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Abstract 

A method for building model data for CAD a i d  CAM purposes from physical in- 

stances using three-dimensional sensor da,ta is presented. These techniques a.re suitable 

for Reverse Engineering of industrial parts, and can be used a.s a design aid as well. The 

nature of the reverse engineering task is quantitative, and tlie ernpliasis is on accurate 

recovery of the geometry of the part, whereas the object recognition task is qualita- 

tive, and aims to  recognize similar shapes. The proposed method eillploys lllultiple 

representatioils to build a CAD model for the part, and to produce useful illforinatioll 

for part analysis and process planning. The lllodel building strategy is selected based 

on the obtained surface and volumetric data descriptions and their quality. A novel, 

robust non-linear filtering method is presented to attenuate noise from sensor data. 

Volumetric description is obtained by recovering a sliperquadric model for tlie whole 
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data set. A surface characterization process is used to  determine the complexity of the 

underlying surface. A substantial data compression can be obtained by approximating 

huge amount sensor data by B-spline surfaces. As a result a Boundary Representation 

model for Alpha-1 solid modeling system is constructed. The model data is represented 

both in Alpha-1 modeling language and IGES product data exchange format. Experi- 

mental results for standard geometric shapes and for sculptured free-form surfaces are 

presented using both real and synthetic range data. 

Introduction 

Objects in manufacturing industry are usually designed using Computer Aided Design 

(CAD). In general, CAD-systems are used to design new shapes, and to  analyze their 

structural properties. Computer Vision systems, on the other hand, are typically used 

to  recognize existing objects. These systems aim at representing the shapes in such a 

way that similar shapes are recognized as the same, i.e. the systems are looking for 

equivalence relationship with respect to features. The emphasis is on finding charac- 

teristic features for the category of shape, and not so much on the accuracy of the 

representation. On the other hand, reverse engineering techniques recover design and 

manufacturing information from existing physical parts. The information is used, e.g., 

for representing part geometry, for analyzing structural properties of the part, and 

for planning the manufacturing process. The reverse engineering requirement is very 

severe with respect to accumcy of the recovery of local and global shape properties 

and dimensions of the object. This requirement of accuracy has implications both on 

accuracy for data acquisition, as well as on data interpretation, i.e. fitting models. 

We feel that CAD and vision systems can benefit from joining forces. CAD mod- 

els have been used as a model database for object recognition and visual inspection 

tasks. On the other hand, solid modeling systems could use geometric models created 

automatically by a three dimensional computer vision system for different CAX (CAD, 

Computer Aided Engineering, Computer Aided Manufacturing, Computer Aided Pro- 

cess Planning) purposes. Moreover, both systems should be able to communicate with 

other automation subsystems using standardized data formats [8]. 



Manufacturing industry could benefit a lot from applying reverse engineering tech- 

niques. They can be useful for producing a new part to  replace a broken one. This is 

especially important if the original manufacturer does not produce the part anymore, 

or if no design data exists for it. Moreover, if only a very small number of spare parts is 

needed, redesigning may raise the unit price of the part very high. Similar techniques 

can also be used as a design aid. The designer could create the a model of the part 

from clay, and then import the model computed from sensor data to  a CAD system. 

This type of rapid prototyping is especially useful in concurrent engineering paradigm, 

because the analysis of the part properties and process planning can be started in very 

early phase of the design process. Automatic data acquisition would reduce the de- 

sign time especially when designing sculptured free-form surfaces, because the designer 

should come up with a control point mesh for the surface. It is considered to  be a 

difficult task because the points typically do not lie on the actual surface, and some 

knowledge about splines is required as well. 

In this paper we propose a reverse engineering technique to generate design data and 

useful information for manufacturing planning starting from an existing component. 

Three-dimensional computer vision tools are used to produce that information. We 

have identified two problems in this context: 

automatic complete 3-D data acquisition 

using different techniques from Computer Vision, generate different representa- 

tions needed for different CAX purposes 

The first problem deals with accurate measuring of the complete 3-D geometry of 

the part. The second one transforms the raw signal data into a model description 

by reducing the amount of data, and by producing information about the global and 

local geometric properties of the part. In this report we concentrate on the second 

subproblem. We present results both on synthetic range images and real parts of 

varying complexity. We conclude by discussing the feasibility and applications of our 

approach in geometric modeling and automatic model generation. 



2 System Overview 

The system we propose consists of the following components: 

Laser range finder. 

Vision system for interpreting 3-D data. 

CAX systems. 

Manufacturing cell. 

A laser range finder is used for 3-D measurements because it produces a dense 3-D 

data set relatively quickly. Dense measurements are especially important in accurate 

modeling of free-form surfaces. Moreover, this type of data acquisition does not nec- 

essarily need any model-based guidance to carry out the measuring, and hence allows 

the processing to be completely data-driven. It is also possible to measure objects that 

do not permit contact sensing. A laser range finder sees only one side of the part at  the 

time, and the complete 3-D information have to be merged from a sequence of images. 

A high level block diagram for the system is depicted in Figure 1. This paper focuses 

on interpretation of 3-D data and generating useful information for CAX systems. 

Figure 1: A Block diagram of the  proposed reverse engineering system. 

The model building process should be able to  expose the underlying part geometry 

from a huge amount of raw sensor data, and simultaneously reduce the amount of data 



to  be processed. It should recover the dimensions and the shape of the part accurately, 

reveal possible symmetries and preserve significant surface details like discontinuities. 

