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ABSTRACT 

The goal of Reverse Software Engineering is the reuse of old outdated programs in 

developing new systems which have an enhanced functionality and employ modern program- 

ming languages and new computer architectures. Mere transliteration of programs from the 

source language to the object language does not support enhancing the functionality and 

the use of newer computer architectures. The main concept in this report is to generate a 

specification of the source programs in an intermediate nonprocedural, mathematically ori- 

ented language. This specification is purely descriptive and independent of the notion of 

the computer. It may serve as the medium for manually improving reliability and expand- 

ing functionally. The modified specification can be translated automatically into optimized 

object programs in the desired new language and for the new platforms. 

This report juxtaposes and correlates two classes of computer programming lan- 

guages: procedural vs. nonprocedural. The nonprocedural languages are also called rule 

based, equational, functional or assertive. Non-procedural languages are noted for the ab- 

sence of "side effects" and the freeing of a user from "thinking like a computer" when 

composing or studying a procedural language program. Nonprocedural languages are there- 

fore advantageous for software development and maintenance. Non procedural languages use 

mathematical semantics and therefore are more suitable for analysis of the correctness and 

for improving the reliability of software. 

The difference in semantics between the two classes of languages centers on the mean- 

ing of variables. In a procedural language a variable may be assigned multiple values, while 

in a nonprocedural language a variable may assume one and only one value. The latter is the 



same convention as used in mathematics. The translation algorithm presented in this report 

consists of renaming variables and expanding the logic and control in the procedural program 

until each variable is assigned one and only one value. The translation into equations can 

then be performed directly. The source program and object specification are equivalent in 

that there is a one to one equality of values of respective variables. 

The specification that results from these transformations is then further simplified to 

make it easy to learn and understand it when performing maintenance. 

The presentation of translation algorithms in this report utilizes FORTRAN as the 

source language and MODEL as the object language. MODEL is an equational language, 

where rules are expressed as algebraic equations. MODEL has an effective translation into 

the object procedural languages PL/1, C and Ada. 
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1. INTRODUCTION AND SUMMARY 

Much research and development has been directed in the past to the overall Reverse 

Software Engineering problem: i.e. how to utilize outdated programs to reduce cost of devel- 

oping new replacement systems. There are existent systems for "structuring" programs to 

make them more readable and understandable [6,12]. There are also systems that transliter- 

ate from one procedural language to another [10,20,21,22,23,33,37]. The approach described 

in this report differs in a number of ways. It generates a computer independent mathemat- 

ical meaning of the program. The abstract explanation of the program supports analysis 

of its correctness and serves as the medium in which maintenance of the program can be 

intermediate nonpr cedural language is at the center of Figure 1. It P 
is useful for both, new software development and for software maintenance and updating. In 

this report we-will refer to this nonprocedural language as equational language. We will call 

the input to the translator program and the output specification. 

This report focuses on the Reverse Software Engineering translation shown at the top 

half of Figure 1. The objective of this report is to present the algorithm that translates the 

procedural program into the equivalent of mathematical equations. The coupling with the 

Forward Software Engineering, shown at  the bottom of Figure 1, allows to obtain automat- 

ically programs in a new programming language and for a new computer architecture. 

This report juxtaposes and correlates the two classes of computer programming lan- 

guages: conventional procedural languages vs. the more recently introduced nonprocedural 

mathematically oriented languages. The latter class has been called rule based[8,40], equa- 

tional, [4,30,35] functionafl51 dataflow or assertive [1,29]. Procedural languages are prescrip- 



tive and consist of an ordered set of statements that contain commands to a computer. Two 

major difficulties with procedural languages have been widely recognized: the need for the 

user to "think like a computer" in composing or reading a program, and the existence of "side 

effects" that make it difficult to understand the meaning or modify any one statement, as 

it is frequently effected by other statements [4,7]. The nonprocedural languages are purely 

declarative or descriptive. Each statement is a description of a stand-alone mathematical 

rule applied to entities in the program requirement. Order of statements can be immaterial. 

There are no side effects. The meaning of each statement can be understood without even 

mentioning any computer concepts. It has been widely claimed that the nonprocedural class 

of languages is much superior for computer programming[5,8,13]. The adoption of languages 

I of this class will greatly reduce cost of sof tpre  d velopment and maintenayce and i prove 
I t T 

reliability of the produced programs. This class of languages can be effectively translated 

into procedural programs[l4], as shown in the lower half of Figure 1. 



1 Existing 1 I-+ 
I Procedural Programs I-+ 

I Translation 1 

(Reverse Software Engineering) 
I I 

0 I New 1 I 1 
I / I I Equational Specification1 I-+ 

/I\ / I <---------------- > I I -+ 
/ I Compose +------------------------- I ,-- + 

/ \ I  ----- 1 read I 
modify I 
verify V 

I Translation 1 

(Forward Software Engineering) 
I I 
+------------------------- + 

I 
1 
v 

+------------------------- + 
1 New or Improved 1 
I Procedural Programs 1 
+------------------------- + 

Figure 1: Use of Translations Between Procedural and Nonprocedural Languages 



There have been a number of theoretical research directions that involve giving a 

mathematical meaning to a program as follows. Verification of correctness of programs has 

involved giving a mathematical meaning to a program, and using the latter representation in 

proving correctness [9,17,19,24]. It is much easier to conduct the proof on the mathematical 

representation of the program. Research on program transformations has utilized a similar 

approach making it easier to perform the transformations [7,11,31]. Compiler generation 

has been based on using mathematical definitions of a programming language in the form of 

its denotational semantics [18,32,38]. The translation from sequential into parallel programs 

[2,25] utilizes an intermediate assertive language. The mathematical representation devel- 

oped in this report is in the form of regular and boolean equations. It is much more widely 

familiar and more readily manipulateable. It potentially can be used for the above purposes 

i as pell. I 

I 

The basic difference between procedural and equational languages is in the meaning 

of variables. Procedural languages allow multiple assignments to a variable in the course 

of executing a program. In contrast, an independent variable in mathematics can assume 

only one value. The translation algorithm in this report incorporates transformations that 

progressively rename the instances of assignments to a variable, until single value assignments 

are attained throughout. The translation to equations is then directly attainable. There is 

equivalence between the source program and the object equations in that corresponding 

variables have the same values, respectively. 

The choice of languages for presenting and illustrating the translation is as follows. 

We chose FORTRAN[15] as an example of a procedural language because of its relative 

simplicity in comparison with other procedural languages. We chose MODEL[13,34] as the 

example of an equational language because of its equational syntax and semantics and the 

highly developed state of its Forward Software Engineering translation. Presently, translators 



are available from MODEL into PL/l ,  C and Ada procedural languages[l4]. The existent 

MODEL Forward Software Engineering translation algorithms have provided the basic ideas 

for the Reverse Software Engineering translation algorithms. 

In the following we will assume that the source procedural language program has 

been pre-processed into basic types of statements that are common to the entire class of 

procedural languages. Also the MODEL language includes only the basic types of statements 

for declarations of variables and expressing rules as regular and boolean algebraic equations. 

The equations may have to be post-processed into other nonprocedural languages. Thus the 

choice of the languages in this report should not impose a restriction on the basic capabilities 

of the translation from procedural to non procedural languages. 

In addition to this introductory section, the r ort consists of four sections. Section 2 
gP I I 

I 
describes the overall approach to the translation problem. Further insight into the approach 

is provided in Section 3 through presenting the translation algorithm and by illustrating it 

with an example of the translation of a small program into a respective equational specifi- 

cation. The objective is to give the reader an understanding of the translation through this 

example. Additional translation issues are discussed in Section 4. The report ends with a 

concluding section 5. 



' 2. THE OVERALL APPROACH TO TRANSLATION FROM 

A PROCEDURAL LANGUAGE TO AN EQUATIONAL LAN- 

GUAGE 

2.1 Overview 

This section describes the basic ideas that underlie the translation. 

Given a source procedural program, it will first be translated into a program that 

uses a basic subset of FORTRAN statements. This basic subset is generally common to 

all procedural languages. It is briefly des ribed in section 2. . This is followed in section 1 p 
2.3 by description of the basic part of the MODEL equational specification language, which 

is the object of the translation. The basic MODEL language concepts are presented only 

briefly in this section, and further discussed and illustrated in section 3. A brief review of 

the transformations in the translation process is given in section 2.4. 

