
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

April 1991 

Action Composition for the Animation of Natural Language Action Composition for the Animation of Natural Language 

Instructions Instructions 

Libby Levison 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Libby Levison, "Action Composition for the Animation of Natural Language Instructions", . April 1991. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-28. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/383 
For more information, please contact repository@pobox.upenn.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76359171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/383
mailto:repository@pobox.upenn.edu


Action Composition for the Animation of Natural Language Instructions Action Composition for the Animation of Natural Language Instructions 

Abstract Abstract 
This research project investigates the relationship between computer animation and language; 
specifically, developing utilities to generate animation from natural language instructions. Methods for 
specifying simulations at a task-level rather than at the level of individual motions are discussed. We 
envision a system which would allow engineers or technical staff who currently write instruction manuals 
to instead generate animations which illustrate the task. However it is unlikely that these engineers would 
have sufficient knowledge of animation techniques. For this reason, such a system must provide high-
level tools to permit the engineer to animate a task without becoming entangled in low-level animation 
issues. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-28. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/383 

https://repository.upenn.edu/cis_reports/383


Action Composition For The 
Animation Of Natural Language Instructions 

MS-CIS-91-28 
GRAPHICS LAB 40 

LINC LAB 200 

Libby Levison 

Department of Computer and Informat ion Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104-6389 

April 1991 



1 Introduction 

This research project investigates the relationship between computer animation and language; 
specifically, developing utilities to generate animation from natural language instructions. Meth- 
ods for specifying simulations a t  a task-level rather than a t  the level of individual motions are 
discussed. We envision a system which would allow engineers or technical staff who currently 
write instruction manuals to instead generate animations which illustrate the task. However it 
is unlikely that these engineers would have sufficient knowledge of animation techniques. For 
this reason, such a system must provide high-level tools to permit the engineer to  animate a 
task without becoming entangled in low-level animation issues. 

In addition to  its potential as an instructional or human factors analysis tool, the animation 
environment provides a means of visually corroborating the interpretation of an instruction set. 
This is useful both for Computational Linguists (interested in a means to check implementations 
which analyze discourse) and for engineers who write instruction manuals (the animation will 
provide a way for instructors to disambiguate their instructions). Animation has benefits over 
live video in that the animation scene abstracts away from extraneous information and focuses 
on those details relevant to the task. Furthermore, the task might take place in a hostile or 
dangerous environment in which it would be impossible to create a film due to the dangers to 
the actors, or in a developmental environment which simply does not exist. 

The research described here was carried out in conjunction with the Animation and Natural 
Language Project (AnimNL) - a joint effort between the Computer Graphics Research Lab 
and the Language, Information and Computation Lab at the University of Pennsylvania. We 
believe that we are in a unique position to investigate instruction understanding, the automatic 
generation of human-like motion and their relationship. 

I begin (Section 2) with a brief discussion of the AnimNL project and this research task. 
Section 3 describes the software used in the implementation. Section 4 explains the composition 
and hierarchical structure of the task-actions, and discusses such contingencies as timing 
conditions. Finally Section 5 elaborates issues that became apparent while carrying out this 
project, and Section 6 presents some ideas for future work. 

2 The AnimNL Project 

The Graphics Lab's interest in human factors analysis suggested the domain of repair and main- 
tenance tasks involving human agents. This domain, goal-oriented but animatable, provides a 
rich source of instructional texts. Our initial strategy is to analyze a set of instructions, produce 
a linguistic interpretation and analysis of the text, and use this representation to generate an 
animation. The goal of the project is: 

Given a task specified in  Natural Language instructions, automatically generate a 
(narrated) simulation of an  agent executing the task. 

One interest of the AnimNL project is the relation between natural-language instructions and 
animated simulations specified at a task-level. 

In discussing these animations certain assumptions are made. One assumption is that the 
engineer who currently writes the instruction manuals will "write" the animations - they will not 
be created by a professional animator. However current animation systems do not provide for 



someone who is not an animator. A method which permits an engineer to specify an animation 
is needed. One goal of this research project was to test the feasibility of generating animations 
from a task-level, as opposed to a lower level; i.e. allow the engineer to  specify high-level goals 
rather than each simulation movement. This is the third level of Zeltzer's animation taxonomy, 
what he referred to  as his "task-level" [12]. However our motivation differs from his in that 
our intention is to  design a system not for animators, but for engineers with little knowledge of 
task-level motor-control and related issues. 

To illustrate some of these issues, consider the instruction: 

Move the cup to the table 

given in a scene with an animated agent, a table, and a cup on a shelf next to the table. The 
animator-engineer should not need to specify the number of degrees to swing the shoulder joint 
or straighten the elbow joint for each frame of the animation to move the agent's hand to the 
cup. Rather, the animator should be able to specify the action at a much higher level - by 
utilizing a set of high-level task-actions. If, instead of specifying joint movements, the engineer 
could specify: 

reach-action (hand cup) 
move-action (hand table-top) 

he would be describing the action at a task-level. Using combinations of task-actions, an 
engineer could "program" an animation. The AnimNL Project is interested in using these 
same task-actions in generating animations from instructions. 

