
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1988

Reverse Software Engineering Reverse Software Engineering

Noah S. Prywes
University of Pennsylvania

X. Ge
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

M. Song
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Noah S. Prywes, X. Ge, Insup Lee, and M. Song, "Reverse Software Engineering", . December 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-99.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/661
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76359248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/661
mailto:repository@pobox.upenn.edu

Reverse Software Engineering Reverse Software Engineering

Abstract Abstract
The goal of Reverse Software Engineering is the reuse of old outdated programs in developing new
systems which have an enhanced functionality and employ modern programming languages and new
computer architectures. Mere transliteration of programs from the source language to the object
language does not support enhancing the functionality and the use of newer computer architectures. The
main concept in this report is to generate a specification of the source programs in an intermediate
nonprocedural, mathematically oriented language. This specification is purely descriptive and
independent of the notion of the computer. It may serve as the medium for manually improving reliability
and expanding functionally. The modified specification can be translated automatically into optimized
object programs in the desired new language and for the new platforms.

This report juxtaposes and correlates two classes of computer programming languages: procedural vs.
nonprocedural. The nonprocedural languages are also called rule based, equational, functional or
assertive. Non-procedural languages are noted for the absence of "side effects" and the freeing of a user
from "thinking like a computer" when composing or studying a procedural language program.
Nonprocedural languages are therefore advantageous for software development and maintenance. Non
procedural languages use mathematical semantics and therefore are more suitable for analysis of the
correctness and for improving the reliability of software.

The difference in semantics between the two classes of languages centers on the meaning of variables.
In a procedural language a variable may be assigned multiple values, while in a nonprocedural language a
variable may assume one and only one value. The latter is the same convention as used in mathematics.
The translation algorithm presented in this report consists of renaming variables and expanding the logic
and control in the procedural program until each variable is assigned one and only one value. The
translation into equations can then be performed directly. The source program and object specification
are equivalent in that there is a one to one equality of values of respective variables.

The specification that results from these transformations is then further simplified to make it easy to
learn and understand it when performing maintenance.

The presentation of translation algorithms in this report utilizes FORTRAN as the source language and
MODEL as the object language. MODEL is an equational language, where rules are expressed as algebraic
equations. MODEL has an effective translation into the object procedural languages PL/1, C and Ada.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-99.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/661

https://repository.upenn.edu/cis_reports/661

REVERSE SOFTWARE
ENGINEERING
N. Prywes, X. Ge,

I. Lee and M. Song

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

December 1988

Prepared Under Contract AFOSR-88-0116

from the

Alr Force Office of Scientific Research

Boiling Alr-Force Base, DC 20332-6448

ABSTRACT

The goal of Reverse Software Engineering is the reuse of old outdated programs in

developing new systems which have an enhanced functionality and employ modern program-

ming languages and new computer architectures. Mere transliteration of programs from the

source language to the object language does not support enhancing the functionality and

the use of newer computer architectures. The main concept in this report is to generate a

specification of the source programs in an intermediate nonprocedural, mathematically ori-

ented language. This specification is purely descriptive and independent of the notion of

the computer. It may serve as the medium for manually improving reliability and expand-

ing functionally. The modified specification can be translated automatically into optimized

object programs in the desired new language and for the new platforms.

This report juxtaposes and correlates two classes of computer programming lan-

guages: procedural vs. nonprocedural. The nonprocedural languages are also called rule

based, equational, functional or assertive. Non-procedural languages are noted for the ab-

sence of "side effects" and the freeing of a user from "thinking like a computer" when

composing or studying a procedural language program. Nonprocedural languages are there-

fore advantageous for software development and maintenance. Non procedural languages use

mathematical semantics and therefore are more suitable for analysis of the correctness and

for improving the reliability of software.

The difference in semantics between the two classes of languages centers on the mean-

ing of variables. In a procedural language a variable may be assigned multiple values, while

in a nonprocedural language a variable may assume one and only one value. The latter is the

same convention as used in mathematics. The translation algorithm presented in this report

consists of renaming variables and expanding the logic and control in the procedural program

until each variable is assigned one and only one value. The translation into equations can

then be performed directly. The source program and object specification are equivalent in

that there is a one to one equality of values of respective variables.

The specification that results from these transformations is then further simplified to

make it easy to learn and understand it when performing maintenance.

The presentation of translation algorithms in this report utilizes FORTRAN as the

source language and MODEL as the object language. MODEL is an equational language,

where rules are expressed as algebraic equations. MODEL has an effective translation into

the object procedural languages PL/1, C and Ada.

Contents

1 . INTRODUCTION AND SUMMARY .

2 . THE OVERALL APPROACH TO TRANSLATION FROM A PROCEDURAL

LANGUAGE TO AN EQUATIONAL LANGUAGE

2.1 Overview .

2.2 The Procedural Language

2.3 The Equational Specification Language

2.4 Transformat ions .

2.5 A Computational View of an Equational Specification

3 . DISCUSSION OF TRANSFORMATION OF AN EXAMPLE

3.1 The Example .

3.2 Renaming . Second Transformation .

3.3 Single-Assignment Program . Third Transformation

3.4 Single-Value Variables Program . Fourth Transformation 41

3.5 The Initial Equations in the Specification . Fifth Transformation 44

3.6 Simplifying The Specification . Sixth and Seventh Transformation 46

3.7 The Array Graph . 49

4 . DISCUSSION OF THE EQUATIONAL SPECIFICATION 51

4.1 Modifying the Translation to Produce a Simpler Specification 52

4.2 Proving Correctness of an Equational Specification 59

. 5 . CONCLUSION 64

. 6 . REFERENCES 66

List of Figures

Figure 1: Use of Translations Between Procedural and Nonprocedural Languages .

Figure 2: Program Transformations .

Figure 3: Specification Transformations .

Figure 4: Example of a Specification and its Computational View

Figure 5: Example of FORTRAN Program to Find the Greatest Common Divisor

Figure 6: Transforming "WHILE" .

Figure 7: Transforming " IF<condition> THEN <block>"

Figure 8: Second Transformation . Renaming Table

Figure 9: Third Transformation . Single Assignment Program

Figure 10: Fourth Transformation . Program with Single Value Assignment to

. Variables

Figure 11 : Fifth Transformation . Equations .

. Figure 12: Final Specifications 48

. Figure 13: Array Graph of the GCD Dataflow Machine 50

Figure 14: Alternative Transforming "IF <condition> THEN <block>" 54

. Figure 15: Second Transformation . Renaming Table 56

. Figure 16: Third Transformation . Single Assignment Program 57

. Figure 17: Final Specification 58

. Figure 18: Verification Assertions for the function GCD From [27] 60

. Figure 19: Verification of Specification of Figure 12 61

List of Tables

Table 1: Basic Types of Statements Used in the Source Program 17

Table 2: Equations. Variables. Subscripts and Operations in MODEL 21

Table 3: Declarations of Input/Output and Interim Variables in MODEL 22

Table 4: Header Statements in MODEL . 23

1. INTRODUCTION AND SUMMARY

Much research and development has been directed in the past to the overall Reverse

Software Engineering problem: i.e. how to utilize outdated programs to reduce cost of devel-

oping new replacement systems. There are existent systems for "structuring" programs to

make them more readable and understandable [6,12]. There are also systems that transliter-

ate from one procedural language to another [10,20,21,22,23,33,37]. The approach described

in this report differs in a number of ways. It generates a computer independent mathemat-

ical meaning of the program. The abstract explanation of the program supports analysis

of its correctness and serves as the medium in which maintenance of the program can be

intermediate nonpr cedural language is at the center of Figure 1. It P
is useful for both, new software development and for software maintenance and updating. In

this report we-will refer to this nonprocedural language as equational language. We will call

the input to the translator program and the output specification.

This report focuses on the Reverse Software Engineering translation shown at the top

half of Figure 1. The objective of this report is to present the algorithm that translates the

procedural program into the equivalent of mathematical equations. The coupling with the

Forward Software Engineering, shown at the bottom of Figure 1, allows to obtain automat-

ically programs in a new programming language and for a new computer architecture.

This report juxtaposes and correlates the two classes of computer programming lan-

guages: conventional procedural languages vs. the more recently introduced nonprocedural

mathematically oriented languages. The latter class has been called rule based[8,40], equa-

tional, [4,30,35] functionafl51 dataflow or assertive [1,29]. Procedural languages are prescrip-

tive and consist of an ordered set of statements that contain commands to a computer. Two

major difficulties with procedural languages have been widely recognized: the need for the

user to "think like a computer" in composing or reading a program, and the existence of "side

effects" that make it difficult to understand the meaning or modify any one statement, as

it is frequently effected by other statements [4,7]. The nonprocedural languages are purely

declarative or descriptive. Each statement is a description of a stand-alone mathematical

rule applied to entities in the program requirement. Order of statements can be immaterial.

There are no side effects. The meaning of each statement can be understood without even

mentioning any computer concepts. It has been widely claimed that the nonprocedural class

of languages is much superior for computer programming[5,8,13]. The adoption of languages

I of this class will greatly reduce cost of sof tpre d velopment and maintenayce and i prove
I t T

reliability of the produced programs. This class of languages can be effectively translated

into procedural programs[l4], as shown in the lower half of Figure 1.

