
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 1992

A Reconsideration of Preconditions A Reconsideration of Preconditions

Christopher W. Geib
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Christopher W. Geib, "A Reconsideration of Preconditions", . June 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-50.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/473
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F473&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/473
mailto:repository@pobox.upenn.edu

A Reconsideration of Preconditions A Reconsideration of Preconditions

Abstract Abstract
This paper is part of an attempt to introduce intentionality of the actor to planning decisions. As a first
step in this process the usual representations for actions used by planning systems must be reevaluated.
this paper argues for the elimination of preconditions and qualification conditions from action
representation in favor of explicit representation of intention, situated reasoning about the results of the
action and reactive failure mechanisms. The paper then describes a planning system that has explicit
representation and use of intentions and uses action representation that do not have preconditions.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-50.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/473

https://repository.upenn.edu/cis_reports/473

A Reconsiderat ion of Preconditions

MS-CIS-92-50
LINC LAB 228

Christopher W. Geib

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

June 1992

A Reconsiderat ion of Preconditions
Christopher W Geib

Department of Computer and Information Science,
University of Pennsylvania

200 South 33rd Street,
Philadelphia PA 19104-6389, USA

Internet: geibQlinc . cis. upenn . edu

Abstract

This paper is part of an attempt to introduce intentionality of the actor to planning
decisions. As a first step in this process the usual representations for actions used by plan-
ning systems must be reevaluated. This paper argues for the elimination of preconditions
and qualification conditions from action representation in favor of explicit representation
of intention, situated reasoning about the results of the action and reactive failure mecha-
nisms. The paper then describes a planning system that has explicit representation and use
of intentions and uses act ion represent at ions that do not have preconditions.

1 Planning and intention

The manner in which an agent chooses t o accomplish a given task is often
determined not only by the actual action or goal, but also by the agent's
other intentions. For example, breaking the door off its hinges is a way of
satisfying the goal of having a door open, however, this is not the first way
one would think of to achieve that goal.

We can see the role intentions play in our planning deliberations in two
ways. First, they can be seen as the ends of our deliberations that is to
say, those things that we want to achieve in the future. Second, they can
play a constraining role in the manner in which we chose to satisfy other
intentions. Bratman[3] gives a description of these two different facets of
intentions and their role in planning.

The goal of this work is to try to provide a principled treatment of in-
tentions within planning. Toward this end we must reevaluate the role of
preconditions in action representations. Preconditions have often implicitly
encoded intentions the agent must hold for an action to achieve its expected
effects. For example, in STRIPS[G] the action PICKUP(a) had as a pre-
condition that the block "a" must be clear. This is not logically required
for moving blocks; it is not even physically required. This condition must
be true only if the agent has intentions not to move other blocks or if the
objects on "a" make the action physically impossible for the agent in that
world state or if the objects on "a" would cause a result that is undesired
in the situation. Notice that all of these possibilities are dependent on the
situation in which the action is being taken.

In short, preconditions have encoded situation dependent information
(often specifically intentional information) in a universal manner. If we are
to have a principled treatment of intentions we must extract these intentions
and represent them explicitly. Explicit encoding of intentions and the use
of situated reasoning will allow us to eliminate preconditions from action
representation and will provide us with explicit intentions t o use in making
planning decisions. Section two of this paper will give arguments against
various kinds of preconditions; section three will describe a system that plans
without the use of preconditions. Section four will suggest future directions
for this research.

2 Eliminating Preconditions

In the introduction of this paper I suggested that it is possible to com-
pletely eliminate preconditions in action representation. First, we must ask
ourselves why we want to do this. In the case of this work, the reason is
clear. As we saw early in this paper some of the standard preconditions
for lifting blocks in the blocks world can be seen as encoding negative in-
tentions about moving other blocks. Since our goal is a clear and uniform
treatment of intentionality in planning, it is important for us to be explicit
in our representation and use of intentions.

The second question is whether it is possible to eliminate all precondi-
tions. They have a long and successful history in the planning literature,
and there are a number of problems that are conveniently solved by them.
If we are to eliminate preconditions we must find other solutions to these
problems. The next sections will discuss various definitions of preconditions,
discuss arguments against them, and sketch other solutions to the problems
they solve.

