
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

May 1994

Approximation in Databases Approximation in Databases

Leonid Libkin
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Leonid Libkin, "Approximation in Databases", . May 1994.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-21.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/522
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F522&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/522
mailto:repository@pobox.upenn.edu

Approximation in Databases Approximation in Databases

Abstract Abstract
One source of partial information in databases is the need to combine information from several
databases. Even if each database is complete for some "world", the combined databases will not be, and
answers to queries against such combined databases can only be approximated. In this paper we
describe various situations in which a precise answer cannot be obtained for a query asked against
multiple databases. Based on an analysis of these situations, we propose a classification of constructs
that can be used to model approximations.

One of the main goals is to show that most of these models of approximations possess universality
properties. The main motivation for doing this is applying the data-oriented approach, which turns
universality properties into syntax, to obtain languages for approximations. We show that the languages
arising from the universality properties have a number of limitations. In an attempt to overcome those
limitations, we explain how all the languages can be embedded into a language for conjunctive and
disjunctive sets from [21], and demonstrate its usefulness in querying independent databases.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-94-21.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/522

https://repository.upenn.edu/cis_reports/522

Approximation in Databases

MS-CIS-94-21
LOGIC & COMPUTATION 79

Leonid Libkin

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

May 1994

Approximation in Databases

Leonid Libkin*

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104-6389, USA

email: libkin@saul.cis.upenn.edu

Abstract
One source of partial information in databases is the need to combine information from

several databases. Even if each database is complete for some "world", the combined databases
will not be, and answers to queries against such combined databases can only be approximated.
In this paper we describe various situations in which a precise answer cannot be obtained for a
query asked against multiple databases. Based on an analysis of these situations, we propose a
classification of constructs that can be used to model approximations.

One of the main goals is to show that most of these models of approximations possess uni-
versality properties. The main motivation for doing this is applying the data-oriented approach,
which turns universality properties into syntax, to obtain languages for approximations. We
show that the languages arising from the universality properties have a number of limitations.
In an attempt to overcome those limitations, we explain how all the languages can be embedded
into a language for conjunctive and disjunctive sets from [21], and demonstrate its usefulness in
querying independent databases.

1 Introduction

The idea of using approximate answers t o queries against databases with partial information has
been known in the database literature for more than ten years. In his classical papers, Lipski
[24, 251 suggested t o use two approximations t o answer queries Q for which a precise answer can
not be found. The lower approximation t o the answer t o Q consists of those objects for we which
one can conclude with certainty that they belong to the answer to Q. The upper approximation t o
the answer t o Q consists of those objects for we which one can conclude that they may belong to
the answer t o Q .

However, i t was not until ten years later that it was observed by Buneman, Davidson and Wat-
ters [5] that those pairs of approximations may not only be regarded as results of query evaluation
but may also be used as a representation mechanism for certain kinds partial data. Moreover, this
kind of partiality is different from traditional model such as null values and disjunctive information.
If a query is asked against several databases, the combined databases may not be complete even
if each database is complete for some "world". Hence, incompleteness shows up in the form of an
answer to query, rather than the representation of data as in the classical models. Let us give some
examples.

*Supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship.

Example: Querying independent databases

Simple approximations. The general problem of querying independent databases is the follow-
ing: given a set of databases Dl,. . . , D, and a query q that can not be answered by using infor-
mation from one of D;'s, approximate the answer to q by using information from all Dl , . . . , D,.
If it is impossible to answer q precisely, then the databases are divided into two groups, one giving
the upper approximation to the answer to q and the other giving the lower approximations.

Consider the following problem. Suppose the university database has two relations, Employees
and CS1 (for teaching the course CS1):

Employees
1 Name I Salary I Room I

Michael (I / 320
Michael

John
Ann

Assume that our query asks to compute the set TA of teaching assistants. We further assume
that only TAs can teach CS1 and that every TA is a university employee. Also, for simplicity, we
make an assumption that the Name field is a key. Of course this may not be the case, and solutions
we consider work if no assumptions about keys were made. This assumption, however, makes the
examples easier to understand. We also use nulls I to make both relations have the same set of

15K
17K

attributes.
Let us briefly outline how the TA query can be answered. We know that every person in CS1

I
I

is a TA; therefore, CS1 gives us the certain part of the answer. Moreover, every TA is an employee,
hence finding people in the Employees relation who are not represented in the CS1 relation gives
us the possible part of the answer to the TA query. Notice that it is possible to find possible TAs

Name

John

because Name is a key. If it were not, we would have to use or-sets.
A pair of relations CSl and Employees is called a sandwich (for TA) [5]. The Employees relation

is an upper bound: every TA is an Employee. The CS1 relation is a lower bound: every entry in
CS1 represents a TA. We are looking for the set of TA - something that's in between; hence the
name. Notice that in our example records in CS1 and Employees are consistent: for every record
CS1, there is a record in Employees consistent with it. That is, they are joinable and their join can
be defined. $'or example,

Salary

I

I John (15K / I I V I John 1 1 1 076 1 = I John I 15K 1 076 1

Rooni

076

Hence, a sandwich (for a query Q) is a pair of relations R1 and R2 such that R1 is an upper
bound or an upper approximation to Q, R2 is a lower bound or a lower approximation to Q , and
R1 and R2 are consistent.

Assume a pair of consistent relations R1 and R2 is given. What is the semantics of the sandwich
(R1, Rz)? That is, what is the family of possible answers to & which R1 and R2 approximate? To
emphasize that R1 is an upper approximation, we denote it by U from now on. Similarly, we denote
the lower approximation Rz by L.

To answer the question about semantics of (U, L) - at this stage, only informally - we appeal
to the idea of representing partial objects as elements of ordered sets. In a graphical representation,

Sandwich Mix Scone Snack

Figure 1: Models of approximations and their semantics

ordered sets will be shown as triangles standing on one of their vertices. That vertex represents the
minimal, or bottom element. The side opposite to that vertex represents maximal elements. In our
interpretation the order means "being less partial", or "being more informative". Then maximal
elements correspond to complete descriptions, i.e. those that do not have any partial information
at all.

The graphical representation of a sandwich (U, L) is shown in the first picture in figure 1.
Trapezoids standing on U and L represent graphically elements of the whole space whiclz are
bigger than an element of U or L respectively. The semantics of a sandwich is a family of sets such
as the one denoted by three bullets in the picture. There are two properties of such sets X that
include them into the semantic space of a sandwich. First, for every element 1 E L, there is an
element x E X such that I < x. That is, each element of the lower approximation contributes to
at least one element of X. Second, all X lies in the trapezoid standing on U , i.e. for every x E X,
there exists u E U such that u 5 x. That is, each element of X is represented by an element of the
upper approximation.

Observe that in our particular example depicted in the picture, L is assumed to have two
elements. Since both of them are under elements of the three-bullet set, which in turn are all above
some elements of U, (U, L) satisfies the consistency condition, i.e. it is a sandwich.

Now, assume that the Name field is a key. Then we can replace certain nulls in relations CS1
and Employees by corresponding values, taken from the other relation. The reason is that certain
tuples are joinable, and corresponding joins can be taken to infer missing values. One such join
was shown above. Since Name is a key, we know that there is only one John and we assume that
the same John is represented by both databases. Hence we infer that he is in the office 076 and his
salary is 15K. Similarly for Michael we infer that he is in the office 320 and his salary is 14K.

We can regard the newly coilstructed relations as another approximation for TA. But this
one satisfies a much stronger consistency condition than sandwiches: every record in the lower
approximation is also found in the upper. We call a pair satisfying this consistency condition a
mix. An example of a mix is shown in figure 1.

Mixes were introduced by Gunter [9] as an alternative approximation construct, whose proper-
ties are generally easier to study than properties of sandwiches because of its consistency condition
in which no joins are involved. We shall discuss this phenomenon in details later.

Semantics of mixes is defined in exactly the same way as semailtics of sandwiches: we look at
sets that represent all elements of the lower approximation and whose elements are representable
by the upper approximation. In Figure 1, a set shown by four bullets is such.

Approximating by many relations. Let us consider a more complicated situation. Assume
now that CS1 has two sections: CSll and CS12, and each section requires a teaching assistant.
Assume that we have a pool of prospective TAs for each section that includes those graduate
students who volunteered to be TAs for that section. Now suppose that the selection of TAs has
been made, and those who have been selected were entered in the database of employees, while
the database of prospective TAs remained unchanged. This situation can be represented by an
example below:

Employees
1 Name I Salary I Room I
I I 1

1 John 1 15K 1 I 1 Wl
Michael 14K

I Name I Salarv I Room 1
I I I I

1 John I I 1 076 1
I Jim 1 I I

!

I I

CS12
[Name 1 Salary I Room I

Helen

Since all the selections have been made, at least one of prospective TAs for each section is now a
TA, and therefore there is a record in Employees for him or her. That is, in each of the subrelations
of CS1, at least one entry is consistent with the Employees relation.

Let us summarize the main difference between this construction and sandwiches or mixes.

1. The lower approximation is no longer a single relation but a family of relations.

2. The consistency condition does not postulate that all elements in the lower approximation
are consistent with the upper approximation, but rather that there exists an element in each
of the subrelations of the lower approximation that is consistent with the upper.

Such approximations are called scones [27]. We shall denote the lower approximation by & and
its components by L1, Lq etc. The graphical representation of a scone with the two-element & is
shown in Figure 1.

The semantics of a scone is a family of sets X that satisfy the following two properties. First,
for every set L E &, there exist 1 E L and x E X such that 1 5 x. Second, all X lies in the trapezoid
standing on U. That is, for every x E X, there exists u E U such that u < x. For example, in
Figure 1 the set denoted by three bullets is such. Observe that the second property is exactly the
same for scones as it is for sandwiches and mixes, but the first one is different and it reflects the
difference in the structure of scones and sandwiches.

Now let us look at the data represented by CSll and CS12. Assume again that the Name field
is a key. Observe that some preprocessing can be done before any queries are asked. In particular,
there is no entry for Jim in the Employees relation. Hence, Jim could not have been chosen as a
possible TA for a section of CSl. Similarly, Helen can be removed from CS12. Having removed
Jim and Helen from CSll and CS12, we can now infer some of the null fields as we did before in
order to obtain mixes from sandwiches. In the new approximation that we obtain, the condition
expressing consistency of this approximation is much stronger than the condition we used for scones.
In fact, all elements in CSll and CS12 have become elements of Employees. In other words, taking
into account that some entries can be nulls, we see that the new consistency condition says that
every element of every set in the lower approximation is bigger than some element of the upper
approximation. Such constructions are called snacks, see [26, 271. The graphical representation of
a snack with two-element L is given in Figure 1.

The semantics of snacks is defined precisely in the same way as the semantics of scones. For
example, in Figure 1 the four-element set denoted by the bullets is in the semantics of (U, {L1, L2}).
Thus, it is only the consistency condition that makes scones different from snacks.

Finally, what if we have arbitrary data coming from two independent databases that may not
be consistent? For instance, there may be anomalies in the data that ruin various consistency
conditions. Then we need a model that would not require any consistency condition at all. Such a
model was introduced in [19]. Since it is in essence "all others put together", it is called salad.

The main problem that we address in this paper is building the general theory of approximate
answers to queries. In particular, we address the following questions.

What are the formal models of approximations? Is it possible to classify those models ac-
cording to some general principle?

a Do approximation constructs corresponds to (a combination of) known datatypes?

How do we program with approximations?

The paper is organized in follows. In section 2 we present preliminary results necessary to
describe our approach. First we explain the approach to databases with partial information that
treats database objects as subsets of some partially ordered space of descriptions. The meaning
of the ordering is "being more informative". This approach is based on [6, 15, 181. One of its
important features is that it allows one to abstract from the concrete data model (e.g. relational,
complex object) as it can be used with a variety of models, see [6, 181.

Then we explain the data-oriented paradigm for the query language design [7]. This approach
is based on incorporating the operations naturally associated with datatypes into a query language.
To find such operations, it is necessary to describe the semantic domains of those datatype via
universality properties.

