
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1990

Direct Product Decompositions of Lattices, Closures and Relation Direct Product Decompositions of Lattices, Closures and Relation

Schemes Schemes

Leonid Libkin
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Leonid Libkin, "Direct Product Decompositions of Lattices, Closures and Relation Schemes", . November
1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-85.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/432
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/432
mailto:repository@pobox.upenn.edu

Direct Product Decompositions of Lattices, Closures and Relation Schemes Direct Product Decompositions of Lattices, Closures and Relation Schemes

Abstract Abstract
In this paper we study direct product decompositions of closure operations and lattices of closed sets.
We characterize direct product decompositions of lattices of closed sets in terms of closure operations,
and find those decompositions of lattices which correspond to the decompositions of closures. If a
closure on a finite set is represented by its implication base (i.e. a binary relation on a powerset), we
construct a polynomial algorithm to find its direct product decompositions. The main characterization
theorem is also applied to define direct product decompositions of relational database schemes and to
find out what properties of relational databases and schemes are preserved under decompositions.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-85.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/432

https://repository.upenn.edu/cis_reports/432

Direct Product Decompositions Of Lattices,
Closures And Relation Schemes

MS-CIS-90-85
LOGIC & COMPUATION 27

Leonid Libkin

Department of Computer and Informat ion Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

November 1990

Direct Product Decompositions of Lattices, Closures and Relation
Schemes

Leonid Libkin*

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389, USA

Abstract

In this paper we study direct product decompositions of closure operations and lattices of closed sets.
We characterize direct product decompositions of lattices of closed sets in terms of closure operations,
and find those decompositions of lattices which correspond to the decompositions of closures. If a closure
on a finite set is represented by its implication base (i.e. a binary relation on a powerset), we construct
a polynomial algorithms to find its direct product decompositions. The main characterization theorem is
also applied to define direct product decompositions of relational database schemes and to find out what
properties of relational databases and schemes are preserved under decompositions.

1 Introduction

In [DFK] Dememvics, Furedi and Katona introduced the concept of direct product decomposition of a
closure operation. If C1 and C2 are two closures on disjoint sets Ul, U2, then the direct product C1 x C2 is
a closure on U1 U U2 defined by

If L1 and L2 stand for the lattices of closed sets of C1 and C2 respectively, then the lattice of closed sets
of C1 x C2 is the direct product L1 x Lz. However, it is unclear if every direct product decomposition of a
lattice of closed sets corresponds to direct product decomposition of the underlying closure in the sence of
the operation x defined above. In the other words, if LC is a lattice of closed sets of C and LC is isomorphic
to direct product, LC E ,C1 x C2, does it mean that Ll E LC, and L2 E LC,, where C = C1 x C2?

We are going to show in this paper that, generally speaking, the answer is "no". We do that by finding a
characterization of direct product decompositions of a lattice of closed sets in terms of the closure operation

*Research partially supported by NSF Grants IIU-86-10617 and CCR-90-57570.

in section 2. This characterization will emphasize the importance of the operation x. We will show that
every lattice of closed sets of a closure C is isomorphic to the lattice of closed sets of a closure C' such that
direct product decompositions of this lattice are in 1-to-1 correspondence with direct product decompositions
of C'.

In the finite case, a closure on a set U can be represented by its implication bases [Wi] which consist of
expressions of form X 4 Y, X,Y E U. (E.g., we can represent a closure C by {X 4 Y : Y E C(X))).
In section 3 we give some necessary facts about implication bases and then construct algorithm finding
direct product decompositions of a closure represented by an implication base. This algorithm allows us to
construct a direct product decomposition of a closure in polynomial time in the size of input, i.e. implication
base.

In short section 4 we show that our main characterization can be applied to obtain results describing direct
product decompositions of some known classes of lattices and closures.

When speaking about relational databases, implication systems correspond exactly to relation schemes. A
relation scheme is a pair (U, F) consisting of a set U and a family F of functional dependencies, the last
being a set of expressions of form X -t Y, X ,Y C U. We study the direct product decompositions
of relation schemes in section 5. This is also of practical importance, because, as we will see, these
direct product decompositions can describe decompositions of a relation scheme into some relation schemes
within one database scheme and several nice properties, like being in a normal form, are preserved under
decompositions. By the results of section 3, these direct product decompositions can be found in polynomial
time.

Now we introduce some terminology.

Throughout the paper, C (possibly, with indices) will denote a closure operation (or simply closure) on a
set U, i.e. C is a map C : P(U) + P(U) such that
(Cl) VX c U : X C(X);
(C2) VX E Y E U : C(X) c C(Y);
(C3) VX U : C(C(X)) = C(X).

A set X C_ U is called closed (w.r.t. C) if C(X) = X. Denote the family of all closed sets by LC. Then
LC equipped with natural ordering is a lattice in which sup and inf operations are defined by

LC thus constructed is a complete lattice [Bi].

We will always suppose that a closure C satisfies
(C4) C(0) = 0.
Really, if C(0) = X f 0, define Ct(Y) = C(Y) - X for Y c U - X. Then C' is a closure on U - X
satisfying (C4), and the lattices LC and LC, are isomorphic. Hence, (C4) will not lead us to the loss of
generality.

When speaking about an arbitrary lattice (not necessarily lattice of closed sets), we denote it by L and its
elements by small letters.

If L is a finite lattice ' , there is a simple way to construct a closure C on a finite set U such that L N LC,
where N stands for isomorphism. Let U be the set of join-irreducible elements J(L) , i.e. U = { a E L :
(a = x V y) + (a = x or a = y)) . Given X U, let C(X) = { x E U : x < V X) . Then C is a closure on
U, and Lc E L.

If L is a bounded lattice, i.e. it contains the greatest element 1 and the least element 0, then 3 stands for the
complement of a if it exists and is unique.

We will need the concept of a neutral element. An element a E L is called neutral [Bi],[Gr] iff for every
x , y E L the following holds

In sequel we will use more convenient form of this definition. An element a E C is neutral iff for every
x , y E L the sublattice (a , x , y) generated by a , x , y is distributive [Gr].

If LC is a lattice of closed sets of a closure C, and A E LC, then (A] is a principal ideal of LC generated by
A, i.e. (A] = {X E LC : X C A). In arbitrary lattice, (a] and [a) stand for the principal ideal and coideal
(filter) generated by a.

2 Direct product decompositions of lattices and closures

In this section we are going to answer two questions. The first one is: given a closure C on U such that
LC is isomorphic to direct product of two lattices, LC e L1 x L2, what can be said about C? In the other
words, what are necessary and sufficient conditions that provide LC to be isomorphic to direct product of
two lattices? The second question is: what is the relationship between direct product decompositions of
closures and of lattices of closed sets?