The CAD-model built by the system should be intuitive so that it can be understood 

and modified by the designer. The system should also provide useful information 

for analyzing and simulating the part properties, and for process planning. The CAD 

system we are using is Alpha-1, developed a t  the University of Utah [I]. Alpha-1 models 

are defined in modeling language that describes how the part geometry is generated. 

We chose to  produce this type of description, in addition to  IGES (Initial Graphics 

Exchange Specification) file, to be able to associate more semantics for surfaces and 

space curves, and t o  be able represent them as design features or primitives like surfaces 

of revolution, holes and bosses that can be used as a basis for process planning. 

The CAX systems can use the obtained model data in several ways. It  can be used 

to visualize the design and to check the manufacturability. The information recovered 

by vision could be useful for analysis of the mechanical structure or phenomena, for 

example, for generating finite element mesh for the part. Process planning and NC 

code generation should be easier if object symmetries can be exposed by vision tools, 

because the toolpath generation does not have to  find out these properties. As a result 

of process planning, model primitives can be mapped to manufacturing primitives, and 

NC code can be generated for each processing stage. Other tasks one may want to deal 

with are determining cost, machining time and material need for the part. 

A typical manufacturing cell consists of CNC milling machines and CNC lathes. In 

the process planning phase for this type of cell, geometric primitives are mapped to 

different manufacturing stages, and the manufacturing process is a sequence of these 

stages. Processing parameters, e.g. ,  rotation speed and feed are set, and NC code 

is generated for each stage. This task can be made automatic in very simple cases. 

For more complicated parts, designer intervention is often needed. Moreover, the 

same object geometry can be manufactured in several different ways depending on its 

functionality. Some sophisticated solid free-form fabrication processes like MD* [34] 

need only the part geometry to be able to produce the part, and no special tooling and 

fixturing appears to be required. Furthermore, all the object parts can be manufactured 

simultaneously, and no separate assembly phase is needed. The shape of the object is 



created by disposable masks that are planar cross-sections computed from the CAD- 

model. MD* sprays each layer with thermal spray using those masks. We are planning 

to  run experiments using both conventional manufacturing process and MD*. 

3 Data Acquisition 

Laser range finders are widely used for 3-D data acquisition. Typically they produce 

a dense set of 3-D measurements reasonably fast, and they produce the range data 

directly without additional processing. The image acquisition does not necessary need 

any a priori object model to guide what to  measure, but the process can be completely 

data driven. Optical range finding techniques need no contact to the surface and hence 

it is also possible to  measure soft materials like clay models. Coordinate Measuring 

Machines (CMM) can also measure the dimensions of industrial parts accurately. The 

measuring is usually based on mechanical contact sensing with a probe. For reverse 

engineering application, there is no model data or toolpath to  guide the probe, and a 

plan of what to  measure have to be generated, for example by using visual information. 

Moreover, it is a very time consuming process to use CMM for producing a dense set 

of measurements to  obtain the geometry of the part. We feel that laser range finder 

suits well for reverse engineering applications, especially if sculptured surfaces are to 

be modeled. 

The current available range sensors provide incomplete 3-D information, obtained 

from one viewpoint at the time. The complete data set have to be merged from a 

sequence of images. Hence, there is a need for overall strategy in the scanning process 

to get the complete 3-D information. There are two main problems to  be solved to  get 

a complete 3-D data set: 

Occlusion: the laser light does not reach all the surface points. 

Range shadows: all the parts illuminated by the laser are not visible for the 

camera. 

The first problem have to be solved no matter what kind of laser range finder is used. 

The latter problem is typical for sensors using triangulation measuring principle. Maver 



and Bajcsy have developed a scanning strategy to get rid of range shadows [23]. It is 

also important to be able to focus on important details of the part, for example, joints, 

and scan. them with higher resolution to recover accurate description of the details. The 

calibration of the sensor is also crucial for measuring the part dimensions accurately 

in terms of the SI unit of length. Our efforts to solve these problems will be presented 

in a forthcoming report. 

4 Need for Multiple Representations 

4.1 3-D Object Representations in Solid Modeling 

Widely used representation methods in 3-D CAD-systems are Constructive Solid Ge- 

ometry (CSG) and Boundary representation (B-rep). CSG represents an object as a 

binary tree where each leaf represents an instance of a simple volumetric primitive and 

each node represents a regularized Boolean operation of its descendents. A homoge- 

neous transformation matrix describing rotations and translations of the primitive is 

attached to each leaf. CSG can represent most conventional objects well but it can not 

represent sculptured free-form shapes precisely. Figure 2 depicts a sample CAD-model 

using CSG-representation [29]. 

Figure 2: A sample CSG model. 

Boundary representation represents a solid by its bounding surfaces. Polyhedral 



models are one of the most commonly used and they are best a t  modeling flat surfaces. 

Unfortunately, describing free-form surfaces requires a large number of polygons. In 

order to describe a curved surface splines are often used. Especially B-splines are widely 

used because of their very good continuity and local control properties. NURB (Non- 

Uniform Rational B-spline) surfaces can represent precisely both common analytical 

shapes (conics, quadrics, etc) and free-form surfaces. However, design using B-splines 

is more challenging because the points on the control mesh typically do not lie on the 

actual surface. Figure 3 shows the boundary representation for the same object as in 

Figure 2 [29]. 

Figure 3: A sample Boundary-representation model 

The "Design by Features" paradigm has gained some popularity in design com- 

munity. It uses manufacturing features to create the part geometry. Typical design 

features are bosses, ribs and holes. They are abstractions of typical geometric features, 

e.g., CSG primitives. The features are grouped into a library that can be called from 

the design system. Boolean operations can be applied on them to create a part. 