The objective of the translation is to attain equivalence between the source (FOR- 

TRAN) program and object (MODEL) specification. The equivalence is based on mapping 

the instances of the variables in the program into respective variables in the specification. 

The source program and the object specification are then equivalent in the sense that the 

respective mapped variables have the same value. The specification can be viewed as an ab- 

stract set of mathematical equations. It can also be viewed as a computational model. The 

computation finds values for all the variables which make all equations and declarations true. 

This computation may be envisaged in a most direct way as conducted by a hypothetical 



dataflow computer with a very large memory and number of processors which can execute 

the specification directly. The equivalence can be considered in terms of either view of the 

specification. The computational view is briefly reviewed in section 2.5. 

We will not be concerned whether the source program "makes sense" or whether it is 

"correct7', only that the object specification variables have the same values as those in the 

source program, respectively. In this sense, the algorithm in the object specification will be 

the same as that of the source program. 

The translation will consist of a number of transformations. Starting with the source 

program, each transformation modifies a program into an equivalent program which is pro- 

; gressively closer to the ob] ot equational specification. Basically, the difference be ween a , 
I I I: I 1 
procedural program and an equational specification is as follows. Variables in a procedural 

program can have assigned to them none, one or several values in the course of sequential 

execution. In a mathematical equational specification, each variable can assume one and 

only one value. The transformations then rename instances of program variables and declare 

arrays so that each elemental variable has one and only one assigned value. 

There will also be simplification transformations that will make the equational spec- 

ification easier to understand and modify. Thus the objective is not only that the object 

specification is equivalent to the source program, but also that it be readable and under- 

standable while exposing to the user to details of the inherent logic of the source program. 



2.2 The Procedural Language 

The subsequent discussion focuses on translation of a source program that contains 

only a selected subset of types of statements, shown in Table 1, into an equational specifica- 

tion. The reasons for using a subset of the types of statements are as follows. This subset 

of types of statements is common to practically all procedural languages - with differences 

only in syntax. The translation of a source program in different languages into an object 

equational specification is envisaged as consisting first of pre-translation of these programs 

into the basic types of statements. Thus there will be one pre-translation for each language 

into basic types of statement, and a single translation to an equational specification lan- 

guage. There ay be then post-translations into respective other nonprocedural languages. 
1 

I 
pre and post translations can be performed automitically. 

subroutine calls, gotos and dynamic memory allocations into the basic types of statement 

presents special problems, as discussed below. 

Subroutines (or subprocedures) are considered independent entities which are sep- 

arately and independently translated into respective equational specifications. We adapt 

essentially the so called "object oriented approach". Namely, in the calling program, a 

subroutine is viewed as an opreation on its arguments. The subroutine call (in the calling 

program) is translated into an assignment statement. The left hand side of the assignment 

statement consists of a structured variable that contains the subroutine's output arguments. 

The right hand side consists of an expression, where the subroutine appears as the opera- 

tion on the input arguments. It is necessary to identify the subroutine's input and output 

arguments, respectively. In an object oriented procedural language the input and output 



arguments are explicitly identified. In a language such as FORTRAN, that has COMMON 

declarations, it may be necessary to search many programs and subroutines to identify the 

input and output arguments. Therefore human assistance may be helpful in performing this 

task. 

Goto statements are to be pre-translated into while statements. The algorithm for 

this pre-translation is given in [24]. The result of this pre-translation preserves the topology 

and has the same order of efficiency. It may however, use renaming of the same variables. 

Finally, declarations and references of dynamically allocated variables are to be trans- 

lated into static declarations and references. This will cause use of much more memory. 

This will not matter as the ultimate object equation@ specification uses unlimited amount 
I 
I 

of memory. The forward translation re-optimizes the /memory usage. 

Consider the entire source program as a tree. There is a node for each statement (for 

the statement types in Table 1). The types of nodes are: 

(a) A root node representing the entire program. 

(b) intermediate nodes for block statements: do,while, if then and if else. 

(c) leaf nodes for input /out put and assignment statements. 

Edges emanate from the root and intermediate nodes to the nodes of their con- 

stituents. The constituents are ordered depth first, left to right, in the order of the state- 

ments of the program. Declaration statements can be inserted in the program tree as leaf 

nodes anywhere prior to their usage. These variables are always considered as local to the 

program where they are declared. 



Each statement node is further parsed to reflect the statement structure. 

Thus, a source program is initially parsed into the tree structure. Sucessive trans- 

formations modify names in the tree, add conditions and subscripts, and even add or delete 

entire nodes. This leads to the specification after the final transformation. 



Leaf statements: 

1.  Input /output (read,write) 

2. Assignment 

Block statements: 

3. Do 

4. While 

5. If <condition> then <block-l> 

else < block-2> 

Declaration statements 

6.  Declaration of variables 

Note: Goto replaced by while 

Subroutine call replaced by assignments 

Dynamic memory replaced by static memory 

Table 1: Basic Types of Statements Used in the Source Program 



2.3 The Equational Specification Language 

This section describes briefly the syntax and semantics of the basic part of the 

MODEL equational specification language. The equational specifications produced by the 

translation are accepted by the present MODEL system[l4] that generates programs in PL/1, 

C and Ada. The MODEL system has a "specification extension" phase where it tolerates 

omissions in the user provided specification and fills-in missing parts automatically. We will 

take advantage of this feature to simplify the translation. 

The order of specification statements has no significance and they may be in an 

arbitrary order. 

The core of the language are the equation statements used to express rules. They are 

summarized in Table 2. They have the syntax and meaning of regular algebra or boolean 

algebra (depending on the operators). A mix of the two algebras is obtained through use of 

the if operation (IF <boolean condition> THEN <expression-l> ELSE <expression-2>). 

The expressions may be in regular algebra; expression-2 is optional. 

The left hand side of an equation statement contains only a variable name. This is 

the independent variable of the equation. The right hand side is an expression. Expressions 

consist of operations and variables. 

Variables referenced in equations may be scalars or arrays. An array variable name 

must be followed by a subscript expression for each of its dimensions, in parenthesis. (A 

variable may also denote an entire tree structure of more elemental variables. This is not in 

the basic part of MODEL). 

A specification must include a definition of the size of each different dimension of a 

variable. The definition is given through a declaration or through an equation. In the latter 



case, the size of a dimension variable is denoted by a control variable, which is used as a left 

hand side of a defining equation. 

There are two ways of denoting a control variable: statically - by use of the prefix 

SIZE to denote the number of elements in a dimension, and dynamically - by use of the 

prefix END to denote a boolean vector where each element denotes whether the respective 

element of a variable is the last one in the dimension. 

The equation applies (is true) while the subscripts assume any integer value in the 

range of 1 to the size of the respective dimension. Thus an equation as well as a variable 

may be a multidimensional array. The equation and the respective variables are null if the 

size of any dimension is zero. 

Finally, there are beveral type$ of operations that can be used in expressions. The 

regular algebra arithmetic operations consist of =,+, *,/ and **. (There are presently no 

differential and integral operators). Logical operations consist of comparison operations, 

and, or and not. String operations consist of concatenation, search of a string and string 

replacement. The if-then-else operation has the three operands as shown above. There are 

many built-in functions, for common mathematical and data processing operations. There 

are also more specialized user defined functions. These functions have strict requirements 

on number and structure of operands. 

The use of declaration statements is shown in Table 3. Note that only declarations of 

input/output variables are mandatory. The entire input and output must be declared (dif- 

ferently from procedural languages, where only the structure transferred in an input/output 

operation is declared). The syntax for describing a structure is briefly shown in Table 3. The 

declaration can be viewed as a multi-level tree. Levels are numbered and nested. Each node 

is given a name and a definition of its number of repetitions. The number of repetitions is 



also the size of the respective dimension. The root node may have a device type specification 

(further described . in . section 4). Each leaf node must have a primitive data type. 

Interim variables can be declared similarly. This declaration is optional. If omitted, 

it is generated automatically in the extension phase of the MODEL system. The use of 

declarations will be illustrated later. 

Finally there is a need for statements that define the specification name, its in- 

puts(cal1ed SOURCE) and outputs (called TARGET). These are shown in Table 4. Note 

that there are three types of statements: A MODULE denotes a main program. It is not 

called therefore it is not necessary to show its arguments. A FUNCTION has only input 

arguments and a PROCEDURE has input, output and update arguments. 