2.1 Preconditions vs. Qualifications

At this point, we need to set out some definitions. Preconditions are usually
defined as those conditions which must be true before an action is taken.
This definition is unclear at best, and so a further distinction is often made,
namely the distinction between preconditions and applicability conditions or
qualifications [ll].

Traditionally preconditions define when an action can be completed suc-
cessfully while qualifiers describe the situations in which an action (if com-
pleted successfully) is relevant to a goal. The basic difference between pre-
conditions and qualifiers is in how they are treated by the planner. If a
precondition for an action is false, an agent might attempt to make it true
in order to carry out the action. While if a qualifier for an action is false,
the action itself should be considered inappropriate or irrelevant. The next
two sections will examine ways in which preconditions and qualifiers define
the conditions required for the success or relevance of actions and how they
might be better replaced by other mechanisms.

2.2 Preconditions

A precondition might guarantee the success of an action in a number of ways.
First, we might say that a condition P is a precondition of an action a in that
it must be true before a is taken in order for a to have its intended effects.
For now let us leave aside the question of intentionality. Instead, we must
ask how do we determine the effects of the action? Any specific instance of
an action will have a number of effects; some of these effects happen every
time the action is performed while others are only the serendipitous result
of the situation in which the particular instance happened.

For example, our moving blocks example. Moving a block that is under
another block can have a number of effects. The block on top may fall
and break or it may remain balanced and move with the lower block. The
question is, when defining the action's effects exactly which of these effects
should we consider? Obviously, we do not want to talk about all of the
possible results of an action; we would like t o be able to say, preconditions
define those conditions required for the action to result in its "usual" effects.
This however dooms us to the very slippery slope of defining what is "usual."

At this point let us reintroduce the question of "intended" effects. Even
if we are able to define the usual results of an action, we must question which
of these effects are intended by the agent. Given the history of this debate
[3] [5] [7] it is far from clear that we can answer this question. It is certain
that, we cannot answer this question without appeal to the intentions of
the agent, and this information can only be determined at the time of an
action's execution. In our previous example, we can easily imagine instances
in which an agent intends each of the possible results. Therefore, in order to
complete a definition of this type, we would need to examine the intentions
of the agent each time the action is performed. Finally we must ask, do the
preconditions reflect only those conditions that must be true for the action
to result in only the intended effects? Certainly, the variability in intentions
even within one agent makes this type of definition impossible.

Second, we could say state P is a precondition of action a if it is necessary
that P hold before performing a in order to guarantee that a not have any
unintended effects. This definition has many of the same flaws as the last
one we considered. It again calls for us to define all of the effects of the
action or at least some fixed subset which are usual.

After determining the usual effects, we must decide which are unintended
by the agent. As before, the intentions of the agent can only be determined
at the time of the execution of the action, however, the problem of defining

the unintended effects of an action goes a step further than that of the
intended effects. Unintended effects fall into two distinct categories, known
versus unknown. That is to say, if an effect is not defined as a usual result
of the action does that make it unintended or simply unknown?

An explicit representation of intentions will solve this problem. If we
have explicit representations of positive and negative intentions, the problem
of unintended versus unknown effects is trivially solved. Those negative
intentions the agent holds are unintended. This gives us a clear distinction
between unintended and unknown effects.

Finally, we might define a state P as a precondition of action a in that
P must be true before a is undertaken in order that a can be completed
successfully. As an example, a precondition of lifting a block is that the
block not be too heavy to lift. That is to say, the action lift cannot be
successfully completed if the block is too heavy. It is often the case with
these preconditions that the agent cannot know if the precondition holds
unless he or she attempts the action, witness the weight of the block or
the presence of ink in a pen for writing. How else could we know if the
preconditions hold if we haven't taken the action?

This problem of foreknowledge has lead traditional planning theorists to
suggest that while we are aware of these sorts of conditions we do not worry
about them unless the action fails, for example, the famous "potato in the
tail pipe" of McCarthy. These conditions are not really preconditions at all.
They are more accurately explanations for the action's failure. Therefore,
this information should be used to explain the action's failure after the fact.

2.3 Qualifiers

As we mentioned before, qualifiers are used to determine the relevance of an
action. I argue, an action's relevance is determined by the world state and
the intentions of the agent rather than any other conditions. That is to say
an action a is relevant to achieving a state, S, just in the case cr can achieve
S in the current world state and S is not already true in the world. Other
systems have defined an action cr to be relevant only if its qualifiers are all
true.