It seems that there is no single design representation or method that would be the 

best for every design task. Therefore several CAD-systems employ multiple representa- 

tions [29]. For example, Alpha-1 uses B-spline curves and surfaces as design primitives 

but it also enables CSG type Boolean operations on solids, as well as design by features 

PI. 



The waterfall design paradigm where design, analysis, prototyping, etc. follow each 

other sequentially, has been the most employed paradigm in CAD community. It  is a 

very time consuming process because of its sequential nature, and hence it is considered 

suitable for mass production. Concurrent engineering paradigm where product and 

process development phases are integrated is proposed to reduce development time 

and to  reduce errors in transition to production. Without product data standards 

like IGES concurrent engineering is impossible [8]. The capability t o  communicate 

with other subsystems during the design process is very important, e.g., because the 

cost of fixing mistakes later in production phase is much higher than in design phase. 

Concurrent engineering enables faster customizing and manufacturing a t  reasonable 

price in smaller scale. Rapid prototyping is one essential part of the paradigm [24]. 

4.2 Vision Methods for 3-D Object Representation 

CAD based Computer Vision systems have been using CAD models in object recogni- 

tion problems as a model database [13, 151. For an introductory article about CAD- 

based robot vision the reader is referred to 171. These approaches compute automati- 

cally model features for recognition from the CAD model instead of manual training. 

The design data representation itself is often not unique or rich enough to  be used di- 

rectly for recognition 171. The computed features can then be used for matching to  the 

sensor data description. Automatic model generation enables rapid changes in product 

line and inspection criteria because the tedious training phase is avoided. In addition, 

object recognition strategies, algorithms and model feature indexing may be generated 

as well 1131. The goal of the object recognition task is to detect if certain type of part 

occurs in the scene, how many times does it occur, and what is its approximate posi- 

tion and orientation in the space. The nature of the reverse engineering task is more 

quantitative because we also want to know what is the diameter of the cylindrical part 

in millimeters or inches, for example. 

Different representations used for CAD-based vision can be generally classified into 

volume, sweep and surface methods. Common volumetric representations are for ex- 

ample voxels and standard analytical shapes like cylinders, spheres and parallelepipeds. 



Generalized Cylinders are a typical sweep representation. There is a vast variety of 

different surface based representations for vision, e.g., planar or second order surface 

patches, parametric surfaces and superquadrics [3, 21. Superquadrics can be consid- 

ered to  be a volumetric representation as well, by adding a "less-than" condition to 

the implicit surface equation. Viewer centered aspect graph descriptions have recently 

been studied a lot. CAD models have been used for generating aspects [ll]. 

The goal of computer vision based reverse engineering is to  build a CAD model from 

the vision sensor data, and provide useful information for the other CAX processes. 

The emphasis is upon getting the shape and the dimensions of the part very accurately, 

preferably within some known tolerance value. The task is not just to  convert a huge 

amount of 3-D measurements into product data exchange format like IGES that a CAD 

system can read, but also to  reveal the structure of the part. The structural informa- 

tion obtained can be used for mapping design primitives to  primitive manufacturing 

processes, and for simulation purposes. The obtained CAD model should also be intu- 

itive, so that the designer can understand it and alter it if necessary. In addition to  part 

geometry, characteristics like functionality of the product to  the user, maintenance, re- 

pair and cost have to be considered to obtain a good design. Automatic acquisition of 

CAD models fits very well to the concurrent engineering paradigm, especially if some 

useful information can be provided for part analysis and process planning. 

The situation with vision representations is analog to the situation with CAD rep- 

resentations. There is no single vision representation that would give the best data 

description for every image. There is indeed a need for multiple representations. In- 

stead of using a single method and trying to compensate its shortcomings, we should 

have a toolbox of representations and just select the appropriate tool for each data 

set. 



5 Building CAD-models from Physical Instances 

5.1 Dataflow 

Vision tools are used to transfer the raw data set into a model description. We use 

multiple representations to be able to model efficiently both standard geometric shapes 

and sculptured surfaces. In this paper we describe a volume based and a surface 

based representation. A superquadric model is recovered for the entire data set and 

residuals are computed to evaluate the fit [2]. The obtained superquadric parameters 

give coarse estimates for position, orientation, size and shape of the parts. If the quality 

of the fit is good, the superquadric shape parameters can be used to guide the model 

building process. We use nonuniform B-spline surfaces for representing surfaces. The 

B-spline surface description is preceded by a surface characterization process to  reveal 

significant surface details and to estimate appropriate size for the control point mesh. 

A Least Squares fit procedure is employed to extract the control point mesh from a 

huge amount of raw range data. A tolerance value determined by the user is used to 

refine the obtained B-spline surface description. Dataflow of the image analysis part is 

depicted in Figure 4. 

p and GOF '. 
Figure 4: Dataflow of the proposed reverse engineering system. 



5.2 Noise Attenuation 

Fitting models to data, and hence the estimated parameters can be very sensitive 

to noise. Range sensors are subject to  various noise effects, and the noise is not 

normally distributed [4]. To get accurate estimates the noise must be smoothed out 

by filtering, or by using robust estimation methods [IS]. The selection of the filtering 

method depends not only on the noise distribution but also on the future processing 

of the signal. If it is followed by differentiation, the image is usually filtered with an 

approximately Gaussian filter or a cubic spline to make the differentiation a well-posed 

problem [32]. If the processing groups pixels by their similarity, it is desirable that the 

filtering method would preserve discontinuities between homogeneous regions. 

