
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

July 1992

A Conserative Property of a Nested Relational Query Language A Conserative Property of a Nested Relational Query Language

Limsoon Wong
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Limsoon Wong, "A Conserative Property of a Nested Relational Query Language", . July 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-59.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/472
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76359197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/472
mailto:repository@pobox.upenn.edu

A Conserative Property of a Nested Relational Query Language A Conserative Property of a Nested Relational Query Language

Abstract Abstract
We proposed in [7] a nested relational calculus and a nested relational algebra based on structural
recursion [6,5] and on monads [27,16]. In this report, we describe relative set abstraction as our third
nested relational query language. This query language is similar to the well known list comprehension
mechanism in functional programming languages such as Haskell [ll], Miranda [24], KRC [23], etc. This
language is equivalent to our earlier query languages both in terms of semantics and in terms of
equational theories. This strong sense of equivalence allows our three query languages to be freely
combined into a nested relational query language that is robust and user-friendly.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-59.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/472

https://repository.upenn.edu/cis_reports/472

A Conservative Property Of A
Nested Relational Query Language

MS-CIS-92-59
LOGIC & COMPUTATION 48

Limsoon Wong

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

July 1992

A Conservative Property of a Nested Relational Query Language *

Limsoon Wong

Department of Computer and Information Science
University Of Pennsylvania

Philadelphia, PA 19104-6389, USA

1 Summary

We proposed in [7] a nested relational calculus and a nested relational algebra based on structural
recursion [6, 51 and on monads [27, 161. In this report, we describe relative set abstraction as our third
nested relational query language. This query language is similar to the well known list comprehension
mechanism in functional programming languages such as Haskell [ll], Miranda [24], KRC [23], etc.
This language is equivalent to our earlier query languages both in terms of semantics and in terms
of equational theories. This strong sense of equivalence allows our three query languages to be freely
combined into a nested relational query language that is robust and user-friendly.

Every expression of relative set abstraction can be reduced to a normal form. This normal form has
an immediately apparent property that is very interesting: an expression i n normal form does not have
any subexpression with set height exceeding the set height of the type of the expression. One way to
view this result is to classify expressions of the language into a hierarchy of sublanguages Lo, L1, ...,
where L, consists of expressions of height not exceeding n. Then every expression in L, whose type
has height n is equivalent to an expression in L,. Consequently, L, is a general conservative extension
of all L, where n < m.

In particular, one can obtain the conservativeness of relative set abstraction with respect to the tradi-
tional flat relational algebra from this observation. That is, if an expression denotes a function from
several flat relations to a flat relation, then this function is expressible in the traditional flat relational
algebra. The converse that every function definable by flat relational algebra is definable using relative
set abstraction is also true. The connection is therefore very tight.

These results have several consequences that are very easy to derive. From the existence of normal form
of definable functions, one can readily check that conditional on base type is not definable as there is
no normal form that defines it. Similarly, the existence of normal form can be used to show that every
definable function of type { s) i b must be a constant function. From the fact that our language is

'Extended abstract to appear as "Normal forms and conservative properties for query languages over collection types"
in the Proceedings of PODS'93.

a conservative extension of flat relational algebra, we know that it cannot express transitive closure.
This latter observation has an immediate consequence: transitive closure cannot be expressed in the
language proposed by Abiteboul and Beeri without using the powerset operator.

Due to the robust connection between relative set abstraction and our two earlier languages, all the
results mentioned above also hold for these languages. That is, they hold for nested relational calculus
and for nested relational algebra. Hence we have filled in some of the gaps left by other researchers. To
begin with, Paredaens and Van Gucht [17, 181 showed that the nested relational algebra of Thomas and
Fischer [20] is conservative with respect to flat relational algebra in the sense we have described. The
Thomas and Fischer algebra is a very restricted query language where all operators can be applied only
to the topmost level of relations. Our result extends Paredaens and Van Gucht's to a richer language.
Hull and Su proposed a nested relational query language in which powerset is expressible and studied
its expressive power [12]. One of their result is that it is not conservative with respect to the flat
relational algebra in our sense. Grumbach and Vianu proved in [8] that the language of Hull and Su
is not conservative with respect to set height of input/output at all. In constrast, our language cannot
express powerset and is conservative with respect to set height of input/output. This helps clarify the
role of powerset in the expressive power of query languages.

The general conservative extension result can be further improved in two ways. Firstly, Many modern
data models possess an additional data structuring mechanism known variously as coproducts, variant
types, sum types, or tagged unions (see Abiteboul and Hull [3] and Hull and Yap [13] for example).
However, many papers on expressive power excluded this feature from consideration [12, 8, 21. We
extend the nested relational calculus of [7] with variant types and prove that the extended calculus
remains conservative with respect to height of input/output.

Secondly, the proof we give for relative set abstraction relies on a set-based semantics. This is in line
with the work of many researchers as reported in Abiteboul et. al. [I], Abiteboul and Beeri [2], Hull
and Su [12], Grumbach and Vianu [8], Paredaens and Van Gucht [17, 181, Gyssens and Van Gucht [lo],
etc. But our languages can be given interpretations based on bags and lists too. It is desirable to know
whether our main result holds when the languages are given list- and bag- semantics. We prove that it
does. Moreover, the proof is uniform across these semantics.