As with preconditions, there are a number of kinds of qualifiers, and as
before, I will take each in turn and discuss why it can be eliminated. First,
a state Q might be a qualification condition of an action a if it is logically
required for the performance of a. For example, a logical qualification condi-
tion of the action "kill the King of France" is that there be a King of France.

However, notice that this action can be determined to be irrelevant by our
definition. Since there is no King of France it is impossible for any action
to achieve a state where he is dead. Therefore by our definition there is no
relevant action. Therefore, there is certainly no reason to include qualifiers
of this kind.

Second, a state Q might be a qualification condition of an action a if Q
is a physical qualification on the action. This sort of physical qualification
could take on two forms. First, a physical qualifier might be a relevance
condition. For example, a qualification condition on unplugging an object
is that the object be plugged in to begin with. This means, unplugging is
irrelevant if the object is not plugged in. Again this sort of painfully obvious
condition is rendered unnecessary by our definition of relevant actions. If
the object is plugged in and we want to change that state then any action
that achieves it will be relevant. Otherwise we need not consider actions.

However, a second kind of physical qualifier exists. These are similar
to the preconditions for successfully completing an action. For example, it
must be the case that an object is not irrevocably fixed to the ground if one
is to lift it. These sorts of conditions have all of the same properties as their
precondition counterparts, and so we will treat them in a similar manner.
Since knowledge of the condition of the qualifiers usually requires performing
the action, we can again eliminate these conditions in favor of dealing with
the failure of the action. It is interesting to note that qualification conditions
of this variety may in fact be preconditions where the actions necessary to
achieve them are deemed to be too expensive by the agent.

There is a final kind of qualification condition, arbitrary rules. An ex-
ample from everyday life is traffic regulations. It is not logically required
that a tr&c light be green before moving through an intersection, and we
can all attest to the fact that it is not physically required that the light be
green. However, we have a rule that we are not supposed to undertake an
intersection crossing action while the traffic light over the intersection is red.

This is certainly the weakest type of qualification condition. As we
know, these conditions are regularly ignored by human agents when they
believe the reasons for the rule are inoperative. As with most preconditions,
these qualification conditions are situation dependent rather than universal
in nature, and therefore should be eliminated in favor of situated reasoning
using the intentions of the agent.

3 ItPlanS

The Intentional Planning System (ItPlanS) is a first step toward a planner
that gives intentions the role in planning they deserve. It is a planning
system that currently operates in the blocks world. ItPlanS is similar to
hierarchical planners in that it recursively expands intentions, developing
lower level intentions until an intention is found that can be immediately
satisfied by a single action. This action is taken and the process is repeated.
The only structure maintained across each iteration is a list of the top level
intentions. This means that the decompositions for a given intention can
vary from iteration to iteration allowing ItPlanS to adapt its plan to a
changing world environment. Since ItPlanS is only finding the next action
based on the world state, the system's knowledge, and its intentions, it
might be more accurately viewed as an action theory rather than a planning
system. The following subsections give a detailed account of the system's
construction and operation.

3.1 Intentions in ItPlanS

In ItPlanS positive intentions are represented as predicates like ON(a,b) or
BROKEN(a) from the blocks world. These intentions are kept in an ordered
intention list. Since ItPlanS only reasons about a single agent and it will
take steps to achieve any intention it adopts, this representation is equivalent
to INTEND(ACHIEVE(ON(a,b))).

It is also possible to have negative intentions. That is to say, it is possible
to have an intention not to cause certain states to come about. For example,
in the blocks world I might not want to break blocks. I can state this as a
negative intention; I don't want to cause a state where BROKEN(X) holds
for any X. To represent this ItPlanS has a second intention list containing
only negative intentions. It is important to notice that negative intentions
are described as predicates just as positive intentions are. Negative inten-
tions can be interpreted as INTEND(NOT(ACHIEVE(predicate))). There
is however, a question about this interpretation; is this equivalent to IN-
TEND(NOT(HOLD(predicate)))? Notice that if the system is the only
agent of change in the world, these two options are the same. It is only
in the case where there are other agents in the world that these two diverge
in meaning.

