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1 Summary 

We proposed in [7] a nested relational calculus and a nested relational algebra based on structural 
recursion [6, 51 and on monads [27, 161. In this report, we describe relative set abstraction as our third 
nested relational query language. This query language is similar to the well known list comprehension 
mechanism in functional programming languages such as Haskell [ll], Miranda [24], KRC [23], etc. 
This language is equivalent to our earlier query languages both in terms of semantics and in terms 
of equational theories. This strong sense of equivalence allows our three query languages to  be freely 
combined into a nested relational query language that is robust and user-friendly. 

Every expression of relative set abstraction can be reduced to a normal form. This normal form has 
an immediately apparent property that is very interesting: an expression i n  normal form does not have 
any subexpression with set height exceeding the set height of the type of the expression. One way to  
view this result is to classify expressions of the language into a hierarchy of sublanguages Lo, L1, ..., 
where L, consists of expressions of height not exceeding n. Then every expression in L, whose type 
has height n is equivalent to an expression in L,. Consequently, L, is a general conservative extension 
of all L, where n < m. 

In particular, one can obtain the conservativeness of relative set abstraction with respect to the tradi- 
tional flat relational algebra from this observation. That is, if an expression denotes a function from 
several flat relations to a flat relation, then this function is expressible in the traditional flat relational 
algebra. The converse that every function definable by flat relational algebra is definable using relative 
set abstraction is also true. The connection is therefore very tight. 

These results have several consequences that are very easy to derive. From the existence of normal form 
of definable functions, one can readily check that conditional on base type is not definable as there is 
no normal form that defines it. Similarly, the existence of normal form can be used to show that every 
definable function of type { s )  i b must be a constant function. From the fact that our language is 

'Extended abstract to appear as "Normal forms and conservative properties for query languages over collection types" 
in the Proceedings of PODS'93. 



a conservative extension of flat relational algebra, we know that it cannot express transitive closure. 
This latter observation has an immediate consequence: transitive closure cannot be expressed in the 
language proposed by Abiteboul and Beeri without using the powerset operator. 

Due to the robust connection between relative set abstraction and our two earlier languages, all the 
results mentioned above also hold for these languages. That is, they hold for nested relational calculus 
and for nested relational algebra. Hence we have filled in some of the gaps left by other researchers. To 
begin with, Paredaens and Van Gucht [17, 181 showed that the nested relational algebra of Thomas and 
Fischer [20] is conservative with respect to flat relational algebra in the sense we have described. The 
Thomas and Fischer algebra is a very restricted query language where all operators can be applied only 
to the topmost level of relations. Our result extends Paredaens and Van Gucht's to  a richer language. 
Hull and Su proposed a nested relational query language in which powerset is expressible and studied 
its expressive power [12]. One of their result is that it is not conservative with respect to  the flat 
relational algebra in our sense. Grumbach and Vianu proved in [8] that the language of Hull and Su 
is not conservative with respect to set height of input/output at all. In constrast, our language cannot 
express powerset and is conservative with respect to set height of input/output. This helps clarify the 
role of powerset in the expressive power of query languages. 

The general conservative extension result can be further improved in two ways. Firstly, Many modern 
data models possess an additional data structuring mechanism known variously as coproducts, variant 
types, sum types, or tagged unions (see Abiteboul and Hull [3] and Hull and Yap [13] for example). 
However, many papers on expressive power excluded this feature from consideration [12, 8, 21. We 
extend the nested relational calculus of [7] with variant types and prove that the extended calculus 
remains conservative with respect to height of input/output. 

Secondly, the proof we give for relative set abstraction relies on a set-based semantics. This is in line 
with the work of many researchers as reported in Abiteboul et. al. [I], Abiteboul and Beeri [2], Hull 
and Su [12], Grumbach and Vianu [8], Paredaens and Van Gucht [17, 181, Gyssens and Van Gucht [lo], 
etc. But our languages can be given interpretations based on bags and lists too. It is desirable to know 
whether our main result holds when the languages are given list- and bag- semantics. We prove that it 
does. Moreover, the proof is uniform across these semantics. 

The organisation of the remainder of this Report is as follows. Section 2 introduces relative set abstrac- 
tion and the nested relational calculus of our earlier paper [7]. We establish translations between these 
languages that preserve semantics, preserve set heights, and preserve and reflect equational theories. 
Section 3 presents our main result that our query language is conservative with respect to set height 
of input/output. The general conservativeness result is specialised to  conservativeness with respect to 
flat relational algebra in Section 4. In section 5 we present some easy-to-prove corollaries. The two 
improvements to the main theorem mentioned above are presented in the final section. 