The proposed noise attenuation method is based on robust Least Trimmed Squares 

(LTS) estimation method [31]. The goal is to  smooth out statistical outliers and pre- 

serve the geometry of the original noise free signal. The outliers are caused by heavily 

tailed distributions, or are just bad samples, or members of other data population. 

The concept of robustness means ability to produce reliable results although the ide- 

alized assumptions for which the estimator is optimized are not completely valid. The 

breakdown point of the estimator describes formally the smallest percentage of outly- 

ing points which causes incorrect estimates. Least squares estimation has a breakdown 

point of 0 %. LTS filtering of the data points minimizes the sum 

where (r2)1 I ... < (r2)h < ... I ( T ~ ) ,  are the ordered squared residuals and h is 

the number of residuals used in summation. The LTS method achieves the maximal 

breakdown point for h = [n/2] t [ ( p t  1)/2], where n is the number of data points in the 

neighborhood and p is the number of parameters to  be estimated. Moreover, the LTS 

filter is an efficient estimator under Gaussian distributed inlier noise. If the number of 

parameters to be estimated is 1, the maximal breakdown point in 5-by-5 neighborhood 

is obtained with h = 13. The median of the neighborhood is used as a reference value 

for computing residuals. If the filtering is iterated, the output from previous iteration 

is used as a reference signal for the next iteration. Furthermore, iterative filtering is 

done using floating point computation to avoid quantization errors introduced after 



each iteration. The iteration is continued until good convergence, or the maximum 

number of iterations is reached. Lee has proposed the Modified Median Filter (MMF) 

[20] to  overcome some edge jittering problems of median filtering. MMF can be used 

as a reference signal instead of the median. 

5.3 Surface Characterization 

A surface characterization process is employed to  find geometrically homogeneous sur- 

face patches, and to  determine the complexity of the surface. Differential surface prop- 

erties are estimated with constant coefficient local window operators. The underlying 

surface f is assumed to take the parametric form of a polynomial in each neighborhood: 

where the parameters ak(k = 1,2, ..., 6) are to be estimated and a and j are the row 

and column coordinates in the neighborhood. The second order polynomial above is 

needed to be able to  estimate the second partial derivatives in one pass. First and 

second partial derivative estimates can be obtained directly from the coefficients of the 

polynomial [4]. 

An alternate way to estimate surface parameters employs robust estimators. The 

LTS scheme above can be used to  estimate the coefficients ak from (2). The method 

gives reliable results even when there is more than one statistical population present 

in the neighborhood, and under various noise distributions [18]. In the fitting proce- 

dure appropriate order model should be used to get accurate results. Besl proposed a 

variable order model method where the parameters from the fit order yielding the best 

fit quality measure are chosen to be the final fit result [5 ] .  In our study we used zero, 

first and second order models. 

Surface coefficients are used to find the gradient, the gradient magnitude and the 

second directional derivatives, and their directions, and the first partial derivatives in 

the direction of either extremum of the second directional derivative. A surface type 

label is given t o  each pixel according to the spatial properties in the neighborhood of 

each pixel [14]. Geometrically homogeneous regions are formed by grouping connected 



pixels of the same surface type. For detailed experiments on the classification scheme 

reader is referred to [18]. 

The complexity of the underlying surface can be inferred from the labeling, and 

hence the size of the control mesh for the B-spline surface estimated. The mesh size is 

determined by the maximum number of extracted surface patches in each parameter 

direction, and by knowing how many control points is needed to  describe certain order 

surface by using B-splines. The maximum order is selected because all entries in same 

parameter direction must have the same amount of control points. If the control mesh 

has too few points, it is not able to describe all the degrees of freedom of the surface, 

and the fit will not converge. If it has too many points, it may hide the structure 

of the surface and make it difficult to  understand and modify the design. It is also 

important to  detect the surface discontinuities to be able to insert multiple control 

points where the discontinuity occurs. They can be detected using the gradient and the 

second directional derivatives obtained in surface characterization process, or by using 

a separate edge detector [lo]. Edge data and surface label data are then overlapped to 

get the complete description. 

5.4 B-spline Surface Fit 

A non-uniform rational B-spline surface (NURBS) is a more general case of nonrational 

B-spline surface, and is defined as a function of parameters u and v as follows: 

where N;,k and MjVl are the basis functions, hitj are the weights, and the B;,j's are 

the control points. n and m stand for the number of control point vertices in each 

direction. The basis functions N;,k of order k are defined recursively as follows: 

where xi's are ordered set of knots from knot vector. A convention 010 = 0 is used 

for the basis function computation. Basis functions Mj,l of order I for parameter v are 



computed similarly. We chose to employ 4th order (k = 1 = 4, cubic) B-splines since 

they allow a point of inflection. Figure 5 depicts a sample B-spline surface and its 

control point mesh. 

Figure 5:  A B-spline surface and its control point mesh 

The widely used chord length parameterization for a B-spline in one direction is 

computed as follows: 

where P;'s are data points. Lee has proposed a centripetal method for parameterization 

and claims that in most cases it results in better shapes than uniform or chord length 

method [19]. The parameter values are computed by: 

Often the parameter values are normalized to [ O , 1 ]  range. The number of knots t is 

related to the number of control points by t = n + k where n is the number of control 

points and k is the order. An open end condition is used for the spline i.e. the first 

and last values in the knot vector occur with multiplicity equal to  the order of the 

B-spline. In practice it means that the curve always begins at  the first control point 

and ends a t  the last control point. A B-spline curve with open end condition and 

the corresponding control polygon is depicted in Figure 6 .  This property is utilized 



Figure 6: A B-spline curve with open end condition and the corresponding 

control polygon 

also in B-spline subdivision. Other possible end conditions are periodic and floating 

end condition. The periodic end condition is useful for producing closed curves and 

surfaces. The knot vector can be adjusted to the distribution of the parameter values. 