The organisation of the remainder of this Report is as follows. Section 2 introduces relative set abstrac-
tion and the nested relational calculus of our earlier paper [7]. We establish translations between these
languages that preserve semantics, preserve set heights, and preserve and reflect equational theories.
Section 3 presents our main result that our query language is conservative with respect to set height
of input/output. The general conservativeness result is specialised to conservativeness with respect to
flat relational algebra in Section 4. In section 5 we present some easy-to-prove corollaries. The two
improvements to the main theorem mentioned above are presented in the final section.

2 Relative set abstraction as a nested relational language

Wadler and Trinder argued that list/set/bag comprehension is a natural query notation [22, 21, 281.
They also demonstrated that this notation does not hamper query optimization. In this section we
present a query language based on comprehension that is equivalent to our nested relational algebra

and nested relational calculus. We call this query language Relative Set Abstraction (or RSA for short).

Types. A type in relative set abstraction is either an object type s or is a function type s -+ t where
s and t are both object type. The object types are given by the grammar:

s , t ::= unit (b 1 s x t I { s)

Expressions. The expressions of relative set abstraction are formed according to the rules below. Note
that the lexical ordering of X I E e l , . . . , x n E en in {e 1 x l E e l , . . . , x n E en) is significant. It must
be pointed out that x; E e; is not a set membership test. It is the introduction of a variable binding,
similar to that of lambda abstraction Xx.e. It is to emphasize this point that we call this language
relative set abstraction. We use the notation A as a shorthand for X I E e l , . . . , xn E en. The scope of
a set abstraction variable xi in {e 1 A , x ; E e ; , A 1) is A' and e. We adopt the usual convention that
distinct variable bindings be given distinct variables. Type superscripts are usually omitted, since they
can be inferred. As in [7], booleans are represented by the two values of type {un i t) , with {()) for true
and {) for false. Equality test eqb is restricted to base type b.

e : t e l : s - + t e2 : s
x s : s () : unit XxS.e : s -+ t el e2 : t

el : { s) e2 : (3)

el U e2 : { s } not : {un i t) -+ {un i t) eqb : b x b -+ { u n i t)

e : s el : (~ 1) ... en : (3,) e : t

{ e l : i s) { e I xsl E e l , ..., x z E e n) : { t) c : b

Semantics. The intended semantics is that of sets and functions. A detailed specification is omitted;
but for the Reader who is familiar with the usual notations of denotational semantics [19, 91,

Examples. { (x , y)l x E X , y E Y) denotes the cartesian product of the sets denoted by X and Y.
{ y J x E X , y E x} denotes the flattenning of the set denoted by X.

Equational Theory. We do not have a complete set of axioms yet. However, for the purpose of this
report, we treat not and eqb as uninterpreted constants and use the axioms of our nested relational
calculus [7] with the following changes: drop all the rules concerning the U{el I x E e } construct (to be
described shortly) and add the rules below.

This simple language is equivalent to our nested relational calculus. The remainder of this section is
devoted to working out the translations. First let us sketch the calculus of [7] (or N R C for short). We
have also taken the liberty of using the more suggestive syntax U{et I x E e) in place of the ext(Xx.ef)(e)
syntax of [7]. The reader is referred to [7] for a more detail account.

Types. Same as relative set abstraction.

Expressions. Same as relative set abstraction but replace the {e I A) construct by the construct
U{e' I x E e) whose typing rule is

e : { s) el : { t)
U{e f I xS E e } : { t)

Semantics. The intended semantics of U{et I x E e) is to flat-map the function denoted by Xx.et over
the set denoted by e. That is, for the Reader who is familiar with standard notations of denotational
semantics [19, 91,

IUle' I x E e)Rp = U I I ~ ' I P [~ / x I
d€[elp

Examples. U { U { { (x , y)} I x E X) I y E Y) denotes the cartesian product of the sets denoted by X
and Y . U{U{{(n l x , y)) I y E 7r2 x } 1 x E X) denotes the unnesting of the set denoted by X. Finally,
to project the left component of pairs inside a set of sets X, U{{U{al y I y E x)) I x E X) . The last
example is noteworthy because it demonstrates "nested projection."

Equational Theory. We list the axioms concerning U{e' I x E e) below.

U{et 1 x E { e) } = e'[e/x] U { { X } 1 E e l = e

Having introduced the languages, it is time to show that they are equivalent. In fact, we prove that
they are equal both in terms of semantics and in terms of equational theories. To this end, we need a
translation NR[-] taking an expression e : s of N R C to an expression N R [e] : s of R S A and a translation
RN[.] taking an expression e : s of R S A to an expression R N [e] : s of N R C . The translations are
straight forward. The only non-trivial rules are:

N R [e l] = ei N R [e 2] = ek where y is fresh.
N R [U { e l 1 x E e2)l= {Y I x € 4 , ~ ~ e i)

Then relative set abstraction and nested relational calculus are equivalent.

2.1 Theorem

r Every closed e of N R C denotes the same value as N R [e] .

r Every closed e of RSA denotes the same value as R N [e] .

Moreover, the translations preserve and reflect the equational theories of these languages.

2.2 Theorem

r RSA t- N R [R N [e]] = e

a N R C t- R N [N R [e]] = e

r N R C t- el = e2 if and only if R S A t- N R [e l] = N R [e 2]

RSA t- el = e2 if and only if N R C t- R N [e l] = R N [e z] .