2 Relative set abstraction as a nested relational language 

Wadler and Trinder argued that list/set/bag comprehension is a natural query notation [22, 21, 281. 
They also demonstrated that this notation does not hamper query optimization. In this section we 
present a query language based on comprehension that is equivalent to  our nested relational algebra 



and nested relational calculus. We call this query language Relative Set Abstraction (or RSA for short). 

Types. A type in relative set abstraction is either an object type s or is a function type s -+ t where 
s and t are both object type. The object types are given by the grammar: 

s , t  ::= unit ( b 1 s x t  I { s )  

Expressions. The expressions of relative set abstraction are formed according to the rules below. Note 
that the lexical ordering of X I  E e l , .  . . , x n  E en in {e  1 x l  E e l , .  . . , x n  E en)  is significant. It must 
be pointed out that x; E e; is not a set membership test. It is the introduction of a variable binding, 
similar to  that of lambda abstraction Xx.e. It is to emphasize this point that we call this language 
relative set abstraction. We use the notation A as a shorthand for X I  E e l , .  . . , xn E en. The scope of 
a set abstraction variable xi in {e  1 A , x ;  E e ; , A 1 )  is A' and e. We adopt the usual convention that 
distinct variable bindings be given distinct variables. Type superscripts are usually omitted, since they 
can be inferred. As in [7],  booleans are represented by the two values of type {un i t ) ,  with {()) for true 
and {) for false. Equality test eqb is restricted to base type b. 

e : t  e l : s - + t  e2 : s 
x s : s  () : unit XxS.e : s -+ t el e2 : t 

el : { s )  e2 : (3) 

el U e2 : { s }  not : {un i t )  -+ {un i t )  eqb : b x b -+ { u n i t )  

e : s  el : ( ~ 1 )  ... en : (3,) e : t  

{ e l  : i s )  { e  I xsl E e l ,  ..., x z  E e n )  : { t )  c : b  

Semantics. The intended semantics is that of sets and functions. A detailed specification is omitted; 
but for the Reader who is familiar with the usual notations of denotational semantics [19, 91, 

Examples. { ( x ,  y)l x E X ,  y E Y) denotes the cartesian product of the sets denoted by X and Y. 
{ y J  x E X ,  y E x} denotes the flattenning of the set denoted by X. 

Equational Theory. We do not have a complete set of axioms yet. However, for the purpose of this 
report, we treat not and eqb as uninterpreted constants and use the axioms of our nested relational 
calculus [7] with the following changes: drop all the rules concerning the U{el I x E e }  construct (to be 
described shortly) and add the rules below. 



This simple language is equivalent to our nested relational calculus. The remainder of this section is 
devoted to working out the translations. First let us sketch the calculus of [7] (or N R C  for short). We 
have also taken the liberty of using the more suggestive syntax U{et I x E e )  in place of the ext(Xx.ef)(e)  
syntax of [7]. The reader is referred to  [7] for a more detail account. 

Types. Same as relative set abstraction. 

Expressions. Same as relative set abstraction but replace the {e  I A )  construct by the construct 
U{e' I x E e )  whose typing rule is 

e : { s )  el : { t )  
U{e f  I xS E e }  : { t )  

Semantics. The intended semantics of U{et I x E e )  is to  flat-map the function denoted by Xx.et over 
the set denoted by e. That is, for the Reader who is familiar with standard notations of denotational 
semantics [19, 91, 

IUle' I x E e)Rp = U I I ~ ' I P [ ~ / x I  
d€[elp 

Examples. U { U { { ( x ,  y)}  I x E X )  I y E Y )  denotes the cartesian product of the sets denoted by X 
and Y .  U{U{{(n l  x ,  y ) )  I y E 7r2 x }  1 x E X )  denotes the unnesting of the set denoted by X. Finally, 
to project the left component of pairs inside a set of sets X, U{{U{al  y I y E x ) )  I x E X ) .  The last 
example is noteworthy because it demonstrates "nested projection." 

Equational Theory. We list the axioms concerning U{e' I x E e )  below. 

U{et  1 x E { e ) }  = e'[e/x] U { { X }  1 E e l  = e 

Having introduced the languages, it is time to show that they are equivalent. In fact, we prove that 
they are equal both in terms of semantics and in terms of equational theories. To this end, we need a 
translation NR[-] taking an expression e : s of N R C  to an expression N R [ e ]  : s of R S A  and a translation 
RN[.] taking an expression e : s of R S A  to an expression R N [ e ]  : s of N R C .  The translations are 
straight forward. The only non-trivial rules are: 



N R [ e l ]  = ei N R [ e 2 ]  = ek where y is fresh. 
N R [ U { e l  1 x E e2)l= {Y I x € 4 , ~  ~ e i )  

Then relative set abstraction and nested relational calculus are equivalent. 