1 Existing 1 I-+
I Procedural Programs I-+

I Translation 1

(Reverse Software Engineering)
I I

0 I New 1 I 1
I / I I Equational Specification1 I-+

/I\ / I <---------------- > I I -+
/ I Compose +------------------------- I ,-- +

/ \ I ----- 1 read I
modify I
verify V

I Translation 1

(Forward Software Engineering)
I I
+------------------------- +

I
1
v

+------------------------- +
1 New or Improved 1
I Procedural Programs 1
+------------------------- +

Figure 1: Use of Translations Between Procedural and Nonprocedural Languages

There have been a number of theoretical research directions that involve giving a

mathematical meaning to a program as follows. Verification of correctness of programs has

involved giving a mathematical meaning to a program, and using the latter representation in

proving correctness [9,17,19,24]. It is much easier to conduct the proof on the mathematical

representation of the program. Research on program transformations has utilized a similar

approach making it easier to perform the transformations [7,11,31]. Compiler generation

has been based on using mathematical definitions of a programming language in the form of

its denotational semantics [18,32,38]. The translation from sequential into parallel programs

[2,25] utilizes an intermediate assertive language. The mathematical representation devel-

oped in this report is in the form of regular and boolean equations. It is much more widely

familiar and more readily manipulateable. It potentially can be used for the above purposes

i as pell. I

I

The basic difference between procedural and equational languages is in the meaning

of variables. Procedural languages allow multiple assignments to a variable in the course

of executing a program. In contrast, an independent variable in mathematics can assume

only one value. The translation algorithm in this report incorporates transformations that

progressively rename the instances of assignments to a variable, until single value assignments

are attained throughout. The translation to equations is then directly attainable. There is

equivalence between the source program and the object equations in that corresponding

variables have the same values, respectively.

The choice of languages for presenting and illustrating the translation is as follows.

We chose FORTRAN[15] as an example of a procedural language because of its relative

simplicity in comparison with other procedural languages. We chose MODEL[13,34] as the

example of an equational language because of its equational syntax and semantics and the

highly developed state of its Forward Software Engineering translation. Presently, translators

are available from MODEL into PL/l , C and Ada procedural languages[l4]. The existent

MODEL Forward Software Engineering translation algorithms have provided the basic ideas

for the Reverse Software Engineering translation algorithms.

In the following we will assume that the source procedural language program has

been pre-processed into basic types of statements that are common to the entire class of

procedural languages. Also the MODEL language includes only the basic types of statements

for declarations of variables and expressing rules as regular and boolean algebraic equations.

The equations may have to be post-processed into other nonprocedural languages. Thus the

choice of the languages in this report should not impose a restriction on the basic capabilities

of the translation from procedural to non procedural languages.

In addition to this introductory section, the r ort consists of four sections. Section 2
gP I I

I
describes the overall approach to the translation problem. Further insight into the approach

is provided in Section 3 through presenting the translation algorithm and by illustrating it

with an example of the translation of a small program into a respective equational specifi-

cation. The objective is to give the reader an understanding of the translation through this

example. Additional translation issues are discussed in Section 4. The report ends with a

concluding section 5.

' 2. THE OVERALL APPROACH TO TRANSLATION FROM

A PROCEDURAL LANGUAGE TO AN EQUATIONAL LAN-

GUAGE

2.1 Overview

This section describes the basic ideas that underlie the translation.

Given a source procedural program, it will first be translated into a program that

uses a basic subset of FORTRAN statements. This basic subset is generally common to

all procedural languages. It is briefly des ribed in section 2. . This is followed in section 1 p
2.3 by description of the basic part of the MODEL equational specification language, which

is the object of the translation. The basic MODEL language concepts are presented only

briefly in this section, and further discussed and illustrated in section 3. A brief review of

the transformations in the translation process is given in section 2.4.

The objective of the translation is to attain equivalence between the source (FOR-

TRAN) program and object (MODEL) specification. The equivalence is based on mapping

the instances of the variables in the program into respective variables in the specification.

The source program and the object specification are then equivalent in the sense that the

respective mapped variables have the same value. The specification can be viewed as an ab-

stract set of mathematical equations. It can also be viewed as a computational model. The

computation finds values for all the variables which make all equations and declarations true.

This computation may be envisaged in a most direct way as conducted by a hypothetical

dataflow computer with a very large memory and number of processors which can execute

the specification directly. The equivalence can be considered in terms of either view of the

specification. The computational view is briefly reviewed in section 2.5.

We will not be concerned whether the source program "makes sense" or whether it is

"correct7', only that the object specification variables have the same values as those in the

source program, respectively. In this sense, the algorithm in the object specification will be

the same as that of the source program.

The translation will consist of a number of transformations. Starting with the source

program, each transformation modifies a program into an equivalent program which is pro-

; gressively closer to the ob] ot equational specification. Basically, the difference be ween a ,
I I I: I 1
procedural program and an equational specification is as follows. Variables in a procedural

program can have assigned to them none, one or several values in the course of sequential

execution. In a mathematical equational specification, each variable can assume one and

only one value. The transformations then rename instances of program variables and declare

arrays so that each elemental variable has one and only one assigned value.

There will also be simplification transformations that will make the equational spec-

ification easier to understand and modify. Thus the objective is not only that the object

specification is equivalent to the source program, but also that it be readable and under-

standable while exposing to the user to details of the inherent logic of the source program.

2.2 The Procedural Language

The subsequent discussion focuses on translation of a source program that contains

only a selected subset of types of statements, shown in Table 1, into an equational specifica-

tion. The reasons for using a subset of the types of statements are as follows. This subset

of types of statements is common to practically all procedural languages - with differences

only in syntax. The translation of a source program in different languages into an object

equational specification is envisaged as consisting first of pre-translation of these programs

into the basic types of statements. Thus there will be one pre-translation for each language

into basic types of statement, and a single translation to an equational specification lan-

guage. There ay be then post-translations into respective other nonprocedural languages.
1

I
pre and post translations can be performed automitically.

subroutine calls, gotos and dynamic memory allocations into the basic types of statement

presents special problems, as discussed below.

Subroutines (or subprocedures) are considered independent entities which are sep-

arately and independently translated into respective equational specifications. We adapt

essentially the so called "object oriented approach". Namely, in the calling program, a

subroutine is viewed as an opreation on its arguments. The subroutine call (in the calling

program) is translated into an assignment statement. The left hand side of the assignment

statement consists of a structured variable that contains the subroutine's output arguments.

The right hand side consists of an expression, where the subroutine appears as the opera-

tion on the input arguments. It is necessary to identify the subroutine's input and output

arguments, respectively. In an object oriented procedural language the input and output

arguments are explicitly identified. In a language such as FORTRAN, that has COMMON

declarations, it may be necessary to search many programs and subroutines to identify the

input and output arguments. Therefore human assistance may be helpful in performing this

task.

Goto statements are to be pre-translated into while statements. The algorithm for

this pre-translation is given in [24]. The result of this pre-translation preserves the topology

and has the same order of efficiency. It may however, use renaming of the same variables.

Finally, declarations and references of dynamically allocated variables are to be trans-

lated into static declarations and references. This will cause use of much more memory.

This will not matter as the ultimate object equation@ specification uses unlimited amount
I
I

of memory. The forward translation re-optimizes the /memory usage.

Consider the entire source program as a tree. There is a node for each statement (for

the statement types in Table 1). The types of nodes are:

(a) A root node representing the entire program.

(b) intermediate nodes for block statements: do,while, if then and if else.

(c) leaf nodes for input /out put and assignment statements.

Edges emanate from the root and intermediate nodes to the nodes of their con-

stituents. The constituents are ordered depth first, left to right, in the order of the state-

ments of the program. Declaration statements can be inserted in the program tree as leaf

nodes anywhere prior to their usage. These variables are always considered as local to the

program where they are declared.

Each statement node is further parsed to reflect the statement structure.

Thus, a source program is initially parsed into the tree structure. Sucessive trans-

formations modify names in the tree, add conditions and subscripts, and even add or delete

entire nodes. This leads to the specification after the final transformation.

Leaf statements:

1. Input /output (read,write)

2. Assignment

Block statements:

3. Do

4. While

5. If <condition> then <block-l>

else < block-2>

Declaration statements

6. Declaration of variables

Note: Goto replaced by while

Subroutine call replaced by assignments

Dynamic memory replaced by static memory

Table 1: Basic Types of Statements Used in the Source Program

2.3 The Equational Specification Language

This section describes briefly the syntax and semantics of the basic part of the

MODEL equational specification language. The equational specifications produced by the

translation are accepted by the present MODEL system[l4] that generates programs in PL/1,

C and Ada. The MODEL system has a "specification extension" phase where it tolerates

omissions in the user provided specification and fills-in missing parts automatically. We will

take advantage of this feature to simplify the translation.

The order of specification statements has no significance and they may be in an

arbitrary order.

The core of the language are the equation statements used to express rules. They are

summarized in Table 2. They have the syntax and meaning of regular algebra or boolean

algebra (depending on the operators). A mix of the two algebras is obtained through use of

the if operation (IF <boolean condition> THEN <expression-l> ELSE <expression-2>).

The expressions may be in regular algebra; expression-2 is optional.

The left hand side of an equation statement contains only a variable name. This is

the independent variable of the equation. The right hand side is an expression. Expressions

consist of operations and variables.