Since our nested relational calculus does not have membership test, or anything that looks like a nesting
operation, we show that they are definable. In [7], it was established that equality test eq, on all object
type s can be used to simulate membership test, subset test, set difference, set intersection, and relational
nesting. Therefore, it suffices for us to prove that eq, is definable in R S A for all s.

2.3 Proposition

Equality at all types are definable i n R S A .

Proof. Let eq, be the equality test at type s. It can be defined by induction on s.

r eqb is given.

It then follows from the equivalence between N R C and the nested relational algebra of [7] (denoted by
NRA) that relative set abstraction is also equivalent to NRA.

3 Every definable function is definable using operators whose set
height is atmost the set height of the input/output of the function

In this section the main result of the report is proved. The content of which is given in the section title
above. Let us first explain what the theorem is about. The set height h t (s) of a type s is defined by
induction on the structure of type:

Note that every expression of our languages has a unique typing derivation. Then the set height of
expression e is defined simply as h t (e) = max{ht(s) I s occurs in the type derivation of e) . Then the
theorem expresses a very general conservative property. It says that to process information (that is,
input/output) of set height n , no operators whose set height exceeding n is required. In other words, if
a function whose input/output has height n is defined by an expression e whose height exceeds n, we
can find an alternative expression e' whose height does not exceed n to implement it. More prosaicly,
using intermediate expressions of greater height does not increase horsepower.

The proof is straight forward for relative set abstraction after a normal form result is established. Then
by showing that the translations between our languages preserve set height, the result is transferred to
the calculus and the algebra.

3.1 Theorem (Normal Form)

Every expression of R S A can be reduced to an expression such that in every subexpression of the form
x E {e I x l E e l , . . . , x , E e,), all the e; are not of the form {e I A) , e U e, {), or { e) ; and there
is no subexpression of the form (Xx.e)el, n l (e , e) , or n 2 (e , e) . Moreover, i f e is reduced to el, then
RSA k e = e'.

Proof. Consider the following transformation rules which progressively eliminate subexpressions that
do not satisfy the requirement of the theorem. We use C[-] to stand for a context with a hole and C[e]
for plugging e into the hole of context C[.].

1. C[{e I A l , x ~ e ~ U e 2 , A 2 }] - C [{ e I A l , x E e l , A 2) U { e I A l , x E e a , A 2)]

2. C[{e I A,, x E {ell A'), A,}] - c[{e[e1lx1 I Ai, A', A2[e1/x1)1

3. C[{e I A,, x E {e l) , A211 - C[{e[ellxl I Al, A2[e1/x1)1

Each transformation corresponds t o an axiom in the equational theory of relative set abstraction. The
normal forms of this rewriting system clearly satisfy the requirement of the theorem. It remains to show
that the rewriting system is terminating. In fact, we prove a stronger property: the rewriting system is
strongly normalising.

Let cp maps variable names to a natural number greater than 1. Let cp[n/x] be the function which
assigns n to x but agrees with cp on other variables. Let Ilellcp, defined below, measures the size of e in
the environment cp where each free variable x in e is given the size cp(x).

II{en I 21 E eo, . - - ,xn E e n - i) l l ~ = (leo(lcpo - ... - Ilenllcpn, where cpo = cp and q;+1 = cp;[lle;llcp;/~;+~].

A lemma. Let cpl and cp2 be such that for every x , cpl(x) 5 cp2(x). By a routine induction on e , we
have Ilellcpl I Ilellcp2. A corollary of the lemma. Let I(elJ(cp 5 n. By an induction on e and the
previous lemma, we have Ile[el/x] llcp I Ilellcp[n/x]. NOW it follows readily that for any choice of c p , e --t e'
iniplies Ilellcp > Ile'llcp.

It is now easy to prove the main theorem.

3.2 Theorem (General Conservative Extension)

Let e : s be an expression of RSA. Then there is an expression el such that h t (e l) 5 max({h t (s) } U
{ h t (s) I s is the object type of a free variable i n e)) . Moreover, RSA F e = el.

Proof. Let e' be normal-form of e. Now we verify its height by structural induction on it. Let k be
the maximum height of the free variables in e.

Case er : s is x, {I, c , eqb, not, or 0. Immediate.

Case e' : s is {e"}. Immediate by hypothesis on e".

Case er : tl x t2 is (el, e2). By hypothesis, ht(el) 5 max{k, ht(tl)} and ht(e2) < max{k, ht(t2)}. Then
ht(er) = max{b, ht(el), ht(e2)) < max{k, ht(s)).

Case er : tl -+ t2 is XX.~". By hypothesis, ht(eU) 5 max{b, ht(t2)}. So ht(er) = max{ht(s), ht(eU)) 5
max{b, ht(s)).

Case er : s is nl e" or ~2 e". Then e" must be a free variable or is a chain of projections on a free
variable. The case thus holds.