In section 3 we use the ordered semantics to give formal models of approximations and suggest
a classification of those. The main part of the paper is section 4 in which we show that most of
the constructs possess the universality properties. This tells us what the important operations on
approximations are.

In section 5 we discuss programming with approximation. First, we apply the data-oriented
paradigm to descriptions of approximations obtained in section 4. We discuss problems with using
this approach, such as undecidability of certain preconditions that need to be checked to ensure well-
definedness of programs. As a solution to this problem, we suggest using encoding approximation
constructs with or-sets [13, 14, 30, 211 and explain how the language for or-sets from [21] is suitable
for programming with approximations. In fact, a system based on this language [ll] has been used
in the problems of querying independent databases.

2 Preliminaries

2.1 Partial objects and ordered sets

Most models of partiality of data can be represented via orderings on values, e.g. [2, 32, 12, 81. In
[6, 18,211 a general approach to the treatment of partial information in the context of ordered sets
has been developed. Here we present the basics of that approach.

First, elements of base types are ordered. For example, if there is only one null value 1, then
the ordering is given by letting I be less than any nonpartial value v. In the approach when we
have three kinds of nulls - no information ni, existing unknown u n and nonexisting n e - the
ordering is given by ni < un < v and ni < ne. For more examples, see [2, 6, 201.

Complex objects, or nested relations, are constructed from the base objects by using the record
and the set type constructors. Therefore, one has to lift an order to records and sets. Lifting order
to records does not pose a problem: it is done componentwise. For example, [Name: Joe, age:^] 5
[Name: Joe,Age: 281. It is not immediately clear how to lift an order to sets. This problem also
arises in the semantics of concurrency, where a number of solutions have been proposed, see [lo].
Here we consider two, which turn out to be suitable for our problems. Given an ordered set (A, I),
its subsets can be ordered by the Hoare ordering C~ or the Smyth ordering ~ f l :

In early works on representing partiality via orders, the problem of choosing the right ordering
has not been considered. Recently, in [21, 201 a theory for deciding which order is suitable for
which collection was developed. It turns out that Cb is suitable for sets1 and E# is suitable for
or-sets [13, 141. Or-sets, denoted by the angle brackets, are sets of exclusive possibilities, i.e.
[Name: Joe, Age:(25,27)] says that Joe is 25 or 27 years old.

Orderings suggest a natural approach to the semantics of partiality: an object may de-
note any other object that is above it. For example, [Name: Joe,Age:I] denotes the set
{[Name: Joe,Age:n] 1 n E N } . Hence, we define the semantic function for the database ob-
jects of the same domain D as [o] = (0' E D I 0' > 0) . This semantics leads us to an important
observation. Since sets are ordered by cb, then for any set X we have [[XI = [maxx], where
max X is the set of maximal elements of X . Since or-sets are ordered by GI, then for any or-set X
we have [XI = [min XI, where min X is the set of minimal elements of X . Elements of maxX and
m i n x are not comparable; such subsets of ordered sets are called antichains. Therefore, the or-
dered semantics suggests that the database objects are represented as antichains in certain posets,
cf. [6, 181.

The idea of using orderings to represent partiality has been quite fruitful. A general theory of
partial information and languages to handle it based on orderings was developed in [20]. As another
example of its applicability, it was shown in [17] that a mistake in [29] discovered in [16] goes away
if equivalence with respect to cb is used instead of equality to define representation systems.

2.2 Data-oriented programming

In this subsection we give an overview of the data-orientation as a programming language paradigm
(cf. Cardelli [7]) and demonstrate one instance of this approach: a language for sets.

It was observed in [7] that while traditional programming languages are mostly algorithmic and
procedure-oriented and pay little attention to handling of data, dealing with information systems
in general and databases in particular requires more emphasis on the data. Databases are designed

'Technically speaking, only if we believe in the open world assumption. For closed worlds, the Plotkin ordering
[lo] should be used. However, the nature of lower approximations, for which the set ordering wiU be used, suggests
the open world assumption, so we consider only the Hoare ordering in this paper.

Figure 2: Structural recursion and ezt

using some data models, e.g. relational, complex object, etc. To make it possible t o program with
data, it is necessary to represent the concept of a data model in a programming language. The
best way to do it is to use type systems as a representation of data models.

Representing data models via type systems often allows static type-checking of programs which
is particularly important in handling large data as run-time errors are very costly. To make sure
that the type system is not too restrictive and does not limit the programmer's freedom, some
form of polymorphism must be allowed. We allow all type constructs to be polymorphic, e.g.
a set type constructor can be applied to any type, a product type constructor can be applied
to any pair of types etc. For example, for a language for complex object, types are given by
t ::= b I [l l : t ,..., l , : t] I {t).

It was suggested in [7] that one use introduction and elimination operations associated with a
type constructor as primitives of a programming language. The introduction operations are needed
to construct objects of a given type whereas the elimination operations are used to deconstruct
them, or rather to do some computation with them. For example, for records, the introduction
operation is forming a record with given fields, and the elimination operations are projections.

Since databases work with various kinds of collections, it is important to look at the introduction
and elimination operations associated with those collections. One way to do it is t o find operations
that are naturally associated with collections. To do so, we define semantics of a collection type
and try to characterize it by finding out if it has a universality property.

Universality properties immediately tell us what are the introduction and the elimination op-
erations. Assume we have a collection type constructor that we denote by C(.) and a type t. By
universality property we mean that it is possible to find a set St of operations on the semantic
domain of C(t), which we denote by [C(t)], and a map : It] + [C(t)] such that for any other
0-algebra (X, St) and a map f : [t] -+ X there exists a unique St-homomorphism fS such that the
first diagram in figure 2 commutes.

Hence, the introduction operations are q and those in Q as we can use them to construct any
object of type C(t) from objects of type t. The elimination operation is given by the universality
property. In fact, the general elimination operation is the one that takes f into f+.

At this point, let us see what these operations are for sets. The semantic domain of {t) is
the finite powerset of elements of t , that is, $,,(it]). For any set X , its finite powerset P,,(X) is
the free semilattice generated by X. That is, q(x) = {x), and operations of f2 are 0 and U. The

operation that takes f into f+ is the following (often called structural recursion [3]):

However, if e and u do not supply the range of f + with the structure of a semilattice, then f +

may not be well-defined (see what happens if e is 0, f is Xx.1, and w is +.) The way to overcome
this problem is to make sure that fS always lands in a domain supplied with the structure of a
semilattice. The simplest way to ensure this is to require that (X, R) be ([C(S)], f2) for some type
s. Thus, we obtain the second diagram in figure 2.

The unique completing homomorphism is called ezt(f) , the extension of f. Its semantics in
the case of sets is ezt(f){xl,. . . , x,} = f (xl) U . . . U f(x,) (that is, it "extends" f to sets.) This
function is always well-defined. Using ext together with r) , 0, U, projections and record formation
and the equality test gives us precisely the nested relational algebra [3] but the presentation is
nicer than the standard ones, such as in [31]. This approach to the language design has proved
extremely fruitful and allowed to solve some open problems (e.g. [23]) and develop languages for
other collections (e.g. [21, 221). Hence, we shall try to apply it t o the approximation constructs.
To do it, we first need formal models of approximation, and then the universality properties for
those models.

Remark. There is mysticism in the diagrams above - these are constructions well known to
mathematicians. The first one says that [[C(t)]] is the free R-algebra generated by It], or, in the
category speak, establishes an adjunction between the category of 0-algebras and the category
where the semantic objects live. The second diagram represents going from that adjunction to the
Kleisli category of its monad, see [I].

3 Formal models of approximations

In this section we re-examine the approximation constructs by applying the idea of representing
database objects with partial information as elements of certain ordered sets. Before we do it, we
need the notion of consistency in posets: two elements x, y E A are consistent (written xfy) if there
exists x E A such that x, y 5 2. In the case of records, consistency means joinable (as in [33].) We
shall use TX for {y I y > x, some x E X).

Recall the definition of a sandwich. It is given by an upper approximation U and a lower
approximation L which satisfy the following consistency condition: for every u E U, there is 1 E L
such that u and 1 are consistent. Therefore, representing objects in approximating sets as elements
of some posets, we can give a formal definition of sandwiches as follows:

Definition 1 (see [5].) Given a poset (A, <), a sandwich over A is a pair of finite antichains
(U, L) satisfying the following consistency condition: Vl E L 3u E U : ufl. The set U is usually
referred to as the upper approximation and L as the lower approximation.

The consistency condition for mixes says that every element in the lower approximation is at
least as informative as some element of the upper. Hence, we arrive at

Definition 2 (see [9].) Given a poset (A, I), a mix over A is a pair of finite antichains (U, L)
satisfying the following consistency condition: V l E L 3u E U : u 5 1.

Now recall the definition of scones. In a scone, the lower approximation is a family of sets
(relations), and the consistency condition says that for each set in the lower approximation, at
least one element is consistent with an element of the upper approximation. Hence

Definition 3 (see [27].) Given a poset (A, s), a scone over A is a pair (U,L) where U is a
finite antichain, and C = {L1,. . . , Lk) is a family of finite nonempty antichains which is itself an
antichain with respect to ~ f l . That is, Li gtl L j i f i # j . In addition, a scone is required to satisfy
the consistency condition: .VL E L 31 E L 3u E u : uTl.

The last construction that we have seen was a snack. Snacks are obtained from scones in the
same way as mixes are obtained from sandwiches: by using the assumption about keys, additional
information is inferred. Thus, the consistency condition is similar to that of mixes.

Definition 4 (see [26, 271.) Given a poset (A, I), a snack over A is a pair (U,C) where U is a
finite antichain, and L = {L1,. . . , L k) is a family of finite nonempty antichains which is itself an
antichain with respect to ~ f l . A snack is required to satisfy the consistency condition: V L E ,C V l E
L 3 u E u : U L l .

Now let us look at these constructs again. There are three main parameters that may vary and
give rise to new constructs.

1. The lower approximation is either a set or a set of sets.

2. The consistency condition is of form

Ql E L 3u E U C(u, l) for simple lower approximations and
V L E ,C Ql E L 3u E U C(u , 1) for multi-set lower approximations,

where Q is a quantifier (either V or 3) and C(u, I) is a condition that relates u and I.

3. The condition C(u, 1) is either u < 1 or ull.

Therefore, we have eight constructions since each of the parameters that may vary - the
structure of the lower approximation, the quantifier Q and the condition C(u, 1) - has two possible
values. For constructs that have a single set lower approximation we use notation 'P and for the
constructs with multi-set lower approximation we use P . The rest is indicated in the superscript
which consists of one or two symbols. The first is always a quantifier and indicates whether V or
3 is used as Q. The second is omitted if the condition is u < 1 , and it is A if the condition is uT1
(to indicate that there is an element above u and 1). Moreover, we have seen a need for constructs
with no consistency condition, in order t o deal with inconsistencies in independent databases. For
such constructs we shall use just one superscript 0.

Summing up, we have ten possible constructs: pv, P v , pVA , pvA, 'P3, P 3 , p3, Pa, pO, pO. For
example, 'Pv(A) is the family of mixes over A, p v A (~) is the family of sandwiches over A, pV(A)
is the family of snacks over A and P"(A) is the family of scones over A. This is summarized in
the table below.

Order and semantics

Define two orderings, called the Buneman orderings, see [6, 91. For pairs (U , L) and (U', L'), let

-

(U, L) CB U) iff U gs U' and L Eb L'

In other words, &" =&# x gb. For pairs (U, L) and (U', C'), let

L-part
one set

family of sets

iff

L

type of consistency condition (quantifier-condition)

U U' and VL E C 3L' E C' : L G~ L'

V u s 1
pV (mix)
pV (snack)

In other words, C f = C H x (E ~) ~ . The index f is ised in ~7 to indicate that the ordering deals with
families of sets in the lower approximations, whereas C" deals with simple lower approximations.

Claim. The approximations must be ordered by the Buneman orderings.