Variables referenced in equations may be scalars or arrays. An array variable name

must be followed by a subscript expression for each of its dimensions, in parenthesis. (A

variable may also denote an entire tree structure of more elemental variables. This is not in

the basic part of MODEL).

A specification must include a definition of the size of each different dimension of a

variable. The definition is given through a declaration or through an equation. In the latter

case, the size of a dimension variable is denoted by a control variable, which is used as a left

hand side of a defining equation.

There are two ways of denoting a control variable: statically - by use of the prefix

SIZE to denote the number of elements in a dimension, and dynamically - by use of the

prefix END to denote a boolean vector where each element denotes whether the respective

element of a variable is the last one in the dimension.

The equation applies (is true) while the subscripts assume any integer value in the

range of 1 to the size of the respective dimension. Thus an equation as well as a variable

may be a multidimensional array. The equation and the respective variables are null if the

size of any dimension is zero.

Finally, there are beveral type$ of operations that can be used in expressions. The

regular algebra arithmetic operations consist of =,+, *,/ and **. (There are presently no

differential and integral operators). Logical operations consist of comparison operations,

and, or and not. String operations consist of concatenation, search of a string and string

replacement. The if-then-else operation has the three operands as shown above. There are

many built-in functions, for common mathematical and data processing operations. There

are also more specialized user defined functions. These functions have strict requirements

on number and structure of operands.

The use of declaration statements is shown in Table 3. Note that only declarations of

input/output variables are mandatory. The entire input and output must be declared (dif-

ferently from procedural languages, where only the structure transferred in an input/output

operation is declared). The syntax for describing a structure is briefly shown in Table 3. The

declaration can be viewed as a multi-level tree. Levels are numbered and nested. Each node

is given a name and a definition of its number of repetitions. The number of repetitions is

also the size of the respective dimension. The root node may have a device type specification

(further described . in . section 4). Each leaf node must have a primitive data type.

Interim variables can be declared similarly. This declaration is optional. If omitted,

it is generated automatically in the extension phase of the MODEL system. The use of

declarations will be illustrated later.

Finally there is a need for statements that define the specification name, its in-

puts(cal1ed SOURCE) and outputs (called TARGET). These are shown in Table 4. Note

that there are three types of statements: A MODULE denotes a main program. It is not

called therefore it is not necessary to show its arguments. A FUNCTION has only input

arguments and a PROCEDURE has input, output and update arguments.

EQUATIONS:
i.e. < variable name > (< subscript expression >, ...) = < expression >;

< variable name > may refer to an individual element variable or to a tree structure of
subvariables.

Control variables denote the size of dimensions of arrays. They must be defined by equa-
tions. They can be represented as:

SIZE. < variable name > (<subscript expression>,...): denotes the number of ele-
ments in the rightmost dimension of <variable name >.

END. < variable name > (<subscript expression> ,. . .) : den0 tes whet her an element
is the last one in the rightmost dimension of <variable name>.

Subscript denotes the index of the referenced element of an array. The equation is true
for all the integer values of each subscript in the range of 1 to the size of the respective
dimension (defined by a constant or control variable). The equation and the array do
not apply (are nullified) if the size of a dimension is zero. The syntax of subscripts is:
subl,, sub2+.. . These subscripts are loc 1 to the equation where they are usad. a I I

I I
Operations used in expressions include the following:

arithmetic, logical and string operations

if- t hen-else

functions, built-in or defined in subroutines

Note that the translator from MODEL to procedural languages tolerate omissions of defi-
nitions of control variables.

Table 2: Equations, Variables, Subscripts and Operations in MODEL

DECLARATIONS:

Input /Output : Declaration of input/output structure is mandatory. The entire in-
put/output data must be declared as a structure, down to individual data elements
and their data types.

n <elementary variable name> ... <repetitions><primitive data type>;

<repetition> may consist of:

* : denoting 1 or more repetitions

The type of device must be declared as follows:

sequential (default) file,

messages from other processes (tasks),

addressed messages,

random access and shared memory.

There are no input/output commands.

Interim variables :Declaration is optional. The translator from MODEL to a procedural

language declares interim variables automatically.

Table 3: Declarations of Input/Output and Interim Variables in MODEL

HEADER:

Name Statements

MODULE:<main procedure name>

FUNCTION: <function name> (<input_argument-1 > ,. ..);

PROCEDURE:<subroutine name> (<argumentl>, ...);

Input/Output Argument Declarations

, SO RCE: <input argument-1>, ...; 7 I I
TARGET: <output argument-1>, ...;

update arguments are both input and output

Table 4: Header Statements in MODEL

2.4 Transformations

Two series of transformations are discussed in this section. The first series, shown in

Figure 2, transforms the source program into a form close to that of equations. The second

set, shown in Figure 3, simplifies the initial equational specification into a form that is easier

to read and understand. This section introduces the respective transformations. They are

then illustrated in section 3 and further discussed in section 4.

The first set of transformations (Figure 2) transforms a source program into an equiv-

alent program where variables are assigned a value once and only once. Each value assigned

to a variable in the source program has a distinct variable in the object program. Two

methods are used to define distinct variables in the object program. First, variables on the

1 1 left hand side of different assign e t statements in the source program aqe given different I- I

names in the object program. Next a variable that is assigned multiple values in a single

assignment in a loop is transformed into an array in the object program, with one element

for each iteration of the loop.

Additional variables are used to denote the index of elements in an array and the size

of every dimension.

The same order of time efficiency is retained in the source and object programs of

each transformation. There are the same order of number of assignments in both programs.

There are cases where an IF condition selects either a THEN or an ELSE assignment to a

variable (but not both). In cases that the IF condition does not select an assignment, then

there is no need for a corresponding distinct element in the object program. (As will be

discussed in Section 4, a specification can be simplified by deviating from this approach.)

The first pre-translation transformation in Figure 2 (the 0 transformation), translates

the source program into an equivalent program using a subset of the types of statements. It

is not further discussed in this report.

The first transformation collects THEN and ELSE assignments to the same variable.

Wherever possible, it merges them into a single statement. (The dependencies in these

statements on other variables must be checked to assure that they can be executed in the

same place in a program).

The second transformation renames each variable if it is used in different assignment

statements. It produces a renaming table showing (a) the renamed variables, (b) respective

statements, (c) conditions where each renamed variable is used and (d) the subscripts used

to index instances of assignments of the variable.

~ This is followed in the third transformation by generating an equivalent single-asslignqent

program using the renamed variable.

The next translation (the fourth) declares memory space for an array for the distinct

values assigned for the same variable in loop iterations. In this way the objective of one and

only one value assigned to a variable is attained. This form of the program can be readily

represented by equations.

The transformations in Figure 3 have the objective of producing a specification and

simplifying it. The fifth transformation essentially copies the assignments produced previ-

ously as a set of equations. It then also generates declaration and heading statements.

The specification is now more complex than the source program, because a number

of variables and conditions were added to make explicit all the interactions among vari-

ables. Transformations 7 and 8 simplify the specification in these respects. In the seventh

transformation some variables are eliminated by substituting their defining expresssion in

other equations. Further analysis is conducted in the eighth transformation to simplify con-

ditions in equations. Conditions may be collected and factored and duplicates eliminated.

Conditions may also be simplified when they do not depend on input data.

Source Procedural Program
I
v

+---+--- +
I 0 I Pre-Translation I
I 1 T rans la te i n t o bas ic types of statements I
+---+--- +

I
v

Source program using only ba s i c types of statements
I

I 1 Iconsolidate i f - then with i f - e l s e assignments I
I I I
+---+--- +

I
v

program with then-else statements
I

1 2 1 Generate renaming t a b l e f o r I
I I i ng l e assignment's

I+---+-------- - t 1 I ' J----------
I
+

I
v

Renaming Table
I
v

+---+--- +
1 3 1 Transform i n t o s i ng l e assignment I
I I I
+---+--- +

1
v

program with only s i ng l e assignments
I
v

+---+--- +
1 4 1 Transform i n t o single-value va r i ab l e s I
I I I
+---+--- +

I
v

Program with s i n g l e value va r i ab l e s

Figure 2: Program Transformations

Program wi th s i n g l e valued v a r i a b l e
I

I 5 1 Transformation i n t o s p e c i f i c a t i o n I
1 I
+---+--------------------------------------

I
+

I
v

I n i t i a l s p e c i f i c a t i o n
I

1 6 1 Transformation t o reduce I
I 1 v a r i a b l e s and equa t ions
+---+--------------------------------------

I
+

I
v

Reduced equa t ions s p e c i f i c a t i o n
I
v

+---+-------------------------------------- +
1 7 1 Transformation t o reduce i f s I
I ; I !
+--L+--d------------------ I 4--------------- ' I

+
I
v

S i m p l i f i e d l o g i c i n s p e c i f i c a t i o n

F i g u r e 3: S p e c i f i c a t i o n Transformat ions

2.5 A Computational View of an Equational Specification

An equational specification can be viewed as a set of true declarations, equations and

headings. A computational view of the specification may be considered directly in terms

of a dataflow machine, with a processor for each array variable and for each equation, and

a communication link for each dependency. The dataflow graph for such a machine is in

fact generated by the MODEL system. It is called an array-graph [26,35]. It consists of

a node for each variable and for each equation, and an edge for each dependency relation

between a variable and an equation, and vice versa. The edge communicates the value of

the variable and its indices in an array. Figure 4 illustrates this concept for a very simple

example. Fur her discussion is provided in section 3. I I I

A veri simple specification is shown a t the top of Figure 4. The corresponking

computational view of the specification is shown at the bottom of the figure.