2.1 This Research 

While the AnimNL group plans on beginning with natural-language instructions and ending 
with animation, the goal of this research project was to test the robustness of the interplay 
between software packages available at the University of Pennsylvania which will be used in 
building the animations. In addition, we wanted to test the feasibility of specifying high-level 
task definitions in this environment. As non-animators, we were interested in developing a set 
of high-level animation definitions that would enable the animation of a set of instructions. 
The instructions chosen for the exercise describe the removal of a Fuel Control Valve (FCV) 
from an aircraft fuselage. The results of this research illustrate issues the AnimNL project will 
encounter in future attempts to  generate animation from natural language instructions. They 
also demonstrate that it is indeed possible to define a set of high-level animation definitions 
which provides a means of describing an animation at a task-level. 

3 Programming Environment 

The research described herein uses software developed in the Computer Graphics Research Lab 
at the University of Pennsylvania. The environment is the JackTM modeling system which 
runs on Silicon Graphics Iris workstations and provides three-dimensional modeling capabilities 
as well as extensive human factors and anthropometric analysis tools. Built on a powerful 
representation for articulated figures composed of joints and segments with boundary geometry, 

'Jack is a trademark of the University of Pennsylvania. 



Jack provides an interactive interface into a 3D articulated world. Jack provides low-level 
animation support through real-time inverse-kinematics and constraint satisfaction, in addition 
to collision detection and strength analysis, among other features. 

The scene for the animation was created in Jack, the work area, tools and parts modeled as 
specified in the instructions. Just as the engineer who currently writes the instruction manuals 
has knowledge of the task and knows, for example, that a Phillips head screw driver is required, 
it is assumed that the engineer-animator will have the knowledge required to lay out the scene 
of the animation. It is also assumed that a skilled engineer is already trained in analyzing 
tasks and developing instruction sets for the domain. This project simply provides a different 
medium in which the engineer can explain the task. 

Figure 1: Beginning scene from the animation, Fuel Valve installed. The animated agent is 
in the center. His projection to the yz-plane at the far left gives a 3D effect to the picture. 
A n  oil bottle is on the worktable. The circle in the upper center of the picture is an abstract 
representation of the fuselage; the FCV is the cylindrical object mounted to the attached plate. 

The animation was programmed in Yaps, a symbolic task simulator [4]. Yaps provides 
animation-directives which access Jack's low-level animation commands. These animation- 
directives are not only ordered and sequenced via Yaps's temporal and conditional relation- 
ships, but can also be composed to  produce parameterized simulation procedures. These pro- 
cedures, called task-actions, are defined for a number of parameters (agent, object, location, 
etc). The same task-action can thus be used any number of times with different parameters to 



create different animation segments. The possibility of defining and reusing these procedures 
greatly simplifies the animation programming problem for the engineer. By extending these 
procedural compositions far enough, high-level procedures could be generated such that the 
mapping from the instructions to  these procedures would be straightforward. 

KB[3] is a frame-based, object-oriented knowledge system which establishes symbolic ref- 
erences t o  Jack's geometric data. While Jack maintains and manipulates the geometric model 
of the world, K B  maintains the symbolic information. Yaps uses KB's symbolic representa- 
tion to manipulate the geometric model. (These symbolic K B  representations are passed to 
the Yaps task-actions as parameters.) This frees Yaps from "knowing" the specific world 
coordinates of an object or the object's geometric representation in Jack. For instance, if Jack 
contains a model of a cup, K B  would have an entry which identified cup as that particular 
Jack entity. Yaps has no knowledge of the object's location; KB's mapping from symbolic to 
geometric representation will resolve any ambiguity. Thus the animator need not talk about 
the-cup-on- the-table-at- world-coordinates-(x7y7z), but can reference the symbolic entity, cup. 
Should the cup move during the course of the action, K B  resolves the problem of the cup's 
exact location. 

At the time of this research, Yaps provided only three low-level animation-directives with 
which to  access Jack's animation commands. These are generate-motion, create-constraint and 
delete-constraint. Generate-motion causes an object (not necessarily animate) to move from its 
current location to another. (Jack has no notion of how motion is generated. It  uses inverse 
kinematics and joint constraint information to analyze how a motion is propagated through 
a figure.) Create-constraint establishes a physical link between two (not necessarily adjacent) 
objects. If two objects are linked together and one of the objects is moved, the second object 
moves along with it. The physical constraint (relation) between the objects is maintained. 
Create-constraint can be further specified to use positional and/or orientational alignments. 
Delete-constraint removes the specified constraint between two objects. 

Yaps provides a mechanism for building animation templates by combining or compos- 
ing the above animation-directives. Using different combinations of generate-motion, create- 
constraint, and delete-constraint, and varying the agents and the objects of these animation 
directives as well as their temporal and causal relations, it is possible to build a set of task- 
actions. Task-actions can themselves be composed into more complex task-actions. As the 
procedures acquire more specification, the task-actions approach task-level descriptions. It is 
important to note, however, that task-actions simply define templates; an animation is realized 
by instantiating the task-actions, supplying parameters as well as timing constraints and other 
conditions. The composability of the task-actions allows for the definition of some abstract and 
high-level concepts. It is these high-level animation descriptions which will allow the engineer 
to program an animation at a task-level. 