We will see soon that if Lc E L1 x L2 then both L1 and L2 are isomo~phic to lattices of closed sets of
closures defined on two disjoint subsets of U. This explains why we characterize only decompositions into
products of two lattices.

Our first result describes the direct product decompositions of form Lc E L1 x L2.

Theorem 1 Every direct product decomposition LC E L1 x L2 has form LC - (A] x (21 where A, 3 E LC, -
A is a complement of A in LC and A is neutral.

More precisely, L1 E (A] and L2 N (21, or L1 N (21 and L2 E (A]. However, in this case we prefer to
speak of direct product decomposition having form LC - (A] x (XI.

Proof. First, notice that a neutral element a E L may not have two complements. Really, if it has two
complements, E and 5, then the sublattice (a,iZ, 5) = {a,E, ti, 1,O) is not distributive. Since LC is a bounded
lattice, the following lemma finishes the proof.

'It is enough to require that the dual lattice L* be Noetherian [Bi].

Lemma 1 I fL is a bounded lattice, each directproduct decomposition L e Ll x L2 has form L 21 (a] x (El,
where a is a neutral element and ii its complement.

Proof of lemma. It is well-known that each direct product decomposition has form L e (a] x [a) [Grl.
Hence, we only have to prove that if a is a neutral complemented element, then [a) 11 (El.

Define 4 : (El + [a) as follows: 4 (x) = x V a . Let x > a . Then 4 (x A E) = (x A E) V a = x since the
sublattice generated by a , Z , x is distributive. Further, for x < ?i we have $ (x) A Z = (x V a) A Z = x, i.e.
x l # x2 implies 4 (x l) # 4 (x 2) . Thus, 4 is a bijection. It follows from definition that ~ (X V Y) = 4 (x) ~ 4 (y) ,
and from the distributivity of (a , x , y) that g5(x A y) = (x A y) V a = (x V a) A (y V a) = + (x) A 4 (y) . Hence,
4 is an isomorphism. Lemma and theorem 1 are proved.

Since for every neutral complemented element a E L it holds: L = (a] x [a) , we obtain from theorem 1 and
the proof of lemma 1

Corollary 1 Given a closure C on U, there is one-to-one correspondence between direct product decom-
positions Lc E ,C1 x L2 and pairs (~ ~ 2) . where A is a neutral complemented element of Lc and 2 its
complement.

Corollary 2 I f A is a neutral complemented element of LC, then so is its complement 3.

Now we can introduce our main definition to be studied in sequel.

Definition. Given a closure C on U , a pair (A , Z) consisting of a neutral complemented element of LC and
its complement is called a decomposition pair (of C or of LC).

Therefore, there is one-to-one correspondence between decomposition pairs and direct product decompositions
of Lc having form LC N L1 x Lz. The next theorem, which is the main result of this section, gives a
characterization of decomposition pairs of an arbitrary closure. However, before presenting this theorem, we
mention that considering only direct product decompositions of form LC N L1 x L2 does not cause the loss
of generality. This is true in view of the following

Corollary 3 Let LC z L1 x L2. Then both L1 and L2 are the lattices of closed sets.

Proof of corollary. According to theorem 1 and corollary 2, L1 N (A] and ,C2 - (2 1 for a decomposition
pair (~ ~ 2)) . Hence, L1 P LclA and L2 3 LCD.

Now we can give a characterization of decomposition pairs of a closure.

Theorem 2 A pair (A , Z) of disjoint subsets of a set U is a decomposition pair of a closure C on U ifl the
following hold:

(i) vx c A U ~ : ~ (x n A) = C (X) ~ A ;
(i i) ~ ~ c_ A U ~ : c (x ~ X) = ~ (x) n X ;
(iii) VX E U : C (X) = C (C (X) n (A u 2)).

Proof. We start with a simple lemma.

Lemma 2 A pair (A, 2) of disjoint subsets of U is a decomposition pair of Lc @A v 2 = U and 4 : LC -t
(A] x (21 given by $(X) = (X n A, X n 2) is an isomorphism.

Proof of lemma. Let 4 thus constructed be an isomorphism. Then 4(A) = (A, @), and by [Gr, Th.3.2.41 A is
a neutral element of LC. Analogously, so is 2. Hence, (A,Z) is a decomposition pair. Conversely, if (A,Z)
is a decomposition pair consider a map 11, : (A] x (21 given by $(X, Y) = X VY. According to the definition
of aneutral element, (x ~ A) v (x ~ ~) = X and for X 5 A, Y 5 2 : (XVY)nA = X, (x v Y) ~ ~ = Y, i.e.
11, = #-I. It shows immediately that 4 is one-to-one correspondence. Obviously, 4 preserves the ordering,
i.e. if X c Y then 4(X) < #(Y) in (A] x (21. Hence, 4 is an isomorphism. Lemma is proved.

We return now to the proof of theorem 2. Let (~ , x) be a decomposition pair of C. Consider arbitrary
X c U and C(X). Since (C(X) A A) V (C(X) A T) = C(X) according to the proof of lemma 2, we have
C(X) = C((C(X) n A) u (C(X) n 2)) = C(C(X) n (A u x)), i.e. (iii) holds.

L e t X C _ A u ; ; i , a n d ~ = x n ~ , z = x n 2 . T ~ ~ ~ x = Y u z , ~ ~ ~ c (Y) & A , c (z) & ~ . Wehave
C(X) = C(Y u Z) = C(C(Y) u C(Z)) = C(Y) v C(Z), and C(X) n A = (C(Y) v C(Z)) A A = C(Y)
since 4 . 11, = id. Hence, C(X) n A = C(X n A), and (i) holds. Analogously we prove that (ii) holds.

Let, conversely, (i) (ii) (iii) hold. Prove that A and 2 are complemented elements, and that 4 from lemma
2 is an isomorphism.

Since A and 2 are disjoint, A A 2 = 0. If X = U, we get from (iii) that C(A u ';I) = U, i.e. A v 2 = U.
Hence, -il is a complement of A.

We prove now that 4 is a bijection. To do this, we need to prove two claims. Recall that $(X, Y) = X V Y.

Claim I . 4 -11, = i d (more precisely, id(Alxm).

Let C(Y) E (A], C(Z) E (21, Y E A, Z C 2. Then 11,(C(Y), C(Z)) = C(Y)vC(Z) = C(YuZ). The first
component of +.11,(C(Y), C(Z)) is (C(X)VC(Z))AA = C(Y UZ)nA = (by (i)) = C((Y uZ)nA) = C(Y).
Analogously, by (ii) the second component of 4 - $(C(Y), C(Z)) is C(Z). Hence, 4 . $ = id.