EQUATIONS: 
i.e. < variable name > (< subscript expression >, ...) = < expression >; 

< variable name > may refer to an individual element variable or to a tree structure of 
subvariables. 

Control variables denote the size of dimensions of arrays. They must be defined by equa- 
tions. They can be represented as: 

SIZE. < variable name > (<subscript expression>,...): denotes the number of ele- 
ments in the rightmost dimension of <variable name >. 

END. < variable name > (<subscript expression> ,. . .) : den0 tes whet her an element 
is the last one in the rightmost dimension of <variable name>. 

Subscript denotes the index of the referenced element of an array. The equation is true 
for all the integer values of each subscript in the range of 1 to the size of the respective 
dimension (defined by a constant or control variable). The equation and the array do 
not apply (are nullified) if the size of a dimension is zero. The syntax of subscripts is: 
subl,, sub2+.. . These subscripts are loc 1 to the equation where they are usad. a I I 

I I 
Operations used in expressions include the following: 

arithmetic, logical and string operations 

if- t hen-else 

functions, built-in or defined in subroutines 

Note that the translator from MODEL to procedural languages tolerate omissions of defi- 
nitions of control variables. 

Table 2: Equations, Variables, Subscripts and Operations in MODEL 



DECLARATIONS: 

Input /Output :  Declaration of input/output structure is mandatory. The entire in- 
put/output data must be declared as a structure, down to individual data elements 
and their data types. 

n <elementary variable name> ... <repetitions><primitive data type>; 

<repetition> may consist of: 

* : denoting 1 or more repetitions 

The type of device must be declared as follows: 

sequential (default) file, 

messages from other processes (tasks), 

addressed messages, 

random access and shared memory. 

There are no input/output commands. 

Interim variables :Declaration is optional. The translator from MODEL to a procedural 

language declares interim variables automatically. 

Table 3: Declarations of Input/Output and Interim Variables in MODEL 



HEADER: 

Name Statements 

MODULE:<main procedure name> 

FUNCTION: <function name> (<input_argument-1 > ,. ..); 

PROCEDURE:<subroutine name> (<argumentl>, ...); 

Input/Output Argument Declarations 

, SO RCE: <input argument-1>, ...; 7 I I 
TARGET: <output argument-1>, ...; 

update arguments are both input and output 

Table 4: Header Statements in MODEL 



2.4 Transformations 

Two series of transformations are discussed in this section. The first series, shown in 

Figure 2, transforms the source program into a form close to that of equations. The second 

set, shown in Figure 3, simplifies the initial equational specification into a form that is easier 

to read and understand. This section introduces the respective transformations. They are 

then illustrated in section 3 and further discussed in section 4. 

The first set of transformations (Figure 2) transforms a source program into an equiv- 

alent program where variables are assigned a value once and only once. Each value assigned 

to a variable in the source program has a distinct variable in the object program. Two 

methods are used to define distinct variables in the object program. First, variables on the 

1 1 left hand side of different assign e t statements in the source program aqe given different I- I 

names in the object program. Next a variable that is assigned multiple values in a single 

assignment in a loop is transformed into an array in the object program, with one element 

for each iteration of the loop. 

Additional variables are used to denote the index of elements in an array and the size 

of every dimension. 

The same order of time efficiency is retained in the source and object programs of 

each transformation. There are the same order of number of assignments in both programs. 

There are cases where an IF condition selects either a THEN or an ELSE assignment to a 

variable (but not both). In cases that the IF condition does not select an assignment, then 

there is no need for a corresponding distinct element in the object program. (As will be 

discussed in Section 4, a specification can be simplified by deviating from this approach.) 

The first pre-translation transformation in Figure 2 (the 0 transformation), translates 



the source program into an equivalent program using a subset of the types of statements. It 

is not further discussed in this report. 

The first transformation collects THEN and ELSE assignments to the same variable. 

Wherever possible, it merges them into a single statement. (The dependencies in these 

statements on other variables must be checked to assure that they can be executed in the 

same place in a program). 

The second transformation renames each variable if it is used in different assignment 

statements. It produces a renaming table showing (a) the renamed variables, (b) respective 

statements, (c) conditions where each renamed variable is used and (d) the subscripts used 

to index instances of assignments of the variable. 

~ This is followed in the third transformation by generating an equivalent single-asslignqent 

program using the renamed variable. 

The next translation (the fourth) declares memory space for an array for the distinct 

values assigned for the same variable in loop iterations. In this way the objective of one and 

only one value assigned to a variable is attained. This form of the program can be readily 

represented by equations. 

The transformations in Figure 3 have the objective of producing a specification and 

simplifying it. The fifth transformation essentially copies the assignments produced previ- 

ously as a set of equations. It then also generates declaration and heading statements. 

The specification is now more complex than the source program, because a number 

of variables and conditions were added to make explicit all the interactions among vari- 

ables. Transformations 7 and 8 simplify the specification in these respects. In the seventh 

transformation some variables are eliminated by substituting their defining expresssion in 



other equations. Further analysis is conducted in the eighth transformation to simplify con- 

ditions in equations. Conditions may be collected and factored and duplicates eliminated. 

Conditions may also be simplified when they do not depend on input data. 



Source Procedural Program 
I 
v 

+---+------------------------------------------- + 
I 0 I Pre-Translation I 
I 1 T rans la te  i n t o  bas ic  types  of statements I 
+---+------------------------------------------- + 

I 
v 

Source program using only ba s i c  types  of statements 
I 

I 1 Iconsolidate i f - then with i f - e l s e  assignments I 
I I I 
+---+--------------------------------------------- + 

I 
v 

program with then-else statements 
I 

1 2 1  Generate renaming t a b l e  f o r  I 
I I i ng l e  assignment's 

I+---+-------- -  t 1  ...................... I '  J---------- 
I 
+ 

I 
v 

Renaming Table 
I 
v 

+---+------------------------------------------- + 
1 3 1  Transform i n t o  s i ng l e  assignment I 
I I I 
+---+------------------------------------------- + 

1 
v 

program with only s i ng l e  assignments 
I 
v 

+---+------------------------------------------- + 
1 4 1 Transform i n t o  single-value va r i ab l e s  I 
I I I 
+---+------------------------------------------- + 

I 
v 

Program with s i n g l e  value va r i ab l e s  

Figure 2:  Program Transformations 



Program wi th  s i n g l e  valued v a r i a b l e  
I 

I 5 1 Transformation i n t o  s p e c i f i c a t i o n  I 
1 I 
+---+-------------------------------------- 

I 
+ 

I 
v 

I n i t i a l  s p e c i f i c a t i o n  
I 

1 6 1 Transformation t o  reduce  I 
I 1 v a r i a b l e s  and equa t ions  
+---+-------------------------------------- 

I 
+ 

I 
v 

Reduced equa t ions  s p e c i f i c a t i o n  
I 
v 

+---+-------------------------------------- + 
1 7 1 Transformation t o  reduce  i f s  I 
I ; I  ! 
+--L+--d------------------ I 4--------------- ' I 

+ 
I 
v 

S i m p l i f i e d  l o g i c  i n  s p e c i f i c a t i o n  

F i g u r e  3: S p e c i f i c a t i o n  Transformat ions  



2.5 A Computational View of an Equational Specification 

An equational specification can be viewed as a set of true declarations, equations and 

headings. A computational view of the specification may be considered directly in terms 

of a dataflow machine, with a processor for each array variable and for each equation, and 

a communication link for each dependency. The dataflow graph for such a machine is in 

fact generated by the MODEL system. It is called an array-graph [26,35]. It consists of 

a node for each variable and for each equation, and an edge for each dependency relation 

between a variable and an equation, and vice versa. The edge communicates the value of 

the variable and its indices in an array. Figure 4 illustrates this concept for a very simple 

example. Fur her discussion is provided in section 3. I I I 

A veri  simple specification is shown a t  the top of Figure 4. The corresponking 

computational view of the specification is shown at  the bottom of the figure. 

The specification, called summer, adds up the elements of an input vector and outputs 

the sumof_elements. The specification starts with three header statements showing the 

name of the specifications, its source variables and target variables. They are followed by 

declaration of the source vector structure: 100 lines, each contains an element, and the sum- 

of-elements target structure: of one total-line containing the total. This is followed by one 

equation that uses the SUM function. 