Case e' : {t} is {e" I XI E e l , . . ., x, E en). By hypothesis, ht(ei) 5 max{k, l+ht(xl) , . . ., l + h t (~ ; - ~)) .
Now we show by induction on i that the 1 $ ht(xj) can be replaced by 1. Starting with el. If
el is of the form not(-) or of the form eqb(-), then ht(xl) = 0. Otherwise, el must be a chain of
projections on a free variable, then ht(xl) 5 b. In either case, ht(ei) 5 max{k, 1,1+ ht(x2), . . . ,1+
h t (~ ; - ~)) . The analysis can be repeated for the remaining ei. Then ht(ei) 5 max{k, 1). By
hypothesis, ht(eU) 5 max{k, ht(t)}. Then ht (er) = max{k, ht(s), ht(en), ht(el), . . . , ht(e,)} 5
max{k, ht(s)}.

It is straight forward to see that for any e of NRC, ht(e) = ht(NR[e]); and for any e of RSA,
ht(e) = ht(RN[e]). Consequently, the above result can be transferred to NRC. The translations given
between N R C and N R A in [7] do not preserve set height of expressions. However, if we add ext(f),
eztz(f) , and map2(f) to N R A as primitives and use them to replace p o map(f) , p o map(f) o p2, and
map(f) o p2, the translations do preserve set height. Thus the above result also holds for N R A .

As remarked earlier, the above theorem implies height of input/output dictates the kind of functions
that our languages can express. In particular, using intermediate expressions of greater heights does
not add expressive power. This is in contrast to languages considered by [2, 1, 12, 81 where the kind of
functions that can be expressed is not characterised by the height of input/output and is sensitive to the
height of intermediate operators. The principal difference between our languages and these languages
is that powerset is not expressible in our languages [7] but is expressible in those other languages. This
indicates a non-trivial contribution to expressive power by an operation such as a powerset. Although
the precise nature of the contribution remains to be characterised.

This result has a practical significance. Some databases are designed to support nested sets up t o a
fixed depth of nesting. For example, Jaeschke and Schek [14] consider nonfirst normal form relations in
which attribute domains are limited to powersets of simple domains (that is, databases whose height is
atmost 2). "RSA restricted to expressions of height 2" is a natural query language for such a database.
But knowing that R S A conservatively such a language, one can instead provide the user with the
entire language R S A as a more convenient query language for this database, so long as queries have
input/output height not exceeding 2.

4 Every definable function on flat relations is expressible in flat
relational algebra

It is our thesis that if a function definable in our languages has a type that is admissible in a relational
database (that is, the height of the type is I) , then this function is definable in the traditional flat
relational algebra. This is a consequence of the main theorem. However, as flat relational algebra
[15, 41 looks quite different from our languages, it is necessary for us to provide a little more detail. In
this section we demonstrate that our languages are indeed conservative with respect to flat relational
algebra. Let us introduce a brand of flat relational algebra which we denote by I R A .

Types. The 0-types, corresponding to tuples of atomic values, are given by 0 ::= unit I b I 0 x 0.
The 1-types, corresponding to tuples of relations, are given by S ::= (0) I S x S. The query types,
corresponding to queries on relations, are all of the form S + (0).

Basic Operators. The basic operators of flat relational algebra are listed (and implemented) below.

a 11 : (01 x 0 2) -+ {O1). This is the relational project on the left colunln of a binary relation. It
is implemented in R S A by Xx.{rl y I y E x).

a cmmt : (01 x02) -+ {02x01}. This swaps the two columns of a binary relation. It is implemented
in R S A by Xx.{(sz y, sl y) I y E x).

a assc : (01 x (02 x 03)) -+ ((01 x 02) x 03). This shifts the tupling brackets around in th obvious
way. It is implemented in R S A by Xx.{((n~ y, nl(na y)), nz(r2y)) I y E x).

copy : (0) -+ {0 x 0) . This duplicates the input relation. It is implemented in R S A by
Xx.{(y, y) I y E x). This operator and the previous three together captures all possible ways of
doing relational projections.

cartprod : {01) x (0 2) -+ (01 x 0 2) . This is the cartesian product. It is implemented in R S A
by Xx.{(y,z) I Y E TI 2, ~2 x).

a minus : (0) x (0) -+ (0). This 'substracts' the second input from the first. That is, it is
the asymmetric set difference operator. It is implemented by in RSA by Xx.{y 1 y E nl x, z E

not (0 I w E T 2 2, eqo(y, ~ 1)) .
union : (0) x (0) -+ (0). This is set union. It already exists in R S A as U.

select(Pl, P2) : (0) -+ {0), where PI : 0 -t 0' and P2 : 0 -+ 0' are expressions constructed
from: P ::= id I (P, P) (P o P I nl (s z I K c I K () . It is the selection operator. Intuitively,
select(Pl, P2) is equal to the N'RC expression ezt(Xxo.if eqot(Pl xO, P2 xO) then {x) else (1).
Although the conditional is not a primitive of NRC, it is expressible in N R C (as it is a conditional
on set type) by exploiting the fact that the cartesian product of the empty set with any set is the
empty set.

Other items such as K { () } that expresses the constant relation (0). They are not very important
and we omit the details.

From the foregoing description, it should be clear that every query in I R A is expressible in RSA,
NRC, and N R A using expression of height 1. It remains for us t o sketch a proof of the converse.

4.1 Theorem (Conservative Extension)

Every closed RSA, NRC, and N R A expression e : S -+ (0) is expressible in I R A .

Proof (Sketch). By the Normal Form Theorem, it suffices for us to exhibit a translation from such
R S A expression to I R A . In fact, it suffices for us to explain how to express a normalised E = { e (A)
containing a single free variable z of type S in I R A . We do it step by step.