Claim 2. 11, - 4 = i d (more precisely, idLc).
Let C(X) be an arbitrary element of LC. Then we have 11, 4(C(X)) = (C(X) A A) V (C(X) A 2) =
C((C(X) n A) u (C(X) n 2)) = C(C(X) n (A u 2)) = C(X) by (iii). Hence, 11,. 4 = id.

It follows from two proved claims that 4 is a bijection. Hence, the following finishes the proof.

Claim 3. 4 is a homomorphism.
Clearly, 4 is a A-homomorphism. Hence, we must prove that for arbitrary C (X) , C (Y) E LC it holds :
+(C(X) V C(Y)) = #(C(X)) V #(C(Y)). According to (iii) we may assume without loss of generality
that Y, Z C_ A U x. Further, (C(X) v C(Y)) A A = C(C(X) u C(Y)) n A = C(X u Y) n A = (by (i))
= C((X u Y) n A) = C((X n A) u (Y n A)) = C(C(X n A) u C(C(Y n A)) = (by (i)) = C((C(X) n A) u
(C(Y) n A)) = (C(X) A A) v (C(Y) A A). Analogously, (C(X) v C(Y)) A X = ((CX) AX) v (c(Y) AX).
Hence, 4 is a V - homomorphism too.

Thus, 4 is a one-to-one homomorpism, i.e. an isomorphism. According to lemma 2, (A,Z) is a decompo-
sition pair. Theorem is completely proved.

As a corollary of theorem 2 we obtain a characterization of direct product decompositions of closures. Let
us call a decomposition pair (A , x) strong if it is a partition of U, i.e. A U 3 = U.

Corollary 4 A partition (A , Z) of a set U is a strong decompositwn pair of a closure C on U iff VX C U :
C (X) = C (X n A) u C (X n 2) .

Therfore, there is one-to-one correspondence between direct product decompositions of closures as they were
introduced in [DFK], and strong decomposition pairs of lattices of closed sets. In particular, not every direct
product decomposition of lattice of closed sets corresponds to a direct product decomposition of a closure,
because there exist decomposition pairs with A U 2 # U. However, in the finite case for every closure
there exists an "equivalent" one (i.e. having isomorphic lattice of closed sets) whose decomposition pairs
are strong.

Proposition 1 For every finite lattice C there is a finite set U and a closure C on U such that C z LC and
all the decomposition pairs of C are strong.

Proof. Consider the representation with U = J (C) and C (X) = J (C) r l (V X] , see introduction. LC E L
for this representation. Let (A ,X) be a decomposition pair of C. Suppose for x E L : J (x) 3 {y E
J (L) : y 5 x}. Then J (x) E LC if z E J (C) . According to (iii) J (x) = C (J (x) n (A U A)), i.e.
x < V (y : y < x , y ~ ~ ~ ~) < x . H e n c e , x = V (y : y ~ x , y ~ ~ ~ ~) , a n d s i n c e x E J (L) , x = y f o r
some y, i.e. x E A U 2. Therefore, (A , Z) is strong.

3 Implication bases of closures and direct product decompositions

The main aim of this section is to present an algorithm finding a strong decomposition pair, i.e. a direct
product decomposition of a closure. To construct such an algorithm, we must have a representation of
closures. The most convenient way to represent a closure is to represent it by its implication base [Wi].
We introduce the definition of implication bases of finite closures, and then give a polynomial algorithm
that, given an implication base of a closure, finds a strong decomposition pair of this closure, i.e. its direct
product decomposition.

Given a finite set U, an implication system is a family F = {X -+ Y : X, Y C_ U). If we are given an
implication system F , construct a map CF : P(U) --+ P (U) using the following algorithm.

Algorithm CLOSURE
Input: an implication system F over U and a set X C_ U .
Output: C*(X)
Method:
result := X ;
WHILE there exists Z -t Y E F such that

Z C result AND Y 9 result
DO result := result U Y END;
RETURN(resu1t).

It is well-known (see [Ar],[DLMl],[DLM2],[Ma],W]) that CF is a closure and for every closure over U
there is an implication system on U generating this closure. We will call F an implication base of a closure
C if C = CF.

If X = {x) and Y = {y), we will write x + y instead of X + Y. We first investigate a particular case
when all the implications from F have form x -+ y. Later we will see that finding strong decomposition
pairs for such implication bases is a crucial step in the general algorithm.

Implications x -t y were called unary in [MR2]. A characterization of implication systems consisting of
unary implications was given in [DLM2].

Proposition 2 [DLM]. Given a closure C on afinite set U, the following are equivalent:
(i) C has an implication base consisting of unary implications;
(ii) C is topological, i.e. C (X u Y) = C (X) u C(Y) ;
(iii) LC is a sublattice of (P(U), n, u).

Corollary 5 IfC is a topological closure on a set U, then (A, 2) is a strong decomposition pair i f f both A
and 2 are closed and (A,Z) is a partition of U.

Proof follows from the easy observations that LC is a distributive lattice, and that in a distributive lattice
every element is neutral.

Let F be an implication system over U consisting only of unary implications. Define a graph = (U, v"),
where U is a set of vertices and V is a set of edges, V = {(x, y) : x -t y E F or y -t x E F). Let
GF = (U, V) be its transitive closure.

Proposition 3 Let F be an implication base of a closure C on a finite set U, and let F consist of unary
implications only. Then a partition (A,Z) of U is a strong decomposition pair of CF iffA is a union of some
connected components of GF.

Proof. First, notice that if A is a union of some connected conlponents of GF, then so is 2.

Let A be a union of some connected components of GF. Then obviously A is closed and so is 2 , i.e. (A,X)
is a strong decomposition pair by corollary 5.

Conversely, let (A,Z) be a strong decomposition pair of CF. TO finish the proof, we must show that if
X is a connected component of GF and X n A # 0, then X C A. Let x E A n X , and suppose there is
y E x n x . Let xo = x,x, = y and (xo,xl) E V , (X I , Z ~) E V,. . .,(x,-I,%,) be a path in X from z
to y. Then there exists at least one i E [l,n] such that (X;,X;+]) E V and xi E A,x,+l E 3. Suppose
without loss of generality that x; -t x;+l E F. Then according to algorithm CLOSURE x;+l E CF(A), i.e.
CF(A) n 2 # 0, a contradiction. Hence, X C A, and A is a union of some connected components of GF.
Proposition is proved.

Consider the following algorithm UNARY DECOMPOSITION.