V up
pVA (sandwich)

pVh

The reader is referred to [19, 201 for the rationale behind this claim. It is justified by proving the
results similar to those proved in [21, 201 for sets under open and closed world assumptions and
or-sets and in [22] for bags.

Thus, when we consider approximation constructs pi(^) and pi(A), where i E {V, 3, VA, 3 , 0 } ,
we assume that they are ordered by CB and ~7 respectively.

Because of tlze limitation on the length of this document, we do not discuss the semantic here
and only offer the definition of the semantic functions. The reader is invited t o apply them to the
examples in the introduction chapter and see that they corresponds to sets of TAs that can be
approximated by Employees and CS1.

For simple approximations, we define ([(U, L)] = {X E $,,(A) 1 U E# X and L gb X}.
For constructions with multi-element lower approximations (like snacks and scones) the semantic
function is given by [(U, C)] = {X E $,,(A) I U Cfl X and Vi : TL; n X # 0).

4 Universality properties of approximat ions

3 u < E
p3
p3

The flavor of the results

Before we give the results about universality of pi(A) and p i (A) , let us give a quick overview.
The desired result would be to obtain the first diagram in figure 3, where q(x) = ({x), {x)) for
pi(A) and q(x) = ({x), {{z)}) for pi(A). That is, every monotone map f can be extended to a
monotone homomorphism f+ . Unfortunately, this is not always possible and here is the reason.
Let xTy in A. Then S,, = ({x}, {y}) is a sandwich and S,, = ({x}, {{y))) is a scone. Thus, if
' P v A (~) or p3(A) were free algebras generated by A, there would be a way to construct S,, and
S,, from the singletons ~ (x) . But this way must use the information about consistency in A and
therefore can not be "universal"!

Therefore, we shall settle for less. Namely, we make the generating poset convey the information
about consistency in A. We define the consistent closure of A as

3 1
ph

ph (scone)

AIA = {(a, b) (a E A, b E A, aTb)

no condition
I'0
p0

(A7%
Figure 3: Universality results

The consistent closure of A can be embedded into pi(A) and p i (A) (where i E {a, a)) by means
of the function qT(x, y) = ({x), {y)) and qf(x) = ({x}, {{y})). Since ATA interacts in a certain way
with the structure of approximations, we shall seek the result like the one in the second diagram
in figure 3. In this case we say that P;(A) or P~(A) is freely-generated by AIA with respect to the
class C of monotone maps.

We need the definition of three types of algebras, see [28]. Semilattices are algebras (S , -)
where . is a semilattice operation, i.e. idempotent, commutative and associative. A bisemilattice
(B, +, .) is an algebra with two semilattice operations. It is called distributive if both distributive
laws holds. A left normal band (3, *) is an algebra with an idempotent associative operation c such
that x * y * z = x * z c y .

In what follows, we describe the algebras, then give the interpretation of their operations on
the approximation constructs, and then present the results.

Universality of pV(A) (mixes)

Algebra. A mix algebra (M , +, 0, e) has partially ordered carrier M, one monotone binary oper-
ation + and one monotone unary operation U. (M, +, e) is a semilattice with identity e , and in
addition the following equations must hold: 1) ~ (x + y) = Ox + my, 2) OOx = Ox, 3) Ox < x, 4)
x + a x = 2, 5) x + Oy 5 x.
Interpretation of operations. The ordering is interpreted as 5". For the operations, (U, L) +
(V, M) = (min(U U V), max(L U M)), o(U, L) = (U, 0) and e = (8,0).

Theorem 1 ([9]) P'(A) is the free mix algebra generated by A. q

Universality of PVA(A) (sandwiches)

Theorem 2 For no 0 is pVA(A) the free ordered R-algebra generated by A. q

However, we can overcome this by using the consistent closure and mix algebras with the same
interpretation of operations.

Admissible functions. Let M be a mix algebra. A monotone map f : ATA + M is called
admissible (or sandwich-admissible) if f (x, y) + f (2, y) < f (x, Y) and Of (x, Y) = Of (x, 2).

Theorem 3 pVA(A) is the free mix algebra generated by ATA with respect to the admissible maps.

Universality of p3(A)

Algebra. An algebra (B,$, *) is called a distributive bi-LNB algebra if: 1) $ and * are left
normal band operations. 2) All distributive laws between * and $ hold. 3) a $ (b * c) = a $ b. 4)
(a * b) $ b = (b * a) $ a.

Order. a 5 b := b $ a = a * b.

Interpretation. (U, L) $ (V, M) = (min(U U V), L) , (U, L) * (V, M) = (U, max(L U M)).

Theorem 4 p3(A) is the free distributive bi-LNB algebra algebra generated by A.

Universality of ?@(A)

Algebra. An algebra (B, +, 0 , O) is called a bi-mix algebra if (B, +, 0) is a mix algebra, x =
Ox + Ox and (B, +, 0) is a dual mix algebra. By this we mean that 0 is a closure, that is, 0
is monotone, Ox > x, 002 = Ox and 0 (x + y) = Ox + Oy, and in addition x + Ox = x and
x + O y L x .

Interpretation. Operations +, and e are interpreted as for mixes, and O(U, L) = (0, L).

Theorem 5 P@(A) is the free bi-mix algebra generated by A.

Universality of pV(A) (snacks)

Algebra. A snack algebra is a bisemilattice (B, +, 0) in which + has the identity e (i.e. x + e =
e + x = x.) A snack algebra is ordered according to the . meet-semilattice operation.

Interpretation. (U, &) + (V, M) = (min(U U V), mad(& U M)) and (U, L) A (V, M) = (min(U U
V), max#{min(l U M) I L E L, M E M)) where maxu means family of maximal elements w.r.t. GI.
e is interpreted as (0, {a)).
Theorem 6 (see also [28, 271) pV(A) is the free snack algebra generated by A. q

Universality of P'"(A)

Theorem 7 Let R+ be a set of operations on elements ofpVA(A) such that + is a derived operation.
Then 'PVA(A) is not the free ordered R+-algebra generated by A.

Universality of P ~ (A)

Theorem 8 Let O+ be a set of operations on elements of p3(A) sz~ch that + is a derived operation.
Then P ~ (A) is not the free ordered R+-algebra generated by A.

Universality of @'(A) (scones)

Algebra. A scone algebra is an algebra (Sc, +, *, e) where + is a semilattice operation with identity
e, * is a left normal band operation, + and * distribute over each other, the absorption laws hold
and e * x = e. In other words, a scoize algebra is an "almost distributive lattice" - commutativity
of one of the operations is replaced by the law of the left normal bands.

Order. x . y = x * y + y * x is a semilattice operation and the order on scone algebras is defined
b y x < y i f f x . y = x .

Interpretation. Operations + and e are interpreted as for snacks and (U, L) * (V, M) =
(~,rnaxfl{min(L U M) (L E C, M E M)) .
Admissibility. Let (Sc, +, *, e) be a scone algebra. A monotone map f : AIA + Sc is called
admissible if f (u, 1) * f (v, m) = f (u, m) * f (w, 1) and f (u, 1) * e = f (u, m) * e.

A monotone function f : A + Sc from a poset A to a scone algebra Sc is called scone-admissible
if, for any two consistent pairs xTyl and xb2 such that x, y; 5 z;, i = 1,2, the following holds:

Theorem 9 1) P&(A) is the free scone algebra generated by AIA with respect to the admissible
maps.
2) pPh(A) is the free scone algebra generated by A with respect to the scone-admissible maps.
3) Let flsc be a set of operations on scones such that +,* and e are derived operations. Then
P*(A) is not the free ordered Rs,-algebra generated by A.

Universality of P'[A)

Algebra. A salad algebra (Sd, +, a , 0 , O) is an algebra with two semilattice operations + and - and
two unary operation q and 0 such that the following equations hold: 1) x (Y + z) = x - y + x z.
2) x = o x + o x . 3) 0(x + Y) = o x + ny = o x . Oy = o (x . Y). 4) O(x + Y) = Ox + Oy. 5)
O (X . ~) = O Z - O ~ . 6) 0 x . O y = O x . 7) O x ~ O y + O x = O x . 8) O O x = O x . 9) 0 0 x = o x .

Interpretation. Operations + and . are interpreted as for snacks, and q and 0 as for ?'(A).

Theorem 10 p O (A) is the free salad algebra generated by A. q

5 Programming with approximations

In this section we consider programming with approximations. First, we turn the universality
properties from section 4 into programming syntax. We then show that this approach has a number
of drawbacks. In an attempt to overcome those problems, we look at the semantic connection
between approximations and sets and or-sets, that suggests an encoding of the approximation
constructions. We use the encodings and the language or-NRC of [21] to show how a number of
typical problems can be solved.

We also would like to remark that this approach is not purely theoretical. It was used in the
system OR-SML [ll] (which is the Standard ML enhanced with the types of complex objects and
or-sets and some features of DBPLs) to query independent databases.

I f+(.I(x>> = f (x) I f+(.If(x,y)) = f (x , y)
I f + (Ml + M2) = u(ft(M1), f+(M2)) I f + (S l + S2) = u(ft(S1), f+(S2))
I f+(OM) = h(f+(M>> I f + (W = h(f+(S))

Figure 4: Structural recursion on mixes and sandwiches

Using universality properties

Because of the space limitations, we consider only mixes and sandwiches. We consider them as type
constructors. That is, for any type t we now have a new type t mix such that [t mix] = pV([[t])
and a new type t sand such that [t sand] = pVA([[t]). Since mixes possess universality property, we
can define the structural recursion on them. Similarly, the structural recursion can be defined on
sandwiches, but the second clause must be different since sandwiches are generated by ATA rather
than A. See figure 4.

The structural recursion has a number of parameters: in addition to f , they include e, u and
h prescribing its action in all possible cases of constructing a new mix/sandwich. Similarly to the
case of sets, one might ask if, by setting these parameters in such a way that they do not obey the
law of the equational theory, one may write ill-defined programs. This is indeed the case. In fact,

Theorem 11 It is undecidable whether the structural recursion on mixes or sandwiches is well-
defined for a given choice of e,u and h.

The solution that worked for sets was to impose syntactic restrictions on the general form
of structural recursion. In the case of mixes a similar restriction yields the following construct:

de f mix-ext(f) = f +[(@, 8)) f , +, U] provided f sends elements of type t to s mix. In this case
mix-ext(f) is a function of type t mix + s mix. However, this alone does not eliminate the
need to verify preconditions in the case when we use the ordered semantics. Functions agree with
the ordered semantics iff they are monotone (see [20] and appendix.) Thus, monotonicity of f is
needed for well-definedness of mix-ext. Now observe that if we disregard the second components
in mixes, then we obtain the structural recursion on sets. Hence, its restriction to the ezt operator
gives us the nested relational algebra. However,

Theorem 1 2 If sets are ordered by &b, then it is undecidable whether the semantics of an expres-
sion in the nested relational algebra is a monotone function.

We can observe the same phenomenon for other approximations. Thus, the data-oriented
approach to programming with approximations has a number of problems. First, most operations
used in the universality properties for approximations are not as intuitive as union, intersection
and so on. Therefore, the average programmer would have a very hard time trying to write
a program that uses constructs like f + in figure 4. Second, all approximations have different
equational characterizations, and therefore there are several forms of structural recursion and as
many sets of the monad primitives. This means that the language must contain all of them and
therefore it is going to be too complicated to comprehend even for a theoretician, let alone a

programmer. Furthermore, in many applications more than one approximation model is used, and
therefore in addition t o ten approximations we also need a few dozen of operations that coerce
one approximation into another. Finally, verification of preconditions remains a big problem, and
it can not be taken care of by the compiler as the preconditions are undecidable - even for the
monad operations when the ordered model is used. Therefore, we need a unifying framework for
programming with approximations.

Using or-sets

Recall that or-sets are sets of disjunctive possibilities: an or-set (1 ,2 ,3) denotes an integer which
is 1, or 2 or 3. A language or-NRC was proposed in [21]. Its type system includes, in addition
to sets and records, the or-set type constructor (t) . Its expressions include those in the nested
relational algebra and an or-set analog for each set operation. In addition, there is an operation
a : { (t)) -+ ({ t }) which essentially converts a conjunctive normal form into disjunctive normal
form.

