.) 

3. Out of the set of k-simple grammars in the normal form thus obtained, the ones that are inconsist,ent 

with the negative sample are eliminated. Such a filtering can be seen to be performable in polynoniial 

time, appealing to  the result of Vijay-Shankar, Weir and Joshi [18] that Linear Context Free ltewriting 

Systems (LCFRS's) are polynomial time recognizable. That RNRG's are indeed LCFRS's follorv also 

from the non-erasure and non-copying properties. 

4. What we have a t  this stage is a polynomially bounded set of k-simple grammars of varying sizes which 

are all consistent with the input sample. The 'relevant' part of a minimal consistent grammar in k-local 

normal form is guaranteed to be a subset of this set of grammars. What an Occam algorithm needs 

to  do, then, is t o  find some subset of this set of k-simple grammars that "covers" all the p0int.s in the 

positive sample, and has a total size that is provably only polynomially larger than the minimal total 

size of a subset that covers the positive sample and is less than linear in the salvlple size. 



5. We formalize this as a variant of "Set Cover" problem which we call "Weighted Set Cover" (WSC), and 

prove (in [2]) the existence of an approximation algorithm with a performance guarantee which suffices 

to  ensure that the output of A will be a basis set consistent with the sample which is provably only 

polynomially larger than a minimal one, and is less than linear in the sample size. The algorithm runs 

in time polynomial in the size of a minimal consistent grammar and the sample length. 

6 Discussion: Possible Implications to the Theory of Natural 

Language Acquisition 

We have shown that a single, nontrivial constraint of 'k-locality' allows a rich class of mildly contest sensitive 

languages, which are argued by some [9] to be an upperbound of weak generative capacity that may be needed 

by a linguistic formalism, to  be learnable. Let us recall that k-locality puts a bound on the amount of globa.1 

interactions between different parts (rules) of a grammar. Although the most concise discription of natrua.1 

language might require almost unbounded amount of such interactions, it is conceivable that the actual 

grammar that is acquired by humans have a bounded degree of interactions, and thus in some ca.ses may 

involve some inefficiency and redundancy. To illustrate the nature of inefficiecy introduced by 'forcing' 

a grammar to  be k-local, consider the following. The syntactic category of a noun phrase seems to be 

essentially context independent in the sense that a noun phrase in a subject position and a noun phrase 

in an object position are more or less syntactically equivalent. Such a 'generalization' contributes to  the 

'global' interaction in a grammar. Thus, for a k-local grammar (for some relatively small k )  to account for 

i t ,  i t  may have t o  repeat the same set of noun phrase rules for different constructions. 

As is stated in Section 4, for each fixed k, there are clearly a lot of languages (in a given class) which 

could not be generated by a k-local grammar. However, it is also the case that many languages, for which 

the most concise grammar is not a k-local grammar, can be generated by a less concise (and thus perl~aps 

less explanatory)  grammar, which i s  k-local. In some sense, this is similar t o  the well-known dist,inction of 

'competence' and 'performance'. It is conceivable that performance g r a m m a r s  which are actually acquired by 

humans are in some sense much less efficient and less explanatory than a competence grammar for the same 

language. After all when the 'projection problem' asks: 'How is it possible for human infants to  acquire their 

native languages...', it does not seem necessary that it be asking the question with respect to 'competence 

grammars', for what we know is that the set of 'performance grammars' is feasibly learnable. The possibility 

that we are suggesting here is that 'k-locality' is not visible in competence grammars, however, it is impl ic i t ly  

there so that the languages generated by the class of competence grammars, which are not necessa.rily k-local, 

are indeed all k-local languages for some fixed 'k'. 



7 Conclusions 

We have investigated the use of complexity theory to the evaluation of grammatical systems as linguistic 

formalisms from the point of view of feasible learnability. In particular, we have demonstrated that a single, 

natural and non-trivial constraint of "locality" on the grammars allows a rich class of mildly context sensitive 

languages to  be feasibly learnable, in a well-defined complexity theoretic sense. Our work differs from recent 

works on efficient learning of formal languages, for example by Angluin ([4]), in that it uses only examples 

and no other powerful oracles. We hope to have demonstrated that learning formal grammars need not be 

doomed to be necessarily computationally intractable, and the investigation of alternative formulations of 

this problem is a worthwhile endeavour. 
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