Algorithm UNARY DECOMPOSITION
Input: an implication system F over U consisting of unary implications.

OuQut: c0~eCted components (X I , . . . , X,) of GF and their number n.
Method:
Construct GF;
n := 0;
U0 := U;
WHILE U O # 0

DO
n := n + 1;
X , := { x) for x E UO;
WHILE there is y E U O such that (2, y) E V for some r E X ,
DO X , := X , U {y) END;
U0 := U0 - x,;
END;

RETURN((X1,. . . , X,,n)).

Notice that this algorithm is polynomial since constructing transitive closure requires polynomial time.

Corollary 6 Let F be an implication base of a closure C on a jnite set U consisting of unary implications
only. Then the strong decomposition pairs of C are exactly pairs (UiEz Xi , Ujez X i) , I { I , ... n), where
(X I , ..., X,, n) is output of algorithm UNARY DECOMPOSITION when input is F.

To construct general algorithm for finding strong decomposition pairs we need some new concepts and two
lemmas.

If we are given an implication system F, then F' = { X -+ a : X -t Y E F, a E X - Y) is an implication
system satisfying CF = CFl. If the right hand sides of all the implications of an implication system are
one-element sets, we will call this implication system open [Go]. The above remark shows that considering
only open implication systems does not cause loss of generality. An implication system F will be called
nonredundant if for every f E F : CF # CF- [Ma,Wi]. Let F be an arbitrary implication system. D e h e
F+ = { X + Y : Y & C F (X)) . Then F+ is an implication base of CF too (it follows immediately from
the algorithm CLOSURE).

Lemma 3 Let F be an open nonredundant implication base of a closure C on U. Then a partition (A , z) is
a strong decomposition pair of C z f f the following hold:
(i) V X + a E F : X & A e a € A ;
(i i) t / X + a E F : ~ ~ z * a € X .

Proof. Let (A , X) be a strong decomposition pair, prove that (i) and (i i) hold. Let X + a E F and a E A.
Then a E C F (X) , and a E C F (X n A) because (A , X) is a strong decomposition pair. According to algorithm
CLOSURE, X + a can not be used to obtain a E C F (X n A) if X A. Hence, CF = c ~ - { ~ + ~) r and F
is redundant. Thus, X A. Obviously, if X C A and X + a E F , then a E C F (X) E A. Therefore, (i)
holds. Analogously, (ii) holds.

Let, conversely, (i) and (i i) hold. Then A and 2 are closed. Suppose x E C F (X) , and x E A. Let
X1 + x l , . . . , X k + xk, xk = x be those implication which were used in algorithm CLOSURE to obtain

x E CF(X), ordered as they appeared in the algorithm. That means, X1 C X, Xz E XI U {xl), . . . , Xk E
Xk-1 U { x ~ - ~ } X U { X ~ , . . . , X ~ - ~) . If for some i : # Xi, then we can eliminate implication
Xi-1 + xi-1 from derivation x E CF(X). Hence, we may suppose that no implication can be eliminated,
and in this case 2;-1 E Xi for i E [2, k]. Since x = xk E A, by (i) Xk C A, and xk-l E A because
xk-1 E Xk. Then by induction we obtain that X1 U . . . U Xk U 1x1,. . . , xk} C A, and according to algorithm
CLOSURE x E CF(X fl A). Analogously, if x E 2 then x E CF(X n 2) . Thus, (A,Z) is a strong
decomposition pair by corollary 4. Lemma is proved.

Let F be an open implication system. Then FT will stand for {x -+ a : X + Y E F, a E Y - X).

Lemma 4 Let F be a nonredundant open implication system. Then (A,Z) is a strong decornposition pair of
CF i f f it is strong decomposition pair of CFT.

Proof of lemma. Let (A,X) be a strong decomposition pair of CF. Consider x + a E FT. Let a E A.
Since there is X + a E F, then X C A and x E A. Therefore, (i) and (ii) hold for FT, and (A,Z) is a
strong decomposition pair of CFT. Let, conversely, (A, 2) be a strong decomposition pair of CFT. Consider
X -t a E F. Let a E A. Since for every x E X : x + a E FT and x E A, then X A. Therefore, (i) and
(ii) hold for F , and (A,X) is a strong decomposition pair of CF.

Consider the following algorithm DECOMPOSITION.

Algorithm DECOMPOSITION
Input: an implication system F over U.
Output: a partition (XI, . . . , Xn) of U

and the number n of its elements.
Uses algorithms: CLOSURE, UNARY DECOMPOSKION.
Method:
F ' : = { X + a : X + Y € F , a € Y - X } ;
L O O P X - a E F'

IF a E CLOSURE (F' - {X + a}, X)
THEN F' := F' - {X + a)

END LOOP;
F T : = { ~ + a : X + a E F ' , x E X) ;
(XI, . . . , Xn , n) := UNARY DECOMPOSITION(FT);
RETURN((X1, . . - 9 Xn n)).

The next result follows immediately from the previous lemmas, the fact that F' constructed in LOOP in the
above algorithm is an open nonredundant implication base of CF (cf. [Ma]), and corollary 6.

Theorem 3 Let F be an implication base of a closure C on a finite set U. Then strong decomposition pairs
of C are exactly the pairs (UiEI Xi, UjeI Xj), where I E [I, n] and (XI, . . . , X, , n) is oufput of algorithm
DECOMPOSITION when input is F.

Corollary 7 Given an implication base F of a closure C on a finite set U, it takes polynomial time in the size
of input to find a strong decomposition pair of C .

In the rest of this section we present polynomial algorithm finding a representation of a distributive lattice
as a direct product decomposition of directly indecomposable lattices.

Every finite distributive lattice L can be embedded in (P(U), n, U) for some finite U (e.g. U = J(L)). Hence
it is isomorphic to LC where an implication base F of C consists of unary implications only. Therefore,
each decomposition pair of C is strong, and for a strong decomposition pair (A,Z) the implication systems -
FA = {x -t y E F : x, y E A) and FX = {x -t y E F : x, y E A) are implication bases for C I A and
C IT respectively. Hence, applying algorithm UNARY DECOMPOSITION to FA and Fx we obtain direct
product decompositions of (A] and (21 and so on. Thus, applying UNARY DECOMPOSITION while it
is possible we obtain a representation of L as a direct product decomposition of directly indecomposable
lattices, if the input is F. Notice, that we also obtain a representation of closure CF as a direct product
decomposition of directly indecomposable closures.

The above algorithm is polynomial because it makes use of polynomial algorithm UNARY DECOMPOSI-
TION no more than I U [times.