The corresponding dataflow machine is shown at  the bottom of Figure 4. The pro- 

cessors for each variable are denoted by circles. The processor for the equation is denoted 

by a rectangle. Their functions of each processor are shown next to the respective node. 



MODULE: summer; 
SOURCE : vector ; 
TARGET: sum-of-elements; 

1 vector is FILE 
2 line(100) is RECORD, 
3 element is FIELD(1NTEGER) ; 

1 sum-of-element is FILE, 
2 total-line is RECORD, 
3 total is FIELD(1NTEGER) ; 

total = ~~~(element(sub1),sub1); 

vector-accesses a file 

I +---- 

V IReads and stores 100 line, sends each line 
line(100)-------- land its subscript as they are received. 

+---- 

1 subl 
v 

element --------+---- 

IStores and distributes 100 elements and 
I sub1 ltheir subscripts as they are received. 
v 

+----------------------------------- + +---- 

I total = sum(element(subl),subl) 1-1 Adds when it receives 
+----------------------------------- + I an element and its 

I I subscript. Sends the 
V I total when all additions 

I have been completed . 
total +---- 

I 
v 

total-line - prints total-line 
I 
v 

sum-of-elements - closes file 

Figure 4: Example of a Specification and its Computational View 



3. DESCRIPTION OF THE TRANSLATION ALGORITHM 

THROUGH AN EXAMPLE 

3.1 The Example 

The example selected to illustrate the transformations is shown in Figure 5. It is a 

FORTRAN program for computing the greatest common divisor (gcd) of two input integers 

(x and y). It has been selected because it illustrates well most of the transformations. The 

GCD example in Figure 5 is well known[27], short and very simple. Therefore it can be easily 

used within the bounds of this report. It utilizes only the basic types of statements (Table 

1). Therefore the pre-translation (0 th  transformation in Figure 2) can be omitted. It does 

not include an instance where the THEN and ELSE assignments to the same variable need 

to be merged into one statement. Therefore transformation 1 (Figure 2) can be skipped as 

well (it was discussed in section 2.4). While the example is short, it is also complex, as it 

handles implicitly the cases of: 

gcd = input value of x = input value of y 

gcd = input value of x 

gcd = input value of y 

by having a portion of the program skipped for each of these cases. The object specification 

will be shown to make these cases explicit. 



01 c PROGRAM GCD 
02 c FORTRAN example t o  f i n d  t h e  g r e a t e s t  common d i v i s o r  of 
03 c two p o s i t i v e  i n t e g e r s .  
04 
0 5 INTEGER x,  y 
0 6 
0 7 READ(5,IOO) x ,  y 
08 100 FOFU4AT(i4,i4) 
09 
10 DO WHILE (x ^= y)  
11 IF x > y THEN 
12 x = x-y 
13 ELSE 
14 y = y-x 
15 ENDIF 
16 ENDDO 
17 
18 gcd  = x 
19 WRITE(6,200) gcd 
20 200 FORMAT(i4) 
2 1 END 

F igure  5: Example of FORTFtAN Program t o  Find t h e  G r e a t e s t  Common Div i so r  



There are two options for the transformat ion algorithms. The object specificat ion can 

adhere closely to the source program algorithm and make the "side effects" explicit. This 

will lead to a more complex specification as it must show all the conditions explicitly. This 

option is useful for analyzing the operation of the source program. The other option is to 

avoid the "side effects" by changing the algorithm of the source program. This will lead to 

a simpler specification. The first option is employed below. The second option is discussed 

in section 4. 

3.2 Renaming - Second Transformation 

Assume that the source program has been parsed into a tree as discussed in section 

2. The renqming is performed in the tree. There are three arts to the renaming. I I 9 
Renaming LHS variables: In the first part the variable on the left hand side (lhs) of 

each equation is renamed. The new name is a concatenation of the variable name and the 

statement number (e.g. the variable x on the left hand side of statement 12 is renamed x-12). 

In this way there are distinct variables in each statement and the single assignment rule is 

applied to the program. 

Computing indices of instances of assignments in loops: Figure 6 shows the transfor- 

mation of WHILE loops. As shown, a WHILE loop is translated into two nested loops - DO 

and WHILE, respectively. The case when the source WHILE loop is skipped (i.e. sizek=O) 

is expressed by a DO loop, and the case when there are one or more repetitions (sizek=l) 

is expressed by the WHILE loop. In this way these two cases are differentiated explicitly. 

Subl, sub2, etc., are the subscript values of the instances of assignment in the WHILE loop. 



Source Program 

WHILE <condition> 

<block> 

1 END DO 

Single Assignment Program 

sizek = IF <initial condition> 

THEN 1 ELSE 0 

DO subl=l  to sizek 

sub2 = 0 

WHILE (IF sub2=0 THEN 

true ELSE *endk) DO 

endk = *<condition> 

i END DO 

END DO 

k is the statement number of the WHILE statement 

sub2 serves as the counter for assignments in <block> 

Figure 6: Transforming "WHILE" 



The case that a block is nested in an if statement is illustrated in Figure 7. (Several 

other ways to  handle this are described in section 4.) It is necessary to have a counter for 

the number of instances of assignments in an if block. The index of each assignment is a 

concatenation of "sl" and the statement number (e.g. s l l l ) .  slis an abbreviation for sublinear 

index, namely an index which is a function of the subscript subk of the loop in which the 

assignment statement is nested. sl increases in steps of one or zero for each increase of one 

in subk. It always has an integer value (e.g. sl(subk) <=subk ). 

For each variable on the lhs of an assignment, the source program tree is scanned to 

determine the do, while and if blocks within which an assignment is nested. Statements are 

inserted for evaluating the respective subscripts or sublinears. The condition for terminating 

a while loop is named endk, where k is the number of the respective while statement. 

Renaming RHS variables: In this part, the right hand side (rhs) ' v a r i a b l ~  of assign- 

ments are defined in terms of lhs variables, their subscripts, sublinear variables and the end 

variables. The tree is scanned to find for each rhs variable the same named lhs variables 

which has been assigned values preceding the rhs reference. There are a variety of cases where 

there are different preceding assignments. Each case will be a function of the subscripts of 

the nesting whiles, sublinears of the nesting ifs and of the end variables. 

The renaming is illustrated in Figure 8 for the GCD example. It shows in the first 

column the source program variables: (x, y, and gcd). This is followed by the size and end 

variables: (size10 and endlo), followed by the sublinears: (s l l l  and s113). For each variable, 

the table gives its statement numbers, whether the variables are on the rhs or lhs, their 

renaming and the respective subscripts of instances of lhs variables. 



Source Program 

IF <condition> 

THEN 

<block> 

END IF 

Single Assignment Program 

slk = function (<condition>) 

IF<condition> 

THEN 

<block> 

END IF 

Figure 7: Transforming " IF<condition> THEN <block>" 



st  a t  ement 
va r  address pos i t i on  renamed a s  subsc r i p t  ........................................................................ 

Read 
R 
R 

x-7 s c a l a r  
x-7 
x-7 : [sub2=1] 
IF  sllI=O THEN x-7 ELSE x-12 
x-7 : [sub2=1] 
IF s l l 1=0  THEN x-7 ELSE x-12 
x-12 sub l , s l l l ( sub l , sub2 )  
IF s l l l=l  THEN x-7 ELSE x-12 
IF s l l l = O  THEN x-7 ELSE x-12 
IF sl11=0 THEN x-7 ELSE x-12 
I F  sizelO=O THEN x-7 
ELSE IF  s l l l = O  THEN x-7 

ELSE x-12 

Read 
R 
R 

Y -7 s c a l a r  
Y -7 
y-7 : [sub2=l] 
IF s113=0 THEN y-7 ELSE y-14 
y-7 : [sub2=l] 
IF ~113.0 THFN y-7 ELSE y-14 
IF s113=0 THEN y-7 ELSE y-14 

~ I 

y-14 sub l , s l l3 ( sub l , sub2)  
IF s113=1 THEN y-7 ELSE y-14 
IF s113=0 THEN y-7 ELSE y-14 

gcd 18- L gcd-18 
19 Write gcd-18 

s c a l a r  

s c a l a r  

- p p p - p p p p - - - p p  

end10 10 R end10 
16bl L end10 s c a l a r  ............................................................................. 