2.1 Theorem 

r Every closed e of N R C  denotes the same value as N R [ e ] .  

r Every closed e of RSA denotes the same value as R N [ e ] .  

Moreover, the translations preserve and reflect the equational theories of these languages. 

2.2 Theorem 

r RSA t- N R [ R N [ e ] ]  = e 

a N R C  t- R N [ N R [ e ] ]  = e 

r N R C  t- el = e2 if and only if R S A  t- N R [ e l ]  = N R [ e 2 ]  

RSA t- el = e2 if and only if  N R C  t- R N [ e l ]  = R N [ e z ] .  

Since our nested relational calculus does not have membership test, or anything that looks like a nesting 
operation, we show that they are definable. In [7],  it was established that equality test eq, on all object 
type s can be used to  simulate membership test, subset test, set difference, set intersection, and relational 
nesting. Therefore, it suffices for us to prove that eq, is definable in R S A  for all s. 

2.3 Proposition 

Equality at all types are definable i n  R S A .  

Proof. Let eq, be the equality test at type s. It can be defined by induction on s. 

r eqb is given. 



It then follows from the equivalence between N R C  and the nested relational algebra of [7] (denoted by 
NRA) that relative set abstraction is also equivalent to  NRA. 

3 Every definable function is definable using operators whose set 
height is atmost the set height of the input/output of the function 

In this section the main result of the report is proved. The content of which is given in the section title 
above. Let us first explain what the theorem is about. The set height h t ( s )  of a type s is defined by 
induction on the structure of type: 

Note that every expression of our languages has a unique typing derivation. Then the set height of 
expression e is defined simply as h t (e )  = max{ht(s) I s occurs in the type derivation of e ) .  Then the 
theorem expresses a very general conservative property. It says that to  process information (that is, 
input/output) of set height n ,  no operators whose set height exceeding n is required. In other words, if 
a function whose input/output has height n is defined by an expression e whose height exceeds n, we 
can find an alternative expression e' whose height does not exceed n to implement it. More prosaicly, 
using intermediate expressions of greater height does not increase horsepower. 

The proof is straight forward for relative set abstraction after a normal form result is established. Then 
by showing that the translations between our languages preserve set height, the result is transferred to 
the calculus and the algebra. 

3.1 Theorem (Normal Form) 

Every expression of R S A  can be reduced to an expression such that in  every subexpression of the form 
x E {e  I x l  E e l , .  . . , x ,  E e,), all the e; are not of the form {e  I A ) ,  e U e,  {), or { e ) ;  and there 
is no subexpression of the form (Xx.e)el, n l ( e , e ) ,  or n 2 ( e , e ) .  Moreover, i f  e is reduced to el, then 
RSA k e = e'. 

Proof. Consider the following transformation rules which progressively eliminate subexpressions that 
do not satisfy the requirement of the theorem. We use C[-]  to  stand for a context with a hole and C[e] 
for plugging e into the hole of context C[.]. 

1. C[{e I A l , x ~ e ~ U e 2 , A 2 } ] - C [ { e  I A l , x E e l , A 2 ) U { e  I A l , x E e a , A 2 ) ]  

2. C[{e I A,, x E {ell A'), A,}] - c[{e[e1lx1 I Ai, A', A2[e1/x1)1 

3. C[{e I A,, x E {e l ) ,  A211 - C[{e[ellxl I Al, A2[e1/x1)1 



Each transformation corresponds t o  an axiom in the equational theory of relative set abstraction. The 
normal forms of this rewriting system clearly satisfy the requirement of the theorem. It remains to  show 
that the rewriting system is terminating. In fact, we prove a stronger property: the rewriting system is 
strongly normalising. 

Let cp maps variable names to  a natural number greater than 1. Let cp[n/x] be the function which 
assigns n to  x but agrees with cp on other variables. Let Ilellcp, defined below, measures the size of e in 
the environment cp where each free variable x in e is given the size cp(x). 

II{en I 21 E eo, . - - ,xn  E e n - i ) l l ~  = (leo(lcpo - ... - Ilenllcpn, where cpo = cp and q;+1 = cp;[lle;llcp;/~;+~]. 

A lemma. Let cpl and cp2 be such that for every x ,  cpl(x) 5 cp2(x). By a routine induction on e ,  we 
have Ilellcpl I Ilellcp2. A corollary of the lemma. Let I(elJ(cp 5 n. By an induction on e and the 
previous lemma, we have Ile[el/x] llcp I Ilellcp[n/x]. NOW it follows readily that for any choice of c p ,  e --t e' 
iniplies Ilellcp > Ile'llcp. 