The specification, called summer, adds up the elements of an input vector and outputs

the sumof_elements. The specification starts with three header statements showing the

name of the specifications, its source variables and target variables. They are followed by

declaration of the source vector structure: 100 lines, each contains an element, and the sum-

of-elements target structure: of one total-line containing the total. This is followed by one

equation that uses the SUM function.

The corresponding dataflow machine is shown at the bottom of Figure 4. The pro-

cessors for each variable are denoted by circles. The processor for the equation is denoted

by a rectangle. Their functions of each processor are shown next to the respective node.

MODULE: summer;
SOURCE : vector ;
TARGET: sum-of-elements;

1 vector is FILE
2 line(100) is RECORD,
3 element is FIELD(1NTEGER) ;

1 sum-of-element is FILE,
2 total-line is RECORD,
3 total is FIELD(1NTEGER) ;

total = ~~~(element(sub1),sub1);

vector-accesses a file

I +----

V IReads and stores 100 line, sends each line
line(100)-------- land its subscript as they are received.

+----

1 subl
v

element --------+----

IStores and distributes 100 elements and
I sub1 ltheir subscripts as they are received.
v

+----------------------------------- + +----

I total = sum(element(subl),subl) 1-1 Adds when it receives
+----------------------------------- + I an element and its

I I subscript. Sends the
V I total when all additions

I have been completed .
total +----

I
v

total-line - prints total-line
I
v

sum-of-elements - closes file

Figure 4: Example of a Specification and its Computational View

3. DESCRIPTION OF THE TRANSLATION ALGORITHM

THROUGH AN EXAMPLE

3.1 The Example

The example selected to illustrate the transformations is shown in Figure 5. It is a

FORTRAN program for computing the greatest common divisor (gcd) of two input integers

(x and y). It has been selected because it illustrates well most of the transformations. The

GCD example in Figure 5 is well known[27], short and very simple. Therefore it can be easily

used within the bounds of this report. It utilizes only the basic types of statements (Table

1). Therefore the pre-translation (0 th transformation in Figure 2) can be omitted. It does

not include an instance where the THEN and ELSE assignments to the same variable need

to be merged into one statement. Therefore transformation 1 (Figure 2) can be skipped as

well (it was discussed in section 2.4). While the example is short, it is also complex, as it

handles implicitly the cases of:

gcd = input value of x = input value of y

gcd = input value of x

gcd = input value of y

by having a portion of the program skipped for each of these cases. The object specification

will be shown to make these cases explicit.

01 c PROGRAM GCD
02 c FORTRAN example t o f i n d t h e g r e a t e s t common d i v i s o r of
03 c two p o s i t i v e i n t e g e r s .
04
0 5 INTEGER x, y
0 6
0 7 READ(5,IOO) x , y
08 100 FOFU4AT(i4,i4)
09
10 DO WHILE (x ^= y)
11 IF x > y THEN
12 x = x-y
13 ELSE
14 y = y-x
15 ENDIF
16 ENDDO
17
18 gcd = x
19 WRITE(6,200) gcd
20 200 FORMAT(i4)
2 1 END

F igure 5: Example of FORTFtAN Program t o Find t h e G r e a t e s t Common Div i so r

There are two options for the transformat ion algorithms. The object specificat ion can

adhere closely to the source program algorithm and make the "side effects" explicit. This

will lead to a more complex specification as it must show all the conditions explicitly. This

option is useful for analyzing the operation of the source program. The other option is to

avoid the "side effects" by changing the algorithm of the source program. This will lead to

a simpler specification. The first option is employed below. The second option is discussed

in section 4.

3.2 Renaming - Second Transformation

Assume that the source program has been parsed into a tree as discussed in section

2. The renqming is performed in the tree. There are three arts to the renaming. I I 9
Renaming LHS variables: In the first part the variable on the left hand side (lhs) of

each equation is renamed. The new name is a concatenation of the variable name and the

statement number (e.g. the variable x on the left hand side of statement 12 is renamed x-12).

In this way there are distinct variables in each statement and the single assignment rule is

applied to the program.

Computing indices of instances of assignments in loops: Figure 6 shows the transfor-

mation of WHILE loops. As shown, a WHILE loop is translated into two nested loops - DO

and WHILE, respectively. The case when the source WHILE loop is skipped (i.e. sizek=O)

is expressed by a DO loop, and the case when there are one or more repetitions (sizek=l)

is expressed by the WHILE loop. In this way these two cases are differentiated explicitly.

Subl, sub2, etc., are the subscript values of the instances of assignment in the WHILE loop.

Source Program

WHILE <condition>

<block>

1 END DO

Single Assignment Program

sizek = IF <initial condition>

THEN 1 ELSE 0

DO subl=l to sizek

sub2 = 0

WHILE (IF sub2=0 THEN

true ELSE *endk) DO

endk = *<condition>

i END DO

END DO

k is the statement number of the WHILE statement

sub2 serves as the counter for assignments in <block>

Figure 6: Transforming "WHILE"

The case that a block is nested in an if statement is illustrated in Figure 7. (Several

other ways to handle this are described in section 4.) It is necessary to have a counter for

the number of instances of assignments in an if block. The index of each assignment is a

concatenation of "sl" and the statement number (e.g. s l l l) . slis an abbreviation for sublinear

index, namely an index which is a function of the subscript subk of the loop in which the

assignment statement is nested. sl increases in steps of one or zero for each increase of one

in subk. It always has an integer value (e.g. sl(subk) <=subk).

For each variable on the lhs of an assignment, the source program tree is scanned to

determine the do, while and if blocks within which an assignment is nested. Statements are

inserted for evaluating the respective subscripts or sublinears. The condition for terminating

a while loop is named endk, where k is the number of the respective while statement.

Renaming RHS variables: In this part, the right hand side (rhs) ' v a r i a b l ~ of assign-

ments are defined in terms of lhs variables, their subscripts, sublinear variables and the end

variables. The tree is scanned to find for each rhs variable the same named lhs variables

which has been assigned values preceding the rhs reference. There are a variety of cases where

there are different preceding assignments. Each case will be a function of the subscripts of

the nesting whiles, sublinears of the nesting ifs and of the end variables.

The renaming is illustrated in Figure 8 for the GCD example. It shows in the first

column the source program variables: (x, y, and gcd). This is followed by the size and end

variables: (size10 and endlo), followed by the sublinears: (s l l l and s113). For each variable,

the table gives its statement numbers, whether the variables are on the rhs or lhs, their

renaming and the respective subscripts of instances of lhs variables.

Source Program

IF <condition>

THEN

<block>

END IF

Single Assignment Program

slk = function (<condition>)

IF<condition>

THEN

<block>

END IF

Figure 7: Transforming " IF<condition> THEN <block>"

st a t ement
va r address pos i t i on renamed a s subsc r i p t ..

Read
R
R

x-7 s c a l a r
x-7
x-7 : [sub2=1]
IF sllI=O THEN x-7 ELSE x-12
x-7 : [sub2=1]
IF s l l 1=0 THEN x-7 ELSE x-12
x-12 sub l , s l l l (sub l , sub2)
IF s l l l=l THEN x-7 ELSE x-12
IF s l l l = O THEN x-7 ELSE x-12
IF sl11=0 THEN x-7 ELSE x-12
I F sizelO=O THEN x-7
ELSE IF s l l l = O THEN x-7

ELSE x-12

Read
R
R

Y -7 s c a l a r
Y -7
y-7 : [sub2=l]
IF s113=0 THEN y-7 ELSE y-14
y-7 : [sub2=l]
IF ~113.0 THFN y-7 ELSE y-14
IF s113=0 THEN y-7 ELSE y-14

~ I

y-14 sub l , s l l3 (sub l , sub2)
IF s113=1 THEN y-7 ELSE y-14
IF s113=0 THEN y-7 ELSE y-14

gcd 18- L gcd-18
19 Write gcd-18

s c a l a r

s c a l a r

- p p p - p p p p - - - p p

end10 10 R end10
16bl L end10 s c a l a r ...

Figure 8 : Second Transformation - Renaming Table

s c a l a r
s l l l l i b 1 R s l l i

11b2 L s l l l
1 lb2 R s l l i
l i b 4 R s l l l
12 R s l l l
14 R s l l l
16bl R sl 11
18 R sll1 ...

s c a l a r

Figure 8: Second Transformation - Renaming Table (Continued)

The read and write statements are treated same as assignment statements. However

if a variable is read or written only once, the statement may be disregarded altogether as

the object equational language has no inputloutput commands (e.g. if a program contains: ,

... write (5,x) .. .write (6,x) ..., then this is equivalent to two assignment statements).

The renaming uses pseudo statements which are not directly executable in FOR-

TRAN. The IF-THEN-ELSE operation can be nested in parenthesis like other arithmetic

operations and functions. For example:

IF((1F cond THEN a ELSE b) > (IF cond THEN c ELSE d)) THEN ...

is the same as

IF(cond & a>c) 1 (~ c o n d & b>d) THEN
I I ,

This also allows the use of ifs on the rhs. For example

x = IF cond THEN a ELSE b

3.3 Single-Assignment Program - Third Transformation

Figure 9 shows the transformation of the source program through inserting in it the

renamings shown in Figure 8. Mapped instances of variables have the same values. In this

way the source and object programs are equivalent.