4.1 Def in ing  t a sk -ac t ions  

4.1.1 Motivat ing Some  task-actions 

The first templates to be defined were simply encapsulations of the entry points into the Jack 
animation-directives. These task-actions are reach-action(agent object), hold-action(agent 
object) and free-object-action (object); they correspond to generate-motion, create-constraint 
and delete-constraint respectively.l In the following, the use of agent and object is simply for 
readability; for example, a hold-action can be applied between two objects (e.g., hold-action 
(wrench-head 5-8th-socket)). 

Consider trying to describe the actions inherent in the example: 

Move the cup to the table 

assuming that the agent is not currently holding the cup. The agent must first hold the cup 
before he can move it. How is this animation specified? Explicitly stating the sequence of 
actions: 

reach-action (agent cup) 
hold-action (agent cup) 

to cause the agent to reach his hand to the location of the cup and to constrain the cup to 
his hand seems awkward. The composability of the task-actions allows a new task-action to be 
defined: grasp-action: 

(deftemplate grasp-action (agent object) 
reach-action (agent object) 
hold-action (agent object)). 

Grasp-act ion is a sequence of instantiations of two primitive task-actions. 
Now that the agent can grasp the cup, how can he move the cup? A second action, position- 

act ion,  is defined to relocate the cup to  a new location: 

(deftemplate position-action (objectl location) 
reach-action (objectl location) 
hold-action (objectl location)). 

If a previous action had left an object (the cup) in the agent's hand, this task-action could be 
used to move the object to a new location (position-action cup table). (In this instruction set, 
the only time the instruction "move something that is already being held" was used required 
that the object be constrained to the new location. This is the justification of the hold-action 
in this definition.) Note here that location could be the location of object2. 

Thus, to  animate the instruction: 

Move the cup to the table 

the animation-script could be: 

'Although the names chosen for the task-actions do make some attempt to elicit their definition, there was 
no attempt to come up with definitive definitions of these actions in this segment of the research project. 



grasp-action (agent-right-hand cup) 
position-act ion (cup table- top). 

In animating move, it is still necessary to specify a list of commands. No high-level task-action 
has been defined for move and therefore the action must be described in increments. However, 
it is possible to encapsulate the elements of the primitive list at  a still higher task-level. Move- 
action could be defined as: 

(deftemplate move-act ion (agent objectl location) 
grasp-action (agent objectl) 
position-action (objectl location)). 

The actual definition is: 

(deftemplate move-act ion (agent object 1 location) 
grasp-action (agent objectl) 
reach-action (objectl location)); 

in other words, reach to objectl, create a constraint, and move objectl to location (where 
location might be the location of some object2). In the Move the cup example, the instantiation 
required to achieve the desired animation would be: 

move-action (agent-right-hand cup table-top). 

This conciseness is one benefit of task-action composition. 
Once the cup is actually on the table, it can be "un-grasped" by using: 

free-ob ject-action (cup) 

which breaks the constraint between the hand and the cup. If the hand is later moved, the cup 
will no longer move with it. 

4.1.2 Domain-specific task-actions 

The Move the cup to the table example motivated a few fundamental task-action definitions. 
Some of these are actions common to many instructional tasks and milieus; this set of task- 
actions is also usable in the instruction set describing the FCV removal. However, it was also 
necessary to  return to the instruction set and develop Yaps definitions for actions specific to 
the domain in question. These task-actions can be either primitive (see turn-action below) or 
compositional (see ratchet-action). The first new task-action, attach-action, is defined as: 

(deftemplate attach-action (agent objectl object2) 
move-action (agent objectl object2) 
hold-action (objectl object2)). 

This allows the agent to grasp objectl, move it to the location of object2, and establish a 
constraint between objectl and object2. The expansion of this task-action is the command 
string: 

reach-action, hold-action, reach-action, hold-action. 



Attach-act ion could have been equivalently defined as: 

(deftemplate at tach-act ion (agent object1 object2) 
grasp-action (agent objectl) 
position-action (objectl object2)) 

which would expand to exactly the same Jack animation-directive command string as above. 
The task-action definitions are associative; this provides flexibility and power to the system, 
and increases the feasibility of defining a minimal set of task-actions to be used throughout the 
domain. 

The FCV removal instructions also require: turn-act ion (object degrees). Turn-act ion 
causes the object to rotate by the specified number of degrees. The geometric definition of the 
object includes information as to  its degrees of freedom; for example, around which axis a bolt 
will be allowed to rotate. At the time that this research was done, the system did not have a 
feedback tool to monitor Jack entities; instead of testing for an ending condition on an action 
(a  bolt being free of its hole), actions had to be specified iteratively (the number of times to 
turn a bolt). Turn-act ion is actually a support routine, used in the final task-action needed 
to  animate the FCV instructions: ratchet-action. This is defined as: 

(deftemplate ratchet-action (object degrees iterations) 
t urn-act ion (object degrees) 
t urn-act ion (object -degrees) 
rat chet-act ion (object degrees iterations-1)). 