The reason we suggest using or-sets to program with approximations is intuitively the following.
If we look at how approximations are ordered, and then recall that E~ is used for sets and &fl is
used for or-sets, then this suggests the following encoding of the approximation constructs:

In fact, there is a very close semantic connection between or-sets and approximations that further
justifies this connection, see [20].

To show that this encoding can indeed be used to program with approximations, denote by
L, the language obtained from the restricted form of structural recursion (that is, ext) for each
approximation * for which we have established a universality property. Then we have

T h e o r e m 13 Using encoding of approximation constructs with sets and or-sets, the following can
be expressed i n or-NRC.

1. All operations on approximations arising from the universality properties.

2. Orderings on approximations and tests for the consistency conditions.

3. A11 languages C,.

Example: removal of anomalies and promotion in sandwiches

As an example of using the encoding with sets and or-sets, let us show how two of the algorithms
from [5] can be implemented. Instead of using the abstract syntax of or-NRC, we use the syntax of
OR-SML, an SML based DBPL. In the following data emp and c s l we have two problems. First,
the consistency condition does not hold (since Jim is not in emp.) Second, using the assumption
about keys, values of some attributes can be inferred.

Here we use empty sets to represent null values (other solutions are possible). Note that emp is
an or-set and c s l is a set. co is the OR-SML type of complex objects. compat checks if two records
are compatible (together with bigrmeet, join, ormember and others it comes from the standard

library.) Then the first function (anomaly) removes the anomaly (Jim) and the second (promote)
infers values of missing attributes.

- val emp = <('JohnJ, (<lo), {I)) , ('Mary', (€121, €I))> : co
- val csl = (('John', (0 , <76))), ('Jim', ({I, (320)))) : co

- fun anomaly compat (R,S) = let fun compat-to-X (X,x) =
ormember(nkboolco(true) , (orsmap (fn z => compat (z ,x)) X))

in (R, select (fn z => compat-to-X (R,z)) S) end;
- fun promote compat (R,S) = let fun cornpat-to-x (X,x) =

orselect (fn z => compat(z,x)) X
in (R,alpha(smap (fn z => big-meet

(orf lat (orsmap (fn v => join(z,v)) (compat-to-x (R,z))))) S)) end;

- val (R2,S2) = promote compatible (anomaly compatible (ernp, csl));

val R2 = <('John3, (CIO1, < I)) , ('Mary', (€121, {I))> : co
val S2 = <<('JohnJ, ((lo), (76))))> : co

Thus, this solution tells us that John from office 76 is a TA with salary 10K, and Mary with
salary 12K could be a TA. Hence the result is an approximation in the sense of Lipski: we have
the set of "for sure" answers and the set of "maybe" answers.

6 Conclusion

All existing papers on approximate answers to queries against independent databases ([5,9, 26, 271)
did not address two important problems, which we have to look at in order to build a general theory.
The first problem is a classification of models. In each of the above mentioned papers, only one or
two models are considered, even though it is clear they do not cover all possible situations. The
second problem is programming with the approximation constructs. In its rudimentary form this
problem was considered in [5] who proposed the promote operation, but no general principles are
known.

Our goal was to address these two problems. Let us briefly summarize what has been achieved.

a Using the approach to partial information based on represent partiality via order on objects
(cf. [5, 18, 20]), we have given formal models of approximate answers to queries and classified
those, coming up with ten possible constructs.

a We have explained a new approach to the query language design, based on turning universality
properties into syntax, thus obtaining the introduction and elimination operations for the
data types. Applying this approach to approximations tells us what the operations naturally
associated with the constructs are. In order to do so, we have characterized most of the
approximation constructs via their universality properties.

a We have looked at the languages arising from the universality properties of approximations,
and showed that they have three major limitations: the operations are rather hard to grasp,

there are t oo many of them and the compiler can not verify t h e preconditions for well-
definedness. To overcome these problems, we suggested using or-sets t o encode approxima-
tions, and showed how the language from [11, 211 can be useful in answering a typical query
against independent databases.

Acknowledgements. I wish t o thank Peter Buneman, Carl and Elsa Gunter, Paris Kanellakis,
Hermann Puhlmann, Anna Romanowska and especially Achim Jung for their help.

References

[I] M. Barr and C. Wells, "Category Theory for Computing Science", Prentice Hall, 1990.

[2] J . Biskup, A formal approach to null values in database relations, in: "Advances in Data Base Theory",
Volume 1, Prenum Press, New York, 1981.

[3] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In LNCS 646:
Proc. ICDT, Berlin, Germany, October, 1992, pages 140-154. Springer-Verlag, October 92.

[4] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of programming with
sets/bags/lists. In LNCS 510: Proc. of 18th ICALP, Madrid, Spain, July 1991, pages 60-75. Springer
Verlag, 1991.

[5] P. Buneman, S. Davidson, A. Watters, A semantics for complex objects and approximate answers,
JCSS 43(1991), 170-218.

[6] P. Buneman, A. Jung , A. Ohori, Using powerdomains to generalize relational databases, Theoretical
Computer Science 91(1991), 23-55.

[7] L. Cardelli. Types for data-oriented languages. In Proceedings of EDBT-88 (J.W. Schmidt, S. Ceri and
M. Missikoff eds), Springer Lecture Notes in Computer Science, vol. 303, Springer Verlag, 1988.

[8] G. Grahne, "The Problem of Incomplete Information in Relational Databases", Springer, Berlin, 1991.

[9] C. Gunter, The mixed powerdomain, Theoretical Computer Science 103 (1992), 311-334.

[lo] C. Gunter, "Semantics of Programming Languages", The MIT Press, 1992.

[11] E. Gunter and L. Libkin, OR-SML: A functional database programming language for disjunctive infor-
mation and its applications. 5th International Conference on Database and Expert Systems Applications,
1994, to appear.

[12] T . Imielinski and W. Lipski. Incomplete information in relational databases. J. ACM 31(1984), 761-791.

[13] T . Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects - a data model for design and planning
applications. In Proc. of ACM-SIGMOD, Denver, Colorado, May 1991, pages 288-297.

1141 T . Imielinski, S. Naqvi, and K. Vadaparty. Querying design and planning databases. In LNCS 566:
Deductive and Object Oriented Databases, pages 524-545, Berlin, 1991. Springer-Verlag.

[15] A. Jung, L. Libkin and H. Puhlmann, Decomposition of domains, In: Proceedings of the Conference on
Mathematical Foundations of Programming Semantics-91, Springer LNCS 598, Springer Verlag, Berlin,
1992, pages 235-258.

[16] M. Levene and G. Loizou, Correction to "Null values in nested relational databases" by M. A. Roth,
H. F. Korth, and A. Silberschatz. Acta Inforrnatica 28 (1991), 603-605.

[17] M. Levene and G. Loizou, A fully precise null extended nested relational algebra. Fundamenta Infor-
maticae 19 (1993), 303-343.

[18] L. Libkin, A relational algebra for complex objects based on partial information, In LNCS 495:
Proceedings of MFDBS-91, pages 36-41, Rostock, 1991. Springer-Verlag.

[19] L. Libkin, Algebraic characterization of edible powerdomains, Technical Report MS-CIS-93-70/L&C 71,
University of Pennsylvania, 1993.

[20] L. Libkin. "Aspects of Partial Information in Databases". PhD Thesis, University of Pennsylvania,
1994.

[21] L. Libkin and L. Wong, Semantic representations and query languages for or-sets, Proceedings of the
12th Conference on Principles of Database Systems, Washington, DC, May 1993, pages 37-48.

[22] L. Libkin and L. Wong, Some properties of query languages for bags, In Proceedings of the Fourth Work-
shop on Database Programming Languages, Manhattan N Y , August 30-September 1, 1993, Springer
Verlag, 1994, pages 97-114.

[23] L. Libkin and L. Wong, New techniques for studying set languages, bag languages and aggregate
functions, In PODS-94, to appear.

[24] W. Lipski, On semantic issues connected with incomplete information in databases, ACM
Trans. Database Systems 4 (1979), 262-296.

1251 W. Lipski, On databases with incomplete information, J. ACM 28 (1981), 41-70.

[26] T.-H. Ngair. "Convex Spaces as an Order-theoretic Basis for Problem Solving", (PhD Thesis), Technical
Report MS-CIS-92-60, University of Pennsylvania, 1992.

[27] H. Puhlmann, The snack powerdomain for database semantics, In LNCS 711: M K S - 9 3 ,
(A. Borzyszkowski ed.) , Springer Verlag, 1993, pages 650-659.

[28] A. Romanowska and J.D.H. Smith, "Modal Theory: A n Algebraic Approach to Order, Geometry and
Convexity", Heldermann Verlag, Berlin, 1985.

[29] M.A. Roth, H.F. Korth and A. Silberschatz. Null values in nested relational databases. Acta Informatics,
26 (1989), 615-642.

[30] B. Rounds, Situation-theoretic aspects of databases, In Proceedings of Conference on Situation Theory
and Applications, CSLI vol. 26, 1991, pages 229-256.

[31] H.-J . Schek and M. Scholl, The relational model with relation-valued attributes, Information Systems
11 (1986), 137-147.

[32] Y. Vassiliou, Null values in database management - a denotational semantics approach. In: SIGMOD
1979, pages 162-169.

[33] C. Zaniolo. Database relations with null values. JCSS 28 (1984), 142-166.

APPENDIX

Proofs of t heo rems

Notation. In proofs we often omit t he set brackets {) when we deal with singletons. In particular,
by {x) we mean a family of sets t ha t consists of one singleton. We shall also occasionally omit
commas separating elements of sets, writing X ~ Z for {x, y, z).

Proof of theorem 2. Assume that there exists a set of operation S1 such that pVA(A) the free ordered
Q-algebra generated by A for any poset A. Let A = {x, y, z) be an antichain and A' = {x', y', z') be a
poset such that xi, y' 5 z' and x' $ y', y' $ 2'. Let f : A -+ ?'"(A1) be defined by f (a) = (a', a'), a E A.
Now the assumed universality property tells us that f can be extended to a monotone Q-homomorphism
f + : pvA(A) + pvA(A'). Let S E pVA(A'). Since pVA (A') is the free a-algebra generated by A', we can find
a term t in the signature R such that S = t (~ (x ') , v(Y'), q(zl)). Since ~ (x ') = f (2) = f + (~ (x)) and similarly
for y' and z', we obtain S = ft(t(l.7(x), ~ (y) , ~ (z))) = ft(So) for some So E ?'"(A). Therefore, f t is onto.

Define P ~ ~ (A) as the set of elements of ?'"(A) which are not under (x, x) or (y, y). It is easy to check that
pYq(A) includes the following: (z, z), (zz, z), (yz, z), (z, 0), (xz, xz), (yz, yz), (xy, zy), (xyz, xz), (xyz, yz),
(xyz, xy), (xyz, 2). Similarly, define (A') as the set of elements of pV"(A') which are not under (x', x')
or (Y', Y'). These are: (XI , Y'), (Y', x'), (z1Y', z'), (z', x'Y'), (XI, 4 1 (2'1 XI), (Y', 4, (z ' , Y')? (z', 0), (z', 2').

Since f + is monotone, we derive that its restriction on pFq(A) must be an onto map from a subset of
?Yq(A) to P$~,(A'). Observe that in pFq(A) the only element that is not above (xyz, z) is (z, 0). Hence,
if f+((xyz, z)) = S E P$,~,(A'), then f+(pYq(A) - {(z,@))) is a subset of the principal filter of S in
?$"y I (~ ') . However, ?$$,(A1) has four minimal elements: (x', y'), (y', x'), (z'y', z') and (z ' , 0) which shows
that f + can not be an onto monotone map between P ~ ~ (A) and P ~ ~ ~ , (A ') . This contradiction shows that
?'"(A) can not be obtained as the free R-algebra generated by A.