Step 1. Replace all xunit in E by 0. Let the resulting 'pseudo' expression by El.

Step 2. El may be badly formed since it can have subexpression of the form () E El. Replace each ()
that appears in this situation by a fresh variable yunit. Let E2 be the result.

E2 is now a wellformed expression of RSA. Moreover, if yunit appears in Ez, it appears exactly once
and only as yun2t E E'. Because we started with a normalised expression, such El must be of the form
proj z, eqb e', or not el, where proj z is a chain of projections on z.

Step 3. Shuffle the set abstractions in E2 to get an expression of the form: {e 1 xl E proj z , ..., x, E
I proj z, y: E eqb ei , ..., ym E eqb e',, y: E not ey, ..., y[E not ei). Let the result be E3. We can do this

shuffling because the y are never used anywhere.

Step 4. Let E4 = A minus (B1 U ... U Bk) where A, B1, ..., Bk are obtained from E3 as below. It
should be obvious that E4 and E3 are equivalent.

A = {e I xl E proj z, ..., x, E proj z, yi E eqb ei, ..., yh E eqb eh)

B; = {e I x1 E proj z, ..., x, E proj z, y,!' E ey}

At this point, B; are smaller expressions that have the same form as E, the expression we started off
with. (Well, actually some of the e r may be of the form eleft U e,;,ht. But the U can be pulled out to
yield the right form.) So the above steps can be repeated to progressively replace the rest of the not by
minus. After that the only form of set abstractions we have to deal with is that of A.

I In A, since we started off with normalised expression of height 1, it is the case that e, e i , ..., em are
all height 0. So they must be built entirely out of projections, tupling, 0, and variables (xl, ..., x,) of
height 0. It is easy t o see that A can be expressed in T R A by an expression of the form MI o M2 o M3
where M3 is a chain of cartesian products, M2 is a chain of selections, and MI is a chain of projections.

Therefore, we conclude that queries definable in flat relational algebra are exactly those definable
functions of relative set abstraction which have flat relational query types. This connection is extremely
tight.

Paredaens and Van Gucht [18,17] proved a similar conservative extension result for the nested relational
algebra of Thomas and Fischer [20]. The Thomas and Fischer algebra is very restrictive and its operators

can be applied only t o the topmost level of nested relations. Therefore our result in this section can be
regarded as an extension of Paredaens and Van Gucht's.

The key to the proof of the Conservative Extension Theorem is the Normal Form Theorem. The heart
of Paredeans and Van Gucht's proof is also a similar normal form result. However, their normal form
result is a normal form of logic formula and the intuition behind their proof is mainly that of logical
equivalence. In our case, our inspiration comes from a well known optimisation strategy (and we cannot
resist citing Wadler's early paper [25, 261, which has a very amusing title, on this subject). In plain
terms, we have evaluated the query without looking at the input and managed to flatten the query
sufficiently until all intermediate operators of higher heights are "optimised out." This idea is succintly
summarised by the rewriting rule C[{e I Al, x E {ell A'), A,}] - C[{e[e'/x] I Al , A', A2[e'/x])] which
eliminates the intermediate set built by {ell A').

5 Some easy consequences of these results

In the course of proving our main result, we have shown that expressions of relative set abstraction can
be reduced to very simple normal forms. Nornial forms can be exploited in many proofs of undefinability
by showing that there is no normal form that defines the desired function. An ripe example of this sort
is the undefinability of conditional on base type.

5.1 Corollary

A conditional on base type is a function cond : {unit) x b x b + b such that cond(co, (el, c2)) is equal
to cl if co is equal to {()) and is equal to c2 if co is equal to {). A is not definable in RSA, N R A , and
N R C .

Proof. It suffices to check that there is no R S A normal form that defines cond : {unit) x b x b + b.
Suppose to the contrary that it is definable. Then it is definable by a closed normal form X X . ~ . But e
cannot be any of the following: (), {), (el, ez), {el I A), el U ea, not el, eqb e', nl x, or n2 x, because
they do not have type b. It cannot be any of the following either: c of type b, n2(nl x), or r2(n2 x),
because they are clearly not the conditional. As there are no other alternatives, we have arrived at a
contradiction. So conditional on base type is not definable in our languages.

Here is another example of this nature that illustrates the fact that there is no way to "get out of sets"
in our languages.

5.2 Corollary

Every definable function of type {s) + b must be a constant function.

Proof. We show that all normal forms of type {s} + b without free variables are constant functions.
Let Xx.e : {s) + b be a normal form. Suppose e is not the constant c or (). Then e must look like
(e , e), e U e, {), {e I A}, not(e), eq b(e), or is a projection on the variable x. But all of these alternatives

are badly typed. So Xx.e is a constant function. EI

There are a number of well known theorems in flat relational query languages. The tight relationship we
have demonstrated between our query language and the flat relational algebra enables us to draw a few
(otherwise not so obvious) conclusions. An example of this is the undefinability of transitive closure.

5.3 Corollary

Transitive closure is not expressible in RSA, NRC, and NRA.