Ratchet-act ion is used to animate of a socketwrench ratcheting back and forth.' 
The complete set of task-actions is listed below. With this set of only nine task-actions, it 

was possible to program the entire animation script from the natural language instructions (see 
Appendix B for an excerpt of the final animation script). 

reach-action (agent object) 

hold-action (agent object) 

free-object-action (object) 

grasp-action (agent object) 

move-action (agent object location) 

attach-action (agent objectl object2) 

position-action (objectl object2) 

turn-action (object degrees) 

ratchet -action (object degrees iterations) 

2Having to explicitly state a number of degrees is not an elegant programming solution; it would have been 
preferable to take advantage of Jack's collision detection algorithms to determine the range of the ratchet 
movement. However processing considerations at the time the work was done required this rather rough 
implementation. 



4.2 Instruction Translation 

The set of task-actions now provides a language for describing the instructions. If this set is 
robust enough in the domain, mapping from the instructions to the animation script will be 
straightforward for the engineerlanimator. There is still quite a bit of room for interpretation, 
and the nature of the task-actions dictates that there will be more than one way to  describe an 
animation. Returning to  the Move the cup to the table example, the engineer can now equally 
well animate: 

Move the cup to the table. 

grasp-act ion (agen t-right-hand cup) 
position-action (cup table- top) 
free-ob ject-action (cup) 

or: 

move-action (agent-right-hand cup table-top) 
free-object-action (cup). 

In both cases, the engineer has decided to release the constraint between the agent and the 
cup as soon as the cup is on the table-top. But the engineer has also described the required 
animation at the task-level. 

4.3 Sequencing Sub-tasks 

Yaps is a simultaneous language; that is, all task-action instantiations are resolved concurrently. 
To sequence the actions and force them to occur in a specific order, the engineerlanimator 
must use the timing-constraints option provided by Yaps. This construct allows the user 
to  specify starting, ending and duration conditions for the instantiation of each action. It  
is possible to  achieve the ordering needed to create a sequential animation by predicating 
the starting condition of instruction-:! on the ending condition of instruction-1. However a 
task-action template, which is defined as a series of other task-actions, has the sequencing 
automatically built in via the instantiation process. If this were not the case, defining grasp- 
action, for example, would be impossible because achieving and completing the reach-action 
before starting the hold-action could not be guaranteed. 

The actions do not need to be performed discretely. Other Yaps timing constructs allow 
the actions to be overlapped and delayed by specifying (start (after 5 min)) or (start now), 
for example. Nor is defining a discrete linear order on the sub-tasks the only possibility. The 
simultaneous nature of Yaps is used to animate actions (such as moving an object with both 
hands) by simultaneously animating: 

move-action (agent-left-hand box) 
move-action (agent-right-hand box). 

The Yaps timing constraints provide a powerful mechanism for specifying the relationships 
among the task-actions in the animation. Timing is one of the most critical issues involved in 
generating realistic animations; the power that Yaps provides in resolving timing issues greatly 
enhances the potential of the Jack animation system. 



Figure 2: Converting natural language instructions to animation. 

4.4 Task Duration 

A formula developed by Fitts[G] was used to  approximate the duration of a task-action. This 
equation estimates the time required for a human to "hit" a target (e.g., for an agent to 
press a button or push a panel). The calculation is based on the dimensions of the target, 
the performance level of the agent and the agent's distance from the target. Fitts' Law was 
used to calculate the duration of all reach-action instantiations. Thus time requirements 
were cumulative (i.e., the sum of the sub- task-action times). Create-constraint  uses a small 
default constant time to estimate sub-task length. 

4.5 Comparison with Earlier Work 

Previous work by Kalita [8] took the output of a parser (BUP)[5], built representations following 
a verbal analysis (ASAM), translated these representations into Yaps, and generated a short 
animation. The current research did not attempt to start with a language parser; rather, the 
focus was to test the robustness of Yaps, KB and their interaction with Jack (see Figure 2). 

Kalita [8] took a different approach to  the problem of action description. He did not build 
a set of task-actions to be used in programming his animation. Instead, Kalita defined each 
sub-task as a sequence of animation-directives. His final animation script was completely "flat", 
with no hierarchical definitions. Not only does this imply that he did not benefit from using 
Yaps as a programming language (and defining reusable animation procedures), but that his 
animation required the animator to repeatedly decompose each verb to the level of animation- 
directives. He did not make use of the concept of hierarchical task-actions. This composability 
is the powerful tool which allows us to create animations at  a task-level. 

5 Discussion 

This section presents a brief discussion of issues encountered in generating this animation, and 
how the information gained from this research has and will effect future research. 