Proof of theorem 3. We must show that, given a mix algebra M and an admissible map f : ATA -+ M,
there exists a unique mix homomorphism f f : ?'"(A) + M such that the following diagram commutes:

Proof. We omit an easy verification that 'PvA(A) is a mix algebra.

Let us first establish a number of useful properties of admissible maps. In what follows, f is always an
admissible map from ATA to M.

1) Assume v 5 u and url. Then f(u,E)-t f(v,l) = f (v , l) .

First, f (u , I) > f(v,I). By monotonicity of +, f(v, l) = f(v, l) + f(v,d) 5 f (v , ~) + f (u , ~) . But since f is
admissible, f (.1L, I) + f (v, I) 5 f (v, 1). Hence, 1) holds.

2) Assume p k l , vT1 and qb. Then f(v,a) + f (q ,p) = Of(v1v) +f(q,P).

First show f (q , p) + f(q,b) = f(q,p). BY monotonicity, f (q , p) + f (q , l) 5 f (q , p) + f (q , P) = f(q1P).
On the other hand, f (q,p) + f(q, 1) > f(q,p) + of (q , 1) = f(q, P) + nf(q , P) = f(qlP), which Proves the
equation. Since Of(v, v) = f(v, I) 5 f(v, I), the 2 inequation for 2) holds. Conversely, f(v, I) + f(q,p) =
f(v, I)+f(q, I)+f(q,p) = Uf(v, l)+f (v , l)+ f (q , O+f(q ,p) I Of(v,I)+f(q,I) +f(q,p) I Of(v,v)+f(q, P)
which shows the reverse inequation. 2) is proved.

3) If I 5 m, then f (v, 1) + f (q, m) = Of (v, v) + f (q, m).

The 2 inequation is obvious. As in the proof of 2), we obtain f (v, I) + f (q, m) = f (v, 1) + f (q,l) + f (q, m) =
q f(v, I) + f(v,I) + f(q, 1) + f(q, m) I Of(v,I) + f (q , 1) + f(q, m) < Of(v, 1) + f(q, m) = Of(v7 v) + f(q, m).

4) Assume v 5 u. Then f(v, I) = f (u , 1) + Of(vlv) .

v , I) < f(V,l) 1 f(v, l) + f(v,I) I f(u,1) + f(v,i); hence f(u11) + f(v,l) = f(v11). First, f (u , 1) + f (-
Now we have: f (v, 1) = f (vl l) + f(u,1) 2 f (u , I) + of (v , I) = f (u, I) + f(v, v). On the other hand,

f (v l l) = f (v,r) + of(^, a) 5 f (u , i) + nf(v, v), proving 4).

5) If v ? u, then f (u, u) + of (v, v) = nf (v , v)

According to the proof of 4), f (u , v) + f(v, v) = f(w, v) and from this 5) follows immediately.

6) Assume uT1 and vv. Then f (v, I) + of (u, U) = f (v, 1) + Of (u, U) + f (u, I) .

since q f (u, U) = f (u, I) 5 f (u, I), the 5 inequality holds. Since f (v, 1) + f (u, I) 5 f (v, I) , we obtain the
reverse inequality.

Now let us come back to the statement of the theorem. Let S = (U, L) be a sandwich over A with U =
{ul , . . . , un} and L = {11, . . . , lk}. Since S is a sandwich, for every lj E L there exists uij E U such that
ljTuij. Let Z E [n] x [k] be the set of pairs of indices such that (i , j) E Z # uirlj. Then

From now on we assume that summation over an empty set is the identity for the + operation. I t shows
that (1) holds even if one of the components of a sandwich is empty.

Using representation (I), define f f for an admissible f : ATA -+ M as follows:

Let us show that f + is a homomorphism. Prove that f + is monotone first. Let S1 = (U, L) and S2 = (V, M)
be two sandwiches such that S1 C" Szl that is, U 511 V and L gb M. Let S = (U, M) . Observe that S is a
sandwich. Therefore, the proof of f+(S1) 5 f+(Sz) is contained in the following two claims.

Claim 1: f f (Sl) < f f (S).

Proof of claim 1: If L = 0, then claim follows easily from (I), admissibility and equation 4 of mix algebras.
For L # 0, since L E~ M, there is a sequence of sets Lo = L, L l , . . . , L, = M such that each Li 2 LU M and
either Li+1 = max(La U I) or Li+l = max((Li - L') U I) where I' 5 I for all I' E L', see proposition 3 of [21].
Then each (U, Li) is a sandwich. We must show f+(U, La) 5 f+(U, Li+l). Consider the first case, i.e. Li+l =
max(LaU1). To verify f t (U, Li) 5 f+(U, Li+1) in this case, it is enough to show q f (u, u)+ f (u, I) 2 q f (u, u)
if uT1 and, if there is an element I' E L such that I' 5 I, then f (u f , It)+ f (u , I)+O f(u, u) 2 f(ui , I t) + Of(u, u)

if u1T1'. The first one is easy: q f (u , u) + f (u, 1) = Of (u, 1) + f (ul 1) = f (u, I) 2 Of (u, u). The One

follows from monotonicity of +: f (u, I) + of (u, u) 2 O f (u, 1) = Of (u, u).

Consider the second case, i.e. Li+l = max((Li - L') U 1). Assume uT1. Then uT1' for any I' E L'. Therefore,
any summand f (u, I) in (2) for (U, Li+l) is bigger than f(u, It) in (2) for (U, Li). Now suppose there is I' E L'
such that u'tI' but u' is not consistent with 1. If 1 is consistent with some u E U, then uT1'. Therefore, to
finish the proof of claim 1, we must show that f (u', 1') + f (u, 1') 5 f (u, I). But this follows from admissibility
of f : f (u', I ') + f (u, I) 5 f (u, 1') 5 f (u, I). Claim 1 is proved.

Claim 2: f +(S) < f+ (S2).

proof claim 2: Again, we assume non-emptiness, since for empty sets the proof of claim 2 readily follows

from (1). We start with proving the following. Given a sandwich (W, N) and n E N , let wn be arbitrarily
chosen element of W such that w n b . Then, given an admissible function f , ff (W, N) defined by (2) equals

c f(W,, n) + oCwEW f(w, w). To prove this, assume that there are two elements wl and w2 in W
n EN

consistent with n E N . Then we must show f (~ 1 , n) + f (~ 2 , n) + Of (~ 1 ~ ~ 1) + nf(w2,wz) = f (w ~ , n) $-

wl) + q f (w2, w2). That the left hand side is less than the right hand side follows from admissibility.
On the other hand, f (W I , a) + Of (wi , wi) +Of (~ 2 , wa) = f (wl, n) + q f (~ 2 , n) + Of (~ 1 , W I) + Of (~ 2 , ~ 2) 5
f (wl , n) + f (wz , n) + f (wl , WI) + Of (~ 2 , w2) which Proves our claim.

Now, to prove claim 2, consider Sz = (V, M) and let v, be an element of V consistent with m E M. Since
U V, let urn be an element of U under v,. Then umTm. Also, let uv be an element of U under v E V. Then

oCUEu f (u , u) = O C v E V ~ (u ~ , u ~) + ~ ~ ~ ~ ~ ~ f (u ,u) I O C v E v f (u U , u v) I O x V E V f(v,v) . Now, by the
claim proved above, f+(S) = CrnEnlf(urn, m) + O C U E U f (u l u) 5 C m E M f(vrn,m) + q C u E V f('7 v) =
f+(S2) which finishes the proof of claim 2 and monotonicity o f f + .

Now we demonstrate that f + preserves the operations of the signature of the mix algebras. Since dis-
u. 1 .) + xi q f (ui , ui). Since f (ui , l j) + Of (ua , ui) = Of (ui , ui), tributes over +, of + (S) = C(i,j)EZ Of(2 , 3

we obtain q f+ (S) = Cy=l Of(ui, ui) = fS(OS). Moreover, since Oe = e, this also holds when one of
components is empty. In addition, f+(8,0) = e.

That f + is a +-homomorphism easily follows from (2) when one of the components is empty. So in the rest
of the proof we assume that the second components of all sandwiches are not empty.

Let S1 = (U , L), S 2 = (V, M). Let S = S1 + S 2 = (W, N). Consider a pair (ui, lj) with (i, j) E 1. There are
three cases: this pair is either present in the representation (1) of S or ui vk for some vk E V nmin(U U V)
or lj 5 mk E M n max(L U M).

Consider the second case. We have vsTlj. Assume lj 5 p and p E N . We know that ptq for some q E W. Since
+ S) + f (vk , l j) . Furthermore, f (vk, ij) + f (ql p) + Of (vk , = f (Q , P) + Of('> '1 2)> we obtain f+(') = f (

+ S) + f (v k , i j) + since o f (v k , v ~) + f (u i , I j)+ f (~ k , l j) = ~ f (v k , ~ k) + f (v k , l ~) by l) , W e h a v e f + (S) = f (
f (u i , / j) .

Consider the third case. Assume ui is greater or equal than some v E W and mktq for q E W. Then
+ S) + f(v, l j) . Since f(v, l j) = f (~ , l j) + f (q , m k) = Of(v,v) +f (q jmk) 3), and hence f+(S) = f (

f (u , lj) + nf(v, v) by 4)) we obtain f+ (S) = f + (S) + f (u i , l j) .

Assume that u 2 v. Since nf (u , u) + nf(v, v) = of(v, v) by 5), we obtain f + (S) = ff (S) + Of(ui ,ui) for
any ui.

All this shows that f + (S) can be rewritten as f+ (S1) + f + (8 2) + X where X is a sum of some elements
of form f (zii, mj) or f (vi , lj). Consider a pair (ui , mj) such that uitmj. There exists vk such that vkfmj.
Since f (vk, mj) + f (ui, ui) = f (vk , mj) + q f (ua, ui) + f (ui, mj) by 6), the summand f (ui , mj) can be safely
removed from X. Thus, any summand can be removed from X and f+(S) = f + (S1) + f + (Sz). ~ l ~ e r e f o r e ,
f+ is a homomorphism.

The uniqueness of fS follows from (1). Since f+(qT (2, x)) = f (x , x)+Of(z, X) = f (x , x), we have f+orlT = f.
The theorem is proved. q

Next, we must show that the order on bi-LNB algebras is well-defined.

Lemma 1 In a distributive bi-LNB algebra, a 5 b := b$ a = a * b defines a partial order. Moreover, $ and
* are monotone with respect to <.
Proof. First, let us show that b $ a = a * b implies a $ b = a and b * a = b. If a * b = b @ a , then
b * a = b * a * b = b * (b @ a) = b @ b * a = b @ b = b . Moreover, a = a @ a = a $ a * b = a $ b $ a = a @ b .

Because of idempotency, 5 is reflexive. To prove transitivity, let a 5 b and b 5 c. We must show a*c = c@a .
Calcu la tec@a= c * b $ a $ b = (c$b)*b$a = b*c*b$a= b*c$a = (b@a)*(c@a) = a * b * c $ a * b * a =
a * b * c $ a = a * b * c $ a * b * c = a * b * c . O n t h e o t h e r h a n d , a * c = (a @ b) * c * b = a * c * b @ b r c * b =
a * c * b $ b = (a @ b) * (c $ b) b = a * b * c * b = a * b * c . Hence, c $ a = a * c a n d a < c . F ina l l y , i f a<b and
b 5 a , then a $ b = a and b * a = b. Hence, b = b * a = a $ b = a , which finishes the proof that 5 is a partial
order.

Assume that a 5 b. Tosee that a @ c < b$c, calculate (a$c)*(b$c) = a*b$a*c$c*b@c = a*b@a$c =
b $ a @ c = (b @ c) $ (a @ c). Similarly, $ is monotone in its second argument. To show a * c 5 b * c, calculate
a * c $ b * c = (a @ b) * c = b * a * c = b * c * a * c . S i m i l a r l y , c * a $ c * b = c * (a $ b) = c * b * a = c * a * c * b .
Hence, * is monotone.