The difference is in the licensing of preventive action.
INTEND(NOT(ACHIEVE(predicate))) would normally only prevent the

agent from acting to cause the predicate to become true. The question
is, will it license preventive action? Should the system take active measures
t o prevent the occurrence of some predicate by the action of some other
agent? In ItPlanS, I have made the assumption that regardless of the ex-
istence of other agents in the world, the system will not take measures to
prevent the other agents from acting in a manner that conflicts with its
negative intentions. In short, ItPlanS remains agnostic about the existence
of other agents, but will not take action to prevent possible interference.

Given this representation, one could argue that existing planning sys-
tems are already dealing with intentions; this is only partially true. Usually
systenls only deal with positive intentions; they do not represent the negative
intentions of the agent explicitly, and therefore lack the power of ItPlanS.

3.2 Action representation

Since action representations in ItPlanS have no preconditions, it is impossi-
ble for ItPlanS to use traditional backchaining on preconditions to produce
plans. Therefore, ItPlanS is designed after the decomposition methods of
hierarchical planners, and so makes a distinction between two different types
of actions in its ontology, primitive and complex. Primitive actions are ac-
tions in the traditional sense. They have a physical realization; that is, they
perform some operation on the world. Complex actions, on the other hand,
exist in order to perform the deconlposition of the system's intentions into
subintentions in the same way that actions in hierarchical planners decom-
pose goals into subgoals. It is also possible to understand the distinction
between complex actions and primitive actions as the distinction between
actions the system must "reason" about in order to perform versus those
actions the system can perform "without thinking."

3.2.1 Primitive Actions

As noted, in ItPlanS primitive actions are the basic actions the system is
capable of performing on the world. In the case of the blocks world there are
only three of these: GRASP, LETGO, and GOTO. The selection of these
actions and this number is arbitrary. The actions GRASP and LETGO have
the obvious effects on the end effector and they have no arguments. The
GOT0 action, on the other hand, moves the robot arm about the blocks
world, and does take an argument. This argument specifies the desired
location of the end effector at the end of the movement. For example, the

action GOTO(FRONT(a)) moves the end effector to the area in front of the
block labeled "a" ' .

GOT0 also has the effect of setting a focus for the special function
NEAR, a relative distance measure. Executing a GOTO(NEAR) brings the
effector close to the object in focus. Notice there is no argument to NEAR.
The argument is obtained from the last GOT0 action. This means the
series of actions GOTO(FRONT(b)), GOTO(NEAR) would at least have
as its consequences AT(FRONT(b)) and NEAR(b).

Each primitive action is defined by two sets of data. The first is a
set of likely outcomes of performing the action; we will call these possible
results. Possible result lists are designed to provide a concise, declarative
statement about what the system believes might result from a given action.
For example, a possible result of a GRASP action is INHAND(X) where X
is a block. It is important to notice that, the possible results of an action
may not occur every time the actions does. For example, INHAND(X) is
true after a GRASP action if and only if AT(FRONT(X)) and NEAR(X)
were true in the world before the action was performed.

The system also has a set of result rules which describe the effects the
system believes the action will have in given situations. Result rules are
designed to provide the information needed to simulate the effects of prim-
itive actions. These rules can be looked at as conditional add and delete
lists for the action. Each result rule has three parts. First, the condition, is
a list of predicates, the conjunction of which must be true in order for the
rule t o be applicable in simulating the action. Second, is a list of predicates
that should be added to the world model by the action and finally is a list
of predicates that should be deleted from the world model as a result of
the action. For example, if we take our previous example the system would
have a rule that stated that if AT(FRONT(X)) and NEAR(X) are true and
a GRASP is executed then INHAND(X) will result. The system should also
have a rule which states if INHAND(a) is true then if GOTO(FRONT(b))
is performed then block "a" is no longer where it was.

Since result rules define what the system believes about how actions work
in the world, they may be in error. It is not required that they be a correct
axiomatization of the laws of physics or that they be limited to those results
listed in an action's possible result list. Of course, for any action the add
lists of the result rules should be a superset of the possible results, but even

'See the section on Specifying locations for a description of the special function
FRONT.

this is not required. The distinction between the possible results and the
result rules is maintained for exactly this possibility. If the possible results
list of an action names a result not listed in one of the result rules, this
tells us that the system believes some predicate often follows from an action
without knowing the exact conditions under which it will follow.