Figure 8 :  Second Transformation - Renaming Table 



s c a l a r  
s l l l  l i b 1  R s l l i  

11b2 L s l l l  
1 lb2 R s l l i  
l i b 4  R s l l l  
12 R s l l l  
14 R s l l l  
16bl R sl 11 
18 R sll1 ............................................................................. 

s c a l a r  

Figure 8: Second Transformation - Renaming Table (Continued) 



The read and write statements are treated same as assignment statements. However 

if a variable is read or written only once, the statement may be disregarded altogether as 

the object equational language has no inputloutput commands (e.g. if a program contains: , 

... write (5,x) .. .write (6,x) ..., then this is equivalent to two assignment statements). 

The renaming uses pseudo statements which are not directly executable in FOR- 

TRAN. The IF-THEN-ELSE operation can be nested in parenthesis like other arithmetic 

operations and functions. For example: 

IF((1F cond THEN a ELSE b) > (IF cond THEN c ELSE d)) THEN ... 

is the same as 

IF(cond & a>c) 1 ( ~ c o n d  & b>d) THEN 
I I , 

This also allows the use of ifs on the rhs. For example 

x = IF cond THEN a ELSE b 

3.3 Single-Assignment Program - Third Transformation 

Figure 9 shows the transformation of the source program through inserting in it the 

renamings shown in Figure 8. Mapped instances of variables have the same values. In this 

way the source and object programs are equivalent. 

Note that the special cases in the source program are shown explicitly. 

if gcd = x-7 and x-7 = y-7 then size 10=0 and x-12, x-14, s l l l ,  s113 are null. 

if gcd = x-7 and y-7 A= x-7 then slll(sub2)=0 always and x-12 is null. 

if gcd = y-7 and x-7 A =  y-7 then s113(sub2)=0 always and y-14 is null. 



PROGRAM GCD 
FORTRAN example t o  f i n d  t h e  g r e a t e s t  common d i v i s o r  of 
two p o s i t i v e  i n t e g e r s .  

INTEGER x-7, y-7, x-12, y-14, s i z e l o ,  ~111, ~ 1 1 3  
LOGICAL end10 

READ (5,100) x-7, y-7 
100 FORMAT(i4,i4) 

s i ze10  = I F  (x-7 ^= y-7) THEN 1 ELSE 0 
DO s u b l = l  t o  s i ze10  

sub2 = 0 
DO WHILE ^ ( I F  sub2=0 THEN f a l s e  ELSE endlo)  

sub2 = sub2 + 1 
s l l i b  = I F  sub2=l THEN 0 ELSE s l l l  
s l l l  = I F  sub2=l 

THEN IF  x-7 > y-7 
THEN 1 ELSE 0 

1 ELSE I F  ( IF  sl11=O THEN x-? SE x,12) 9 > ( I F  sll3=O THEN SE y-14) 
I 

THEN s l l l  + 1 ELSE s l l l  
s113b = IF  sub2=l THEN 0 ELSE s113 
s113 = IF  sub2=l 

THEN IF  ^(x-7 > y-7) 
THEN 1 ELSE 0 

ELSE IF  - ( ( I F  slll=O THEN x-7 ELSE x-12) 
> ( I F  s113=0 THEN y-7 ELSE y-14)) 

THEN s113 + 1 ELSE s113 
x-12 = I F  s l l l  > s l l l b  

THEN ( I F  s l l l=l  THEN x-7 ELSE x-12) 
- ( I F  ~ 1 1 3 1 0  THEN y-7 ELSE y-14) 

y-14 = IF  s113 >. s113b 
THEN ( I F  s113=1 THEN y-7 ELSE y-14) 

- ( IF  sl11=0 THEN x-7 ELSE x-12) 
end10 = ^ ( ( I F  s l l l = O  THEN x-7 ELSE x-12) 

^= ( IF  s113=0 THEN y-7 ELSE y-14)) 
x-16 = IF  end10 THEN ( IF  slll=O THEN x-7 ELSE x-12) 

ENDDO 
ENDDO 

gcd-18 = I F  size10=0 THEN x-7 ELSE x-16 
WRITE(6,200) gcd-18 

200  FORMAT(^^) 
END 

Figure 9 :  Third  Transformation - Sing le  Assignment Program 



3.4 Single-Value Variables P rog ram - Fourth Transformation 

Figure 10 shows the GCD programs with single value assignments only. This is 

achieved by declaring an array for each variable assignment in a loop in Figure 9. If the 

assignment is nested in multiple loops then the array will be multi-dimensional. Note that 

the size of a dimension of an array may be a function of subscripts of higher order dimensions 

(of an outer loop). 

Referencing a variable in a loop on the rhs of an assignment may require use of the 

subscript expression to point to a lower number element, e.g. sub2-1. Note that x-12 and 

y-12 are subscripted with sublinear variables s l l l  and s113 respectively. 

This completes the transformations on programs. The assignments in Figure 10 may 
I I , 
I I  

I 

be read directly as equations. I 



01 c PROGRAM GCD 
02 c FORTRAN example to find the greatest common divisor of 
03 c two positive integers. 
0 4 
05 INTEGER x-7, y-7, x,12(1,*), y,14(1,*) 
05al INTEGER sizelo, slll(l,*), s113(1,*) 
05a2 LOGICAL end10(1,*) 
06 
07 READ (5,100) x-7, y-7 
08 100 FORMAT(i4,i4) 
09 
lob1 size10 = IF (x-7 ^= y-7) THEN 1 ELSE 0 
10b2 DO subl=l to size10 
lob3 sub2 = 0 
10 DO WHILE (̂IF sub2=0 THEN false ELSE endlO(subl,sub2)) 
10a1 sub2 = sub2 + 1 
lib2 slll(subl,sub2) = IF sub2=1 

THEN IF x-7 > y-7 THEN 1 ELSE 0 
ELSE IF (IF sll1(subl,sub2-1)=0 THEN x-7 

ELSE x~12(subl,slll(subl,sub2-1)) 
> (IF sl13(subl,sub2-l)=0 THEN y-7 

ELSE y,14(subla sl13(subla sub2-1) ) 
THEN sl1l(sub1,sub2-1) + 1 ~ ~ / ELSE sl11(sub1,sub2-1) I 

sl13(subl,sub2) = IF sub2=l 
THEN IF (̂x-7 > y-7) THEN 1 ELSE 0 
ELSE IF (̂(IF slll(sub1,sub2-l)=0 THEN x-7 

ELSE x~l2(subl,sl1l(sub1,sub2-l)) 
> (IF s113(sub1,sub2-1)=0 THEN y-7 

ELSE y-l4(subl ,sl13(subl ,sub2-1) 1) 
THEN s113(sub1,sub2-1) + 1 
ELSE sll3(subl,sub2-1) 

x~12(subl,slll(sub1,sub2)) 
= IF sub2=1 & sl1l(sub1,sub2)=l 

I sub2>1 & s111(sub1,sub2)~s111(sub1,sub2-1) 
THEN (IF sl1l(subl,sub2) = 1 THEN x-7 

ELSE x~12(sub1,sll1(sub1,sub2-l))) 
- (IF sll3(subl,sub2) = 0 THEN y-7 

ELSE y,14(subl ,sll3(subl, sub2-1) ) ) 
y~l4(sub1,sll3(subl,sub2)) 

= IF sub2=1 & sll3(sub1,sub2)=l 
I sub2>1 & s113(sub1,sub2)~s113(sub1,sub2-1) 

THEN (IF sll3(subl,sub2) = 1 THEN y-7 
ELSE y~14(sub1,sll3(sub1,sub2-1))) 

- (IF sl11(sub1,sub2) = 0 THEN x-7 
ELSE x-12(sub1 ,slll(subl ,sub2-1))) 

Figure 10: Fourth Transformation - Program with Single Value Assignment 
to Variables 



16b 1 endlO(subl,sub2) = (̂(IF sl1l(subl,sub2)=0 THEN x-7 
ELSE x~l2(sub1,sl1l(sub1,sub2))) 

^= (IF sl13(subl, sub2)=0 THEN y-7 
ELSE y~l4(sub1,sl13(subl,sub2)))) 