However, a finite distributive lattice may not be represented by an implication base F consisting of unary
implications. Now we consider three ways to represent a finite distributive lattice, and show how to construct
an implication base consisting of unary implications in these cases.

First, if L 21 LC where C is given by its iniplication base F consisting of arbitrary implications, then for
F' = {x -t y : X -+ Y E F,x E X, y E Y) we have CF = CFI (cf. [DLM2]).

It was proved in [Ri] that sublattices of (P(U), n, U) containing (0) and {U} (we need these conditions
because if LC is a sublattice of (P(U), n , U) then {U) E LC and (0) E LC by (C4)) and only they can be
represented as

L = P(U) - U(z,y)E~L[x, u - YI,
where PL C U x U. Therefore, a sublattice of (P(U), n , U) can be represented by a binary relation on U.
Given PL C U x U, let FL = {x -t y : (x, y) E PL). Then the lattice of closed sets of CFL is exactly L,
see [DLMl], [DLW].

The most widely used way to represent a distributive lattice is that by a family of generating sets. If
XI, . . . , X, G U, let L[Xl,. . . , X,] stand for the sublattice of (P(U), n , U) generated by XI , . . . , X,.
Clearly, LIXl , . . . , X,] is distributive, and every finite distributive lattice is isomorphic to some LIX1, . . . , X,].
The following proposition shows how to construct the family F.

Proposition 4 Let XI , . . . ,Xn C U. Suppose x -+ y E F iff Vi E [1, n] : z E Xi + y E Xi. Then
LCF = LIX1,. . . , X,].

Proof. LetX E LIX1 ,..., X,]. ThenX = (X:n ... n X i l) u ... U(Xi n . . . X i ,) w h e r e ~ j E {XI ,..., X,)
for all i E [I, T] , j E [l, k;]. Suppose x -+ y E F and a: E X. Then for some i E [l ,r] we have
x E XI n . . . n Xii whence y E n . . . xii and y E X. Hence, CF(X) = X, and X E LC,.

Conversely, if X $! L[Xl,. . . , X,], then since LIXl, . . . , Xn] is a sublattice of (P(U), n, U) there are
a, b E U such that X E [a, U - b] and [a, U - b] n LIX1,. . . , X,] = 0 by [Ri]. Then if a E Xi and b $! Xi,
we have Xj E [a, U - b] and Xi $! L[Xl,. . . , Xn]. Therefore, a -t b E F , and b E CF(X). Thus, X $! LC,,
and LC, = LIX1, . . . , X,]. Proposition is proved.

Summing up, we obtain

Corollary 8 Ifajinite distributive lattice is represented by an implication base, or a binary relation, or a fam-
ily of generating sets, there is an algorithm which is polynomial in the size of input and jinds a representation
of the lattice as a direct product decomposition of directly indecomposable lattices.

Notice that the results of this section dealing with direct product decompositions of distributive lattices are
related to those of [Fu].

We conclude this section by the remark showing that strong decomposition pairs can be obtained as optima of
a simple problem of cluster analysis. Usually in clustering problem we have a function on pairs of elements
which expresses either similarity or unsimilarity, and then, finding an optimum of some function we get
clusters. Let p be a function that expresses similarity between elements of U , i.e. p is a real-valued function
on U x U, and we want to find a two-element partition (A , 2) of U . The typical criterion is

F ((A , a)) = Eva P (X , Y) - min.
(This criterion was used, for example, in [BH], but for the unsimilarities, i.e. maximum was to be found).
Let F be an implication system over F. Let F be open and nonredundant. Suppose p(x, y) = 1 if there
is X -, y E F such that x E X, and p(x, y) = 0 otherwise. Then F ((A , ~)) > 0, and F ((A , ~)) = 0
iff (A , X) is a strong decomposition pair by lemma 3. Therefore, strong decomposition pairs are exactly
optimal solutions of the above clustering problem. More precisely, they are exactly global optima of F.

4 Atomistic lattices and closures

In this short and more "pure mathematical" section we are going to show that the characterization of direct
product decompositions of lattices of closed sets does work. That means, we can successfully apply this
characterization to describe direct product decompositions of some lattices. In this section we will investigate
some classes of atomistic lattices. A complete lattice is called atomistic if every element is a join of atoms2.
Clearly, a complete atomistic lattice is a lattice of closed sets of a closure on the set of its atoms, and in turn
this closure can be characterized as satisfying condition C (x) = x for every element x.

Proposition 5 Every decomposition pair of an atomistic closure is strong.

Proof. Let C be an atomistic closure on U and (A , X) its decomposition pair. Suppose there is x $ A U 2.
Then by (i i i) of theorem 2 x = C (x) = C (C (x) n (A u 7)) = C (0) = 0 by (C4). This contradiction shows
A U ~ = U .

One form of this proposition is well-known in matroid theory. Usualy product of matroids is introduced as a
product of closures, and then it is proved that products of matroids correspond exactly to products of lattices
of closed sets, see [Ail.

Now we apply theorem 2 to obtain a characterization of direct product decompositions of lattices of sublattices
and subsemilattices.

Let S be a semilattice, whose operation is denoted by a. We think of S as being a join-semilattice, i.e.
x 5 y e x - y = y . Let SubS stand for the lattices of all subsemilattices of S. Since SubS is an algebraic

2These lattices are called atomic in mi]. In [Gr] atomic lattices are those in which every element contains an atom. In this paper
we prefer to make use of GrWr's terminology.

lattice, it is the lattice of closed sets of an (algebraic) closure on the set of its atoms, i.e. S. In fact, given
a subset X S, its closure C(X) is the least subsemilattice of S containing X . Let (A,Z) be a strong
decomposition pair of this C. Suppose there are such x E A and y E 2 that x and y are incomparable.
Then z = x - y, x, y are distinct elements. If X = {x, y}, then z E C(X) and if we suppose without loss of
generality z E A (because A u x = U) then z E C(X) n A and x = C(s) = C (X n A), i.e. (i) of theorem
2 fails. This contradiction shows that either x 5 y or y 5 z. Since A and 3 are subsemilattices of S, and
(A] 11 SubA, (x] 11 Subx, we proved

Proposition 6 Every direct product decomposition of lattice Subs corresponds to an ordinal sum decomposi-
tion of S.

More precisely, if Subs E n,,, Ci, where all C, are directly indecomposable, then S is isomorphic to
ordinal sum of semilattices Si such that Subsi ci Li for all i E I. In arbitrary direct product decomposition
Subs 1 njEJ Mj each M j is the lattice of subsemilattices of ~ j , where ~j is ordinal sum of some 5';s.