The objective of primitive actions is to attempt to define a small set of
actions from which larger behaviors can be built. The choice of actions as
primitive is arbitrary and can certainly be changed. Assumably as an agent
becomes more expert a t a specific type of problem they will develop more
primitive actions to simplify the problem. Note, primitive actions are the
only actions that actually effect the state of the world; all complex actions
are realized as a series of primitive actions.

3.2.2 Complex Actions

Complex actions are not really actions at all. While they share many things
with the primitive actions, complex actions can best be viewed as functions
from a single intention to an ordered set of intentions. In effect, they map
from an intention to a set of subintentions that need to be achieved in order
for the original intention to be achieved.

For example, the representation for the action STACK(X,Y) maps the in-
tention of ON(X,Y) to the list of intentions [INHAND(X), HANDOVER(Y),
HANDEMPTY] which, when achieved in order, will result in a STACK op-
eration. Notice, the action's definition does not specify how to achieve any
of these subintentions; any way to achieve them will be equally valid. Com-
plex actions also have a possible results list, and again the possible result
lists are not required to be accurate. As with primitive actions, arguments
to complex actions denote locations in the universe.

As was mentioned above, in ItPlanS, the results of a complex action are
seen as nothing more than the sum of the results of the primitive actions
chosen to satisfy its subintentions. Since the actions taken can vary from
occurrence to occurrence, there is no way to have complete beliefs about the
results of a complex action. So while complex actions have possible results,
they do not have result rules.

At this point, I will once more state the obvious. None of the actions
has any form of preconditions. Any action can be undertaken at any time
and at any condition of the world. Of course, it will often be the case that
the action will not have the expected outcome if taken randomly, however,
this does not preclude performing the action.

3.3 Specifying Locations

In order to provide a uniform treatment of block stacking to arbitrary
heights, it was necessary to develop a method for representing space. To
this end, I have defined a number of functions from objects in the world to
areas of space around them. This treatment is not intended t o be complete
or rigorous, nor is it to be a substantive part of the work to follow. It is to
be seen as a tool to solve some of the problems of designating locations in
the world and may undergo serious revision.

The functions I defined are suggested by the English prepositions LEFT,
RIGHT, FRONT, BACK, OVER, UNDER; these functions map from the
argument/object to the spatial area described. For example, the action
GOTO(LEFT(b)) would move the end effector to some arbitrary location
t o the left of block "b." As a result the world now contains the statement
AT(LEFT(b)) reflecting the changed position of the effector.

3.4 The Algorithm

ItPlanS' algorithm works in the following manner. The agent starts each
iteration with two lists, one of positive intentions and the other of negative
intentions. The agent linearly searches the list of its positive intentions to
find the first intention not satisfied in the current world state. If there is no
primitive action that has this intention in its possible results list the system
finds a complex action that does. Using the complex action's mapping func-
tion the algorithm creates a new list of positive subintentions. This list is
searched for its first unsatisfied intention and the process is repeated until
an intention is found that can be satisfied by use of a single primitive action.

For example, if we look at figure 1, we see that initially in the blocks
world we have three intentions. The first of these, ON(a,b) is already true
in the world. Therefore, the next intention the system needs to satisfy
is ON(c,d) since it is not true in the world already. ItPlanS checks its
knowledge base and determines that a STACK action has as a possible re-
sult ON(c,d). Since STACK is a complex action, ItPlanS next considers
the list of subintentions a STACK action results in namely: INHAND(c),
HANDOVER(d), HANDEMPTY. ItPlanS then checks to see if any of these
intentions are already satisfied in the world, and discovers that, in fact, IN-
HAND(c) is. Therefore the next intention to be satisfied is HANDOVER(d).
Notice, the process continues until the intention NEAR(d) is reached. At
this point a primitive action can be used to satisfy the intention namely

GOTO(NEAR).
Notice, the system, in looking for the first unsatisfied intention at each

level of decomposition, is constantly reacting to the actual state of the world
so that if an accident occurred and the last action performed did not have
the consequences the agent expected, the agent can correct it immediately.
The agent can also attend to any other intention that has suddenly been
invalidated.