5.1  Flexibility of This System 

a Timing 

The Yaps timing constraints provide a powerful mechanism for specifying the inter- 
relationships among the task-actions in the animation script. Timing is one of the most 
critical issues involved in generating realistic animations. It is not sufficient to  simply list 
all the actions; they must be sequenced and connected temporally. The power that Yaps 
provides in resolving timing issues greatly enhances the potential of the Jack animation 
system. An excerpt of the output from Yaps (a list of Jack commands) appears in Ap- 
pendix C, which illustrates the complexities of the timing conditions required to  produce 
the animation. 

a Domain 

Although this report only discusses animated agents, the abstract task-action definitions 
are equally applicable for other simulated agents, be they animated or robotic. This 
investigation into the semantics of these instruction verbs has wide applicability. The 
ability to use hierarchical action descriptions to define a set of commands for a robot 
arm, or to  describe the actions of an animated agent in a dangerous work environment, 
should be of interest in many different domains. 

a Agent Ability 

One question which arises in defining the task-actions is whether or not the instructions 
need to be concerned with how the task-action varies depending on the agent and his 
abilities. Is it necessary to describe different task-actions for a five-foot agent, as opposed 
to a six-foot five-inch agent? 

Because this work is embedded in Jack, variations in agent ability at  the animation 
specification level are not a concern. As long as the animation is within the agent's 
capabilities (and thus the animation is "solvable"), substituting different agents gives 
different evaluations of the tasks. By testing different agents with varying abilities, one can 
analyze the task requirements and gather information on human factors issues. Similarly, 
it is possible to vary workplace geometry, tools, and agent placement (location). 

There is a comparison here between innate and planned action. In reaching to grab a cup, 
we do not think about how to control the muscles in the forearm, however, we do consider 
the goal of getting our hand to the same location as the cup. This distinction between 
cognizant motion and action is internal in this animation; Jack manages the motor skills. 
The same distinction is found in the level of detail of the instructions. One does not tell 
someone: 

Reach your hand to the cup, constrain your hand to the cup, begin ... 

Rather, we give them a goal, and allow that goal to lend information as to how it will 
be accomplished. The hierarchy of the task-actions captures some of this understood 
knowledge. 

The task-actions have been defined such that they are not concerned with the abilities of 
a specific agent, but allow for interpretation based on each agent's capabilities. Not only 



does this allow the same animation script to be used for different agents (thereby gener- 
ating different analyses), it also means that the primitives used to define the elementary 
task-actions are themselves defined in terms of this level of innate action. 

a CPU Considerations 

The result of the research is a short film depicting an animated agent removing a part from 
an airplane. The generation of each frame requires a significant amount of computation; 
the frames were saved as they were generated and collected into a short film. The resulting 
animation can be played back whenever and as often as necessary. 

5.2 Features N e e d i n g  I m p r o v e m e n t  

a Timing 

At the time of this research, Yaps provided only limited timing capabilities; therefore 
animating conditional actions was impossible. However extensions to  Yaps now provide 
access to  monitors which adow for conditional constraints. One can create a monitor 
which continually checks certain conditions in the world. Upon detection of a given 
condition, the monitor can trigger (instantiate) a new task-action or terminate an old 
one. A simple example is to establish a gravity monitor and attach it to an object in 
the scene. If the monitor ever discovers that the object is unsupported, it would invoke 
fall-action (object). 

An additional and far more complex example would be to  replace ratchet-act ion with 
a task-action with an inherent monitor which would turn the object (a  bolt) until the 
object was free. This would be an improvement over ratcheting the bolt for a specified 
number of iterations, as was necessary in this preliminary implementation. 

a Crea t  ing-const ra ints  

To avoid circularities, Jack must define a source and destination for each create-constraint.  
While the source object controls what is constrained to it, the destination does not. That 
is, if the hand (source) is constrained to the cup (destination), moving the cup will result 
in the hand also moving. However, moving the hand will not necessarily preserve the phys- 
ical distance between it and the cup. This is clearly unintuitive and awkward, although 
it was possible to program the animation despite this problem. One requires a create- 
constmint (hold-action) which bypasses the constraint mechanism. This functionality is 
implemented in Jack, but is not currently accessible via Yaps. 

a Posture Planning 

Work by Jung [7] promises to eliminate problems that were encountered in generating 
certain movements. In determining animations, there must be a certain level of postural 
planning, to prevent the agent's hand from colliding with his leg or to determine that 
the agent is currently too far away from the tabJe to move the cup to  it. These are 
unspecified in instructional dialogue. Jung's proposal is to plan the postures needed in 
the course of satisfying an animation-directive. This functionality, when combined with 
the investigation into understanding the influence the task has on the interpretation of 
each instruction, should greatly enhance the power of our system. 



a Fitts' Law 

Fitts' Law was used to estimate the time required for many of the movements in the 
animation; however, the results are not exactly correct. Fitts' Law was not intended to 
calculate the time required for an agent to move his hand from one location to another, 
but rather depends crucially on the target of each motion. It  also gives the fastest time 
requirement. Any use of Fitts' Law should be scaled by some motivation factor. Other 
algorithms need to be investigated that will give a set of durations for each task. Although 
Fitts' Law is not directly applicable for this domain, the algorithm does give a reasonable 
estimate for the durations of the task-actions. Relative to one another, the sub-task times 
make sense. Although the length of each task-action might not be correct, the animation 
does appear to be temporally coherent. 

Options which exist for obtaining accurate sub-task times include: 

- using existing databases for task times -these are found in the human factors domain; 
and 

- using a strength model to predict the minimum task completion time from the max- 
imum rate of motion. 