Note that the special cases in the source program are shown explicitly.

if gcd = x-7 and x-7 = y-7 then size 10=0 and x-12, x-14, s l l l , s113 are null.

if gcd = x-7 and y-7 A= x-7 then slll(sub2)=0 always and x-12 is null.

if gcd = y-7 and x-7 A = y-7 then s113(sub2)=0 always and y-14 is null.

PROGRAM GCD
FORTRAN example t o f i n d t h e g r e a t e s t common d i v i s o r of
two p o s i t i v e i n t e g e r s .

INTEGER x-7, y-7, x-12, y-14, s i z e l o , ~111, ~ 1 1 3
LOGICAL end10

READ (5,100) x-7, y-7
100 FORMAT(i4,i4)

s i ze10 = I F (x-7 ^= y-7) THEN 1 ELSE 0
DO s u b l = l t o s i ze10

sub2 = 0
DO WHILE ^ (I F sub2=0 THEN f a l s e ELSE endlo)

sub2 = sub2 + 1
s l l i b = I F sub2=l THEN 0 ELSE s l l l
s l l l = I F sub2=l

THEN IF x-7 > y-7
THEN 1 ELSE 0

1 ELSE I F (IF sl11=O THEN x-? SE x,12) 9 > (I F sll3=O THEN SE y-14)
I

THEN s l l l + 1 ELSE s l l l
s113b = IF sub2=l THEN 0 ELSE s113
s113 = IF sub2=l

THEN IF ^(x-7 > y-7)
THEN 1 ELSE 0

ELSE IF - ((I F slll=O THEN x-7 ELSE x-12)
> (I F s113=0 THEN y-7 ELSE y-14))

THEN s113 + 1 ELSE s113
x-12 = I F s l l l > s l l l b

THEN (I F s l l l=l THEN x-7 ELSE x-12)
- (I F ~ 1 1 3 1 0 THEN y-7 ELSE y-14)

y-14 = IF s113 >. s113b
THEN (I F s113=1 THEN y-7 ELSE y-14)

- (IF sl11=0 THEN x-7 ELSE x-12)
end10 = ^ ((I F s l l l = O THEN x-7 ELSE x-12)

^= (IF s113=0 THEN y-7 ELSE y-14))
x-16 = IF end10 THEN (IF slll=O THEN x-7 ELSE x-12)

ENDDO
ENDDO

gcd-18 = I F size10=0 THEN x-7 ELSE x-16
WRITE(6,200) gcd-18

200 FORMAT(^^)
END

Figure 9 : Third Transformation - Sing le Assignment Program

3.4 Single-Value Variables P rog ram - Fourth Transformation

Figure 10 shows the GCD programs with single value assignments only. This is

achieved by declaring an array for each variable assignment in a loop in Figure 9. If the

assignment is nested in multiple loops then the array will be multi-dimensional. Note that

the size of a dimension of an array may be a function of subscripts of higher order dimensions

(of an outer loop).

Referencing a variable in a loop on the rhs of an assignment may require use of the

subscript expression to point to a lower number element, e.g. sub2-1. Note that x-12 and

y-12 are subscripted with sublinear variables s l l l and s113 respectively.

This completes the transformations on programs. The assignments in Figure 10 may
I I ,
I I

I

be read directly as equations. I

01 c PROGRAM GCD
02 c FORTRAN example to find the greatest common divisor of
03 c two positive integers.
0 4
05 INTEGER x-7, y-7, x,12(1,*), y,14(1,*)
05al INTEGER sizelo, slll(l,*), s113(1,*)
05a2 LOGICAL end10(1,*)
06
07 READ (5,100) x-7, y-7
08 100 FORMAT(i4,i4)
09
lob1 size10 = IF (x-7 ^= y-7) THEN 1 ELSE 0
10b2 DO subl=l to size10
lob3 sub2 = 0
10 DO WHILE (̂IF sub2=0 THEN false ELSE endlO(subl,sub2))
10a1 sub2 = sub2 + 1
lib2 slll(subl,sub2) = IF sub2=1

THEN IF x-7 > y-7 THEN 1 ELSE 0
ELSE IF (IF sll1(subl,sub2-1)=0 THEN x-7

ELSE x~12(subl,slll(subl,sub2-1))
> (IF sl13(subl,sub2-l)=0 THEN y-7

ELSE y,14(subla sl13(subla sub2-1))
THEN sl1l(sub1,sub2-1) + 1 ~ ~ / ELSE sl11(sub1,sub2-1) I

sl13(subl,sub2) = IF sub2=l
THEN IF (̂x-7 > y-7) THEN 1 ELSE 0
ELSE IF (̂(IF slll(sub1,sub2-l)=0 THEN x-7

ELSE x~l2(subl,sl1l(sub1,sub2-l))
> (IF s113(sub1,sub2-1)=0 THEN y-7

ELSE y-l4(subl ,sl13(subl ,sub2-1) 1)
THEN s113(sub1,sub2-1) + 1
ELSE sll3(subl,sub2-1)

x~12(subl,slll(sub1,sub2))
= IF sub2=1 & sl1l(sub1,sub2)=l

I sub2>1 & s111(sub1,sub2)~s111(sub1,sub2-1)
THEN (IF sl1l(subl,sub2) = 1 THEN x-7

ELSE x~12(sub1,sll1(sub1,sub2-l)))
- (IF sll3(subl,sub2) = 0 THEN y-7

ELSE y,14(subl ,sll3(subl, sub2-1)))
y~l4(sub1,sll3(subl,sub2))

= IF sub2=1 & sll3(sub1,sub2)=l
I sub2>1 & s113(sub1,sub2)~s113(sub1,sub2-1)

THEN (IF sll3(subl,sub2) = 1 THEN y-7
ELSE y~14(sub1,sll3(sub1,sub2-1)))

- (IF sl11(sub1,sub2) = 0 THEN x-7
ELSE x-12(sub1 ,slll(subl ,sub2-1)))

Figure 10: Fourth Transformation - Program with Single Value Assignment
to Variables

16b 1 endlO(subl,sub2) = (̂(IF sl1l(subl,sub2)=0 THEN x-7
ELSE x~l2(sub1,sl1l(sub1,sub2)))

^= (IF sl13(subl, sub2)=0 THEN y-7
ELSE y~l4(sub1,sl13(subl,sub2))))

16b2 x-16 = IF endlO(subl,sub2)
THEN (IF sll1(sub1,sub2)=0 THEN x-7

ELSE x~l2(subl,sl11(subl,sub2)))
16 ENDDO
16aI ENDDO
17
1.8 gcd-18 = IF size10 = 0 THEN x-7 ELSE x-16
19 WRITE(6,200) gcd-18
20 200 FORMAT(i4)
2 1 END

Figure 10: Fourth Transformation - Program with Single Value Assignment
to Variables (Continued)

3.5 The Initial Equations in the Specification - Fifth Transformation

Figure 11 shows the equations in the specification. They are derived directly from the

assignments in Figure 10. Note that there are no input/output or loop control statements

in an equational specification, and that the input/output statements (e.g. for x-7,y-7 and

gcd) need not be transformed into equations.

lob1 size10 = IF (x-7 ̂ = y-7) THEN 1 ELSE 0

lib2 sl1l(subl,sub2) = IF sub2=1
THEN IF x-7 > y-7 THEN 1 ELSE 0
ELSE IF (IF s111(sub1,sub2-1)=0 THEN x-7

ELSE x~l2(sub1,slll(subl,sub2-1))
> (IF sll3(subl,sub2-l)=0 THEN y-7

ELSE y~l4(subl,sll3(subl,sub2-1))
THEN sll1(subl,sub2-1) + 1
ELSE sl1l(sub1,sub2-1)

11b4 sl13(subl,sub2) = IF sub2=1
THEN IF (̂x,7 > y-7) THEN 1 ELSE 0
ELSE IF (̂(IF slll(subl,sub2-l)=0 THEN x-7

ELSE x~12(sub1,sll1(sub1,sub2-1))
> (IF sll3(subl,sub2-l)=0 THEN y-7

ELSE y~14(sub1,sll3(subl,sub2-l)))
THEN sl13(sub1,sub2-1) + 1
ELSE sl13(subl,sub2-1)

12 x,l2(subl,sl1l(subl,sub2))
= IF sub2=1 & sll1(subl,sub2)=l

I sub2>1 & s 1l(sub1,sub2)>sl11(sub1,sub2-1)
I THEN (IF sl11(sub1,sub~)=1 1 THEN x-7

ELSE x-i2(subl ,slll(subl, sub2-1)))
- (IF sl13(sub1,sub2) = 0 THEN y-7

ELSE y~14(subl,s113(sublasub2-1)))

14 y~14(sublas113(sub1,sub2))
= IF sub2=1 & sll3(subl,sub2)=1

I sub2>1 & s113(sub1,sub2)>s113(subl-,sub2-1)
THEN (IF sll3(subl,sub2) = 1 THEN y-7

ELSE y-14(sub1 ,sll3(subl, sub2-1)))
- (IF sl1l(sub1,sub2) = 0 THEN x-7

ELSE x~12(subl,sl1l(subl,sub2-1)))

16b1 end10 (subl , sub2) = -((IF slll (subl , sub2)=0 THEN x-7
ELSE x~l2(subl,slll(subl,sub2)))

^= (IF sll3(subl,sub2)=0 THEN y-7
ELSE y-14(subl, sl13(subla sub2))))

16b2 x-16 = IF endlO(subl,sub2)
THEN (IF slll(sub1, sub2)=0 THEN x-7

ELSE x~12(subl,sll1(subl,sub2)))

18 gcd-18 = IF size10 = 0 THEN x-7 ELSE x-16

Figure 11: Fifth Transformation - Equations

3.6 Simplifying the Specification - Sixth and Seventh Transformation

In the interest of brevity the joint results of the sixth and seventh transformations

are shown in Figure 12.