It is now easy to  prove the main theorem. 

3.2 Theorem (General Conservative Extension) 

Let e : s be an  expression of RSA. Then there is  an expression el such that h t (e l )  5 max({h t ( s ) }  U 
{ h t ( s )  I s is the object type of a free variable i n  e ) ) .  Moreover, RSA F e = el. 

Proof. Let e' be normal-form of e. Now we verify its height by structural induction on it. Let k be 
the maximum height of the free variables in e. 



Case er : s is x, {I, c ,  eqb, not, or 0. Immediate. 

Case e' : s is {e"}. Immediate by hypothesis on e". 

Case er : tl x t2  is (el, e2). By hypothesis, ht(el) 5 max{k, ht(tl)} and ht(e2) < max{k, ht(t2)}. Then 
ht(er) = max{b, ht(el), ht(e2)) < max{k, ht(s)). 

Case er : tl -+ t2 is XX.~". By hypothesis, ht(eU) 5 max{b, ht(t2)}. So ht(er) = max{ht(s), ht(eU)) 5 
max{b, ht(s)). 

Case er : s is nl e" or ~2 e". Then e" must be a free variable or is a chain of projections on a free 
variable. The case thus holds. 

Case e' : {t} is {e" I XI  E e l , .  . ., x, E en). By hypothesis, ht(ei) 5 max{k, l+ht(xl) ,  . . ., l + h t ( ~ ; - ~ ) ) .  
Now we show by induction on i that the 1 $ ht(xj) can be replaced by 1. Starting with el. If 
el is of the form not(-) or of the form eqb(-), then ht(xl) = 0. Otherwise, el must be a chain of 
projections on a free variable, then ht(xl) 5 b. In either case, ht(ei) 5 max{k, 1,1+ ht(x2), . . . ,1+  
h t ( ~ ; - ~ ) ) .  The analysis can be repeated for the remaining ei. Then ht(ei) 5 max{k, 1). By 
hypothesis, ht(eU) 5 max{k, ht(t)}. Then ht (er) = max{k, ht(s), ht(en), ht(el), . . . , ht(e,)} 5 
max{k, ht(s)}. 

It is straight forward to  see that for any e of NRC,  ht(e) = ht(NR[e]); and for any e of RSA,  
ht(e) = ht(RN[e]). Consequently, the above result can be transferred to NRC. The translations given 
between N R C  and N R A  in [7] do not preserve set height of expressions. However, if we add ext(f), 
eztz( f ) ,  and map2( f )  to  N R A  as primitives and use them to replace p o map( f ) ,  p o map( f )  o p2, and 
map(f) o p2, the translations do preserve set height. Thus the above result also holds for N R A .  

As remarked earlier, the above theorem implies height of input/output dictates the kind of functions 
that our languages can express. In particular, using intermediate expressions of greater heights does 
not add expressive power. This is in contrast to languages considered by [2, 1, 12, 81 where the kind of 
functions that can be expressed is not characterised by the height of input/output and is sensitive to  the 
height of intermediate operators. The principal difference between our languages and these languages 
is that powerset is not expressible in our languages [7] but is expressible in those other languages. This 
indicates a non-trivial contribution to expressive power by an operation such as a powerset. Although 
the precise nature of the contribution remains to be characterised. 

This result has a practical significance. Some databases are designed to  support nested sets up t o  a 
fixed depth of nesting. For example, Jaeschke and Schek [14] consider nonfirst normal form relations in 
which attribute domains are limited to  powersets of simple domains (that is, databases whose height is 
atmost 2). "RSA restricted to  expressions of height 2" is a natural query language for such a database. 
But knowing that R S A  conservatively such a language, one can instead provide the user with the 
entire language R S A  as a more convenient query language for this database, so long as queries have 
input/output height not exceeding 2. 



4 Every definable function on flat relations is expressible in flat 
relational algebra 

It is our thesis that if a function definable in our languages has a type that is admissible in a relational 
database (that is, the height of the type is I ) ,  then this function is definable in the traditional flat 
relational algebra. This is a consequence of the main theorem. However, as flat relational algebra 
[15, 41 looks quite different from our languages, it is necessary for us to provide a little more detail. In 
this section we demonstrate that our languages are indeed conservative with respect to  flat relational 
algebra. Let us introduce a brand of flat relational algebra which we denote by I R A .  

Types. The 0-types, corresponding to  tuples of atomic values, are given by 0 ::= unit I b I 0 x 0. 
The 1-types, corresponding to  tuples of relations, are given by S ::= (0) I S x S. The query types, 
corresponding to  queries on relations, are all of the form S + (0). 