We chose to  do it later in the refinement process. 

As a result of the data acquisition we have a huge amount of raw range data. We 

use least squares fitting to  be able to generate a control point mesh for a B-spline 

surface that approximates accurately the original one. Now we have t o  solve B;,j's 

from equation (3), and S(u, v)'s are the measured data points. All the weights are 

originally set to  1.0, and the surface degenerates to  a nonrational B-spline surface. 

The weight values h;,j can be later adjusted in surface refinement [25]. Using matrix 

representation the solution is: 

where elements of C are Cij = N+Mj , [ ,  S is the matrix of data points, and B is the 

obtained control points mesh [30]. We employed also Singular Value Decomposition to  

solve the control point mesh. We prefer it for very large number of samples and control 

points because it is very stable algorithm, and almost never fails [27]. 

Surface parameterization depends very much on scanning procedure. For cylindrical 

scan procedure it does not cause any problem. If the samples are scattered arbitrarily, 

one may have to  do resampling to get a rectangular grid of samples for the fit procedure. 



However, the sampling does not need to be uniform. It is not possible to  describe certain 

surfaces of arbitrary topology, e.g., surfaces with handle, with single nondegenerate 

B-spline. Proper surface segmentation helps avoiding the problem. Loop and DeRose 

describe generalizations of B-spline surfaces that are capable of capturing such surfaces 

[21]. However, the work was done using uniform B-splines, although the authors claim 

that it can be expanded to non-uniform and rational cases as well. 

A simple and straight forward solution to run a fit for any surface topology is to  

employ trimmed surfaces. A trimmed B-spline surface is essentially a regular B-spline 

surface where certain parts of the surface are marked "invalid" [12]. The boundaries of 

the object can be used to compute trimming curves that divide the surface into valid 

part, which is the object surface, and the invalid part, which is the background. The 

fit procedure can be run using a rectangular grid of points that exceeds the object 

boundaries, and then the part of the surface that is not object surface is then declared 

invalid. Most solid modelers have trimming operations included because they have to 

be able to deal with surface intersections anyway. Trimmed surfaces are included in 

IGES standard and in Alpha-1 system as well [16, 11. An example of a trimmed surface 

is depicted in Figure 7 [12]. 

Figure 7: A sample trimmed surface 

The B-spline refinement process is guided by a user given tolerance value. The 

error of the approximation is defined as Euclidean distance between the actual mea- 



sured surface and approximated surface with same (u,v) parameter values. We use 

B-spline subdivision to deal with discontinuities. Curve or surface discontinuities can 

be represented, if a knot with multiplicity equal to  the order of the B-spline is inserted. 

Control point refinement is done by moving old control points and inserting knots to 

get a more accurate approximation of the underlying surface [25]. Adding a certain 

number of knots has a consequence of adding the same number of control points as well. 

The Oslo algorithm is useful if one wants to  insert knots to  add degrees of freedom, 

but not to  change the actual curve or surface [9]. 

5.5 Volumetric Representat ion 

Superquadrics are a family of parametric surfaces that can represent shapes ranging 

from cylinders and parallelepipeds to ellipsoids. A superquadric model was used to 

recover a volumetric description for the entire range data set. The model is recovered 

in object centered coordinate system. An implicit equation for superquadric surface is 

defined as follows: 

2 2 2 

f (z ,y ,z )  = ((t)" ((t G ) "  + (;)" = 1, 

where a l ,  a2, and as define the superquadric size in x-, y- and z-axis direction. EI  

and ~2 are the superquadric shape (squareness) parameters in the latitude and in the 

longitude plane, respectively. Figure 8 depicts some typical superquadric shapes. 

The shape family can be augmented by applying a set of global deformations like ta- 

pering and bending to superquadrics. A volumetric representation is recovered instead 

of surface representation by replacing "=" condition by "5" in the implicit surface 

equation. The superquadric model was modified by Solina with additional to  im- 

prove the recovery of cylindrical objects [28]. The inside-outside function defined as 

F(x ,  y, z) = f(x,  y, z)'1 determines where a point lies relative to superquadric sur- 

face. To find the smallest superquadric that fits to a set of range data the following 

expression is minimized [28]: 

N 

min C [ J G G G ( F ( X ~ ,  yi, zi) - 1)12 
i=l 
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Figure 8: Sample superquadric primitives with different shape parameters: a) 

61 = 0.1, €2 = 1.0, b) 61 = 1.0, 6 2  = 1.0, C) 61 = 2.0, 6 2  = 1.0, d) ~1 = 0.1, 

e2 = 0.1, e)  EI  = 0.1, €2  = 2.0 and f )  61 = 2.0, 6 2  = 2.0, respectively. 

The Levenberg-Marquartd method is used for non-linear least squares minimization 

[27]. As a result coarse shape, size, position and orientation parameters are recovered. 

To be able to find the global minima in the fit procedure, and to recover the parameters 

accurately, it is crucial to have good first estimates for the fit procedure. 

The quality of the fit can be used to evaluate how well the data fits to the model. 