Variable substitution : The sixth transformation has the main objective to reduce the

number of variables and equations. This is performed by substituting for a variable on the

rhs its defining expression in an equation that defines the variable (on the lhs). The equations

and respective lhs variables which are candidates for reduction are chosen trying to avoid

excessively increasing the complexity and understandability of the remaining equations. The

selection of equations and variables to be eliminated is influenced by two considerations.

Prime candidates for elimination are "copying" equations. Namely, those equations that

have only IF-THE -ELSE operations on the rhs. Next, the graph of dependencies and 1 P
the associated cyclks that involve thd equation that is a candidate for elimination, must be

analyzed. The dependency graph is shown in Figure 13 and discussed further in section 3.7.

Subscript expressions are attributes of edges in the dependency graph. Figure 12 shows the

elimination of the variable and equation for x-16. Other examples that have been analyzed

showed greater simplification due to use of this transformation.

Analysis of conditions: The seventh transformation consists mainly of analysis of se-

lected conditions. Conditions in equations can be simplified by factoring out like conditions

and reducing the depth of the IF-THEN-ELSE operations. Figure 12 shows the elimination

of nesting of ifs and the definition of a new variable slcll which is common in the equations

that define s l l l and s113. The latter have been simplified by use of a sublinear function.

Analysis of conditions may also lead to simplifying the specification. The equa-

tions that define sizes of dimensions (END and SIZE prefixes) are analyzed. This may

allow elimination of entire dimensions of variables, if it is possible to prove that sizek=l or

endk(subk)=subk=l.

MODULE: GCD;
SOURCE: Files;
TARGET: File6;

I File5 IS FILE,
2 inr IS RECORD,
3 (x-7, y-7) ARE FIELDS (PIC 'zzzg') ;

1 Temp IS FILE,
2 Tempf (0:l) IS RECORD,
3 (x-12, y-14) (*) ARE FIELDS (PIC 'zzzg');

1 File6 IS FILE,
2 outw IS RECORD,
3 gcd-18 IS FIELD (PIC 'zzz9');

SIZE.Tempf = IF (x-7 ^= y-7) THEN 1 ELSE 0;

slcll(subl,sub2) = IF sub2=l THEN x-7 > y-7 ELSE
IF slll(subl,sub2-l)=0 THEN x~7>y~14(subl,s113(subl,sub2-1)) ELSE
IF sll3(subl ,sub2-l)=0 THEN x,l2(subl ,slll(subl, sub2-1))>y,7 ELSE

x~l2(subl,slll(sub1,sub2-l))>y~l4(sub1,sl13(sub1 ,sub2-1)) ;

slll~(sub1, sub2) = sublinear (slcll (sub1 , sub2), sl11 (sub1 , sub2-1) , sub2) ; I ~
sll3(subl, sub2) = sublinear(~slcll (subl, sub2) , sll3(subl, sub2-1) , sub2) ;

x~l2(sub1,sl1l(sub1,sub2)) = IF slc1l(subl,sub2) THEN
IF sub2=1 THEN x-7-y-7 ELSE
IF slll(sub1,sub2)=l THEN x~7-y,14~subl,s113(subl,sub2-l)) ELSE
IF sll3(subl, sub2)=0 THEN x-l2(sub1, slll(sub1 ,sub2-I))-y-7 ELSE

x~l2(subl,slll(sub1,sub2-l))-y~14(subl,sll3(subl~sub2-1)~ ;

y,14(subl,sl13(subl,sub2)) = IF ~slcll(subl,sub2) THEN
. IF sub2=l THEN y-7-x-7 ELSE

IF slll(sub1,sub2)=0 THEN y~14(subl,sll3(subl,sub2-1))-x~7 ELSE
IF sll3(subl,sub2)=l THEN y~7-x~12(subl,sl1l(subl,sub2-1)) ELSE

y~l4(sub1,sll3(subl,sub2-l))-x~l2(sub1,sl11(sub1,sub2-1)) ;

END.slll(subl,sub2) = IF sll1(sub1,sub2)=0 THEN x~7=y~14(sub1,s113(sub1,sub2))
ELSE IF sl13(subl,sub2)=0 THEN x~l2(subl,sll1(sub1,sub2))=y~7
ELSE x~l2(subl,slll(subl,sub2))=y~14(subl,sl13(sub1,sub2));

gcd-18 = IF SIZE.Tempf = 0 THEN x-7
ELSE IF END. slll(sub1, sub2) THEN IF slll(sub1, sub2)=0 THEN x-7
ELSE x,12(sub1,slll(subl,sub2));

Figure 12: Final Specification

3.7 The Array Graph

. .

Figure 13 shows the array graph for the GCD specification in Figure 12. This graph

is constructed automatically by the MODEL system. It shows:

variable nodes by circles,

equation nodes by rectangles,

dependencies by edges,

dimensionality is shown as attribute of each node,

subscript expression is shown as attribute of each edge

In the interest of clarity of the graph in Figure 13 the dependencies of nodes on sizes of

respective dimensions are not shown.

The graph can be viewed as a dataflow machine computational model of the GCD

program. Each node is a processor. Each edge is a communication link. Each node has

four types of inputs: variable values, their subscripts, sizes of their dimensions (end and size

array elements) and their subscripts. Each node has two types of outputs: variable values

and their subscripts.

The nodes behave like Petrinet nodes. Whenever sufficient values and appropriate

subscripts are input to a node, the respective output element; as specified by the respective

equation or declaration, is immediately produced.

Figure 13: Array Graph of the GCD Dataflow Machine

4. DISCUSSION OF THE EQUATIONAL SPECIFICATION

As stated in section 1, among the objectives of the procedural to equational transla-

tion has been to provide a mathematical representation that is more explicit, readily under-

standable, suitable for manipulations needed in the verifications and, most important, easy

to modify for program maintenance. This section touches on these issues.

The simplification transformations described in section 3.6 have the above objectives

in mind. The simplification is illustrated by comparing Figures 11 and 12. The object

equational specification in Figure 12 is still larger and more complex, than the source program

of Figure 5 due to the use of subscripts and sublinears. Note that the simplification algorithm

proved more effective in other examples that we investigated. On one hand, the object

equational sptcification must provide more informatian about the algorithm that is used

in the program, explicitly showing the side effects which are only implicit in the program.

Therefore the specification will naturally be longer and more complex. On the other hand,

in many cases (not illustrated by the above example) it is possible to use substitutions to

eliminate implementation details, such as those involved in memory management, resulting

in a simpler and more abstract equational specification.

The issues of simplification and use of the equational specification, for the variety of

objectives listed above, obviously require additional research. This section explores two as-

pects. Section 4.1 explores using an alternate translation algorithm that produces a simplified

less explicit equational specification. Section 4.2 explores use of an equational specification

in verifying correctness.

4.1 Modifying the Translation to Produce a Simpler Specification

In some cases it is possible to eliminate the use of the sublinear subscripts (e.g. s l l l

and s113 in Figure 12), thus simplifying the resultant equational specification. This is shown

below with the aid of the same example that was used in section 3 (Figure 5). As will

be shown this simplification is not always possible and in some cases it does not materially
I

simplify the resultant specification. Also the resultant specification does not follow the source

program algorithm as closely as the one produced by the algorithm used in section 3. For

different objectives (e.g. for understanding vs. verification), it may be preferable to use the

different translation algorithms, (in this section vs. in section 3.2, respectively)

The difference in the algorithm is in translating the IF <condition> THEN <block>

in Transformation 2. Instead of the translation shown in Figure 7, we employ the translation

shown in Figure 14. (Note that instances where there is

IF <condition> THEN x=. . .

ELSE x=. . .

have already been integrated into a single statement in Transformation 1.) The transforma-

tion in Figure 14 can be used only on assignments in the <block>; i.e. it cannot be used

for input or output statements. Also if the <block> is large or it contains WHILE or DO

statements, then the propogation of the IF <condition> to the nested assignments adds to

the complexity of the resulting specification.

Source Program

IF <condition>

THEN

x= <expression 1 >

ENDIF

Single Assignment Program

x = IF <condition> THEN <expression>

ELSE x

y = IF <condition> THEN <expression 2>

ELSE y

Figure 14: Alternative Transforming " IF <condition> THEN <block>"

The transformation in Figure 14 has been applied to the example in Figure 5. It

yields the renaming table and program shown in Figures 15 and 16 respectively.