Basic Operators. The basic operators of flat relational algebra are listed (and implemented) below. 

a 11 : (01 x 0 2 )  -+ {O1). This is the relational project on the left colunln of a binary relation. It 
is implemented in R S A  by Xx.{rl y I y E x). 

a cmmt : (01 x02)  -+ {02x01}. This swaps the two columns of a binary relation. It is implemented 
in R S A  by Xx.{(sz y, sl y) I y E x). 

a assc : (01 x (02 x 03)) -+ ( (01 x 02)  x 03). This shifts the tupling brackets around in th  obvious 
way. It is implemented in R S A  by Xx.{((n~ y, nl(na y)), nz(r2y)) I y E x). 

copy : (0) -+ {0 x 0 ) .  This duplicates the input relation. It is implemented in R S A  by 
Xx.{(y, y) I y E x). This operator and the previous three together captures all possible ways of 
doing relational projections. 

cartprod : {01) x ( 0 2 )  -+ (01 x 0 2 ) .  This is the cartesian product. It is implemented in R S A  
by Xx.{(y,z) I Y E TI 2, ~2 x). 

a minus : (0) x (0) -+ (0). This 'substracts' the second input from the first. That is, it is 
the asymmetric set difference operator. It is implemented by in RSA by Xx.{y 1 y E nl x, z E 

not (0 I w E T 2  2, eqo(y, ~ 1 ) ) .  
union : (0) x (0) -+ (0). This is set union. It already exists in R S A  as U. 

select(Pl, P2) : (0) -+ {0), where PI : 0 -t 0' and P2 : 0 -+ 0' are expressions constructed 
from: P ::= id I (P, P )  ( P o P I nl ( s z  I K c  I K ( ) .  It is the selection operator. Intuitively, 
select(Pl, P2) is equal to  the N'RC expression ezt(Xxo.if eqot(Pl xO, P2 xO) then {x) else (1). 
Although the conditional is not a primitive of NRC,  it is expressible in N R C  (as it is a conditional 
on set type) by exploiting the fact that the cartesian product of the empty set with any set is the 
empty set. 

Other items such as K { ( ) }  that expresses the constant relation (0). They are not very important 
and we omit the details. 



From the foregoing description, it should be clear that every query in I R A  is expressible in RSA, 
NRC, and N R A  using expression of height 1. It remains for us t o  sketch a proof of the converse. 

4.1 Theorem (Conservative Extension) 

Every closed RSA, NRC,  and N R A  expression e : S -+ ( 0 )  is expressible in I R A .  

Proof (Sketch). By the Normal Form Theorem, it suffices for us to exhibit a translation from such 
R S A  expression to I R A .  In fact, it suffices for us to  explain how to express a normalised E = { e  ( A) 
containing a single free variable z of type S in I R A .  We do it step by step. 

Step 1. Replace all xunit in E by 0. Let the resulting 'pseudo' expression by El. 

Step 2. El may be badly formed since it can have subexpression of the form () E El. Replace each () 
that appears in this situation by a fresh variable yunit. Let E2 be the result. 

E2 is now a wellformed expression of RSA. Moreover, if yunit appears in Ez, it appears exactly once 
and only as yun2t E E'. Because we started with a normalised expression, such El must be of the form 
proj z, eqb e', or not el, where proj z is a chain of projections on z. 

Step 3. Shuffle the set abstractions in E2 to get an expression of the form: {e 1 xl E proj z ,  ..., x, E 
I proj z, y: E eqb ei ,  ..., ym E eqb e',, y: E not ey, ..., y[ E not ei). Let the result be E3. We can do this 

shuffling because the y are never used anywhere. 

Step 4. Let E4 = A minus (B1 U ... U Bk) where A, B1, ..., Bk are obtained from E3 as below. It 
should be obvious that E4 and E3 are equivalent. 

A = {e I xl E proj z,  ..., x, E proj z,  yi E eqb ei, ..., yh E eqb eh )  

B; = {e I x1 E proj z, ..., x, E proj z, y,!' E ey} 

At this point, B; are smaller expressions that have the same form as E, the expression we started off 
with. (Well, actually some of the e r  may be of the form eleft U e,;,ht. But the U can be pulled out to  
yield the right form.) So the above steps can be repeated to  progressively replace the rest of the not by 
minus. After that the only form of set abstractions we have to  deal with is that of A. 

I In A, since we started off with normalised expression of height 1, it is the case that e, e i ,  ..., em are 
all height 0. So they must be built entirely out of projections, tupling, 0, and variables (xl, ..., x,) of 
height 0. It is easy t o  see that A can be expressed in T R A  by an expression of the form MI o M2 o M3 
where M3 is a chain of cartesian products, M2 is a chain of selections, and MI is a chain of projections. 