If it is good the shape parameters can expose object symmetries, and they can be 

used to guide the model building process. Hence, the superquadric primitives have 

to be divided into categories based on the recovered shape parameters. For exam- 

ple, primitives with ~2 = 1.0 & 6, where 6 is a given threshold value, are considered 

rotationally symmetric objects, and primitives with ~1 = 0.1 f 6 , ~ ~  = 0.1 f 6 , or 

EI = 0.1 f 6 , ~ 2  = 2.0 f 6 are both parallelepipeds. Superquadric representation is not 

unique, for example in the case of parallelepipeds (Figure 8 d) and e) above), but by 

categorization the problem can be avoided. 



5.6 Building the Model 

The model building tools are selected depending on the parameters acquired from the 

fit procedure, and the goodness of the fit. If rotational object symmetry has been 

detected, a surface of revolution is employed as a model primitive. If any other type 

of symmetry is discovered, a sweep surface is a natural choice. This kind of structural 

information is very helpful for process planning because these properties do not have 

to be discovered in the planning phase. The symmetry and the axis of symmetry must 

be verified because of the coarseness of superquadric parameters. If no symmetry is 

present, or the quality of the fit is poor, the surface is modeled as a set of surface 

patches sewed together. The surface patches may also be trimmed surfaces to be able 

to deal with surfaces of arbitrary topology. Alpha-1 includes specific operations for 

declaring adjacencies, i.e. sewing surfaces [I]. 

6 Experimental Results 

The set of experiments was chosen to show the ability to construct a model for both 

standard geometric shapes and sculptured free form surfaces. We made experiments 

using both real and synthetic range data. A synthetic Cylindrical Pin test data was 

generated by constructing a Alpha-1 CAD model of an object, and the range image 

was produced from it by using Z-buffer algorithm. The dimensions of the part are 

relative because the data is not actual measured but synthetic data. Test data for 

the Fan Blade was scanned using GRASP-laboratory laser range finder which is based 

on triangulation principle [33]. The resolution in x and y direction for the sensor is 

1.0 mm (Ax = Ay = 1.0 mm) and the depth resolution 1.5 mm. The Face Mask image 

from NRCC range image library was chosen to demonstrate capability to model very 

complex sculptured surfaces. The x- and y-resolution for the sensor is 1.0 mm, and 

the least significant value for z-coordinate is 10 pm. The test images are depicted in 

Figure 9. 

Least trimmed squares filtering was employed for noise attenuation. Gaussian dis- 

tributed noise with zero mean and a = 10.0, and random bit error noise with probability 

p = 0.002 was added to the synthetic "Wedding Cake7' test image to find out the per- 



Figure 9: Test images: a)  The  Cylindrical Pin is a synthetic range image 

produced from a CAD model, b) the Face Mask is a real range image from 

NRCC range image library, c) and the Fan Blade is a real range image produced 

using GRASP-laboratory laser range finder 

formance of different filtering schemes under various noise distributions and relatively 

high noise. The height difference between different levels of the cake is 50. For the 

Cylindrical Pin Gaussian the noise parameters were p = 0 and a = 4.0, and the ran- 

dom bit error probability p = 0.001. The evaluation of the filter performance depends 

also on the final goal of the processing. For example, many edge detection algorithms 

smooth out noise with Gaussian type filtering or cubic splines to make the surface dif- 

ferentiable, and to get rid of multiple responses [32]. As a result they also smear sharp 

edges. We discuss here only how well the method attenuates different types of noise, 

and how well it preserves the original geometry of the image. LTS and median filtering 

were considered here. The original noise-free image, the noisy image, and the images 

after filtering are depicted in Figure 10. The RMS errors between the original noise- 

free image and the filtered images are shown in Table 1. Both filters smooth out the 

impulse noise and preserve discontinuities, although LTS filter performs slightly better. 

Furthermore, LTS filtering is also efficient under Gaussian distributed inlier noise. The 

corners appear to suffer from this type of non-linear filters, and hence rather small 
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Figure 10: Noise attenuation results for the "Wedding Caken: a) original data,  

b) noisy data, c )  median filtered data,  and d)  LTS filtered data.  

neighborhoods should be employed. The LTS filtering result for the Cylindrical Pin is 

show in Figure 11. 

Surface characterization was used to detect homogeneous surface patches and to  find 

out the complexity of the underlying surface. The results can be used to determine how 

many control points are needed in the control mesh to be able to describe all the degrees 

of freedom of the underlying surface. For each patch, a control point mesh size equal to 

the order of the B-spline is needed. We used second order surface patches, and hence 

we need three control points in each parameter direction for defining the patch. The 

neighborhood size for the surface coefficient estimation, and a zero threshold value for 

the surface classification have to be determined. Constant coefficient window operators 

were used for estimating surface parameters. The neighborhood size was 7-by-7 and 

the zero threshold value was set to 1.5. Surface characterization results for test images 

are depicted in Figure 12. For noisy real range data the surface characterization tends 



Table 1: RMS errors for noise attenuation. 

Figure 11: Noise attenuation results for the Cylindrical Pin using LTS filtering. 

to fragment the surfaces into slightly more patches than there actually exists because 

of noise and local support for the computation. However, this property is less severe 

than too few patches because the control point mesh with too many points is able to 

describe the shape of the surface which is not possible with too few control points. 

The surface stays fair as long as the number of control points is much lower than the 

number of sample points. Furthermore, B-spline curves have a variation diminishing 

property which means that the curve does not oscillate cross any straigh line more than 

its control polygon. For surfaces this property is not known. A method for decreasing 

the number of control points by knot removal has been proposed by Lyche and M~rken 

[22]. They use a tolerance value to examine whether a knot can be removed from knot 

vector. 

