
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

August 1992

Search Through Systematic Set Enumeration Search Through Systematic Set Enumeration

Ron Rymon
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Ron Rymon, " Search Through Systematic Set Enumeration", . August 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-66.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/297
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76359141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/297
mailto:repository@pobox.upenn.edu

Search Through Systematic Set Enumeration Search Through Systematic Set Enumeration

Abstract Abstract
In many problem domains, solutions take the form of unordered sets. We present the Set-Enumerations
(SE)-tree - a vehicle for representing sets and/or enumerating them in a best-first fashion. We
demonstrate its usefulness as the basis for a unifying search-based framework for domains where
minimal (maximal) elements of a power set are targeted, where minimal (maximal) partial instantiations
of a set of variables are sought, or where a composite decision is not dependent on the order in which its
primitive component-decisions are taken. Particular instantiations of SE-tree-based algorithms for some
AI problem domains are used to demonstrate the general features of the approach. These algorithms are
compared theoretically and empirically with current algorithms.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-66.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/297

https://repository.upenn.edu/cis_reports/297

Search Through Systematic Set Enumeration

MS-CIS-92-66
LINC LAB 234

Ron Rymon

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

August 1992

Search through Systematic Set Enumeration

Ron Rymon*
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

In Proceedings KR-92, Cambridge HA, October 1992

Abstract

In many problem domains, solutions take the
form of unordered sets. We present the Set-
Enumeration (SE)-tree - a vehicle for repre-
senting sets and/or enumerating them in a
best-first fashion. We demonstrate its use-
fulness as the basis for a unifying search-
based framework for domains where minimal
(maximal) elements of a power set are tar-
geted, where minimal (maximal) partial in-
stantiations of a set of variables are sought,
or where a composite decision is not de-
pendent on the order in which its primitive
component-decisions are taken. Particular
instantiations of SE-tree-based algorithms for
some A1 problem domains are used to demon-
strate the general features of the approach.
These algorithms are compared theoretically
and empirically with current algoritlims.

1 INTRODUCTION

Many computer science problems admit solutions
which are elements of a given power-set. Typically,
such sets are required to satisfy some problem-specific
criterion which designates them as solutions. In
many cases, such criteria either include, or are aug-
mented with, some minimality/maximality require-
ment. Consider, for example, the Hitting-Set (HS)
problem [Karp 721. Given a collection of sets, solu-
tions are required to have a non-empty intersection
with each member of the collection. In applications
of the HS problem, interesting solutions are typically
minimal with respect to set inclusion. In a more gen-
eral class of ~roblems. solutions are ~ a r t i a l instantia-
tions of a sed of variables. A hitting-set, for example,
can also be described as a membership-based mapping
from the underlying set of primitive elements to {O,l).

'Address for correspondence: Ron Rymon, Computer
and Information Science, Room 423C, 3401 Walnut Street,
Philadelphia PA 19104, e-mail: rymon@linc.cis.upenn.edu.

More generally, variables can be instantiated from an
arbitrary domain.

Researchers in Artificial Intelligence (AI) have also
made use of such abstract problems in their models.
The HS problem, for example, was used by [Reiter 871
in his formalization of diagnosis. In a newer character-
ization, diagnoses are viewed as partial assignments of
state t o components [de Kleer et al. 901. Many other
A1 problems are, or could be, formulated so as to ad-
mit sets as solutions.

Our goal in introducing the Set-Enumeration (SE)-tree
is to provide a unified search-based framework for solv-
ing such problems, albeit their problem-independent
solution criteria. SE-tree-based algorithms for differ-
ent problems will share their skeletal structure, but
will each use additional domain-specific tact ics. Fur-
thermore, at a certain level of abstraction, even those
tactics are general and can be shared across domains.
General tactics identified here include pruning rules
which exploit the SE-tree structure, exploration poli-
cies, and problem decomposition methods. Incremen-
tal versions of SE-tree-based algorithms can be con-
structed for some problem domains. In what follows,
we use particular instantiations of SE-tree-based al-
gorithms to demonstrate the general features of the
approach.

Consistency-based formulations of diagnosis will serve
as a working example for most of this paper. Section 2
begins with a formal description of the basic SE-tree.
Section 3 presents an SE-tree-based hitting-sets a lge
rithm (SE-HS) for Reiter's original formulation. Being
best-first, it can use any of a number of exploration
policies. This algorithm is first contrasted, as is, with
the original algorithm. The SE-tree structure is then
used to improve S E H S by pruning away unpromis-
ing parts of the search space. We conclude with an
empirical comparison of the two algorithms.