16b2 x-16 = IF endlO(subl,sub2) 
THEN (IF sll1(sub1,sub2)=0 THEN x-7 

ELSE x~l2(subl,sl11(subl,sub2))) 
16 ENDDO 
16aI ENDDO 
17 
1.8 gcd-18 = IF size10 = 0 THEN x-7 ELSE x-16 
19 WRITE(6,200) gcd-18 
20 200 FORMAT(i4) 
2 1 END 

Figure 10: Fourth Transformation - Program with Single Value Assignment 
to Variables (Continued) 



3.5 The Initial Equations in the Specification - Fifth Transformation 

Figure 11 shows the equations in the specification. They are derived directly from the 

assignments in Figure 10. Note that there are no input/output or loop control statements 

in an equational specification, and that the input/output statements (e.g. for x-7,y-7 and 

gcd) need not be transformed into equations. 



lob1 size10 = IF (x-7 ̂ = y-7) THEN 1 ELSE 0 

lib2 sl1l(subl,sub2) = IF sub2=1 
THEN IF x-7 > y-7 THEN 1 ELSE 0 
ELSE IF (IF s111(sub1,sub2-1)=0 THEN x-7 

ELSE x~l2(sub1,slll(subl,sub2-1)) 
> (IF sll3(subl,sub2-l)=0 THEN y-7 

ELSE y~l4(subl,sll3(subl,sub2-1)) 
THEN sll1(subl,sub2-1) + 1 
ELSE sl1l(sub1,sub2-1) 

11b4 sl13(subl,sub2) = IF sub2=1 
THEN IF (̂x,7 > y-7) THEN 1 ELSE 0 
ELSE IF (̂(IF slll(subl,sub2-l)=0 THEN x-7 

ELSE x~12(sub1,sll1(sub1,sub2-1)) 
> (IF sll3(subl,sub2-l)=0 THEN y-7 

ELSE y~14(sub1,sll3(subl,sub2-l))) 
THEN sl13(sub1,sub2-1) + 1 
ELSE sl13(subl,sub2-1) 

12 x,l2(subl,sl1l(subl,sub2)) 
= IF sub2=1 & sll1(subl,sub2)=l 

I sub2>1 & s 1l(sub1,sub2)>sl11(sub1,sub2-1) 
I THEN (IF sl11(sub1,sub~)=1 1 THEN x-7 

ELSE x-i2(subl ,slll(subl, sub2-1) ) )  
- (IF sl13(sub1,sub2) = 0 THEN y-7 

ELSE y~14(subl,s113(sublasub2-1))) 

14 y~14(sublas113(sub1,sub2)) 
= IF sub2=1 & sll3(subl,sub2)=1 

I sub2>1 & s113(sub1,sub2)>s113(subl-,sub2-1) 
THEN (IF sll3(subl,sub2) = 1 THEN y-7 

ELSE y-14(sub1 ,sll3(subl, sub2-1)) ) 
- (IF sl1l(sub1,sub2) = 0 THEN x-7 

ELSE x~12(subl,sl1l(subl,sub2-1))) 

16b1 end10 (subl , sub2) = -((IF slll (subl , sub2)=0 THEN x-7 
ELSE x~l2(subl,slll(subl,sub2))) 

^= (IF sll3(subl,sub2)=0 THEN y-7 
ELSE y-14(subl, sl13(subla sub2)))) 

16b2 x-16 = IF endlO(subl,sub2) 
THEN (IF slll(sub1, sub2)=0 THEN x-7 

ELSE x~12(subl,sll1(subl,sub2))) 

18 gcd-18 = IF size10 = 0 THEN x-7 ELSE x-16 

Figure 11: Fifth Transformation - Equations 



3.6 Simplifying the Specification - Sixth and Seventh Transformation 

In the interest of brevity the joint results of the sixth and seventh transformations 

are shown in Figure 12. 

Variable substitution : The sixth transformation has the main objective to reduce the 

number of variables and equations. This is performed by substituting for a variable on the 

rhs its defining expression in an equation that defines the variable (on the lhs). The equations 

and respective lhs variables which are candidates for reduction are chosen trying to avoid 

excessively increasing the complexity and understandability of the remaining equations. The 

selection of equations and variables to be eliminated is influenced by two considerations. 

Prime candidates for elimination are "copying" equations. Namely, those equations that 

have only IF-THE -ELSE operations on the rhs. Next, the graph of dependencies and 1 P 
the associated cyclks that involve thd equation that is a candidate for elimination, must be 

analyzed. The dependency graph is shown in Figure 13 and discussed further in section 3.7. 

Subscript expressions are attributes of edges in the dependency graph. Figure 12 shows the 

elimination of the variable and equation for x-16. Other examples that have been analyzed 

showed greater simplification due to use of this transformation. 

Analysis of conditions: The seventh transformation consists mainly of analysis of se- 

lected conditions. Conditions in equations can be simplified by factoring out like conditions 

and reducing the depth of the IF-THEN-ELSE operations. Figure 12 shows the elimination 

of nesting of ifs and the definition of a new variable slcll which is common in the equations 

that define s l l l  and s113. The latter have been simplified by use of a sublinear function. 



Analysis of conditions may also lead to simplifying the specification. The equa- 

tions that define sizes of dimensions (END and SIZE prefixes) are analyzed. This may 

allow elimination of entire dimensions of variables, if it is possible to prove that sizek=l or 

endk(subk)=subk=l. 



MODULE: GCD; 
SOURCE: Files; 
TARGET: File6; 

I File5 IS FILE, 
2 inr IS RECORD, 
3 (x-7, y-7) ARE FIELDS (PIC 'zzzg' ) ; 

1 Temp IS FILE, 
2 Tempf (0:l) IS RECORD, 
3 (x-12, y-14) (*) ARE FIELDS (PIC 'zzzg'); 

1 File6 IS FILE, 
2 outw IS RECORD, 
3 gcd-18 IS FIELD (PIC 'zzz9'); 

SIZE.Tempf = IF (x-7 ^= y-7) THEN 1 ELSE 0; 

slcll(subl,sub2) = IF sub2=l THEN x-7 > y-7 ELSE 
IF slll(subl,sub2-l)=0 THEN x~7>y~14(subl,s113(subl,sub2-1)) ELSE 
IF sll3(subl ,sub2-l)=0 THEN x,l2(subl ,slll(subl, sub2-1))>y,7 ELSE 

x~l2(subl,slll(sub1,sub2-l))>y~l4(sub1,sl13(sub1 ,sub2-1)) ; 

slll~(sub1, sub2) = sublinear (slcll (sub1 , sub2), sl11 (sub1 , sub2-1) , sub2) ; I ~ 
sll3(subl, sub2) = sublinear(~slcll (subl, sub2) , sll3(subl, sub2-1) , sub2) ; 

x~l2(sub1,sl1l(sub1,sub2)) = IF slc1l(subl,sub2) THEN 
IF sub2=1 THEN x-7-y-7 ELSE 
IF slll(sub1,sub2)=l THEN x~7-y,14~subl,s113(subl,sub2-l)) ELSE 
IF sll3(subl, sub2)=0 THEN x-l2(sub1, slll(sub1 ,sub2-I) )-y-7 ELSE 

x~l2(subl,slll(sub1,sub2-l))-y~14(subl,sll3(subl~sub2-1)~ ; 

y,14(subl,sl13(subl,sub2)) = IF ~slcll(subl,sub2) THEN 
. IF sub2=l THEN y-7-x-7 ELSE 

IF slll(sub1,sub2)=0 THEN y~14(subl,sll3(subl,sub2-1))-x~7 ELSE 
IF sll3(subl,sub2)=l THEN y~7-x~12(subl,sl1l(subl,sub2-1)) ELSE 

y~l4(sub1,sll3(subl,sub2-l))-x~l2(sub1,sl11(sub1,sub2-1)) ; 

END.slll(subl,sub2) = IF sll1(sub1,sub2)=0 THEN x~7=y~14(sub1,s113(sub1,sub2)) 
ELSE IF sl13(subl,sub2)=0 THEN x~l2(subl,sll1(sub1,sub2))=y~7 
ELSE x~l2(subl,slll(subl,sub2))=y~14(subl,sl13(sub1,sub2)); 

gcd-18 = IF SIZE.Tempf = 0 THEN x-7 
ELSE IF END. slll(sub1, sub2) THEN IF slll(sub1, sub2)=0 THEN x-7 
ELSE x,12(sub1,slll(subl,sub2)); 

Figure 12: Final Specification 



3.7 The Array Graph 

. . 