Proof. Suppose it is expressible. Then we can express transitive closure of a binary relation on a base
type (such as integer). Since this is a function from a flat relation to a flat relation, by the Conservative-
extension theorem, it is expressible in flat relational algebra. This contradicts the well known result on
flat relational algebra (see Aho and Ullman [4] or Maier [15]). Hence it is not definable in our languages.

It was worked out in a previous paper [7] that the language of Abiteboul and Beeri [2] is obtained by
adding the powerset operator to NRC. If the purpose of this addition is t o increase expressive power,
it is unlikely to be practical. The reason is that practically all the interesting new queries that can
now be written must involve the expensive powerset operation. Transitive closure is an example that
immediately comes to mind.

5.4 Corollary

Transitive closure can only be expressed in the language of Abiteboul and Beeri via an excursion through
the powerset.

6 Two extensions to the main theorem

In this final section, we extend NRC to NRC+ by a variant type mechanism. Then we provide a proof
that this extended language is conservative with respect to set height. Furthermore, the proof holds
uniformly when the language is interpreted under a set-, list-, or bag-based semantics.

Types. Variant types are added to the language. If s and t are object types, then the variant type
s + t is also an object type. Basically, the domain of a variant type s + t is the union of the domains of
s and t but values from s are tagged with a 1-tag and values from t are tagged with a %-tag.

Expressions. Three new constructs are required to manipulate variant objects. Their formation rules
are listed below:

e : s e : s el : sl + ~2 e2 : t e3 : t
leftt e : s + t rightt e : t + s case el of left xS1 + e2 I right xS2 + e3 : t

Semantics. We offer an informal explanation. left e injects e into a variant object by tagging the
object denoted by e with a 1-tag. right e injects e into a variant object by tagging the object denoted
by e with a 2-tag. case el of left x + e2 I right y + e3 processes the variant object denoted by el
as follows. If el is equal to left e , then the case expression is equal to e z [e / x] . If el is equal to right e ,
then the case expression is equal to e3[e /x] . That is, the left or the right branch is taken depending on
whether el has a 1-tag or a 2-tag respectively.

Example. U{(case x of left y + { y) I right z + {)) I x E X) denotes the selection of items that
are 1-tagged in the set X.

Let us now proceed with our last result.

6.1 Theorem

Let e : s be an expression of N R C + . Then there is an equivalent expression el such that h t (e f) 5
m a x ({ h t (s)) U { h t (s) I s is the object type of a free variable in e)) .

Proof. Consider the following rewriting systems.

1. C[(Ax.e)el] - C[e[e' /x]]

2. C [~ l (~ l , ez)] --+ C[e11

3. C[n2(el7 e2)] ..-t C [e2]

4. C[e (case el of left x + e2 I right y e3)] --t C[case el of left x + e e2 I right y + e e3]

5 . C[n; (case el of left x + e2 I right y + e3)] - C[case el of left x + n; e2 I right y + 7ri e3]

6 . C[case left e of left x + en I right y + es] - C[e2[e /x]]

7 . C[case right e of left x + e2 I right y + e3] - C[e3[e/x]]

8. C[case (case ei of left x' + e', I right y' + e$) of left x + e2 I right y j e3] I.,
C[case ei of left x1 + (case e', of left x + e:! I right y + e3) I right y' + (case e$ of left x +
e2 I right y * e3)l

11. C[U{e I x E {e '))] --t C[e[e ' /x]]

13. C[U{el (X I E (case e2 of left x:! 3 e3 (right 23 =. e4))] --+ C[case e2 of left x2 =+ U{e l I x1 E
e3) I right 2 3 + U{el I X I E e4}1

Let k = max{ht(t) I t is the object type of a free variable in e}. Suppose e has a normal form e' under
the above rewriting rules. We show by structural induction on e' that e' satisfies the requirement of the
theorem.

Case et : s is a chain of projections on a variable, (), {}, not, eqb, or c. Immediate.

Case e' : s is Xx.el where x : sl and el : 52. Then s is sl + 5 2 . We have ht(el) 5 max(k, ht(s2), ht(sl))
by hypothesis. But ht(et) = max(ht(sl), ht(el)). So ht(et) 5 max(k, ht(s)).

Case et : s is (el, e2) where el : sl and e2 : sz. Then s is sl x 52. By hypothesis, ht(el) 5 max(k, ht(sl))
and ht(e2) 5 max(k, ht(sz)). So ht(ef) = max(ht(el), ht(e2)) < max(k, ht(s)).

Case e' : s is not el . Then s is {unit) and el : {unit}. Then ht(et) = ht(el). The case holds by
hypothesis on el .

Case e' : s is eqb el. Then s is {unit} and el : b x b. Then ht(e1) = max(ht(s), ht(el)). By hypothesis,
ht(el) 5 5. The case holds.

Case e' : s is el U e2. Then ht(ef) = max(ht(el), ht(e2)). By hypothesis, ht(el) 5 niax(k, ht(s)) and
ht(e2) 5 max(k, ht(s)). Therefore, ht(et) 5 max(k, ht(s)).

Case et : s is {el} where el : sl. Then s is {sl}. By hypothesis, ht(el) < max(k, ht(sl)). So ht(et) =
max(ht(el), ht(s)) 5 max(k, ht(s)).