Having found an intention that can be satisfied by a single primitive
action, ItPlanS selects one primitive action to achieve this intention.' The
system creates a minimal model of the world relevant to the action. Then
ItPlanS simulates the performance of the action on the world by selecting
the action's most specific result rule whose condition is true in the world,
and adding and deleting propositions from its model as appropriate to derive
the model of the world after the action is taken. If the resulting world model
does not contain any of the negative intentions of the agent the action is
carried out. This completes the selection of one action by the system. The
system then repeats this process for the next action, discarding all but the
top level of the intentional structure.

It may be argued that the system never commits to a single plan. This
could lead to incoherent action in which the system follows one possible plan
for a step and then undoes that action. In ItPlanS, the coherence of action
relies on the meta-stability of the top level intentions of the system and the
relative predictability of the world. I assume that intentions are inherently
persistent, and this 1.ongevity will prevent trashing of the type described.

In fact, the absence of commitment is a positive side effect for the system.
It is this lack of commitment to a single plan that allows the system to utilize
positive changes in the environment when they happen without a need to
alter the adopted plan in any significant manner.

3.5 Negative Intention Conflict

There are a number of outstanding issues left out of this algorithm. Foremost
is what does the system do if all of the explored primitive actions violate one
of the negative intentions of the system? ItPlanS has a recovery mechanism
for these situations which relies heavily on the accuracy of the action's result
rules. What has happened in these cases is all of the examined actions have
been determined to cause problems. What the system needs to do is to

21t is possible for more than one primitive action to satisfy the selected intention.

11

decide on the action it would "like" to take and then remove the causes of
the problematic result of the action.

For example, suppose block "b" is stacked on block "a" and further
suppose that I am grasping block "a" but have not yet moved it. Let us also
assume that I have an intention to move block "a" to a new position, and I
don't intend to break anything. The only action I have available to me that
will reposition block "a" is the action GOTO. Finally, let us suppose that I
know that if I perform a GOT0 action, block "b" will fall off and break. At
this point I am stuck. The only action to achieve my ends will violate my
negative intentions. specifically moving block "a" will cause a state where
block "b" is broken violating my negative intention about breaking things.

Obviously, in this case, what I should do is determine the cause of this
conflict, (in this case it is the presence of a block on top of what I want
to move) and eliminate this cause (unstack block "b" from block "a"). In
effect, this is exactly the process ItPlanS follows. In the example, there is
only one possible action that can achieve my intention. In general, however,
there may be many, so the first step ItPlanS takes in this process is to decide
on which possible primitive action it will attempt to remove impediments
to.

Having decided on an action ItPlanS looks up the result rule that is
applied in the simulation to produce the conflict. Our goal in this process
is to prevent this result rule from being applied to the model of the world.
This result rule was chosen because all of the predicates in the conditional
portion of the rule were true in the world. If one of the predicates in the
condition of the result rule were false the rule would not be used to simulate
the action and therefore the conflict would not arise.

Let us return to our example to see how this works. The result rule
that would be applied for this use of GOT0 would be something of the
form [[INHAND(X), ON(Y,X)], [ON(Y ,table), BROKEN(Y)], [ON(Y,X),
ON(X,Z)]]. Where the first element is the condition, the second is the add
list, the third is the delete list, 'LX,Y,Z" are all variables, and "table" is a
constant. In order for this rule to be applied, it must be the case in the world
that INHAND(X) and ON(Y,X) are both true. In our specific example, we
know that INHAND(a) and ON(b,a) so the rule is applicable. In order to
keep this rule from being applicable to the simulation we need to violate one
of the elements of the conditional. That is, we need it to be that case that
either INHAND(X) or ON(Y,X) is not true in the world.

At this point ItPlanS chooses one of these conditions to invalidate, inverts
the condition and achieves this inverted proposition as a positive intention.

This will remove one of the conditions from the world making the rule in-
valid. Having done this, the original GOT0 action can now be carried out
without the undesired consequence of BROKEN(b). Of course, this method
requires the agent's knowledge base to contain information about how to
invert actions. In our example, the agent must know that the way to undo
ON(b,a) is to achieve ON(b,table).

We must also produce a method for deciding on which condition to
invalidate. It would be unfortunate if we chose to invert one of the intentions
we just achieved when there was another possibility. As a partial solution to
this problem, the system maintains a list of those intentions that are "above
and to the left" of the current. That is to say, the system keeps a list of all
the intentions it has tested in the decomposition process which have been
determined to be satisfied. In figure 1. these intentions are underscored.
It will obviously be preferable to invalidate an intention that is not on this
list, since they are necessary for the achievement of the system's intentions
and have been achieved already. Therefore, ItPlanS makes every effort to
protect these intentions.