Figure 13 shows the array graph for the GCD specification in Figure 12. This graph 

is constructed automatically by the MODEL system. It shows: 

variable nodes by circles, 

equation nodes by rectangles, 

dependencies by edges, 

dimensionality is shown as attribute of each node, 

subscript expression is shown as attribute of each edge 

In the interest of clarity of the graph in Figure 13 the dependencies of nodes on sizes of 

respective dimensions are not shown. 

The graph can be viewed as a dataflow machine computational model of the GCD 

program. Each node is a processor. Each edge is a communication link. Each node has 

four types of inputs: variable values, their subscripts, sizes of their dimensions (end and size 

array elements) and their subscripts. Each node has two types of outputs: variable values 

and their subscripts. 

The nodes behave like Petrinet nodes. Whenever sufficient values and appropriate 

subscripts are input to a node, the respective output element; as specified by the respective 

equation or declaration, is immediately produced. 



Figure 13: Array Graph of the GCD Dataflow Machine 



4. DISCUSSION OF THE EQUATIONAL SPECIFICATION 

As stated in section 1, among the objectives of the procedural to equational transla- 

tion has been to provide a mathematical representation that is more explicit, readily under- 

standable, suitable for manipulations needed in the verifications and, most important, easy 

to modify for program maintenance. This section touches on these issues. 

The simplification transformations described in section 3.6 have the above objectives 

in mind. The simplification is illustrated by comparing Figures 11 and 12. The object 

equational specification in Figure 12 is still larger and more complex, than the source program 

of Figure 5 due to the use of subscripts and sublinears. Note that the simplification algorithm 

proved more effective in other examples that we investigated. On one hand, the object 

equational sptcification must provide more informatian about the algorithm that is used 

in the program, explicitly showing the side effects which are only implicit in the program. 

Therefore the specification will naturally be longer and more complex. On the other hand, 

in many cases (not illustrated by the above example) it is possible to use substitutions to 

eliminate implementation details, such as those involved in memory management, resulting 

in a simpler and more abstract equational specification. 



The issues of simplification and use of the equational specification, for the variety of 

objectives listed above, obviously require additional research. This section explores two as- 

pects. Section 4.1 explores using an alternate translation algorithm that produces a simplified 

less explicit equational specification. Section 4.2 explores use of an equational specification 

in verifying correctness. 

4.1 Modifying the Translation to Produce a Simpler Specification 

In some cases it is possible to eliminate the use of the sublinear subscripts (e.g. s l l l  

and s113 in Figure 12), thus simplifying the resultant equational specification. This is shown 

below with the aid of the same example that was used in section 3 (Figure 5). As will 

be shown this simplification is not always possible and in some cases it does not materially 
I 

simplify the resultant specification. Also the resultant specification does not follow the source 

program algorithm as closely as the one produced by the algorithm used in section 3. For 

different objectives (e.g. for understanding vs. verification), it may be preferable to use the 

different translation algorithms, (in this section vs. in section 3.2, respectively) 

The difference in the algorithm is in translating the IF <condition> THEN <block> 

in Transformation 2. Instead of the translation shown in Figure 7, we employ the translation 

shown in Figure 14. (Note that instances where there is 

IF <condition> THEN x=. . . 

ELSE x=. . . 



have already been integrated into a single statement in Transformation 1.) The transforma- 

tion in Figure 14 can be used only on assignments in the <block>; i.e. it cannot be used 

for input or output statements. Also if the <block> is large or it contains WHILE or DO 

statements, then the propogation of the IF <condition> to the nested assignments adds to 

the complexity of the resulting specification. 



Source Program 

IF <condition> 

THEN 

x= <expression 1 > 

ENDIF 

Single Assignment Program 

x = IF <condition> THEN <expression> 

ELSE x 

y = IF <condition> THEN <expression 2> 

ELSE y 

Figure 14: Alternative Transforming " IF <condition> THEN <block>" 



The transformation in Figure 14 has been applied to the example in Figure 5. It 

yields the renaming table and program shown in Figures 15 and 16 respectively. 

The final equational specification using the transformation in Figure 14 is shown in 

Figure 17. It is simpler than the one in Figure 12, due to the absence of the sublinear 

subscript s113 and the sublinear condition slcll .  The specification in Figure 12 distinguishes 

explicitly the cases 

sll l(sub2)=0 

s113(sub2)=O 

but these cases can not be distinguished in the specification of Figure 17. 
I 

I 

I I 
This will be further discussed in section 4.2. 



v a r i a b l e  s tatement p o s i t i o n  renamed a s  s u b s c r i p t s  
address  w i l l  be added .............................................................................. 

x 7 Read x -7 s c a l a r  
11 R x-11 
12 L x-12 sub1 , sub2 
12 R IF  sub2=l THEN x-7 ELSE x-12 
14 R IF  sub2=1 THEN X-7 ELSE X-12 
18 R I F  size9=0 THEN x-7 ELSE x-16 

- - - - - - - - - 

Y 7 Read Y -7 s c a l a r  
11 R y-11 
14 L y-14 sub1 , sub2 
14 R I F  sub2=1 THEN y-7 ELSE y-14 
12 R I F  sub2=1 THEN y-7 ELSE y-14 ............................................................................ 

gcd 18 L gcd, 18 s c a l a r  
18 Write gcd-18 s c a l a r  ............................................................................ 

end10 10 R end10 
16bl  L end10 
16b2 R end 10 ............................................................................ 
lob1 L 

I 
s i z e l o  1 s i z e l q  I s c a l a r  I 

10b2 R s ize10 
18 R s ize10 

Figure  15: Second Transformation - Renaming Table  



1 C PROGRAM GCD 
2 C F o r t r a n  example t o  f i n d  g r e a t e s t  common d i v i s o r  of two 
3 C p o s i t i v e  i n t e g e r s  
4 C 
5 INTEGER x-7, y-7, x-12, y-14, s u b l ,  sub2, gcd-18 

LOGICAL end10 
6 
7 READ (5,100)  x-7, y-7 
8 100 FORMAT(i4, i 4 )  
l ob1  s i z e 1 0  = I F  x,7=y-7 THEN 0 ELSE 1 
lob2 DO s u b l = I  t o  s i z e 1 0  
10b3 sub2 = 0 
10 WHILE (IF sub2=0 THEN t r u e  ELSE ^endlo)  DO 
10a1 sub2 = sub2 + 1 
1 l b 1  x-11 = I F  sub2=1 THEN x-7 ELSE x-12 
1 lb2  y-11 = I F  sub2=l  THEN y-7 ELSE y-14 
12 x-12 = I F  x,ll>y,11 THEN ( I F  sub2=1 THEN x-7 ELSE x-12) - 

( I F  sub2=1 THEN y-7 ELSE y-14) 
ELSE I F  sub2=1 THEN x-7 ELSE x-12; 

14 y-14 = I F  x- l l>y-11 THEN ( I F  s u b 2 4  THEN y-7 ELSE y-14) - 
( I F  sub2=l  THEN x-7 ELSE x-12) 

ELSE I F  sub2=1 THEN y-7 ELSE y-14 

16b1 end10 = [ ~ - 1 2 = ~ - 1 4 )  
16b2 x-16 = I F  end10 THEN x-12 
16 END DO 

END DO 
17 
18 gcd-18 = I F  s i z e l 0 = 0  THEN x-7 ELSE x-16 
19 WRITE(6,200) gcd-18 
20 200  FORMAT(^^) 
2 1 END 
........................................................................ 