Case e' : s is U{el I x E e2) where e2 : isz}. Because e' is a normal form under rules 1 to 12, e2 must
be a chain of projections on a variable or has the form not e3 or eqb e3. Hence ht(e2) 5 max(k, 1).
So ht(x) = ht(e2) - 1 5 k. Then, by hypothesis, ht(el) 5 max(k, ht(x), ht(s)) = max(k, ht(s)).
Then ht(ef) = max(ht(s), ht(el), ht(e2)) 5 max(k, ht(s)).

Case e' : s is lefts2 el where el : s l . Then s is sl + s 2 . By hypothesis, ht(el) 5 max(k, ht(sl)). So
ht(et) = max(ht(el), ht(s)) < max(k, ht(s)).

Case e' : s is right el. Similar to previous case.

Case e' : s is case el of left x + ez I right y + e3 where el : sl + 5 2 . Then x : s l , y : 3 2 , e2 : s, and
e3 : s. Since e' : s is a normal form under rules 1 to 12, el must be a chain of projections on a free
variable. Hence ht(el) 5 k. Consequently, ht(sl) 5 k and ht(s2) 5 k. By hypothesis, ht(e2) 5
max(k, ht(x), ht(s)) = max(k, ht(s)). Similarly, ht(e3) 5 max(k, ht(y), ht(s)) = max(k, ht(s)).
Now ht(et) = max(ht(el), ht(e2), ht(es)) 5 max(k, ht(s)).

Finally, we have to show that the normal form et of e exists. To do this, we prove that the rewriting
system is strongly normalising. Let cp maps variable names to natural numbers greater than 1. Let
cp[n/x] be the function that maps x to n and agrees with cp on other variables. Let Ilellcp, defined below,
measure the size of e in the environment cp where each free variable x in e is given the size cp(x).

A lemma. Let cpl and cp2 be such that for every x, cpl(x) 5 cp2(x). By a routine induction on e, we
have Ilellpl 5 Ilellv2. A corollary of the lemma. Let Ile'Jlp 5 n. By an induction on e and the
previous lemma, we have Ile[el/x] llv 5 llelly~[n/x]. Then it is readily verified that whenever e w el, we
have Ilellp > Ile1llp for any choice of 9. Therefore, the rewriting system is strongly normalizing. This
completes the proof.

As remarked earlier in the report, variant mechanisms have been used in some data models such as [3]
and [13]. However, many earlier interesting works on expressive power omitted them from considerations
[12, 8, 21. We hope the above result have rectified this situation to some extent.

Our languages have been given semantics based on sets. These languages can be given semantics based
on bags or on lists. For example, NRC can be treated as a "nested bag calculus" by interpreting {) as
the empty bag, el U e2 as union of bags, and U { e 1 I x E e) as flatmapping the function Xx.el over the
bag e. Similarly, NRC can be treated as a "nested list calculus" by treating {) as the empty list, el U e2
as the concatenation of list el to the list e2, and U{e1 I x E e) as flatmapping the function Xx.e1 over
the list e. It is easy to check that the rewriting rules given in this section are valid for bag semantics as
well as for list semantics. So the same proof above works for "nested bag calculus" and for "nested list
calculus." In fact, it works even in the presence of variant types.

The uniformity of this proof allows us to draw a few useful conclusions. It has been observed earlier
that the translations between RSA and NRC preserve set height. Therefore, the General Conservative
Extension Theorem holds also for "relative bag abstraction" and for "relative list abstraction." Similarly,
it follows that it holds also for "nested bag algebra" and for "nested list algebra." [It must be remarked
that these conclusions cannot be reached from the proof given in Section 3. The proof in Section 3
does not work when RSA is interpreted using a list semantics. This is because one of the rules used in
Section 3 (namely rule 1) is not valid as list concatenation does not commute.]

Naturally RSA can be extended with exactly the same variant type constructs presented in this section
without affecting the theorem on general conservative extension. Although no detail of NRA is given
in this report, it is worth mentioning the extension of NRA with variant mechanism as it is quite
interesting. The expected coproduct constructs leftsyt : s + s + t , rightslt : t + s + t , and (f lg) :
s + s' -, t where f : s + t and g : st + t must be added. In addition, to retain the simplicity of the
translations between NRC and NRA given by [7], we must also add an operator ~ ~ * ~ 9 ~ ' : s x (t + t') +

(s x t) + (s x t'). The operator S basically pushes the left and right injections over a product. That

is, it satisfies S o (f, left) = left o (f, i d) and S o (f, right) = right o (f, i d) . It is then a straight forward
exercise to maintain height preserving translations between NRA+ and NRC+.

Acknowledgements. The author thanks Val Breazu-Tannen and Peter Buneman for many useful
discussions and invaluable suggestions, and Dirk Van Gucht for explaining a fine point of his conser-
vativeness result. The author is grateful to the National Science Foundation and the Army Research
Office for financial support.

References

[l] S. Abiteboul, C. Beeri, M. Gyssens, and D. Van Gucht. An Introduction to the Completeness of
Languages for Complex Objects and Nested Relations. In S. Abiteboul, P. C. Fisher, and H.-J.
Schek, editors, LNCS 361: Nested Relations and Complex Objects in Databases, pages 117-138.
Springer-Verlag, 1987.

[2] Serge Abiteboul and Catriel Beeri. On the Power of Languages for the Manipulation of Complex
Objects. In Proceedings of International Workshop on Theory and Applications of Nested Relations
and Complex Objects, Darmstadt, 1988.