This result was also announced in [DLMl], but the proof made use of distributive, standard and neutral
element and some complex combinatorial structures. Here we obtained it almost immediately from theorem
2.

Notice, that if lattices are used instead of semilattices, all the above reasonings remain true if we forget about
one operation. Thus, we get

Proposition 7 Every direct product decomposition of a lattice SubL of sublattices of L corresponds to an
ordinal sum decomposition of L.

This proposition was established in [Fi].

5 Direct product decomposition of relation schemes

Implication bases of closures are known under the name relation schemes in the theory of relational databases.
In this section we transfer the results of sections 2 and 3 to the relation schemes, with particular attention being
paid to database problems such as decomposition of a relation scheme into two or more relation schemes
within one database scheme, normalization, finding mimimal keys and so on. We first introduce some
terminology which is standard and can be found e.g. in [Ma]. Then we study the problem of decomposition
and show that the most widely used normal forms are preserved under decomposition. We will also find the
relationship between keys of a relation scheme and its subschemes determined by a decomposition. Finally,
we investigate relationship between decompositions of relation schemes and relation instances, i.e. relational
databases themselves.

A relation scheme is a pair (U, F), where U is a finite set and F is an implication system. Elements of U
are called attributes. They usually correspond to the attributes of a relational database, i.e. they are, e.g.,
name, date of birth, age, address an so on. Elements of F are called finctional dependencies (fds for short).
For example, there could be a fd name -+ address, or a fd date of birth -t age.

With each a E U associate its domain dom(a). A relation over U is a subset R c naEU dom(a). We can
think of R as being a set of mappings:
R = { t i , . . . , tn) , t; : U -+ UaEU dom(a) : t;(a) E dom(a), i E [I, m].
We say that R obeys a fd X + Y (or that this fd holds in R) if for every t i , tj E R the equality t ; (X) = t j (X)
implies t i (Y) = t j (Y) (by t (X) we mean { t (x) : x E X)) . A relation R is said to be a relation instance of
a relation scheme (U, F) if all the fds from F hold in R.

Let FR stand for the set of all fds that hold in R. Then FR satisfies two following properties:
(Fl) X + Y E FR for all Y X (pseudoreflexivity);
(F2) X U Z + V E FR if X + Y E FR and Y U Z + V E FR (pseudotransitivity).
If we are given a set F of fds, let F+ stands for the set of all fds that can be derived from F by using
pseudoreflexivity and pseudotransitivity. Then F; = FR and F+ thus defined coincides with F+ defined
in section 3 [Ma,DLMl,Wi]. Moreover, for every relation scheme (U, F) there is a relation R over U such
that F+ = FR. This relation R is called an Armstrong relation of F [BDFS,MRl].

A set F of fds is called a cover of G if F+ = G+. A cover F is called nonredundant if for every f E F
we have f # (F - f) + . This concept of nonredundancy coincides with that defined in section 3. A cover is
open [Go] if the right hand sides of its fds consist of one-element sets only. Every family F of fds has an
open nonredundant cover. In fact, the first step of algorithm DECOMPOSITION from section 3 computes
it.

A set X is called a key if X + U E F+. A key is called minimal if each Y c X is not a key. An attribute
a E U is called prime if it belongs to a minimal key, and nonprime otherwise.

A relation scheme (U, F) is in

r second normal form, or 2NF, if X + a # F+ for a $ X , a a nonprime attribute, and X a proper
subset of a minimal key;

r third normal form, or 3NF, if X + a # F+ for a $ X, a a nonprime and X a nonkey;

Boyce-Codd normal form, or BCNF, if X + a # F+ for a # X and X a nonkey.

A database scheme is a family of relation schemes (Ul , F l) , . . . , (Uk, Fk) such that UI , . . . , Uk are pairwise
disjoint. An instance of a database scheme is a set { R 1 , . . . , Rk) , each R; being an instance of (U; , F;).

Given a relation scheme (U, F) , there is a closure CF, and we can can consider its direct product decompo-
sitions. A direct product decomposition of a closure CF will be called also a direct product decomposition
of a relation scheme. Each direct product decomposition of CF corresponds to a strong decomposition pair
which will be also called a strong decomposition pair of a relation scheme.

Suppose (A , 2) is a strong decomposition pair of a relation scheme (U, F) . Let F be open and nonredundant.
Then for each X + a E F either X U a A or X U a 2 2. This means that attributes of A and 2 are
"independent", i.e. no attribute of A functionally depends on a set of attributes of 2 and no attribute of -
A functionally depends on a set of attributes of A. Thus, we may suppose that actually we have two
"independent" relation schemes (A,FA) and (A , F ~) , where FA = { X + a E F : X U a A) and
F;I = { X + a E F : X U a C 2). Clearly, FA U F;i = F by lemma 3, i.e. we do not loose information
decomposing a relation scheme into two relation schemes within one database scheme.

We have shown that decomposition of a relation scheme does not cause loss of information. However, it is
important to know if we may or may not loose a nice structure of a database scheme when we decompose
some of its relation schemes.

It is often required that a database scheme be in a normal form (second, third, or Boyce-Codd). We will
show that decomposition preserves these normal forms.

In sequel (U, F) will be an arbitrary relation scheme, and FA, FT will be covers of {X -t Y E F+ :
X U Y C A) and {X t Y E F+ : X u Y 2 2) respectively. If A is closed, then the lattice of closed sets
of CFA is the ideal (A] of LC,. If F is open and nondundant, and (A,X) is a strong decomposition pair
then we may choose FA and Fx as we did above. We will need

Lemma 5 Let (A,X) be a strong decomposition pair of a relation scheme (U, F) . Let K be a family of
minimal keys of (U, F) , and ICA, KT the families of minimal keys of (A, FA) and (A, FT). Then K =
{Kl U K2 : K1 E KA, K2 E KT).

Proof If K1 E ICA and K2 E KT then obviously K = K1 U K2 is a key. Let K' c K be a key, and let
there be a E K - K'. Suppose a E A. Since K1 is a minimal key of (A, FA), then CF(Kl - a) = Y # A.
Hence, CF(Kf) CF(K - a) = CF((Kl - a) U K2) = CF(Y u X) = Y V X # U since A is neutral. This
contradiction shows that K is a minimal key. By the analogous reasonings we show that if K E K, then
K ~ A E K A and K ~ ~ E K ~ Lemrnaisproved.

Theorem 4 Let (U, F) be a relation scheme, and (A,X) a decomposition pair. Then
I) I f (U, F) is in 2NF, then so are (A, FA) and (2, FT);
2) If (U, F) is in 3NF, then so are (A, FA) and (2 , FT);
3) If (U, F) is in BCNF, then so are (A, FA) and (3 , FT).