Therefore, we conclude that queries definable in flat relational algebra are exactly those definable 
functions of relative set abstraction which have flat relational query types. This connection is extremely 
tight. 

Paredaens and Van Gucht [18,17] proved a similar conservative extension result for the nested relational 
algebra of Thomas and Fischer [20]. The Thomas and Fischer algebra is very restrictive and its operators 



can be applied only t o  the topmost level of nested relations. Therefore our result in this section can be 
regarded as an extension of Paredaens and Van Gucht's. 

The key to  the proof of the Conservative Extension Theorem is the Normal Form Theorem. The heart 
of Paredeans and Van Gucht's proof is also a similar normal form result. However, their normal form 
result is a normal form of logic formula and the intuition behind their proof is mainly that of logical 
equivalence. In our case, our inspiration comes from a well known optimisation strategy (and we cannot 
resist citing Wadler's early paper [25, 261, which has a very amusing title, on this subject). In plain 
terms, we have evaluated the query without looking at the input and managed to  flatten the query 
sufficiently until all intermediate operators of higher heights are "optimised out." This idea is succintly 
summarised by the rewriting rule C[{e I Al, x E {ell A'), A,}] - C[{e[e'/x] I Al ,  A', A2[e'/x])] which 
eliminates the intermediate set built by {ell A'). 

5 Some easy consequences of these results 

In the course of proving our main result, we have shown that expressions of relative set abstraction can 
be reduced to  very simple normal forms. Nornial forms can be exploited in many proofs of undefinability 
by showing that there is no normal form that defines the desired function. An ripe example of this sort 
is the undefinability of conditional on base type. 

5.1  Corollary 

A conditional on base type is a function cond : {unit) x b x b + b such that cond(co, (el, c2)) is equal 
to cl if co is equal to {()) and is equal to c2 if co is equal to {). A is not definable in RSA,  N R A ,  and 
N R C  . 

Proof. It suffices to  check that there is no R S A  normal form that defines cond : {unit) x b x b + b. 
Suppose to  the contrary that it is definable. Then it is definable by a closed normal form X X . ~ .  But e 
cannot be any of the following: (), {), (el, ez), {el I A), el U ea, not el, eqb e', nl x, or n2 x, because 
they do not have type b. It cannot be any of the following either: c of type b, n2(nl x), or r2(n2 x), 
because they are clearly not the conditional. As there are no other alternatives, we have arrived at  a 
contradiction. So conditional on base type is not definable in our languages. 

Here is another example of this nature that illustrates the fact that there is no way to  "get out of sets" 
in our languages. 

5.2 Corollary 

Every definable function of type {s) + b must be a constant function. 

Proof. We show that all normal forms of type {s} + b without free variables are constant functions. 
Let Xx.e : {s) + b be a normal form. Suppose e is not the constant c or (). Then e must look like 
( e ,  e), e U e, {), {e I A}, not(e), eq b(e), or is a projection on the variable x. But all of these alternatives 



are badly typed. So Xx.e is a constant function. EI 

There are a number of well known theorems in flat relational query languages. The tight relationship we 
have demonstrated between our query language and the flat relational algebra enables us to draw a few 
(otherwise not so obvious) conclusions. An example of this is the undefinability of transitive closure. 

5.3 Corollary 

Transitive closure is not expressible in RSA, NRC, and NRA. 

Proof. Suppose it is expressible. Then we can express transitive closure of a binary relation on a base 
type (such as integer). Since this is a function from a flat relation to  a flat relation, by the Conservative- 
extension theorem, it is expressible in flat relational algebra. This contradicts the well known result on 
flat relational algebra (see Aho and Ullman [4] or Maier [15]). Hence it is not definable in our languages. 

It was worked out in a previous paper [7] that the language of Abiteboul and Beeri [2] is obtained by 
adding the powerset operator to  NRC. If the purpose of this addition is t o  increase expressive power, 
it is unlikely to  be practical. The reason is that practically all the interesting new queries that can 
now be written must involve the expensive powerset operation. Transitive closure is an example that 
immediately comes to  mind. 

5.4 Corollary 

Transitive closure can only be expressed in the language of Abiteboul and Beeri via an excursion through 
the powerset. 

6 Two extensions to the main theorem 

In this final section, we extend NRC to  NRC+ by a variant type mechanism. Then we provide a proof 
that this extended language is conservative with respect to  set height. Furthermore, the proof holds 
uniformly when the language is interpreted under a set-, list-, or bag-based semantics. 