Proof of theorem 4. We must sllow that for any distributive bi-LND algebra B and any nlonotone
map f : A + B , there exists a unique homomorphism which completes the following diagram:

First observe that if (U, L) E p3(A), then U, L # 0. We leave it to the reader to find an easy proof that
P ~ (A) satisfies all equations of the distributive bi-LND algebras under the given interpretation of $ and *
and that S1 &' S2 iff S1 * Sz = S z @ S1. Given (U, L) E p3(A) , we can find u E U and 1 E L such that
ul 5 d l . Then, using for repeated applications of $, and @ for repeated applications of *, we can see
that

(U, L) = Z € U V (U) * V(UI)* ~ (ZI) * @ ~ (9
l € L

if in the summation over elements of U the first summand is below an element of L. Now, given a monotone
f from A into an algebra 3, define f+ : p3(A) + B as follows:

Our first goal is t o show that in the above representation any number of expressions of form f(ul)* f (l ') , where
u' 5 I t , can be added after f (ul) * f (ll). This is indeed correct, as f (u') 5 f (1') implies f (u') * f (1') = f (l ')
and f (2') is subsumed by BIEL f (2) .

Denote f (ul) 9 . . . $ f (u n) by fi for U = {ul , . . . , u,) and f (l l) * . . . * f (l : ,) by L for L = (11, . . . , lk}. Then
f+((U, L)) = U * f (u i ,) * . . . * f (u i m) * L for any number of uij's which are under some elements of L.

To show that f + is well-defined, we must prove that its value does not change if we pick a different first
summand in 0 as long as it is below an element of L. It suffices to prove the following. Let u; 5 la , i = 1 , 2 .
Then (f (u l) @ f (u 2)) * L = (f (u 2) &) f (u l)) * L. This can be further reduced to proving (f (u l) $ f (u ~)) *
f (11) * f (l z) = (f (u z) a? f (~ 1)) * f (11) * f (12) . Again, we calculate

Similarly,

Now the desired equality follows from the equality (a * b) @ (b * a) = (b * a) @ (a * b) which is true in all
bi-LNB algebras.

Our next goal is to show that any number of nonminimal elements can be added to U and any number
of nonmaximal elements can be added to L and that it does not change the value of f f . That is, writing
expressions for f+ we may disregard min and max operations.

Assume that u 5 u' and u' is added to U . There are two cases. If f (u l) is not the first summand in -
U u u', then f (u) $ f (u ') = f(u3, so we may disregard f (u l) . It is also possible that f (u l) can be used in
the expression for f + between U and L, in which case it can also be disregarded as, if it is below some I ,
then f (u ') * f (1) = f (1). Finally, consider the case when f (u ') is the first summand. It is only possible if
21 5 u1 5 1 for some I E L. To prove that f (u ') can be dropped and replaced by f (u) in this case, we must
show (f (u') @ f (u)) * f (1) = f (u) * f (l) . Since f (u) I f (u ') and f (u') @ f (u) = f (u) * f (u ') , we obtain
(f (u ') @ f (u)) * f (I) = f (u) * f (~ 0 * f (4 = f (u) * f (1) * f (u ') = f (u) * f (1) .

If I' 5 1 is added to L, f (1 ') does not change the value of f + as f(1) * f (1 ') = f (l) . Therefore, we may
disregard all max and min operations in expressions for f + .

At this point we are ready to show that f + is a homomorphism. Its uniqueness will follow from the
representation of elements of 'P3(A) from singletons and well-definedness of f + . Let S1 = (U, L) and
S2 = (I/, M) . Let ul 5 11 and vl 5 ml for ul E U,11 E L,vl E V, ml E M . Then f+(Sz) * f+(Sz) =
E , , v (f + (S l > * f (v) * f (v l) * M) . For two vi and v j , consider f + (s) * f (1 v;) * f (v1) * M and f + (S l) *
f (v j) * f (v l) * M . Since L # 0, they are the same, because a * b @ a * c = a b is a derivable equality.

Hence, f+(S l) * f t (S2) = f i (S1) * f (v1) * M . Since vl 5 ml, we have f (m l) * f (v1) = f (m 1) and hence
z * f (v l) * M = x * ~ f o r a n ~ z. Thus, f S (S 1) * f f (S 2) = O * ~ (U ~) * L * M = U * ~ (U ~) * L ~ M = f+(Sl*S2) .
Therefore, f+ is a *-honiomorphism.

Now consider f+(S1) $ f+(S2). From the equational theory, we immediately have f + (S l) @ f + (~ z) =
(0 * f (u l) * L) @ v. Furthermore, since (a $ c) * b = a * b $ c * b = a * b @ c , we have f f (~ 1) $ f + (~ z) =
(0 v) * f (u l) * i = u'ij-v * f (u l) * i = f+(S1) $ f+(Sz) . Thus, f+ is a homomorphism. Theorem is
proved.

Proof of theorem 5. We must show that for any bi-mix algebra B and any monotone map f : A + B ,
there exists a unique homomorphism which completes the following diagram:

I t is easy to check that P0 (A) is a hi-mix algebra under the given interpretation of the operations. To prove
freeness, we first need a few facts about bi-mix algebras.

Let e = 00z. We have y + Ox 2 y and hence by monotonicity my + e > my. Adding Oy to both sides,
we get by monotonicity that Oy + n y + e >_ Oy + o y and hence y 2 y + e > y which proves that e is the
identity of +. Similarly, if we define e' = O o x , then e' is the identity of + and therefore e = e'. This shows
that the identity of + can be correctly defined as e = 002 = OOy for arbitrary x and y. Since x > Ox, we
have Ox 2 O o x = e. Similarly, Ox 5 e. It is also easy to see that Oe = Oe = e.

Now, given (U, L) E P O (~) , observe that

(U, L) = C '(u) + 0 C '(1)
uEU l € L

As usual, summation over 0 is assumed to be e. Then, given f : A -+ B, define f + : P@(A) -+ B as follows:

First, f + (77(x)) = f+((x , x)) = q f (x) + 0 f (2) = f (2) and hence f S o 97 = f . Now we are going to show
that f + is a homomorphism. Its uniqueness will then follow from the representation of elements of P@(A)
given above.

Before we show that f t is monotone, let us check that the value of f f does not change if an element
1' 5 1 1~ L is added to L or an element u' 2 u E U is added to U. Indeed, to prove the former, observe that
f (V) 5 f (i) and 0 f (1') + 0 f (1) 5 0 f (1) + Of (1) = Of (1). For the latter, Of (u) 2 Of (u) + Of (u') 2 Of (u)
and hence f (u) + q f (u') = f (u).

To show that f + is monotone, observe that if (U, L) 5" (V, M), then U iIy V and L 5zWA M and hence V
can be obtained from U by a sequence of updates described in proposition 3 of [21] and M can be obtained
from L by a sequence of updates described in the same proposition. It is easy t o see that updates that
replace an element by a number of bigger elements are monotone. Consider removing an element u from U .
If = {u), then Cu,EO uf(u1) = e > - Of(u). If u' E U - {u), then nf(u1) 2 Of(ul) + of (u) which proves
monotonicity in this case. Finally, if L = 0 and an element is 1 added, then 0 f (1) 2 0 f (2') = e. If
I E L and I' is added, we have monotonicity because 0 f (1) + 0 f (1') > 0 f (1).

Now we are ready to prove that f+ is preserves +, q and 0 . First, Off ((U, L)) = CuEu f(u) +
00 El,, f (1) = q Cue, f (u) + e = f+(o(U, L)). Similarly, 0 f + ((~ , L)) = ~ + (O (U , L)). The fact that +
is preserved follows immediately from the definition of f + and the observation that nonminimal elements in
U and nonmaximal elements in L do not affect the value of f + .

Proof of theorem 6. We have to show that for any snack algebra S n and a monotone map f : A - S n ,
there exists a unique snack homomorphism f + : P'(A) + S n such that the following diagram commutes:

We omit verification that P'(A) is a snack algebra (in fact, the distributivity laws will be verified later in
the greater generality).

Given a snack S = (U , L) where U = {ul, . . . , un) and 1 = { L I , . . . , Lk), Li = (1 4 , . . . , I : ,) , we have

Then, if monotone f : A + S n is given, define f + : P'(A) + Sn by

Clearly, f + (@ , 0) = e and f + (~ (x)) = f (z) . e + f (x) = f (x). We must show that f + is a homomorphism.

We start with a few easy observations. First, notice that for a snack algebra + is monotone with respect to
5. Indeed, take b 2 c and observe that (a + b)(a + c) = a + bc = a + c , hence a + b 2 a + c. Let us now
take three elements a 5 b 5 c. We have: ae + c < ae + ae + c < ae + b + c < ae + c + c = ea + c. Hence,
ae + b+ c = ae + c. Furthermore, consider arbitrary a and b . Since abe(a + b) = abe, we have abe 5 (a + b)e.
On the other hand, ae + be is below a , b and e, and hence ae + be 5 abe. Thus, abe = (a + b)e.

Let x 5 y in A. Then f (x) 5 f (y) and hence f (x) . f (y) = f (z). Therefore, if X and Y are two finite subsets
of A equivalent with respect to ~ l , then nzEx f (x) = nyEy f(y).

Furthermore, assume U X ~1 Y for U, X,Y E P,,,(A). Then we have nuEu f(u) . e 5 nzEx f(x)
nyEy f(y) and therefore nUEu f(u) . e + n,,, f (x) + n,,, f(y) = nuEu f(u) . e + nyEy f (~) . his
observation shows that writing an expression for ft(S1 + Sz) and f+(S1 . S2) one may disregard all max
and min operations. That is, for S1 = (U, L) and S2 = (V, M),

That f+(S1 + S2) = f + (S1) + f+(Sz) follows immediately from (5).

Let us denote n,,, by 2. Then f+(S1 . Sz) = @F/e + @e . EM M + I/e . EL 2 +EL. 2 . CM M . The last
summandis easily seen to be i.6. Since EM M 2 v , the last summand is also greater than ?e-&

which can therefore be dropped. Similarly, a e . C , M can be dropped. Thus, f+(S1 .S2) = f+ (S I) . f f (Sz)
which shows that f+ is a homomorphism. Its uniqueness follows from (3). •

Proof of theorem 7. Assume that there exists a set of operation R+ such that p V A (A) the free ordered
52-algebra generated by A for any poset A and + is a derived operation. Let A = { x , y, z) be an antichain
and A' = {x ' , y', z ') be a poset such that x' , y' 5 z' and x' 2 y', y' 2 x'. Let f : A - pVA(A ') be
defined by f (a) = (a', a'), a E A. Now the assumed universality property tells us that f can be extended
to a monotone R+-homomorphism f + : p V A (A) + pVA(A ') . Let S E P'"(A'). Since pV"(A') is the free
R+-algebra generated by A', we can find a term t in the signature R+ such that S = t (q (x l) , q (y l) , ~ (z ')) .
Since , (X I) = f (x) = f + (Q (x)) and similarly for y' and z', we obtain S = f f (t (q (x) , ~ (y) , ~ (z))) = f + (S o)
for some So E pV"(A). Therefore, f f is an onto +-homomorphism.

Using the fact that f + is a f -homomorphism, we find f + ((x y , { x , y })) = f + ((a , x) + (y , Y)) = (x ' , x') +
(y ' , y') = (x' y', { x ' , y ')) and f + ((x z , { x , z))) = f+ ((x , x) + (z , 2)) = (X I , x ') + (z ' , z') = (x ' , z'). Similarly,
f + ((y z , { Y , z })) = (Y ' , 2'). Define

Since f+ maps P'"(A) - 'P:(A) into P~"(A ') - "P: (A'), there must be an onto map from a subset of
P$(A) onto ?:(A'). Now we can find that P?(A) = { (x y z , { x , y, z)) , (z , z) , (z , 0)) and P?(A') =
{ (z ' , z ') , (z ' , {XI, y'}) , (z ' , x ') , (z ' , y ') , (z ' , x'y'), (z ' , 44)) (x'y', 2 ')) . Therefore, there is no map from a subset
of p: (A) onto p:(A1). This contradiction proves the theorem.