Proof. Notice that if (A , z) is a decomposition pair, then according to the proof of lemma 5 union of
elements of KA and KT is a minimal key of (U, F) , since we never used A U 3 = U in the proof of lemma
5, but vice versa is not true in general.

Lemma 6 Let (U, F) be a relation scheme, Up the set of prime attributes, (A,X) a decomposition pair, and
Up(A), the sets of prime attributes of (A, FA) and (3 , FT) respectively. Then Up(A) = Up n A and
up@) = up n 2 .

Proof of lemma. Let X be a coatom of (A], i.e. a maximal closed set in (A] - {A). Then X V 2 is a
coatom in LC, (it follows immediately from lemma 2), and (X V 2) A A = X. If Y is a coatom of LC,,
then Y n A is a coatom of (A]. Since the intersection of all coatoms of LC, is the set Unp of nonprirne
attributes [DT], then Unp(A) = Unp n A, whence Up(A) = Up n A. Lemma is proved.

1) Let (U, F) be in 2NF. We say that a closed set X is prime if X = CF(Y) where Y is a subset of
a minimal key. According to [DLM2] a relation scheme is in 2NF iff for every prime set X # U :
[X r l Up, XI C_ LC,. By lemma 6, it suffices to prove that for every X prime in (A, FA), X # A, and
every nonprime a E A, a $ X the set X - a is closed, because X, X - a , a E Unp(A) generate interval
[X n Up(A), XI.

L e t X = C F (Y) w h e r e Y c Y f , a n d Y ' € x A . L f Z ~ ~ ~ , t h e n ~ ' U ~ € ~ , a n d ~ ' = ~ ~ ~ i s p r i m e i n
(U, F) because X' = CF(Y U 2). Since A is neutral, X' n A = X. In particular, a $! X', and since (U, F)
is in 2NF X' - a E LC,. Hence, X - a = (X' - a) n A E LC,, and (A, FA) is in 2NF. Analogously we
prove that (2, Fz) is in 2NF.

2) Let (U, F) be in 3NF. According to [DLW] a relation scheme is in 3NF iff for every closed X # U :
[X n Up, XI c_ LC,. Again by lemma 6 it suffices to prove that for every closed X c A and a nonprime
a E A, a $! X the set X - a is closed. Let Y = X v 2 = CF(Y u 2) . Since A is neutral, Y n A = X , and
a $ Y. Therefore, Y - a E LC, because (U, F) is in 3NF and Y # U. Further, X - a = (Y - a) fl A E LC,.
Since the lattice of closed sets of (A, FA) is the ideal (A] of LC,, X - a is closed, and (A, FA) is in 3NF.
Analogously, (2, Fz) is in 3NF.

3) Let (U, F) be in BCNF. According to [DLW], a relation scheme is in BCNF iff for every closed X # U
it holds: [@,XI C_ LC,. If X C A is a closed set, then so is X V 2 , and X V 2 # U because A is neutral.
Hence, [0, XI [0, X V 21 E LC,, and [O, XI E (A]. Thus, (A, FA) is in BCNF, and so is (3 , FT).
Theorem is completely proved.

The result about BCNF has the simplest form if only strong decomposition pairs are taken into account. In
fact, in this case nontrivial direct product decompositions do not exist. We say that a strong decomposition
pair (~ , 2) is nontrivial if both sets are nonempty. A relation scheme (U, F) is trivial if it consists only of
trivial fds X -t Y, Y X. In the other words, (U, F) is trivial iff F has an empty cover.

Proposition 8 Let (U, F) be a relation scheme in BCNF, and let (A,]) be its nontrivial strong decomposition
pair. Then (U, F) is trivial.

Proof. Let K1,. . . , Kk be the minimal keys of nontrivial relation scheme (U, F) in BCNF and let (A,Z) be a
nontrivial strong decomposition pair, i.e. A,Z # 0 (and A,] # U). Since (A,X) is a strong decomposition
pair of CF, for every i we have CF(K; fl A) = CF(K;) fl A = A. Since A is closed and (U, F) is in
BCNF, K; n A is closed too because A # U, and A = K; n A, i.e. A K;. Analogously 2 C K; for all i.
Therefore, U = A U 2 C K;. Hence, (U, F) has unique key, namely, U, and F consists only of trivial fds.
This contradiction shows that either A = 0 or 2 = 0.

By a decomposition of a database scheme we will mean the following operation. Given a database scheme
S = {(Ul, Fl), . . . , (Uk, Fk)), and a strong decomposition pair (A,Z) of, say, (Ui, E) , a primitive de-
composition of S is a database scheme {(Ul, Fl), . . . , (U;-l, Fi-l), (A, KA), (2 , FZ), . . . , (Uk, Fk)}. A
decomposition of S is the result of some operations of primitive decomposition. We obtain immediately
from the previous theorem

Corollary 9 The decompositions of database schemes preserve normalization.

In the rest of the section we discuss the relationship between direct product decompositions of relation
schemes and Armstrong relations. Two questions that arise here are the following. Given a relation scheme
(U, F) , its strong decomposition pair (A, 2) and Armstrong relations RA and RZ of (A, FA) and (2, FX),
how can we construct an Armstrong relation R of (U, F)? And, if we are given an Armstrong relation R of
(U, F), how can we construct RA and Rz?

The first question has been answered completely in [DFK] where construction of R is given. Great atten-
tion was paid to the problem of complexity in [DFK]. It is essential that an Armstrong relation be small

[BDFS,MR2], but in general it may have exponential size in the number of attributes and fds. However,
the size of Armstrong relation of R is linear in the sizes of RA and RT In fact, let s (F) be the size (the
number of elements, i.e. mappings t is) of a minimal Armstrong relation of (U, F) , and s(FA), s(FT) be the
sizes of minimal Armstrong relations of (A , FA) and (A, FT). If (A,Z) is a strong decomposition pair of
(U , F) , then s (F) = s(FA) + s(FT) - 1 [DFK].

In this paper we answer the question concerning Armstrong relations RA and RT Let R = { t l , . . . , t,) be
a relation over U, and X C_ U. Then II(R, X) is the projection of R onto X , i.e. {tl I x , . . . , tm Ix).

Theorem 5 Let (U , F) be a relation scheme and (A,Z) its strong decomposition pair. If R is an Armstrong
relation of (U, F) , then II(R, A) is an Armstrong relation of (A , FA) and I I (R , ~) is an Armstrong relation
of (2, F ?) .