Types. Variant types are added to  the language. If s and t are object types, then the variant type 
s + t is also an object type. Basically, the domain of a variant type s + t is the union of the domains of 
s and t but values from s are tagged with a 1-tag and values from t are tagged with a %-tag. 

Expressions. Three new constructs are required to  manipulate variant objects. Their formation rules 
are listed below: 

e : s  e : s  el : sl + ~2 e2 : t e3 : t 
leftt e : s + t rightt e : t + s case el of left xS1 + e2 I right xS2 + e3 : t 



Semantics. We offer an informal explanation. left e injects e into a variant object by tagging the 
object denoted by e with a 1-tag. right e injects e into a variant object by tagging the object denoted 
by e with a 2-tag. case el of left x + e2 I right y + e3 processes the variant object denoted by el 
as follows. If el is equal to left e ,  then the case expression is equal to e z [ e / x ] .  If el is equal to right e ,  
then the case expression is equal to e3[e /x] .  That is, the left or the right branch is taken depending on 
whether el has a 1-tag or a 2-tag respectively. 

Example. U{(case x of left y + { y )  I right z + {)) I x E X )  denotes the selection of items that 
are 1-tagged in the set X. 

Let us now proceed with our last result. 

6.1 Theorem 

Let e : s be an expression of N R C + .  Then there is an equivalent expression el such that h t ( e f )  5 
m a x ( { h t ( s ) )  U { h t ( s )  I s is the object type of a free variable in  e ) ) .  

Proof. Consider the following rewriting systems. 

1. C[(Ax.e)el] - C[e[e' /x]] 

2. C [ ~ l ( ~ l ,  ez)]  --+ C[e11 

3. C[n2(el7 e2)] ..-t C [e2] 

4. C[e (case el of left x + e2 I right y e3)] --t C[case el of left x + e e2 I right y + e e3] 

5 .  C[n; (case el of left x + e2 I right y + e3)]  - C[case el of left x + n; e2 I right y + 7ri e3] 

6 .  C[case left e of left x + en I right y + es] - C[e2[e /x]]  

7 .  C[case right e of left x + e2 I right y + e3] - C[e3[e/x]]  

8. C[case (case ei  of left x' + e', I right y' + e$) of left x + e2 I right y j e3] I., 
C[case ei of left x1 + (case e', of left x + e:! I right y + e3)  I right y' + (case e$ of left x + 
e2 I right y * e3)l 

11. C[U{e I x E {e ' ) ) ]  --t C[e[e ' /x]]  

13. C[U{el ( X I  E (case e2 of left x:! 3 e3 ( right 23  =. e4) ) ]  --+ C[case e2 of left x2 =+ U{e l  I x1 E 
e3) I right 2 3  + U{el I X I  E e4}1 



Let k = max{ht(t) I t is the object type of a free variable in e}. Suppose e has a normal form e' under 
the above rewriting rules. We show by structural induction on e' that e' satisfies the requirement of the 
theorem. 

Case et : s is a chain of projections on a variable, (), {}, not, eqb, or c. Immediate. 

Case e' : s is Xx.el where x : sl and el : 52.  Then s is sl + 5 2 .  We have ht(el) 5 max(k, ht(s2), ht(sl)) 
by hypothesis. But ht(et) = max(ht(sl), ht(el)). So ht(et) 5 max(k, ht(s)). 

Case et : s is (el, e2) where el : sl and e2 : sz. Then s is sl x 52. By hypothesis, ht(el) 5 max(k, ht(sl)) 
and ht(e2) 5 max(k, ht(sz)). So ht(ef) = max(ht(el), ht(e2)) < max(k, ht(s)). 

Case e' : s is not el .  Then s is {unit) and el : {unit}. Then ht(et) = ht(el). The case holds by 
hypothesis on el .  

Case e' : s is eqb el. Then s is {unit} and el : b x b. Then ht(e1) = max(ht(s), ht(el)). By hypothesis, 
ht(el) 5 5. The case holds. 

Case e' : s is el U e2. Then ht(ef) = max(ht(el), ht(e2)). By hypothesis, ht(el) 5 niax(k, ht(s)) and 
ht(e2) 5 max(k, ht(s)). Therefore, ht(et) 5 max(k, ht(s)). 

Case et : s is {el} where el : sl. Then s is {sl}. By hypothesis, ht(el) < max(k, ht(sl)). So ht(et) = 
max(ht(el), ht(s)) 5 max(k, ht(s)). 