[3] Serge Abiteboul and Richard Hull. IFO: A Formal Semantic Database Model. A C M Transactions
on Database Systems, 12(4):525-565, December 1987.

[4] Alfred V. Aho and Jeffrey D. Ullman. Universality of Data Retrieval Languages. In Prceedings 6th
POPL, Texas, January 1979, pages 110-120, 1979.

[5] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion as a Query Language. In
Proceedings of 3rd International Workshop on Database Programming Languages, pages 9-19,
Naphlion, Greece, August 199 1. Morgan Kaufmann.

[6] V. Breazu-Tannen and R. Subrahmanyam. Logical and Computational Aspects of Programming
with Sets/Bags/Lists. In LNCS 510: Proceedings of 18th International Colloquium on Automata,
Languages, and Programming, Madrid, Spain, July 1991, pages 60-75. Springer Verlag, 1991.

[7] Val Breazu-Tannen, Peter Buneman, and Lin~soon Wong. NatuaIly Embedded Query Languages. In
LNCS ?: Proceedings of International Conference o n Database Theory, Berlin, Germany, October,
1992. Springer-Verlag, To appear.

[8] Stephane Grumbach and Victor Vianu. Playing Games with Objects. In S. Abiteboul and P. C.
Kanellakis, editors, LNCS 470: 3rd International Conference on Database Theory, Paris, France,
December 1990, pages 25-39. Springer-Verlag, 1990.

[9] Carl A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foundations
of Computing. MIT Press, 1992.

[lo] Marc Gyssens and Dirk Van Gucht. A Comparison Between Algebraic Query Languages for Flat
and Nested Databases. Theoretical Computer Science, 87:263-286, 1991.

[ll] P. Hudak and P. Wadler. Report on the Programming Language Haskell. Technical Report go/?,
Glasgow University, Glasgow G12 8QQ, Scotland, April 1990.

[12] Richard Hull and Jianwen Su. On the Expressive Power of Database Queries with Intermediate
Types. Journal of Computer and System Sciences, 43:219-267, 1991.

[13] Richard Hull and Chee K. Yap. The Format Model: A Theory of Database Organisation. Journal
of the ACM, 31(3):518-537, July 1984.

[14] G. Jaeschke and H. J. Schek. Remarks on the Algebra of Nonfirst Normal Form Relations. In
Proceedings ACM SIGACT/SIGMOD Symposium on Principles of Database Systems, Los Angeles,
California, March 1982.

[15] David Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Maryland,
1983.

[16] Eugenio Moggi. Notions of Computation and Monads. Information and Computation, 93:55-92,
199 1.

[17] Jan Paredaens and Dirk Van Gucht. Possibilities and Limitations of Using Flat Operators in
Nested Algebra Expressions. In Proceedings of 7th ACM Symposium on Principles of Database
Systems,Austin, Texas, pages 29-38, 1988.

[18] Jan Paredaens and Dirk Van Gucht. Converting Nested Relational Algebra Expressions into Flat
Algebra Expressions. ACM Transaction on Database Systems, 17(1):65-93, March 1992.

[19] David A. Schmidt. Denotational Semantics: A Methodology For Language Development. Allyn and
Bacon, Inc., Boston, 1986.

[20] S. J. Thomas and P. C. Fischer. Nested Relational Structures. In P. C. Kanellakis, editor, Advances
in Computing Research: The Theory of Databases, pages 269-307. JAI Press, 1986.

[21] P. W. Trinder. Comprehension: A Query Notation for DBPLs. In Proceedings of 3rd International
Workshop on Database Programming Languages, pages 49-62, Nahplion, Greece, August 1990.
Morgan Kaufmann. In press.

[22] P. W. Trinder and P. L. Wadler. List Comprehensions and the Relational Calculus. In Proceedings of
1988 Glasgow Workshop on Functional Programming, pages 115-123, Rothesay, Scottland, August
1988.

[23] David Turner. Recursion Equations as a Programming Language. In J . Darlington, P. Henderson,
and David Turner, editors, Functional Programming and its Applications. Cambridge University
Press, 1982.

[24] David Turner. Miranda-a Non-strict Functional Language with Polymorphic Types. In LNCS
201: Proceedings of Conference on Functional Programming Languages and Computer Architecture,
Nancy, 1985, pages 1-16. Springer-Verlag, 1985.

[25] Philip Wadler. Listlessness is better than laziness. In Proceedings of ACM Symposium on Lisp and
Functional Programming, Austin, Texas, August 1984.

[26] Philip Wadler. Listlessness is better than laziness 11. In I-I. Ganzinger and N. D. Jones, editors,
LNCS 21 7: Programs as Data Objects. Springer-Verlag, October 1985.

[27] Philip Wadler. Comprehending Monads. In Proceedings of ACM Conference on Lisp and Functional
Programming, Nice, June 1990.

[28] David A. Watt and Phil Trinder. Towards a Theory of Bulk Types. Fide Technical Report 91/26,
Glasgow University, Glasgow GI2 8QQ, Scotland, July 1991.

	A Conserative Property of a Nested Relational Query Language
	Recommended Citation

	A Conserative Property of a Nested Relational Query Language
	Abstract
	Comments

	tmp.1187293882.pdf.FI3oR