6 Future Directions 

This is an ongoing research project. Other areas for study are briefly discussed below. 

a Timing 

One useful project would be to test and illustrate the power of the Yaps monitors, using 
different starting and ending conditions and sub-task durations. A set of these condition- 
als would greatly enhance the task-action library. Preliminary tests in defining action 
templates using monitors include: 

start (action2) when-start (actionl) 
do (action2) until-finish (actionl). 

These task-actions work quite well and provide considerable programming power. 

Minimal Task-actions Set 

A subject not discussed here is the usefulness of the set of task-actions defined for the 
purposes of this animation. Investigating the applicability of these task-actions to  other 
task domains, and discovering how their definitions would need to be changed is another 
area for further research. Additionally, one could try to  establish which task-actions might 
constitute a minimal set, or if such a set even exists. Limiting this discussion to the world 
of animatable instructions might make it feasible. 

Since this project was completed, the set of animation-directives provided by Jack has 
been greatly expanded [lo]. In fact, whether or not these commands should still be called 
"primitives" is questionable. Jack now handles much more sophisticated actions, such as 
move left foot; the implication is that the task-action descriptions will also move up the 
task-level hierarchy. 



The Object-oriented Approach 

One can view the work to date as using the verb in the natural language instructions 
as the means of selecting a particular task-action, and the verb's arguments (subject, 
object, etc.) as parameterizing that selection. However, a verb such as remove has 
significant variations in behavior when applied to objects as diverse as jar lids, labels, 
or bolts. Because of this, the appropriateness of treating the different actions simply as 
parameterizations is questionable. One possible course for future research is to  investigate 
an "object-centered" approach in generating animation. 

KB is an object-oriented language. Objects could store domain specific information, 
for example, their degrees of freedom. A bolt might be constrained by its geometry 
such that,  when turned, it "knows" that it must turn around a certain axis. Work has 
begun in defining a set of task-action which will act as object-oriented procedures. One 
current thought is to build a hybrid system of underspecified definitions of the task- 
actions in conjunction with an object-centered knowledge base. Each class of objects 
will have enough geometric and other supplementary inherited information that when the 
procedure is applied to  the object, the object can provide the missing information and 
the task-action can be animated. There might be a core task-action definition for open,  
which will behave differently depending on whether one is animating open the door or 
open the umbrella. The intent is to capture the idea that action specifications describe 
the goals of the action - not the behaviors. 

As a further extension of this approach, it would be interesting to investigate what it 
means to  instantiate, for example, remove-action on a hierarchical assembly. In the 
animation described here, remove-action was applied to each bolt. It would also make 
sense to  program either remove-action (the-bolts) or remove-action (FCV). One ques- 
tion is whether it is correct to  simply apply remove to each sub-part in order, or if more 
information is needed in the data structure of the object and what that information 
entails. 

7 Conclusions 

This work, and the work of the AnimNL group, has application in many different fields. 

Computational Linguistics 

Not only will a system which allows the generation of animation from natural language 
instructions provide a forum for testing algorithms which build interpretations of lan- 
guage, but it will also allow study of instructions as discourse. Additionally, a task-level 
description of an animation will allow us to capture and utilize the duality inherent in 
instructions that they specify both a goal to be achieved and the manner to achieve that 
goal [ll]. This knowledge is crucial in generating animation, specifically animations of 
low-level motions. 

Maintenance and Human Factors Analysis 

The possibilities for using these animations from instructions as a test bed for human 
factors analyses of different tasks are extensive. The resulting animations can be used 



to analyze whether or not an agent will be able to perform a task in an environment 
before the environment is actually built. They will be equally useful in designing a part 
for use in an environment which dictates limitations on number of agents or access to a 
part. As a utility which allows an engineer to "walk" an agent through a proposed design 
of a factory plant, or test different strategies for repairing a faulty part (to find a work 
strategy which offers minimal stress to  the worker), this animation facility should also be 
of interest, and can be a crucial step in the design and test process for many industries. 

a Lexical Semantics 

This project also provides an interesting means of studying taxonomies of actions and 
objects as well as the difference in how humans think about actions and how we specify 
them. Given the limited set of animation-directives in Jack, is it realistic to  believe that 
one could derive a set of high-level task-actions which would allow someone to describe 
any set of instructions? Does such a set exist in the general case, or even in a limited 
environment? 

As a result of this research project, a short animation of the agent removing the FCV from 
the fuselage of an aircraft was produced. This animation was created at a task-level by this 
author, who had minimal knowledge of animation. Excerpts of the final animation script can be 
found in Appendix B. We are continuing our investigation of a high-level language for specifying 
animations at  a task-level. 

8 Acknowledgements 

This research is partially supported by Air Force HRL/LR ILIR-40-02 and F33615-88-C-0004 
(SEI), Lockheed Engineering and Management Services (NASA Johnson Space Center), NASA 
Ames Grant NAG-2-426, NASA Goddard through University of Iowa UICR, FMC Corporation, 
Martin-Marietta Denver Aerospace, Deere and Company, Siemens Research, NSF CISE Grant 
CDA88-22719, and ARO Grant DAAL03-89-C-0031 including participation by the U.S. Army 
Human Engineering Laboratory and the U.S. Army Natick Laboratory. 