Bit rev. & 

Gaussian 

3.85 

3.68 

Bit reversal 

p = 0.002 

1.89 

1.82 

Noise dist/ 

Filtering method 

median 

LTS 

Gaussian 

p = 0, a = 10.0 

3.83 

3.65 



Figure 12: Surface classification results for the Test images: a) The  Cylindrical 

Pin, b) the Face Mask and c) the Fan Blade. Different surface types are shown 

in different gray scale values. 

Robust estimation methods produce more accurate surface characterization results 

but the computational complexity is significantly higher. If the estimation is done 

by using robust window operators, no filtering prior to the estimation is required. A 

detailed description on experiments on LTS estimation based surface classification can 

be found in [18]. The current implementation uses variable order fit method proposed 

by Besl [5]. It provides more accurate results than only second order fit because it is 

able to select the appropriate model for the fit. 

A superquadric model was recovered for LTS filtered test images to  find out gross 

object shape, size, position and orientation parameters. The model recovery is done 

to the whole data set, and the goodness of fit measure [28] can be used to  determine 

if the obtained parameters are useful for the model building. A threshold value for 

the goodness of fit have to be set. The superquadric primitives are divided into shape 

categories, e.g., circularly symmetric shapes and parallelepipeds, to be able select an 

appropriate model building strategy. If the quality of the fit is good, the main axis 

of the superquadric primitive can be used as the axis of symmetry, and the shape 

parameters can be used to select appropriate CAD model primitive. However, the 



symmetry and the axis of symmetry must be verified because of the coarse nature 

of the superquadric parameters. For verifying a rotational symmetry we used Direct 

Least Squares fit along the assumed symmetry axis [26]. The fit gives the radius and 

the center point of the circle and a quality of the fit measure. The line along the 

center points is used as the axis of symmetry. The superquadric models are shown in 

Figure 13. The corresponding shape and size parameters and goodness-of-fit measures 

Figure 13: Recovered superquadric primitives for Test objects: a) Cylindrical 

Pin, b) Face Mask, and c) Fan Blade. 

are displayed in Table 2. In general, the parameter recovery works well for convex 

Table 2: Superquadric model recovery results 

symmetric objects. The number of superquadric parameters can be extended to deal 

with global deformations like cavity, bending and tapering. However, in the case of 

Fan Blade the quality of the fit did not get better despite the deformations. 

Uniform, chord length and centripetal parameterization methods were compared 

for B-spline curve and surface fits. LTS filtering gets rid of statistical outliers that 

would cause high errors in the Least Squares fit procedure. Similar knot vector and 

the same number of control points were used to find out how well each method can 

Parameters/ 

Test image 

Cylindrical Pin 

Fan Blade 

Face Mask 

Shape 

E I  = 0.10, = 1.08 

= 0 . 5 9 , ~ ~  = 0.12 

EI = 0.15,~g = 0.87 

Goodness of fit 

x2 
0.06 

0.20 

0.15 



capture the shape of the underlying surface and how large errors they produce. The 

obtained B-spline curves for a sample profile from Face Mask image using different 

parameterization methods, and no refinement, are plotted in Figure 14. The corre- 

sponding distances between the measured and the recovered data are shown as well. 

Maximum and RMS error for different parameterization methods are shown in Table 3 

for a profile from Face Mask image. The results indicate that both the centripetal and 

Table 3: Error measures using different parameterization methods for profiles 

from the Face Mask and from the Cylindrical Pin. No refinement was done. 

the chord length parameterization provide good accuracy for fit purposes. The chord 

length method gives more predictable results because the maximum and RMS errors 

appear to decrease almost linearly as the number of control points increases. The ac- 

curacy of the uniform parameterization is not sufficient for rapidly changing surfaces 

or scattered data. In general, the accuracy is good if the surface is smooth. Larger 

errors are caused by rapid changes in the surface shape. Surface discontinuities are the 

worst case because of the continuity property of the B-splines. Hence, the refinement 

by subdivision is vital for getting accurate results. An example of errors introduced 

by discontinuities using different parameterization methods for a sample profile from 

the Cylindrical Pin are depicted in Figure 15. The fit results could be made better by 

reflecting the distribution of parameter values in the knot vector. We chose to do this 

later in the spline refinement process. 

The B-spline fit produces surfaces that are guaranteed to  have Ck-2 continuity, 

where k is the order of the B-spline. Therefore they smooth out curve and surface 

discontinuities. To be able to represent discontinuities, the B-spline curve or surface 

Max. error 

(Cylindrical Pin) 

2.67 

2.29 

2.41 

Parameterization method 

Uniform 

Centripetal 

Chord length 

RMS error 

(Face Mask) 

0.39 

0.40 

0.39 

Max. error 

(Face Mask) 

1.58 

1.52 

1.43 

RMS error 

(Cylindrical Pin) 

0.56 

0.49 

0.51 



have to be refined by subdividing it where the discontinuity occurs. Multiple knots are 

inserted to  the point where the discontinuity was detected to force the spline to pass 

through that point. The multiplicity is equal to the order of the B-spline. Figure 16 

depicts the effects of B-spline subdivision for the same profile used in Figure 15. 

The B-spline refinement process takes place after subdivision. It is driven by a user 

given tolerance value. A knot, and hence a control point is added to  a point where 

local error maxima exceeding the tolerance value occurs. If the RMS error exceeds the 

tolerance value the number of control points is increased by one for each patch extracted 

in the characterization phase in both parameter directions. Refinement results for the 

profile from the Face Mask image are shown in Figure 17 in which knots were inserted 

where local error maxima greater than the given tolerance value occurred. A tolerance 

value 1.0 mm was used for the profile. 