The final equational specification using the transformation in Figure 14 is shown in

Figure 17. It is simpler than the one in Figure 12, due to the absence of the sublinear

subscript s113 and the sublinear condition slcll . The specification in Figure 12 distinguishes

explicitly the cases

sll l(sub2)=0

s113(sub2)=O

but these cases can not be distinguished in the specification of Figure 17.
I

I

I I
This will be further discussed in section 4.2.

v a r i a b l e s tatement p o s i t i o n renamed a s s u b s c r i p t s
address w i l l be added ..

x 7 Read x -7 s c a l a r
11 R x-11
12 L x-12 sub1 , sub2
12 R IF sub2=l THEN x-7 ELSE x-12
14 R IF sub2=1 THEN X-7 ELSE X-12
18 R I F size9=0 THEN x-7 ELSE x-16

- - - - - - - - -

Y 7 Read Y -7 s c a l a r
11 R y-11
14 L y-14 sub1 , sub2
14 R I F sub2=1 THEN y-7 ELSE y-14
12 R I F sub2=1 THEN y-7 ELSE y-14 ..

gcd 18 L gcd, 18 s c a l a r
18 Write gcd-18 s c a l a r ..

end10 10 R end10
16bl L end10
16b2 R end 10 ..
lob1 L

I
s i z e l o 1 s i z e l q I s c a l a r I

10b2 R s ize10
18 R s ize10

Figure 15: Second Transformation - Renaming Table

1 C PROGRAM GCD
2 C F o r t r a n example t o f i n d g r e a t e s t common d i v i s o r of two
3 C p o s i t i v e i n t e g e r s
4 C
5 INTEGER x-7, y-7, x-12, y-14, s u b l , sub2, gcd-18

LOGICAL end10
6
7 READ (5,100) x-7, y-7
8 100 FORMAT(i4, i 4)
l ob1 s i z e 1 0 = I F x,7=y-7 THEN 0 ELSE 1
lob2 DO s u b l = I t o s i z e 1 0
10b3 sub2 = 0
10 WHILE (IF sub2=0 THEN t r u e ELSE ^endlo) DO
10a1 sub2 = sub2 + 1
1 l b 1 x-11 = I F sub2=1 THEN x-7 ELSE x-12
1 lb2 y-11 = I F sub2=l THEN y-7 ELSE y-14
12 x-12 = I F x,ll>y,11 THEN (I F sub2=1 THEN x-7 ELSE x-12) -

(I F sub2=1 THEN y-7 ELSE y-14)
ELSE I F sub2=1 THEN x-7 ELSE x-12;

14 y-14 = I F x- l l>y-11 THEN (I F s u b 2 4 THEN y-7 ELSE y-14) -
(I F sub2=l THEN x-7 ELSE x-12)

ELSE I F sub2=1 THEN y-7 ELSE y-14

16b1 end10 = [~ - 1 2 = ~ - 1 4)
16b2 x-16 = I F end10 THEN x-12
16 END DO

END DO
17
18 gcd-18 = I F s i z e l 0 = 0 THEN x-7 ELSE x-16
19 WRITE(6,200) gcd-18
20 200 FORMAT(^^)
2 1 END
..

F i g u r e 16: Th i rd Transformat ion - S i n g l e Assignment Program

MODULE: GCD;
SOURCE: file5;
TARGET : f ile6 ;

1 file5 is FILE,
2 inr is RECORD,
3 (x-7, y-7) are fields (pic 'zzz9');

1 file6 is FILE,
2 outr is RECORD,
3 gcd-18 is ~1ELD(pic 'zzz9') ;

x~l2(subl,sub2) = IF sub24 THEN IF x-7>y-7 THEN x-7-y-7 ELSE x-7
ELSE IF x,l2(subl,sub2-l)~y~14(sublIsub2-I) THEN

x~l2(subl,sub2-l)-y~l4(subl,sub2-l) ELSE x~l2(subl,sub2-I);

y~l4(subl,sub2) = IF sub2=l THEN IF x,7>y,7 THEN y-7 ELSE y-7-x-7
ELSE IF x~l2(subl,sub2-l)>y,14(sublIsub2-I) THEN

y,l4(subl, sub2-I) ELSE y,l4(subl, sub2-I) -x-I2 (sub1 , sub2-1) ;

F end.x~l2(subl,sub2) THEN

gcd-I8 = IF size.tempf=O THEN x-7 ELSE x-16;

size.tempf = IF x-7=y-7 THEN 0 ELSE I;

1 temp is FILE,
2 tempf (0 : I) is GROUP,
3 (x-12, y-14) (*) is FIELD(pic 'zzzzzzz9') ; ...

Figure 17: Final Specification

4.2 Proving Correctness of an Equational Specification

The correctness of the program in Figure 5 has been proven in [27]. This section

shows a similar proof carried out on the equivalent equational specification in Figure 12. The

main difference is that the proof in [27] requires drawing a graph of the program in Figure

5 and developing its path expressions. The proof based on the equational specification in

Figure 12 does not require any graph analysis. It involves only analysis of conditions and

substitution for variables defined in the lhs the respective rhs expressions of equations.

Three verification assertions, same as in [27], are shown in Figure 18. They show the

behavior of a GCD function of two integer arguments (v,w). The value of this function is

the greatest common divisor of the two arguments.

Figure 19 shows that the quational specification of Figure 12 preserves the assertions

in Figure 18 by actually incorporating them under respective conditions. We prove that

gcd-18 in Figure 12 is the value of the function GCD(V,W) where V,W may be x-7, y-7

respectively, or the respective sub2 elements of x-12(s111(sub2)),y-14(s113(sub2)) or some

special shown mixes of them. (Note that sub2 is in effect a universal quantifier; an equation

is true for all values of sub2 within the specified dimension size. Sub2 is a local subscript

and may have a different range in a different equation).

GCD (v,w) = GCD(v-w,w)

GCD (v,w) = GCD(w-v,v)

Figure 18: Verification Assertions for the function GCD From [27]

Case 1: Preserving assertion 1 in Figure 18

subcase 1: x-7 = x-7

sizelO=O; slcll , x-12, y-14; end10 are null size.

gcd-18 = GCD(x-7,y-7) = x-7.

using equation for gcd-18.

subcase 2: x-7 = y-l4(s113(sub2)) = endlO(sub2)

sizelO=l; subl=l; sll l(sub2)=0; x-12 is null size.

using equations for gcd-18, x-16, slcll , and endl0.

subcase 3: x-12(slll(sub2)) = y-7 = endlO(sub2)
I

$izd10=0; subl=l; s113(sub2)&0; y-14 is null size. I !

using equations for gcd-18, x-16, s lcl l , and endl0.

subcase 4: x-12(slll (sub2)) = y-14(s113(sub2)) = endlO(sub2)

sizelO=l; subl=l; slll(sub2)>0; s113(sub2)>0.

using equations for gcd-18, x-16, s l l l , s113, and endl0.

Case 2: Preserving assertion 2 in Figure 18

subcase 1: x-7 > y-7

sizelO=l; subl=l ; sub2=l, s113(sub2)=0; slcll(sub2)=true.

using equation for x-12.

Figure 19: Verification of Specification in Figure 12

subcase 2: x-12(sll l(sub2-1)) > y-7

sizelO=l; sub l= l ; sub2>1; s113(sub2)=0; slcll(sub2)=true.

GCD(x-12(slll (sub2- l)),y-7) = GCD(x-12(slll (sub2)),y-7)

= GCD(x-l2(slll(sub2-1))-y-7,y-7).

using equation for x-12.

subcase 3: x-7 > y-14(s113(sub2-1))

= GCD(x,7-y-14(s113(sub2-l)),y-14(s113(sub2-1))).
I

I I

using eqdation for y-14. 1
I
I

subcase 4: x-12(slll(sub2-1)) > y,14(s113(sub2-1))

sizelO=l; sub l= l ; sub2>1; s l l l (sub2)>0; s113(sub2)>0; slcl l(sub2)=true.

GCD(x-12(slll(sub2-l)),y-14(sll3(sub2-1)))

= GCD(x-l2(slll (sub2)),y-l4(sl13(sub2)))

= GCD(x-12(slll(sub2-1))-y~14(sll3(sub2-1)),y~14(s113(sub2-1))).

using equation for x-12.

Case 3: Preserving assertion 3 in Figure 18

symmetrical to case 2 except y > x.

Figure 19: Verification of Specification of Figure 12 (continued)

Figure 19 shows the cases in which there is conformance with the respective assertions.

For each case there are subcases for the different conditions under which the assertion is

preserved.

Case 1 shows that gcd-18 (see Figure 12) is equal to the GCD function for the four

subcases when its two arguments are equal.

Case 2 and 3 show that the GCD function has the same value of gcd-18 for, not

only for the arguments in case 1 where endlO=true, but also for all the respectively shown

arguments of x-7, y-7 and/or the same sub2 elements of x-12 and y-14.

Case 3 is not shown in detail as it is symmetrical with Case2.

The proof method con ists of examining the conditions in the specification to make
I

I a classification of respective I ases dnd subcases. We then use substitution to demonstrate

systematic conformance with the assertions in each case and subcase.

5 . CONCLUSION

We have posed in section 1, the problem of Reverse Software Engineering as "how

to utilize outdated programs to reduce cost of developing new replacement systems." The

emphasis is on reducing cost of replacment systems. The old systems are assumed to be

inadequate in functionality and implementation technology. Still, to reduce cost it is desired

to find and reuse what is available in the old system as a basis for making appropriate

changes, deletions and additions.