Proof. It suffices to prove that II(R, A) is an Armstrong relation of (A , FA). Intruduce some definitions.
Given arelation R = i t l , . . . ,t,) over U, let Eij = {a E U : ti(.) = t j (a) } and ER = {Eij : i, j E [l ,m]} .
Let LF = LCF and M (F) be the set of meet-irreducible elements of LF. Then R is an Armstrong relation
of (U, F) iff M (F) C_ ER C_ LF [DT], cf. also [BDFS]. ER is usually called an equality set.

Let R be an Armstrong relation of (U, F). Let ~i be the equality set of II(R, A). To prove that II(R, A)
is an Armstrong relation of (A , FA) we have to show that E: C_ (A] and each meet-irreducible element of
(A] is in ~ i .
Let X E E;. Then for some i, j E [I , m] we have X = {a E A : t i (a) = t j (a)) = {a E U : t i (a) =
t j (a)) = E;j n A, where Eij E ER. Since ER C- LF. X E LF and X E (A] .

Let X be a meet-irreducible element in (A] . Let Y = X v 2 , i.e. Y = X u -;iT because (A,-?I) is strong.
Suppose Y is not meet-irreducible in LF, i.e. Y = Yl n Y2, Y # Yl ,Y2. Then X = (Yl r l A) r l (Y2 n A)
because X = Y n A. Since X is meet-irreducible in (A] , either Yl n A = X or Y2 n A = X . Suppose
without loss of generality X = YI n A. Then { X , Y , Y l , A, U) is a sublattice of LF generated by A, Y , Yl ,
and this sublattice is not distributive, which contradicts the neutrality of A. Hence, Y E M (F) , and for
some i, j E [l ,m] : Y = Eij because M (F) C ER. Hence, X = Y n A = E;j n A = {a E A : t i(a) =
t j (a) } E E:.

Thus, II(R,A) is an Armstrong relation of (A , FA). Analogously, II(R,A) is an Armstrong relation of
(2, FT). Theorem is proved.

6 Conclusion

In the paper we have studied the relationship between direct product decompositions of closures and their
lattices of closed sets. Every direct product decomposition of a closure corresponds to a one of its lattice of
closed sets, but a direct product decomposition of lattice of closed sets may fail to correspond to a direct
product decomposition of the closure.

Every direct product decomposition of a lattice of closed sets can be described by a pair of disjoint subsets
of underlying set U on which the closure is defined, and direct product decompositions of closure correspond
exactly to those pairs which are partitions of U.

If a closure is defined on a finite set by its implication base, there is a polynomial algorithm which computes
a direct product decomposition of the closure. This algorithm is based on one computing direct product
decompositions of topological closures whose lattices of closed sets are exactly distributive lattices.

The main characterization of direct product decompositions of closed sets can be applied to find decompo-
sitions of some algebraic lattices, for example, lattices of sublattices and subsemilattices.

In the finite case direct product decompositions of closures correspond to decompositions of relational
database schemes. Decomposing a scheme, we do not lose information. Decompositions of schemes can
be described by projections of relations, and they preserve normalization, what is of practical importance,
because it is often required that a database scheme be in a normal form.

One relevant problem is still open: given a poset, what is a characterization of its direct product decompo-
sitions? This problem is important, for example, in domain theory [GS] where a characterization of direct
product decompositions of domains would be useful. There are also problems of finding representations
analogous to implication bases, and of constructing algorithms to compute direct product decompositions.
We plan to dedicate further research to these problems.

ACKNOWLEDGEMENT: The author is grateful to Peter Buneman for the useful discussions.

REFERENCES

[Ail M.Aigner, '%ornbimtorial Theory", Springer Vedag, Berlin, 1979.

[Ar] W.W.Armstmng, Dependency structure of data base relationships, Information Processing 74, North-
Holland, Amsterdam (1974), 580-583.

[BDFS] C.Beeri, M.Dowd, R.Fagin, R.Statman, On the structure of Amstmng relations for functional de-
pendencies, J. of the ACM 3 1 (1984), 30-46.

[BH] E.Boms, P.L.Hamrner, On clustering problems with connected optima in Euclidean spaces, Discrete
Math. 75 (1989), 81-88.

[Bi] G.Birkhoff, "'Lattice Theory", 3rd ed., AMS, Providence, RI, 1967.

[DFK] J.Demetrovics, Z.Fiiredi, G.O.H.Katona, Minimum matrix representation of closure operations, Dis-
crete Applied Math. 11 (1985), 115-128.

[DLMl] J.Demetrovics, L-Libkin, I.B.Muchnik, Functional dependencies and the semilattices of closed
classes, Proc. of the second Symp. on Mathematical Fundamentals of Database Theory, Springer Lecture
Notes in Comp. Sci. 364 (1989), 136-147.

[DLM2] J.Demetmvics, L.Libkin, I.B.Muchnii, Functional dependencies in relational databases: a lattice
point of view. Submitted to Discrete Applied Math..

[DT] J.Demetrovics, V.D.Thi, Keys, antikeys, and prime attributes, Annales Univ. Sci., Sect. Comp., Budapest
8 (1987), 37-54.

[Fi] N.D.Filippov, Projectivity of lattices, Amer. Math. Soc. Transl. 96 (1970). 37-58.

[Fu] S.Fujishige, A decomposition of distributive lattices, Discrete Math. 55 (1985), 35-55.

[Go] G.Gottlob, On the size of nonredundant fd-covers, Information Processing Letrers 24 (1987), 355-360.

[Gr] G.Gfitzer, "General Lattice Theory", Springer Verlag, Berlin, 1978.

[GS] C.Gunter, D.Scott, Semantic domains, to appear in "'Handbook on Theoretical Computer Science".

[Ma] D.Maier, "The Theory of Relational Databases", Comp.Sci.Press, Rockville, MD, 1983.

[MRl] H.Mannila, K.-J.Rfha, Design by example: an application of Amstrong relations, J. of Computer
and System Sciences 33 (1986), 126-141.

[MR2] H.Mannila, K.-J.R;iiha, Practical algorithms for finding prime attributes and testing normal forms,
Proc. of the eighth Symp. on Principles of Database Systems, ACM Press (1989), 128-133.

[Ri] I.Rival, Maximal sublattices of finite distributive lattices, Proc. Amer. Math. Soc. 44 (1974), 263-268.

[Wi] M.Wild, Implication bases for finite closure systems, Preprint No. 1210, Technische Hochschule
Darmstadt, 1989.

	Direct Product Decompositions of Lattices, Closures and Relation Schemes
	Recommended Citation

	Direct Product Decompositions of Lattices, Closures and Relation Schemes
	Abstract
	Comments

	tmp.1187103354.pdf.mGtIQ