This work is part of the AnimNL project at the University of Pennsylvania, and has benefited 
greatly from weekly meetings and discussions with, among others: Norm Badler, Breck Baldwin, 
Jeff Esakov, Barbara Di Eugenio, Moon Jung, Mike Moore, Charlie Ortiz, Mark Steedman, 
Bonnie Webber and Mike White. Thanks also to Dawn Griesbach, Owen Rambow and Phil 
Resnik. 



A Fuel Control Valve Removal Instruct ions 

1) With r i g h t  hand, remove socket wrench from t o o l  
b e l t ,  move t o  f r o n t  of body. With l e f t  hand, 
reach t o  t o o l  b e l t  pocket, remove 5/8" socket ,  
move t o  wrench, engage. Adjust r a t che t  f o r  
removal. 

2) Move wrench t o  l e f t  hand bottom hole,  apply 
pressure t o  t u r n  i n  a loosening motion, repeat  
approximately 7 times t o  loosen threaded hole .  

3) Move wrench away from b o l t ,  with l e f t  hand reach 
t o  b o l t  and remove b o l t  and washer from assembly, 
move l e f t  hand t o  b e l t  pouch place b o l t  and washer 
i n  pouch. 

4) Move wrench t o  bottom r i g h t  hand b o l t ,  apply 
pressure t o  t u r n  i n  a loosening motion, repeat  
approximately 7 times t o  loosen threaded hole .  

5) Repeat operat ion 4. 

6) Move wrench t o  top  b o l t ,  apply pressure t o  t u r n  
i n  a loosening motion, repeat  approximately 6 times 
t o  loosen threaded b o l t .  Move l e f t  hand t o  grasp 
assembly, loosen t h e  b o l t  t h e  f i n a l  t u r n .  Move 
wrench t o  t o o l  b e l t ,  r e l ea se .  With r i g h t  hand 
reach t o  b o l t ,  remove b o l t  and washer, p lace  i n  
pouch. Return r i g h t  hand t o  assembly, with both 
hands move Flow Control t o  movable c a r t  and r e l ease .  



B Final Animation Script (Instr. 1) 

;;; No. 1 

;;; With r i g h t  hand, remove socket wrench from t o o l  b e l t ,  
;;; move t o  f r o n t  of body. With l e f t  hand, reach t o  t o o l  b e l t  ... ,,, pocket,  remove 518" socket ,  move t o  wrench, engage. 

... , , , Adjust r a t c h e t  f o r  removal. 

9 

; with t h e  r i g h t  hand, grasp t h e  wrench from t h e  t o o l  b e l t ,  
; and move it t o  site-front-body 

, 
( i n s t a n t i a t e  move-act ion 

(fred-rh wrench-handle fred-front-body-site planar)  

: t ime-constraints  ' ( ( s t a r t  now) 
(duration 

( e v a l ( + ( f i t t s  f red-rh wrench-handle) 
(f i t t s  wrench-handle 
fred-front-body-site))))) 

; with t h e  l e f t  hand, a t t a c h  socket t o  wrench handle. 
; an a t t a c h  e n t a i l s ,  reaching f o r  t h e  socket ,  grasping 
; it and moving it t o  t h e  wrench head. 
; i f  successfu l ,  f r e e  t h e  l e f t  hand from t h e  socket .  

9 

( i n s t a n t i a t e  a t tach-act ion 
( f red- lh  5-8th-socket wrench-head 

attach-socket-time planar  or ien ted)  

: instancename "r5-attach-sockettt  

: t ime-constraints ' ( ( s t a r t  (end 'lrO-wrench-to-f ron t  'I) ) 
(durat ion (eva l  

(+ (f  i t t s  f r ed - lh  5-8th-socket) 
(f i t t s  fred-lef t -pocket  

f  red-front-body-site) 
a t tach-socket- t ime))))  

:on-success '(progn 
(free-object-act ion f red- lh)  
(f ree-ob j ect-act ion 5-8th-socket) 
(hold-action wrench-head 5-8th-socket 

:or ientat ion-type ' ("or ien ta t ion") ) )  



C Yaps Output of Jack Commands 

advance,clock~to~time (0) ; 
create-motion("yaps00" ,O ,"linear1', "end effector" , "site", 
"pbmale95. right-f ingers .distalt1, "none", "position", "pbmale95. right-shoulder") ; 

create~site~colocation("world", llyapsOlll, "site", "pbmale95 .right-f ingers .distalu1) ; 
add-motion-keyframe("yapsOO", "0" , "site", "world .yapsOl") ; 
add-motion-keyframe ("yaps00", "50.0" , "site", "socketwrench. socketwrench. handle") ; 
create-motion("yaps02" ,0, "linear", "end effector" ,"site1', 