Case e' : s is U{el I x E e2) where e2 : isz}. Because e' is a normal form under rules 1 to 12, e2 must 
be a chain of projections on a variable or has the form not e3 or eqb e3. Hence ht(e2) 5 max(k, 1). 
So ht(x) = ht(e2) - 1 5 k. Then, by hypothesis, ht(el) 5 max(k, ht(x), ht(s)) = max(k, ht(s)). 
Then ht(ef) = max(ht(s), ht(el), ht(e2)) 5 max(k, ht(s)). 

Case e' : s is lefts2 el where el : s l .  Then s is sl + s 2 .  By hypothesis, ht(el) 5 max(k, ht(sl)). So 
ht(et) = max(ht(el), ht(s)) < max(k, ht(s)). 

Case e' : s is right el. Similar to  previous case. 

Case e' : s is case el of left x + ez I right y + e3 where el : sl + 5 2 .  Then x : s l ,  y : 3 2 ,  e2 : s, and 
e3 : s. Since e' : s is a normal form under rules 1 to 12, el must be a chain of projections on a free 
variable. Hence ht(el) 5 k. Consequently, ht(sl) 5 k and ht(s2) 5 k. By hypothesis, ht(e2) 5 
max(k, ht(x), ht(s)) = max(k, ht(s)). Similarly, ht(e3) 5 max(k, ht(y), ht(s)) = max(k, ht(s)). 
Now ht(et) = max(ht(el), ht(e2), ht(es)) 5 max(k, ht(s)). 

Finally, we have to  show that the normal form et of e exists. To do this, we prove that the rewriting 
system is strongly normalising. Let cp maps variable names to  natural numbers greater than 1. Let 
cp[n/x] be the function that maps x to  n and agrees with cp on other variables. Let Ilellcp, defined below, 
measure the size of e in the environment cp where each free variable x in e is given the size cp(x). 



A lemma. Let cpl and cp2 be such that for every x, cpl(x) 5 cp2(x). By a routine induction on e, we 
have Ilellpl 5 Ilellv2. A corollary of the lemma. Let Ile'Jlp 5 n. By an induction on e and the 
previous lemma, we have Ile[el/x] llv 5 llelly~[n/x]. Then it is readily verified that whenever e w el, we 
have Ilellp > Ile1llp for any choice of 9. Therefore, the rewriting system is strongly normalizing. This 
completes the proof. 

As remarked earlier in the report, variant mechanisms have been used in some data models such as [3] 
and [13]. However, many earlier interesting works on expressive power omitted them from considerations 
[12, 8, 21. We hope the above result have rectified this situation to  some extent. 

Our languages have been given semantics based on sets. These languages can be given semantics based 
on bags or on lists. For example, NRC can be treated as a "nested bag calculus" by interpreting {) as 
the empty bag, el U e2 as union of bags, and U { e 1  I x E e) as flatmapping the function Xx.el over the 
bag e. Similarly, NRC can be treated as a "nested list calculus" by treating {) as the empty list, el U e2 
as the concatenation of list el to  the list e2, and U{e1 I x E e) as flatmapping the function Xx.e1 over 
the list e. It is easy to  check that the rewriting rules given in this section are valid for bag semantics as 
well as for list semantics. So the same proof above works for "nested bag calculus" and for "nested list 
calculus." In fact, it works even in the presence of variant types. 

The uniformity of this proof allows us to  draw a few useful conclusions. It has been observed earlier 
that the translations between RSA and NRC preserve set height. Therefore, the General Conservative 
Extension Theorem holds also for "relative bag abstraction" and for "relative list abstraction." Similarly, 
it follows that it holds also for "nested bag algebra" and for "nested list algebra." [It must be remarked 
that these conclusions cannot be reached from the proof given in Section 3. The proof in Section 3 
does not work when RSA is interpreted using a list semantics. This is because one of the rules used in 
Section 3 (namely rule 1) is not valid as list concatenation does not commute.] 

Naturally RSA can be extended with exactly the same variant type constructs presented in this section 
without affecting the theorem on general conservative extension. Although no detail of NRA is given 
in this report, it is worth mentioning the extension of NRA with variant mechanism as it is quite 
interesting. The expected coproduct constructs leftsyt : s + s + t ,  rightslt : t + s + t ,  and (f lg) : 
s + s' -, t where f : s + t and g : st + t must be added. In addition, to retain the simplicity of the 
translations between NRC and NRA given by [7], we must also add an operator ~ ~ * ~ 9 ~ '  : s x (t + t') + 

(s x t )  + (s  x t'). The operator S basically pushes the left and right injections over a product. That 



is, it satisfies S o (f,  left) = left o (f, i d )  and S o (f, right) = right o (f, i d ) .  It is then a straight forward 
exercise to  maintain height preserving translations between NRA+ and NRC+. 
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