Proof of theorem 8. Consider two posets: A = { x , y, z) and A' = { x ' , y', z '} . In A , x , y 5 z and x and
y are incomparable. A' is a chain: x' 5 y' 5 2'. Define f : A + A' by f (x) = x', f (y) = y' and f (z) = z'.
Clearly, f is monotone.

Assume that there exists a signature 52+ such that for any poset B, (P ~ (B) , 52+) is the free 52+ alge-
bra generated by B. Then we would have a monotone +-homomorphism f+ : p3(A) + p3(A') such
that f+ ((x , x)) = (x ' , x ') , f + ((y , y)) = (y ' , y') and f + ((z , z)) = (2, z'). Then we have f + ((x y , { x , y))) =
f + ((~ , x)+(Y, Y)) = (X I , X ') + (Y ' ~ Y ') = (X I , Y ') and f+((Y12)) = f f ((Y , y)+(z, 2)) = (Y ' , y')+(zl, z ') = (Y ' , 2').

Since f+ is monotone and (x , x y) 5 (2 , x) , we obtain f + ((x , x y)) = (x ' , x'). Similarly, f + ((x y , x y)) =
(x ' , 2 ') . Then (x ' , x') = f + ((x y , X Y)) = f + ((x , X Y) + (Y , X Y)) = (x ' , x ') + f + ((y , X Y)) . Since (Y , X Y) I (Y , Y) ,
f + ((y , X Y)) can be either (y ' , y') or (x ' , y') or (x ' , x'). The equality above then tells us that f + ((y , x y)) =
(2' , 2').

Now we use these values of f + to calculate (y ' , z ') = f + ((y , z)) = f + ((y , x y) + (y , z)) = f + ((y , x y)) +
f + ((y , z)) = (X I , x') + (y ' , z ') = (x ' , 2'). This contradiction shows that f : A + A' can not be extended
to a monotone +-homomorphism between p 3 (A) and p 3 (A ') and hence p 3 (A) is not a free a+-algebra
generated by A .

Proof of theorem 9.

Proof of part 1. We must show that for any scone algebra Sc and an admissible map f : ATA + Sc,
there exists a unique scone homomorphism f+ : p k (A) + Sc which completes the following diagram:

We shall verify the distributivity laws in the proof of algebraic characterization of the salads in the next
subsection. Distributivity laws for scones then follow from the observation that the second components of
(U, C) . (V, M) and (U , C) * (V , M) coincide. Equation 4) is immediate. Thus, P"(A) is a scone algebra.

We now need some observations about the scone algebras. In what follows, f is an admissible map from ATA
to a scone algebra Sc. The definition of admissibility can be rewritten to f (u , I)* f (v , m) = f (u , I) * f (w , m) =
f (u , m) * f (v , l) .

1) + is monotone with respect to the ordering given by ..

Let b 5 a. Then (a + c)(b + c) = (a + c) * (b + c) + (b + c) * (a + c) = c + a * b + b * a = c + ab = b + c , i.e.
b + c l a + c .

2) . distributes over +.

3) If a 5 b, then a * e 5 b * e.

5) If a 5 b, then f (a , a) * e + f (b, b) * e = f (a , a) * e .

First of all, f (a , a) * e + f (b , b) * e = f (a , a) * e + f (b , a) * e = (f (a , a) + f (b , a)) * e 5 f (a , a) * e by 3) and 4).
Furthermore, f (a , a) = f (a , a)+f (a , a) I f (a , a) + f (b, b) by 1) and therefore f (a l a)*e < (f (a , a) + f (b, b))*e
which finishes the proof.

6) If a 5 b and bfx, then f (x , a) * f (b ,b) = f (x , a) .

w e have f (2 , a) * f (b , b) = f (x , a) * f (x , b) = f (3, b) * f (x , a) . Hence f (x , a) * f (b, b) = f (x , a) * f (x, b, +
f (x , b) * f (z , a) = f (x , a) . f (x , b) = f (x , a) because f (x , a) I f (x , b) .

7) For any afb, f (a , b) * f (b , a) I f (a , b).

It is easy to see that (f (a , b) * f (b , a)) . f (a , b) = f (a , 6) * f (b , a) .

8)If a 5 b, then f (b , b) * f (a , a) = f (b , a) .

By admissibility and 7), f (6 , b) * f (a , a) = f (b, a) * f (a , b) I f (b, a) . On the other hand, f (b , a) - (f (b, b) *
f (a , a)) = f (b , a) * f (b , b) * f (a , a) + f (b , b) * f (a , a) * f (b , a) = f(b,a)*f(b,b)*f(b,a)+fib,b)*f(b,a)*fib,a)=
f (b, a) + f (b , b) + f (b, b) * f (b , a) = f (b , a) . f (b, b) = f (b , a) . Hence, f (b, a) < f (b , b) * f (a , a) which proves 8).

Since n is already used to denote repeated applications of ., for many applications of * we shall use 8.

Let S = (U, ,C) be a scone over A. Since fU fl fL # 0 for all L E C, there exists a pair (u a , l i ,) for every j

such that u i~ l i , . Let i (j) and k(j) be some indices such that ui(j)g(j) . Then S can be represented as

Recall that summation over 0 is the identity. We will never need product over the empty index set for all
antichains in the second component are nonempty. Moreover, observe that in (7) it does not matter how
pairs (i(j) , Ic(j)) are chosen.

Using (7), define

Our first goal is t o verify that f f is well-defined, that is, i t does not depend on how pairs i(j), k(j) are
chosen. To save space, denote f(1, I) by L, First observe that any number of applications o f f to a

consistent pair (u, I) for I t Li can be put after f (uj(j), li(j)) because, by admissibility, f (uiO), i;(j))*f (u, I) =

f (~ ~ (~) , I$(i,) * f(1, I) and * is idempotent. To finish the proof of well-definedness, i t is enough to show that
~- ,

the following equation holds: f (u, u) * e + f (u', u') * e + f (u, 1) * L = f (u , u) * e + f (u ' , u ') * e + f (u ' , ~ ') * ~
where u , u' E U and 1,l' E L. By distributivity, this reduces to showing that f (u ,u) * e + f(ul , u') * e +
f (U, 1) * f (/I, 1') = f (U, u) * e + f(ul , u') * e + f(ul , 1') * f (1, I). Because of the symmetry in this equation, it
is enough to prove

Denote f (u, u) * e + f (u', u') * e by p, f (u, I) * f (dl, 1') by q and f (u', 1') * f (1,l) by r . We must show

q + p 5 r + p. By 2), (q + p)(r + p) = rq + rp + qp + p. By monotonicity of + (see I)) , it enough to
prove qp 5 r . We prove more. I11 fact, p 5 r . First observe that if a 5 b, then a * e 5 b * c. Indeed,
(a * e) . (b * c) = a * e + b * e = a * e by the same argument as in 5). Thus, we must show p 5 f (u, I). Calculate
p . f (u , I) = (f(u,u)+f(ul,u'))*e.f(u,~)= (f(u,u)+f(u',u'))*e*f(u,l)+f(u,I)*(f(u,u)+f(u1,u'))*e =
(f (u, u) + f (u l , u')) * e + f (u , 1) * e = f (u, u) * e + f (u', u') * e = p. Thus, p 5 r and this finishes the proof
of well-definedness.

Our next goal is to show, as we did for snacks, that if we drop max and min in defining operations on scones,
formula (7) will remain true. That will make it much easier to prove that f + is a homomorphism.

First observe that if u E U and v k u, then i? * e = UTV * e (we use notation as a shorthand for
CuEu f (u, u)). This follows immediately from 5).

Consider the C-part. In order to show that for 1' 2 I E L, the corresponding summand of (8) remains the
same if f (l', 1') is added, we must show f (u, lo) * f (1, I) * f (dl, 1') = f (u, lo) * f (1, I) . The left hand side is
equal to f (u, lo) * f (1, I) * f (1,11) and by 6) f (1, I) * f (1,11) = f (I, I). Therefore, the left hand side is equal t o

f (u, 10) * f (l , i) .

Finally, it must be shown that adding M ~ f l L E ,C does not change the value of the right hand side of (8).
Assume u E U, m E M and 1 E L are such that m 5 1 and uT1 (we can find such because of the consistency
condition and M ~d - L) . Let a = L and b = M. We must show f (u , I) * a + f (u , m) * b = f (u , 1) * a (it was
already shown that it does not matter which consistent pair is chosen in representation (8)). Let a' = f (u, l)*a
and b ' = f (u , m) * b . First, a l . b l = (f(u,d)* f (u , m) + f (u , m) * f (u , l)) * a * b = (f (u , i) . f (u , m)) * a * b =
f (u , m) * a * b . Since L ~ f l M and f (c , c)* f (d ,d)= f (d , c) f o r d k c b y 8) , w e o b t a i n a ' . b ' = f (u , m) * b = b l .
Hence b' 5 a' and a' + b' 5 a' by 1). To prove the reverse inequality, a' 5 a' + b', calculate a' . (a' + b') =
al+(a'.b') = a1+a'*b'+b'*a' = f (u , l) *a+ f (u , l)* f (u ,m)*a*b+ f (u ,m)* f(u, l)*a*b. By admissibility,
f (u , l)*f (u ,m) = f(u,m)*f(u,E). Therefore, a1.(a'+b') = f(u,l)*a+f(u,I)*a*f(u,m)*b= a1+a'*b' =a1 .

Thus, a' 5 a' + b' and this finishes the proof that the summand corresponding to M ~f L can be added to

(8) .

Now we are ready to prove that f + is a homomorphism. First, f + (0 , 0) = e * e + e = e .

Let Sl = (U, L l) and S2 = (V, M) . Writing expression (8) for f+ (S1 + S 2) we can use U U V as the first
component and L U M as the second. We know that it does not matter how we pick an element from U u V
to be consistent with some element of a set from L U M . For every L E L choose U L E U which is consistent
with some I L E L and similarly for every M E M choose V M E V which is consistent with some m M E M.
Then we have

f + (S 1 + S 2) = f (U , U) * e $ ~ (~ (u L , z L) * L) s x (f (~ ~ , m ~) * M) = f + (~ l) + f + (~ 2)

U E U U V LEL MEM

Clearly, this also holds if either L or M or both are empty.

Let aL = f (u , l) * ~ , c ~ = f (v , m) * ~ where utl, vTm, v E V, u E U , 1 E L E L and m~ M E M . Let
b = 0 * e and d = * e. Then f + (S i) * f ' (S2) = (x L E L (a ~ + b)) * (E M E M (c ~ + d)) = C L E L , M E M (a ~ * -
c M + a L * d + b * c M + b * d) . Sinced= - v * e , a L * d = a ~ * e and a ~ * c ~ + a l ; * d = a ~ * c ~ + a ~ * e = U L * C M .

Similarly, b * d = b * e. Since b = U * e, b = b * e . Therefore, b * c ~ = b * e = b and b * d = b * e = b. Therefore,
f + (S l) * f + (S 2) = x L E , C , M E M (a L * c M) + b. Consider al; * C M . Since f (v , m) occurs inside the expression,

by admissibility it can be changed to f (m, m). Therefore, al; * c ~ = f (u , I) * L * M . Thus,

Now, to finish that proof that f+ is a homomorphism, it is enough to show that f + (S l) * f + (S z) = f'(S1 *S2)

if one of the components is empty. Assume L = 0. Then the equation follows from x * e * y = x * e and
the fact that S1 * S2 = S1. If M = 8 , then f f (2%) * f+(S2) = (0 * e + CLEL ~ (u L , Z L) * L) * * e =
6 * e + ELEL f (u L , l L) * e = 6 * e = f+ (U , 0) = f + (S1 * S2). Thus, f t is a homomorphism.

The uniqueness of f+ follows from (7) and well-definedness of (8) . Finally, f + (~ ' (2 , Y)) = f (x , X) * e +
f (~ , y) * f (y , y) = f (x , y) * e + f (~ , y) = f (x , Y) . This shows f+ o rlt = f . Part 1 is ~roved.