If it is impossible to find an intention that is not on the list of "protected"
intentions then one from that list must be selected and inverted. This is the
worst possible case as this intention must be marked as special to prevent
the system from trashing and undoing the work already done. This method
roughly corresponds to goal advancement in traditional planning systems.

4 Results and Future work

I have implemented the ItPlanS system as it is described above. The system
performs exactly as we wanted it to do. Unless the system is given as a
negative intention BROKEN(X) it will ignore the traditional preconditions
of clearing off blocks before picking them up. However, when given the
appropriate negative intention the system finds it must clear off the blocks
before lifting them, showing that the intentions of the agent and the world
state can be used to eliminate preconditions for actions. While the system as
it is described does succeed in solving the most of the traditional problenls
in planning, there are obviously a number of issues that need further study.

4.1 Choices and ItPlanS

One of the most important issues that I want to look at in this work it
the role that intentions play in the planning process. If we take Bratman

[3] seriously then intentions play two roles. One of these is constraining
possible plans. Bratman talks about making choices about how to get to
Tanner library and the fact that his intentions to leave a car for his wife
constrain this decision. This is exactly the type of concern I want to look
at, the role that other intentions play in determining the ways of satisfying
our present intentions.

In ItPlanS, there are actually three different places that this kind of
information will be needed in order to make choices about what actions to
take. The first and most obvious is the action decomposition process. There
is nothing in this formalism that suggests that for a given intention there is
only one action which satisfies it. This leaves us with two major questions.
First, if an intention needs to be broken down into subintentions and there
is more than one action to accomplish this task which one should It Plans
chose? Obviously, we want ItPlanS to consider its list of future intentions,
and attempt to determine if some of these actions are incompatible with
some or all of the system's possible actions. I have had some thoughts on
this subject but as I have said this is largely an area for future work. Second,
is the question of multiple primitive actions fulfilling an intention. Are some
primitive actions better than others for some intentions? And if so how
should ItPlanS decide this issue?

The second place intentions should impact the choices ItPlanS makes is
in the choosing of actions when there is a negative intention conflict. As
noted, as the first step in that process, ItPlanS must chose one course of
action to pursue. This choice is very similar to the previous case. However,
in this case, there is more information to be considered, for example, the
ease with which one can invert one of the result rule's conditions, and the
other results of inverting one of the condition.

Finally, the choice of which condition to invert in a result rule in the event
of a negative intention conflict must involve the system's other intentions.
As stated earlier, ItPlanS already considers those intentions that have been
satisfied when making this choice. Of course, ItPlanS should also consider
its future intentions when making this decision. It may be the case that
one of the possible conditions is significantly easier to change or will involve
less change in the world. Or it might be the case that inverting one of the
conditions will interfere with the achievement of one of the system's later
intentions. Obviously this would not be a good choice.

In the end, the intentions of the system play a role in just about all of its
decisions. Some of these roles have been well specified in the existing work.
However, at least in these three cases, there is more work to be done.

4.2 Limiting Model Size and Complexity

Another area for future work is in the construction of the models of the world
ItPlanS uses to simulate the results of its actions. I suggested that ItPlanS
makes a "minimal" model of the world in which to simulate the action. I
argue the size and content of the model depend on the action being taken
and the problem space.

One of the chief problems in planning has been the maintenance of large
models of the world. Therefore, ItPlanS limits the models created to sim-
ulating a single action and should limit the size and complexity of these
models to information believed to be relevant to the action. For example,
when performing a GOT0 action in the blocks world the color of the block
in unimportant and should not be included in the simulation. On the other
hand, the ON relation is very important when considering a GOT0 action.

Therefore, in order to generate the model for a specific action, ItPlanS
should start with the set of objects directly involved with the action and
construct the transitive closure of the relevant predicates over this initial
set. Let us return to our example, if we assume that ON is the only relevant
predicate, the the initial set of objects in our model is just the block "a"
since the action we are going to carry out is a GOT0 and INHAND(a) is
true. Taking the transitive closure of the ON relation will get us all of the
relations that hold between anything "a" is on and anything on "a."