F i g u r e  16: Th i rd  Transformat ion  - S i n g l e  Assignment Program 



MODULE: GCD; 
SOURCE: file5; 
TARGET : f ile6 ; 

1 file5 is FILE, 
2 inr is RECORD, 
3 (x-7, y-7) are fields (pic 'zzz9'); 

1 file6 is FILE, 
2 outr is RECORD, 
3 gcd-18 is ~1ELD(pic 'zzz9') ; 

x~l2(subl,sub2) = IF sub24 THEN IF x-7>y-7 THEN x-7-y-7 ELSE x-7 
ELSE IF x,l2(subl,sub2-l)~y~14(sublIsub2-I) THEN 

x~l2(subl,sub2-l)-y~l4(subl,sub2-l) ELSE x~l2(subl,sub2-I); 

y~l4(subl,sub2) = IF sub2=l THEN IF x,7>y,7 THEN y-7 ELSE y-7-x-7 
ELSE IF x~l2(subl,sub2-l)>y,14(sublIsub2-I) THEN 

y,l4(subl, sub2-I) ELSE y,l4(subl, sub2-I) -x-I2 (sub1 , sub2-1) ; 

F end.x~l2(subl,sub2) THEN 

gcd-I8 = IF size.tempf=O THEN x-7 ELSE x-16; 

size.tempf = IF x-7=y-7 THEN 0 ELSE I; 

1 temp is FILE, 
2 tempf (0 : I) is GROUP, 
3 (x-12, y-14) (*) is FIELD(pic 'zzzzzzz9') ; ..................................................................... 

Figure 17: Final Specification 



4.2 Proving Correctness of an Equational Specification 

The correctness of the program in Figure 5 has been proven in [27]. This section 

shows a similar proof carried out on the equivalent equational specification in Figure 12. The 

main difference is that the proof in [27] requires drawing a graph of the program in Figure 

5 and developing its path expressions. The proof based on the equational specification in 

Figure 12 does not require any graph analysis. It involves only analysis of conditions and 

substitution for variables defined in the lhs the respective rhs expressions of equations. 

Three verification assertions, same as in [27], are shown in Figure 18. They show the 

behavior of a GCD function of two integer arguments (v,w). The value of this function is 

the greatest common divisor of the two arguments. 

Figure 19 shows that the quational specification of Figure 12 preserves the assertions 

in Figure 18 by actually incorporating them under respective conditions. We prove that 

gcd-18 in Figure 12 is the value of the function GCD(V,W) where V,W may be x-7, y-7 

respectively, or the respective sub2 elements of x-12(s111(sub2)),y-14(s113(sub2)) or some 

special shown mixes of them. (Note that sub2 is in effect a universal quantifier; an equation 

is true for all values of sub2 within the specified dimension size. Sub2 is a local subscript 

and may have a different range in a different equation). 



GCD (v,w) = GCD(v-w,w) 

GCD (v,w) = GCD(w-v,v) 

Figure 18: Verification Assertions for the function GCD From [27] 



Case 1: Preserving assertion 1 in Figure 18 

subcase 1: x-7 = x-7 

sizelO=O; slcll ,  x-12, y-14; end10 are null size. 

gcd-18 = GCD(x-7,y-7) = x-7. 

using equation for gcd-18. 

subcase 2: x-7 = y-l4(s113(sub2)) = endlO(sub2) 

sizelO=l; subl=l;  sll l(sub2)=0; x-12 is null size. 

using equations for gcd-18, x-16, slcll ,  and endl0. 

subcase 3: x-12(slll(sub2)) = y-7 = endlO(sub2) 
I 

$izd10=0; subl=l;  s113(sub2)&0; y-14 is null size. I ! 

using equations for gcd-18, x-16, s lcl l ,  and endl0. 

subcase 4: x-12(slll (sub2)) = y-14(s113(sub2)) = endlO(sub2) 

sizelO=l; subl=l;  slll(sub2)>0; s113(sub2)>0. 

using equations for gcd-18, x-16, s l l l ,  s113, and endl0. 

Case 2: Preserving assertion 2 in Figure 18 

subcase 1: x-7 > y-7 

sizelO=l; subl=l ;  sub2=l, s113(sub2)=0; slcll(sub2)=true. 

using equation for x-12. 

Figure 19: Verification of Specification in Figure 12 



subcase 2: x-12(sll l(sub2-1)) > y-7 

sizelO=l; sub l= l ;  sub2>1; s113(sub2)=0; slcll(sub2)=true. 

GCD(x-12(slll (sub2- l)),y-7) = GCD(x-12(slll (sub2)),y-7) 

= GCD(x-l2(slll(sub2-1))-y-7,y-7). 

using equation for x-12. 

subcase 3: x-7 > y-14(s113(sub2-1)) 

= GCD(x,7-y-14(s113(sub2-l)),y-14(s113(sub2-1))). 
I 

I I 

using eqdation for y-14. 1 
I 
I 

subcase 4: x-12(slll(sub2-1)) > y,14(s113(sub2-1)) 

sizelO=l; sub l= l ;  sub2>1; s l l l  (sub2)>0; s113(sub2)>0; slcl l(sub2)=true. 

GCD(x-12(slll(sub2-l)),y-14(sll3(sub2-1))) 

= GCD(x-l2(slll (sub2)),y-l4(sl13(sub2))) 

= GCD(x-12(slll(sub2-1))-y~14(sll3(sub2-1)),y~14(s113(sub2-1))). 

using equation for x-12. 

Case 3: Preserving assertion 3 in Figure 18 

symmetrical to case 2 except y > x. 

Figure 19: Verification of Specification of Figure 12 (continued) 



Figure 19 shows the cases in which there is conformance with the respective assertions. 

For each case there are subcases for the different conditions under which the assertion is 

preserved. 

Case 1 shows that gcd-18 (see Figure 12) is equal to the GCD function for the four 

subcases when its two arguments are equal. 

Case 2 and 3 show that the GCD function has the same value of gcd-18 for, not 

only for the arguments in case 1 where endlO=true, but also for all the respectively shown 

arguments of x-7, y-7 and/or the same sub2 elements of x-12 and y-14. 

Case 3 is not shown in detail as it is symmetrical with Case2. 

The proof method con ists of examining the conditions in the specification to make 
I 

I a classification of respective I ases dnd subcases. We then use substitution to demonstrate 

systematic conformance with the assertions in each case and subcase. 



5 .  CONCLUSION 

We have posed in section 1, the problem of Reverse Software Engineering as "how 

to utilize outdated programs to reduce cost of developing new replacement systems." The 

emphasis is on reducing cost of replacment systems. The old systems are assumed to be 

inadequate in functionality and implementation technology. Still, to reduce cost it is desired 

to find and reuse what is available in the old system as a basis for making appropriate 

changes, deletions and additions. 

Mathematical representations of programs have been widely claimed to be advanta- 

geous for understanding, checking and modifying software. Translation into a mathematical 

representation has been the constant theme in research into a number of directions concern- 
I 

I 

ing procedurdl pbograms. The underlying notion of this report is to use a mathematical 

representation as an intermediate step in Reverse Software Engineering. It is proposed as 

the medium for understanding, analyzing and changing old programs. 

Many of the mathematical representations of procedural programs proposed in the 

past involved unfamiliar syntax and semantics. The choice here has been to use the widely 

known regular and boolean algebras as the syntax and semantics of the mathematical rep- 

resentation. The MODEL system is based on this syntax and semantics. It translates the 

equational specifications into procedural programs. We have extensive experience with the 

MODEL system in using equational specifications for software development. The objective 

of this research has been to investigate its effectiveness for Reverse Software Engineering. 

There are then two questions to which we have sought answers: 



1. What is the algorithm for translating a procedural program into an equational specifi- 

cation? 

2. What is the relative effectiveness of using the result of the translation for understand- 

ing, analysis, proving correctness and maintaining programs? 

The answer to the first question has been provided in sections 2 and 3. Once the 

underlying concepts are defined, the algorithm is straight-forward and can be implemented 

readily. 

A definitive answer to the second question will require additional research. We have 
I I 

, I 1  investigatid many examples of procedural programs translated into equational specificatiohs 

by the algorithm of section 3. Section 4.1 shows how two versions of equational specifications 

can be generated - one that is simpler and easier to understand, and one more complicated 

but which is more useful for analysis and verification. Section 4.2 shows by example the 

approach to verification based on equational specifications. We assume that if the proof is 

easier then true understanding is also easier. 

A number of mathematical representations of procedural programs have been pro- 

posed. It is necessary to conduct a comparative study of their effectiveness vs. equational 

specifications, for the respective directions for which they have been proposed. This investi- 

gation will yield important insights into the usefulness of the different syntax and semantics 

of mathematical representations of procedural programs. 

It is also necessary to conduct more extensive experimental research by automating 

t h e  translation algorithm and processing larger and more complex program translations. 
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