Proof of part 2. We must prove that for any scone algebra S c and a scone-admissible map f : A - S c ,
there exists a unique scone homomorphism which completes the following diagram:

Let f : A - S c be a scone-admissible map. Define yf : ATA -+ S c by

It follows from the defiiiition of scone-admissible maps that c p f is well-defined. That is, if x , y 5 z l , z2, then
(f (x) * e + f (z 1)) * f (y) = (f (x) * e + f (z 1)) * f (y) * f (y) = (f(x)+e+f(zz))*f(y)*f(y) = (f (x) * e + f (r 1)) * f (y)
and hence the value of y f ((x , y)) does not depend on the choice of z above x and y.

Let A : A 4 ATA be given by A(a) = (a, a). Our next goal is to prove two claims.

Claim 1. cpf is admissible (according to definition before this theorem)
Claim 2. cpf o A = f .

Before we prove these two claims, let us show how the theorem follows from them. Consider the following
diagram.

Since cpf is adrnissible and vT o A = v, we can find a homomorphism f + such that f + o 17 = f t o rlT o A =
pf OA = f . Assume f - is another h o m o m o r p h i s m ~ k (~) + Sc such that f - 071 = f . Consider (x, y) E ATA,
x, y 5 z. Then vT(x, Y) = (v(x) * e + ~ (2)) * v(Y)- Hence, f - (vT(x , Y)) = (f (x) * e + f(r)) * f (Y) = cpf((x, Y))
which shows that f - o 171 = cpf . Then, by claim 2 and part 1, we obtain f - = f+ and thus there is a unique
homomorphic extension of f .

Proof of claim 1. First, we must show p f ((x , yl)) * e = cpf((x, yz)) * e if x, yl 5 zl and x , yz 5 zz.
From the properties of scone algebras, it follows that a * e + b * e = a * e if a < b. Since f (x) < f(zl) ,
we obtain pf ((x , yl)) * e = (f (x) * e + f (21)) * f (yl) * e = f(x) * e + f (zl) * e = f (x) * e. Similarly,

P ~ ((x , Y ~)) * e = f (x) * e = cpf((~,Yl)).

For the second condition in the definition of admissibility, assume u, 1 5 xul and v, m 5 XU,. Moreover, let
u, m 5 xu, and w, 1 5 x,l. We must show cpf ((u, I)) * pf ((v, m)) = pf ((u, m)) * pj((w, I)). Observe that
b 2 c implies a * b * c = a * c in a scone algebra. Hence, f (xu[) * f (xu,) * f (m) = f (xu() * f (m). Moreover,
as we saw already, f (u) * e + f (xul) * e = f (u) * e. NOW we calculate:

pf ((u, I)) * pf ((v, m)) = (f(u) * e + f (x u ~)) * f (l) * (f(v) * e + f(xwm)) * f (m) =

(f(u) * e + f(xul) * e + f(x,r) * f(xvrn)) * f (i > *f (m) =

(f(u) * e + f (xu[) * f (%urn)) * f (l) * f (m) = (f (u) * e + f (x u ~)) * f (1) * f (m)

Similarly,
~j ((u, m)) * ~ f ((w , 1)) = (f (u) + f (xu,)) * f (l) * f (m)

Now the desired equality follows from scone-admissibility of f . Claim 1 is proved.

Proof of claim 2. cpf((x, x)) = (f (x) * e + f (x)) * f (x) = f (x) * e + f (x) = f (2). Claim 2 and part 2 of the
theorem are proved.

Proof of part 3. Let Qs, be a set of operations on scones such that +, * and e are derived operations.
Then P k (-) is not left adjoint to the forgetful functor from the category of ordered as,-algebras to Poset.
In other words, for no as, is P$(A) the free ordered as,-algebra generated by A.

Proof. Let x , y 5 z in A. Then ((x, x) * (0,0) + (2 , ~)) * (y, y) = (x, y). Now consider the following poset
A = {x, y, z, v}. In this poset x, y 5 z , x, y 5 v and {x, y} and {z, v) are antichains. Now consider the
following scone algebra Scl = (B, +, *, e). Its carrier is a four-element chain pl > pz > ps > p4. We interpret
+ as minimum of two elements, * as maximum, and e = pl . It is easy t o see that Scl is a scone algebra as
it is a distributive lattice.

Define f : A -. B as follows: f (z) = pl , f (v) = p2, f (x) = p3 and f (y) = pq. Now suppose that f can be
extended to a homomorphism f+ : P%(A) -. Sc. Then

On the other hand.

Hence, pl = pa, which contradicts the definition of B. This shows that f can not be extended to a
homomorphism of scone algebras.

Part 3 and theorem 9 are proved.

Proof of theorem 10. We must show that for every monotone map f from A to a salad algebra Sd
there exists a unique salad homomorphism f+ : p O (A) + Sd such that the following diagram con~mutes:

First verify that 'P'(A) is a salad algebra. We need to check the distributivity law and 7); all others are
straightforward. Let S1 = (U, C), S 2 = (V, M) and S3 = (W,N). Our goal is t o show S1 . (S2 + S3) =
S1 . S2 + S1 . S 3 The first components of the left hand and the right hand sides coincide. I t this case
it is easier to work with filters rather than antichains - it allows us t o drop max and min operations. In
particular, it is enough to show that

{f(L U K)) L E C, I(E M U N) =

{TLMILM E { L U MIL E C, M E M) } ~ { T L N I L N E {L U NIL E C, N E N}}

Let C be an element of the left hand side, i.e. C = T(L U K) . Without loss of generality, I< E M . Then C
is in the right hand side. Conversely, if C is in the right hand side, say C = TLM for LM = L U M , then
C = f (L U M) and therefore is in the left hand side. This shows the equality above. Now, taking minimal
elements for each filter and applying maxl to both collections would give us second components of the lhs
and the rhs of the distributivity equation, which therefore are equal.

Now prove 7), that is, O(U, C) . O(V, M) + O(U, C) = O(U, C). The first components of both sides are
0. The second component of the left hand side is maxfl(C U maxfl{min(L U M)IL E C, M E M)) . Since
min(L U M) ~ f l L, this expression is equal to m a x l ~ = C. Hence, 7) holds. Thus, P'(A) is a salad algebra.

Now show that P'(A) is a free salad algebra. Given a salad S = (U, C),

To see that this also works for empty components, observe that me = Oe = e.

Now, given monotone f : A + Sd, define

w e have: f+(77(x)) = f+((x , (2))) = O f (2) + O f (x) = x. Now we must show that f + is a homomorphism.
First, it follows immediately from the properties of q and 0 and the fact that e = OOx = Ooy is the
identity for + (see lemma) that f + (o S) = q f+(S) and f+(OS) = O f + (S) .

Assume X E# Y, Y # 0, and let x, be an element in X below y E Y. Then

Therefore, if X and Y are equivalent with respect to ~ f i , CzEX f (x) = q CyE f (y) . Our next goal is
to show that 0 nxEx f (x) + 0 fly,, f (y) = 0 nyEy f (y) if Y # 0. Since X cf Y, we have nxEx f (x) 5 nyEy f (y) and then the equation above follows from 7). Finally, let x' z E X . Then f (a') > f (x) and

nxEx f (x) = f (x l) . nxEx f (x) .

These three observations show that max and min operations can be disregarded when one writes an expression
for f + on Sl + Sz or S1 . S2. Therefore, for S1 = (U, L) and S2 = (V, M) ,

X E U U V L E L EL M E M m € M

To calculate f+(Sl . Sz) , observe that CiEI Oxi . CjEJ Oyj = CiEI,jEJ Oxi - Oyj = CiEI Oxi and this is
also true if I = 0 because e . Oy = e. Therefore,

uEU LEL 1EL vEV C f (M E M ~ c M

vEV LEI: IEL LEL 1EL M E M mEM

C f(u) + O C f (.) + O C (I - J f (1) . n f (m)) =
uEU V E V LEL IEL m EM

Thus, f f is a homomorphism. Its uniqueness follows from (9). Theorem is proved. q

Proof sketch of theorem 11. Consider a special case when f + [e, u, h] is restricted to mixes of form
(U, 8) and h = id. Then f + is equivalent to the structural recursion on sets, whose well-definedness is
undecidable, see [4]. The proof for other constructs is similar. q

Proof sketch of theorem 12. Assume monotonicity is decidable. Now, given two NRC functions
f , g : {s) -+ t , define a new function 4 : {s) + {bool) as follows:

$(x) := if x = 0 then {true) else if f (x) = g(x) then {true} else {false)

Now, if want t o check whether f (x) = g(x) for all x, check if f(0) and g(0) are tlie same and then check if q5
is monotone. Thus having a test for monotonicity would give us equality test for functions of type {s) + t .
Such functions include all functions definable in the relational algebra, and it is known that equality of those
is undecidable. This shows that monotonicity of NRC expressions is undecidable. 13

Proof sketch of theorem 13. To prove that the orderings and all operations are definable, observe
that E# and &b are first order definable, so they can be defined in the nested relational algebra, and the
Buneman orderings are certain combinations of those. It is an easy exercise to see that all operations on
approximations are definable that arise from the universality properties.

Moreover, the function that converts all objects into antichain by taking maximal elements for sets and
minimal elements for or-sets is also definable in or-NRC. By fa we shall denote the antichain analog of a
function f .

We shall need the following operations from or-NRC. If f : s + t , then map(f) : {s) + {t) applies f to all
elements of its input. ~ (x) is {x). Flattening p : {{t)) -+ {t) computes union of its arguments. a1 and ~2

denote the first and second projections. F o r all set operations, there are operations with prefix or that act
similarly on or-sets.

Now consider mixes. For f : t + s mix, where s mix is now abbreviation for (s) x {s), we have

Mix singleton is defined as 7-mix(x) = (o r - 7 , ~) . Then, for g : s + t ,

mix-map(g)(U, L) = (or-map, (g) (U) , map,(g)(L)) : s mix -+ t mrx and

p-mix = Xx.(or-p,(or-map,(q))(x), pa(mapa(.rrz)(x))) : s mix mix + s mix

As a more complicated example, consider snacks. We use t snack as an abbreviation for (t) x { (t)) . important
question is how to express ext-snack(f) : s snack -+ t snack i f f : s -+ t snack is given.

Assume that we have a snack S = (U, C) of type s snack. Then ext-snack(f)(S) can be found as

Look a t the first component. If f (u) = (V,, Nu), then it is equal to min(UuEU V,) and therefore can be
expressed as Co = or-p,(or-map,(w~ 0 f)(.rrl S)) .

Now fix L E L. Assume that f (l) = (Wl, M l) for each 1 E L. Then

f (r) = (min U W,, maxn(min(U MI I Mi t M I)))
I E L I€L I€L

To find the first component, compute or-p,(or-map,(wl o f)(L). To find the second component, observe that
X = o r - m a p , (~ ~ o f)(L) is (MI I 1 E L). Therefore, the second component is simply mapa(or-pa(Pa(X))).
Here pa is the inverse of a,, that is, isomorphism between the semantic domains of types ({t)) and {(t)).
It is not hard t o see that in the presence of set-to-or and or-to-set it is possible to express Pa in or-NRC.

(We tacitly assumed that these two functions are present. This is the assumption made in [l l] but not [21].)
Hence, we can write a function

g := (or+, o or-map, o (T I 0 f) , map, 0 or-pa opa 0 or-map, (~ 2 f))

which, when applied to L, produces nIEL f(l) = (ZL,NL)

N ~ W we need t o calculate C L (Z ~ , NL) = (minUL Z ~ , m a x l (U ~ A f ~)) . The second component can be ob-
tained as

CZ = ~ a (m a ~ a (T 2 o g)(C))
?.

and it is of type ((t)). To compute the first component, we need a way out of sets to get an or-set. This is
achieved by writing C1 = or-p,(set-to-or(mapa(al o g)))(C). Finally, we have

The proof for other constructions is similar.

	Approximation in Databases
	Recommended Citation

	Approximation in Databases
	Abstract
	Comments

	tmp.1187708724.pdf.cmZCo