Mathematical representations of programs have been widely claimed to be advanta-

geous for understanding, checking and modifying software. Translation into a mathematical

representation has been the constant theme in research into a number of directions concern-
I

I

ing procedurdl pbograms. The underlying notion of this report is to use a mathematical

representation as an intermediate step in Reverse Software Engineering. It is proposed as

the medium for understanding, analyzing and changing old programs.

Many of the mathematical representations of procedural programs proposed in the

past involved unfamiliar syntax and semantics. The choice here has been to use the widely

known regular and boolean algebras as the syntax and semantics of the mathematical rep-

resentation. The MODEL system is based on this syntax and semantics. It translates the

equational specifications into procedural programs. We have extensive experience with the

MODEL system in using equational specifications for software development. The objective

of this research has been to investigate its effectiveness for Reverse Software Engineering.

There are then two questions to which we have sought answers:

1. What is the algorithm for translating a procedural program into an equational specifi-

cation?

2. What is the relative effectiveness of using the result of the translation for understand-

ing, analysis, proving correctness and maintaining programs?

The answer to the first question has been provided in sections 2 and 3. Once the

underlying concepts are defined, the algorithm is straight-forward and can be implemented

readily.

A definitive answer to the second question will require additional research. We have
I I

, I 1 investigatid many examples of procedural programs translated into equational specificatiohs

by the algorithm of section 3. Section 4.1 shows how two versions of equational specifications

can be generated - one that is simpler and easier to understand, and one more complicated

but which is more useful for analysis and verification. Section 4.2 shows by example the

approach to verification based on equational specifications. We assume that if the proof is

easier then true understanding is also easier.

A number of mathematical representations of procedural programs have been pro-

posed. It is necessary to conduct a comparative study of their effectiveness vs. equational

specifications, for the respective directions for which they have been proposed. This investi-

gation will yield important insights into the usefulness of the different syntax and semantics

of mathematical representations of procedural programs.

It is also necessary to conduct more extensive experimental research by automating

t h e translation algorithm and processing larger and more complex program translations.

6 . REFERENCES

1. T . Agerwala, Arvind, "Data Flow Systems," Computer, February, 1982.

2. J.R. Allen and K. Kennedy, "Automatic Loop Interchange," Proc. of the ACM SIG-
PLAN Symposium on Compiler Construction, SIGPLAN Notices V19 #6, June 1984.

3. E. Ashcroft, 2. Manna, "The Translation of Goto Programs to While Programs", Pro-
ceedings, IFIP Congress 1971, North-Holland Publ. Co. Amsterdam, pp. 250-255,
1972.

4. E. Ashcroft and W.W. Wadge, "Lucid, A Nonprocedural Language with Iteration,"
Communications of the ACM, V20 #7, July 1977.

5. J . Backus, "Can Programming be Liberated From the Von Neumann Style? A Func-
tional Style and its Algebra of Programs," Communications of the ACM, V21 #S,
August, 1978.

1 6. B.S. Baker, "An Algorithm For Structuring Flowgraphs," Journal of he ACM, V24
#1, January 1977. f

7. R. Balzer, "Transformational Implementation: An Example," IEEE Transactions on
Software Engineering, V7 #1, January 1981.

8. J . Baron, B. Szymanski, E. Lock and N. Prywes, "An Argument for Nonprocedural
Languages," Proc. Workshop Role of Languages in Problem Solving-1, 1985.

9. S. Basu and J. Misra, "Proving Loop Programs," IEEE Transactions on Software En-
gineering, V1 #1, March 1975.

10. R.K. Boxer, "A Translator From Structured Fortran to Jovial/J73," Proc. of the IEEE
National Aerospace and Electronics Conference (NAECON-83), 1983.

1 1. J.M. Boyle and M.N. Muralidharan, "Program Reusability Through Program Trans-
formation," IEEE Transactions on Software Engineering, V10 #5, September 1984.

12. E. Bush, "The Automatic Restructuring of Cobol," Proc. of the IEEE Conf. on Soft-
ware Maintenance, November 1985.

13. T. Cheng, E. Lock and N. Prywes, "Use of Very High Level Languages and Program
Generation by Management Professionals," IEEE Transactions on Software Engineer-
ing, V10 #5, September 1984.

14. Computer Command and Control Company, "The MODEL language Usage and Ref-
erence Guide - Non-Procedural Programming for Non-Programmers," 2401 Walnut,
Philadelphia, PA 19103, 1987.

15. Digital Equipment Corporation, "VAX-11 Fortran User's Guide," Software Distribution
Center, Digital Equipment Corporation, Maynard, MA 01754, 1979.

16. C.G. Faust, "Semiautomatic Translation of Cobol into Hibol," (MS Thesis) MIT/LCS/TR-
256, March 1981.

17. R.W. Floyd, "Assigning Meaning to Programs," in Proc. Symp. Applied Math., vol.
19, pp. 19-32, 1967.

18. M. J.C. Gordon, "The Denotational Description of Programming Languages, An Intro-
duction," Springer-Verlag, 1979.

19. C.A.R. Hoare, "An Axiomatic Basis for Computer Programming," Communications of
the ACM, V12 #lo, October 1969.

20. C.R; Holland r, "~ecodn~i la t ion of Object Programs," Stanford Electro ics Lab TR 54,
I 1

21. G.L. Hopwood, " Decompilation" , Ph. D. Thesis, University of California, Irvine, 1978.

22. B.C. Housel 111, "A Study of Decompiling Machine Languages Into High-Level Machine
Independent Languages", Ph. D. Thesis, Purdue University, August 1973.

23. B.C. Housel and M.H. Halstead, "A Methodology for Machine Language Decompila-
tion," IBM Research Report RJ1316 (No. 20557), 17 pages, December 6, 1973.

24. S. Katz and Z. Manna, "Logical Analysis of Programs," Communications of the ACM,
V19 #4, April 1976.

25. D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure and M. Wolfe, "Dependence Graphs
and Compiler Optimizations," Proc. 8th ACM Symp. pp.207-218, 1981.

26. K.S. Lu, "Program Optimization Based on a Non-Procedural specification," Ph.D. dis-
sertation, Department of Computer Science, University of Pennsylvania, 1981.

27. Z. Manna, "Mathematical Theory of Computation," McGraw Hill Book Company,
1974.

28. J. McCarthy, "Recursive Functions of Symbolic Expressions and Their Computation
By Machine," Communications of the ACM, V3 #4, April, 1960.

29. J.R. McGraw, "The VAL Language: Description and Analysis," ACAd Transactions on
Programming Languages and Systems, V4 #1, January, 1982.

30. M.J. 07Donnell, "Equational Logic as a Programming Language," The MIT Press,
1985.

31. H. Partsch, R. Steinbruggen, "Program Transformation Systems," Computing Surveys,
V15 #3, September, 1983.

32. L. Paulson, "Compiler Generation from Denotational Semantics," in Methods and Tools
for Compiler Construction, ed. by B. Lorho, pp. 219-250, 1984.

33. K.M. Pitman, "A Fortran to Lisp Translator," Proc. of the 1979 Macsyma Users' Con-
ference, June 1979.

34. U. Pleban, "Compiler Prototyping Using Formal Semantics," SIGPLAN Notices, V19
#6, Montreal, June, 1984.

I
35. . . Prywes and A. Pnueli, "Compilation of Nonprocedural Specificationg into Computer

$rograrnsln IEEE Transactions on Software engineering, v 9 #3, May 1983.

36. C. Rich, H.E. Shrobe, R.C. Waters, G.J. Sussman and C.E. Hewitt, "Programming
Viewed as an Engineering Activity", MIT, Cambridge, MA, MIT/AIM-459, January
1978.

37. J . Samet, "Experience with Software Conversion," Software - Practice and Experience,
V11 #lo, 1981.

38. D. Schmidt, " Denotational Semantics - A Methodology for Language Development ,"
Allyn and Bacon, Inc., 1986.

39. M. Shaw and W.A. Wulf, "Abstraction And Verification in ALPHARD: Defining and
Specifying Iteration and Generators," Communications of the ACM, V20 #8, August
1977.

40. L. Sterling, E. Shapiro, "The Art of Prolog," The MIT Press, 1986.

41. B. Szymanski, E. Lock, A. Pnueli and N. Prywes, nOn the Scope of Static Checking
in Definitional Languages," Proc. of the A CM Annual Conference, San Francisco, CA,
pp.197-207, October 1984.

42. B. Szymanski, N. Prywes, "Efficient Handling of Data Structures in Definitional Lan-
guage," Science of Computer Programming, pp.221-245 No. 10, October 1988.

43. R.C. Waters, "A System for Understanding Mathematical FORTRAN Programs,"
MIT, Cambridge, MA, MITIAIM-368, August 1976.

44. R.C. Waters, "Expressional Loops," Proc. 10th ACM Symposium Principles of Pro-
gramming Languages, pp. 1-10, ACM, 1983.

45. R.C. Waters, "A Method for Analyzing Loop Programs," IEEE Transactions on Soft-
ware Engineering, V11 #11, November 1985.

46. R.C. Waters, "Program Translation Via Abstraction and Reimplementation," IEEE
Transactions on Software Engineering, V14 #8, August 1988.

! I ~

	Reverse Software Engineering
	Recommended Citation

	Reverse Software Engineering
	Abstract
	Comments

	tmp.1193360488.pdf.cB_NS