"pbmale95.right~upper~arm.distal",11none11,11po~iti~n","pbmale95.right~shoulder"); 
create-site-colocat ion("world","yap~O3~~, "site1', 
"pbmale95. right-upper-arm. distal") ; 

add-motion-keyf rame ("yaps02", "0" , "site", "world .yaps03I1) ; 
add-motion-keyframe("yaps02", "50 .Of', "site" ,"pbmale95 .center-torso .right,elbow-reach") ; 
advance-clock-to-t ime (50) ; 
delay-command(50); 
create-motion("yaps05" ,50, "linear", "end effector" ,"site1', 
"socketwrench. socketwrench. handle","n~ne~~, llpositionll, 0) ; 

create~site~colocation("world" ,"yapsOb", "site", "socketwrench. socketwrench. handle") ; 
add,motion,keyframe("yaps05", "0" , "site", "world .yaps06I1) ; 
add-motion-keyframe("yapsO5", "7.0" ,"site1', I1pbmale95. center-torso .work1') ; 
advance,clock-to-t ime (55) ; 
create~named~constraint("yaps04","site11,11socketwrench.socketwrench.handle11, 
"site" ,I1pbmale95 .right-f ingers .distal1# ,"nonet1 ,"positionI1, 
"pbmale95 .right-shoulder1', 1-00) ; 

advance~clock~to~time(57); 
~reate,motion(~~yapsO7",57,~~linear~~ ,"end effector" ,"site1', 
I1pbmale95. lef t-f ingers . distal", "none", "position", "pbmale95. lef t ,shoulder1') ; 

create~site~colocation(llworldll, "yaps08", "site" , " pbmale95. lef t-f ingers .distal1') ; 
add-mot ion-keyf rame ("yaps07", "0" , "site" , "world .yaps08") ; 
add-motion-keyframe("yap~07~~, "35.01', "site", "socket. socket .base1') ; 
~reate,motion("yaps09~~,57, lllinearll ,"end effector" ,"site1', 
"pbmale95. left-upper-arm. distal", "none", "position", I1pbmale95. left -shoulder1') ; 

create~site~colocation(llworldll, "yapslO", "site", "pbmale95. left-upper-arm.distalU) ; 
add-mot ion,keyframe("yaps09", "0" , "site", "world .yapslO1') ; 
add~motion~keyframe("yaps09","35.0",11site11 ,"pbmale95.center~torso.left~elbo~~reach~~); 
advance-clock,to,time (92) ; 
advance-clock-to-time(95); 
create-named-constraint ("yaps13", "site1', "socket. socket .basev1, "site", 
I1pbmale95. lef t-f ingers .distal1', "none", "posit ion", "pbmale95. left -shoulder1', 1.00) ; 

delay-command(95) ; 
advance,clock-to-time (97) ; 
create-named-constraint ("yaps1411, llsitell, llsocketwrench. socketwrench. headu1, 
"site", "socket. socket. top", "orientation", "position" ,O. 50,0,1.00) ; 



References 

[I] Norman Badler, Bonnie Webber, Jugal Kalita, and Jeffrey Esakov. Animation From In- 
structions. In N. Badler, B. Barsky, and D. Zeltzer, editors, Making Them Move: Me- 
chanics, Contml and Animation of Articulated Figures, pages 51-93. Morgan-Kaufmann, 
1990. 

[2] Barbara Di Eugenio. Representing Action Descriptions Found in Natural Language In- 
structions. University of Pennsylvania, 1991. 

[3] Jeffrey Esakov. KB . Technical Report MS-CIS-90-03, University of Pennsylvania, 1990. 

[4] Jeffrey Esakov and Norman Badler. An Architecture for High Level Task Animation Con- 
trol. In P.A.Fishwick and R.S.Modjeski, editors, Knowledge-Based Systems: Methodolody 
and Applications. Springer Verlag, 1989. 

[5] T. Finin. BUP - A Bottom-up Parser for Augmented Phrase Structured Grammars. A 
Franz Lisp Program. Technical Report University of Pennsylvania, 1985. 

[6] P. Fitts. The information capacity of the human motor system in controlling the amplitude 
of movement. Journal of Experimental Psychology, 47:381-391, 1954. 

[7] Moon Jung. Posture Planning for Human Task Animation in Workspaces. PhD the- 
sis, Department of Computer and Information Science, University of Pennsylvania, 1992, 
expected. 

[8] Jugal Kalita. Analysis of Action Verbs and Synthesis of Underlying Tasks. PhD thesis, 
University of Pennsylvania, 1990. 

[9] Jugal Kalita and Norman I. Badler. Semantic Analysis of Action Verbs Based On Physical 
Primitives. In Cognitive Science Society 12th Annual Conference, 1990. 

[lo] Cary B. Phillips and Norman I. Badler. Interactive Behaviors for Bipedal Articulated 
Figures. Computer Graphics, 25(4), July, 1991. 

[ll] Bonnie Lynn Webber and Barbara Di Eugenio. Free Adjunts in Natural Language Instruc- 
tions. In COLINGSO: Proc. 13th International Conference on Computational Linguistics, 
Helsinki, pages 395-400, 1990. 

[12] David Zeltzer. Towards an Integrated View of 3-D Computer Animation. Visual Computer, 
1(4):249-259, 1985. 


	Action Composition for the Animation of Natural Language Instructions
	Recommended Citation

	Action Composition for the Animation of Natural Language Instructions
	Abstract
	Comments

	tmp.1186595701.pdf.FqIdO