Preliminary tests using trimmed surfaces indicate that much larger number of con- 

trol points have to be used. The knot vector should be quite dense especially near the 

object boundaries. The local control property of B-splines isolates the errors intro- 

duced by the surface boundary. We used also lower order splines because they cause 

less oscillation by the boundary. 

Different B-spline fit strategies were applied for different type of objects. For the 

Cylindrical Pin the superquadric shape parameters revealed the cylindrical shape, and 

the final B-spline surface was created by finding the axis of symmetry of the object, 

and then creating a surface of revolution by using a cross section of the object. The 

quality of the superquadric description for the Fan Blade was not good, and hence 

the part was modeled as a set of adjacent surfaces. Because the sample grid was not 

perfectly rectangular a resampling process was run. For each scanline on the object 

surface a B-spline curve was fitted, and the resampling was done by interpolating the 

needed number of samples from the B-spline curve. For the Face Mask, the B-spline 

surface fit is the very natural choice because of the sculptured shape of the object, and 

there is no sharp edges, either. 

The Alpha-1 solid modeling software we use is running on Sun-4 workstation. The 

obtained model is is produced both in Alpha-1 modeling language called r-lisp and 

in IGES format. A part of the model description in r-lisp for the Cylindrical Pin is 



shown in the Figure 18. The solids are decribed using Shell objects in Alpha-1, and 

B-spline Solids in IGES format. Figure 19 shows the obtained Alpha-1 models for the 

test images. For the Cylindrical Pin multiple control points are inserted where the 

discontinuities occur. For the Face Mask a 18-by-27 control point mesh was recovered. 

Conclusion 

In this paper we proposed a method for building model data for different CAD and 

CAM purposes using Three-Dimensional Computer Vision. These techniques are suit- 

able for Reverse Engineering of industrial parts, or can be used as an aid for the de- 

signer, especially for designing sculptured free-form surfaces. Rapid prototyping allows 

also the part analysis and the planning of the manufacturing process in early phase 

of the desing process, and hence helps reaching the goals of concurrent engineering 

paradigm. 

The proposed method employs surface and volumetric representations to build a 

CAD model for the part, and to produce useful information for other CAX processes. 

The nature of the task is quantitative because the emphasis is in the accuracy of 

the recovered dimensions and shape, whereas object recognition task is interested in 

classifying an object to  be a member of certain category. 

We introduced a robust, detail preserving filtering method for noise attenuation. 

LTS filter produces reliable results even if there is statistical outliers present, or if 

the noise distribution is not normal. We employed multiple representations in the 

model building phase to be able to deal with both standard geometric shapes and 

sculptured free-form surfaces. Surface and volumetric representations were used to  find 

out the complexity of the underlying surface, and to reveal potential symmetries. The 

model building strategy was selected depending on the obtained surface and volumetric 

primitives and their quality. As a result the method creates a B-Rep CAD model 

and produces useful information for CAM and CAPP processes. We used B-spline 

surfaces for CAD model representation. Considerable data compression was gained 

by determining a relatively small control point mesh that describes a huge amount of 



sensor data accurately. The spline description is refined to  make the maximum error 

smaller than a user specified tolerance value. The obtained model data was imported 

into the Alpha-1 solid modeling system. An IGES file for the model is produced to be 

able to communicate with other automation subsystems in a.standardized way. The 

experimental results using both real sensor data and synthetic data show that our 

approach is feasible for reverse engineering industrial parts, both standard geometric 

shapes and sculptured free-form surfaces. 
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Figure 14: The original range data and the recovered B-spline (dotted line) 

from the Face Mask image using different parameterization methods: a) Chord 

Length, b) Centripetal and c )  Uniform parameterization. The corresponding 

Euclidean distances are plotted below each profile. 



Figure 15: Errors introduced by discontinuities for different parameteriza- 

tion methods without subdivision: a) Chord Length method, b) Centripetal 

method and c )  Uniform parameterization. The corresponding error distances 

are shown below each profile. 



Figure 16: B-spline subdivision allows representing discontinuities: a) The 

obtained profile from the Cylindrical Pin after subdivision, and b) the corre- 

sponding error distances. 

Figure 17: The obtained B-spline for the profile from the Face Mask and 

corresponding error distances after the refinement process. 



( 
Revcurv I = curve (parainfo(cubic, ec-open, kv-uniform) . 
list ( 90, pl-1, pl-2. 91-3. Pl-4, 92, P3, P4, P5-1, PS-2, 
~5-3. 95-4. 96-1. p6-1. 96-3, ~6-4. 97. 98. ~ 9 .  ~10-1. 
~10-1. ~10-3. ~10-4. pll-1, pll-1. ~11-3. pll-4. pll. ~ 1 3 ,  ~ 1 4 .  
~ 1 5 - 1 , ~ 1 5 - 1 . ~ 1 5 - 3 , ~ 1 5 - 4 ,  9 1 6 ) ) ~  
Revsurf I =  srfOfRevolution~Yaxi~Revcunr,nil,nil~i 
nodsolid r =  shell(Revsurf); 
1; 

Figure 18: A part of the model description for the Cylindrical Pin using Al- 

pha-l modeling language. 



Figure 19: Graphical model data for a) the Cylindrical Pin, b) the Face Mask 

, and c) its side view, d) for the Fan Blade, and e) its side view, respectively. 
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