While I believe this to be a satisfactory solution to this problem, I have
not yet implemented it in the ItPlanS system. Therefore, I have no empirical
validation for the sufficiency for this procedure yet. Of course, this solution
method implies that ItPlanS must have declarative knowledge of those rela-
tions relevant to the results of actions, however, this does not strike me as
unrealistic in any way.

4.3 Reasoning in the World Model

There is a second problem with the modeling of action's effects in ItPlanS.
The simple add and delete lists in result rules are not powerful enough to
express all of the beliefs we would like the agent to hold as a result of an
action. For example, we want to be able to express the fact that all of the
blocks on top of a block that is moved will fall, not just the one stacked
immediately on top of it. This type of inference calls for a limited reasoner
to be placed in the action simulator. The bounds and limits for this type of
reasoning will most likely involve some kind of naive physics. Here again, I

have not given the problem much thought, but it is clear that something of
this type is required. The need for this kind of limited reasoning will have
to be explored even if only to find a sufficient solution in order to look at
the more central issues of this work.

4.4 Belief Inconsistency and Inaccuracy

Finally there is a large area to be explored in terms of the requirements
for consistency and accuracy in the agents beliefs. In ItPlanS the system's
beliefs about the outcomes of actions are not required to be correct; the
possible results lists may be in error as may the result rules. However, the
system as it stands now assumes that the agent's beliefs ARE, in fact, correct
and that all actions are completed successfully.

There are a number of issues that must be looked at in this light. Some
of these I have alluded to before. Since the possible results of an action are
not required to be a subset of the addlists of the result rules it is possible
for the agent to know that an action causes a result but not know why.

Also the issues of the monitoring to check for the completion of actions as
well as issues of failure recovery. For example, when should ItPlanS decide
that the action it has just carried out not been successful? How should it
react to this failure?

These are just some of the obvious limitations associated with the incom-
pleteness of the systems knowledge. While I again have not given substantial
thought to these problems, they are significant and further work needs to
be done to confront them.

5 Conclusion

The ItPlanS systenl, while it embodies many of the elements we have talked
about, I feel, is nothing more than a platform for this work. Research into
the role of intentions in action selection has been sadly lacking in the area
of planning. The relevance and role played by intentions in action choices
is the main trust of this work and while ItPlanS begins to address some of
these issues there is a great deal of work left to be done.

References

[l] Agre, P.E. The Dynamic Structure of Everyday Life, Technical Report
1085, MIT Artificial Intelligence Laboratory, 1988.

[2] Agre, P.E. and Chapman D. Pengi: An Implementation of a Theory
of Activity. Proceedings of the Sixth National Conference on Artificial
Intelligence, Seattle, Washington, 1987.

[3] Bratman M. Intentions, Plans, and Practical Reason, Harvard Univer-
sity Press, Cambridge, Mass. 1987.

[4] Chapman D. Planning for Conjunctive Goals. Artificial Intelligence,
32:333, 1987.

[5] Davidson D. Essays on Actions and Events, Oxford University Press,
New York, New York. 1980.

[6] Fikes R.E. and Nilsson N.J. Strips: a new approach to the application
of theorem proving to problem solving, Artificial Intelligence, 2:189,
1971.

[7] Harman G. Change In View MIT Press, Cambridge, Mass. 1986

[8] McDermott D. Planning and Acting. Cognitive Science, 2:71, 1978.

[9] Sacerdoti E.D. Planning in a Hierarchy of Abstraction Spaces, Artificial
Intelligence, 5:115, 1974.

[lo] Schoppers M.J. Universal plans for reactive robots in unpredictable
environments, IJCAI '87, 1039, 1987.

[ll] Tate A. Generating project networks. IJCA I '77, 888, 1977.

World State:
ON(a,b), INHAND(c), AT(OVER(d)), on(g,h), . . .

Positive Intentions:
O N (a , b) , O W c , d) , owe, f)

Negative Intentions:
broken(-)

I

INHAND (c) , HANDOVER (d) , HANDEMPTY

GOT0 (NEAR)
f i g u r e 1

	A Reconsideration of Preconditions
	Recommended Citation

	A Reconsideration of Preconditions
	Abstract
	Comments

	tmp.1187357566.pdf.QPhQm