In Section 4, we extend the SE-tree t o fit the more gen-
eral class of problems, where solutions take the form
of partially instantiated sets of variables. Section 5
presents an extended version of SE-HS for a newer

characterization of diagnoses [de Kleer et al. 901. Al-
though derived from a very general search framework,
this algorithm corresponds to a prime implicate gen-
eration algorithm proposed by [Slagle et al. 701, and
is empirically shown to perform quite well compared
to a recent algorithm [Ngair 921. Unlike Slagle et al.'s
algorithm, the extended SE-HS can work under diag-
nostic theories with multiple fault modes, can use a
variety of exploration policies for focusing purposes,
and has an incremental version. Furthermore, we sub-
sequently augment it with a problem decomposition
tactic, thereby obtaining an improved version of Slagle
et a1.k algorithm. Finally, we briefly review potential
use of the SE-tree in abductive diagnostic frameworks.

In Section 6 , we contrast features of the SE-tree with
decision trees in the context of learning classification
rules from examples. For lack of space, the scope of
this study is very limited and the reader is referred to
[Rymon 92b] for a more detailed analysis and empiri-
cal evaluation.

2 THE BASIC SE-TREE

The Set-Enumeration (SE)-tree is a vehicle for repre-
senting and/or enumerating sets in a best-first fash-
ion. The complete SEtree systematically enumerates
elements of a power-set using a pre-imposed order on
the underlying set of elements. In problems where the
search space is a subset of that power-set that is (or
can be) closed under set-inclusion, the SE-tree induces
a complete irredundant search technique. Let E be the
underlying set of elements. We first index E's elements
using a one-bone function ind : E + W. Then, given
any subset SGE, we define its SE-tree view:

Definition 2.1 A Node's View

Definition 2.2 A Basic Set Enumeration Tree

Let F be a collection of sets that is closed under C
(i.e. for every SEF, if S'CS then S'EF). T is a Set
Enumeration tree for F i$:

1. The mot of T is labeled b y the empty set;

2. The children of a node labeled S in T are
{ S U{e} E F I eE View(ind,S)).

Figure 1 illustrates an SE-tree for the complete power-
set of {1,2,3,4). Note that restricting a node's ex-
pansion to its View, ensures that every set is uniquely
explored within the tree. By itself, the idea of using
an imposed order is not new; it is used for similar pur-
poses in many specific algorithms. Our contribution is
in identifying the SE-tree as a recurring search struc-
ture, thereby facilitating its use in a general framework
and the sharing of particular tactics.

Figure 1: SE-tree for P ({ l , 2 , 3 , 4))

Notice also that the SE-tree can be used as a data
structure for caching unordered sets, and as an ef-
fective means of checking whether a new set is sub-
sumed by any of those already cached. [de Kleer 921
has made such use of an SE-tree and reports significant
improvements in run-time. As a caching device, the
SEtree is a special case of Knuth's trie data structure
[Knuth 731, originally offered for ordered sets. While
we too use the SE-tree for caching solutions and for
subsumption checking, our main objective in this pa-
per is its use in a search framework.

3 AN SE-TREE-BASED
HITTING-SET ALGORITHM

In this section, we demonstrate the use of the ba-
sic SE-tree structure for a hitting-set algorithm in
the context of Reiter's theory of diagnosis. We open
with a brief introduction of Reiter's theory, to the
point in which a hitting-set problem is formulated.
An SE-tree-based algorithm (SE-HS) is then con-
trasted with the dag-based algorithm proposed by
[Reiter 87, Greiner et al. 891 to show that a large num-
ber of calls to a subsumption checking procedure can
be saved. Then, the SE-tree systematicity allows im-
proving SE-HS via a domain-specific pruning rule.
Empirical comparison of the improved SE-HS with the
dag-based implementation of [Greiner et al. 891 sup-
ports our claims.

3.1 REITER'S THEORY OF DIAGNOSIS

Reiter's theory of diagnosis [Reiter 871 is among the
the most widely referenced logic-based approaches to
model-based diagnosis. For lack of space, we shall only
present the concepts and theorem which Reiter uses to
derive his hitting-set algorithm.

Definition 3.1 A Diagnostic Problem [Reiter 871

A diagnostic problem is a triple (SD,COMPS,OBS):

1. SD - the system description, is a set o f f i rs t order
sentences;

def 2. COMPS = { c ~ } ~ = ~ - the system's components, is
a finite set of constants; and

3. OBS - the observations, is also a set of first order
sentences.

The language in which diagnostic problems are ex-
pressed is thus first order, and is augmented with an
extra A B predicate (for abnormal).

Def in i t ion 3.2 Conflict Set

Given a diagnostic problem, a conflict is a set of com-
ponents that cannot all be functioning correctly. Let
CONFLICTS denote the collection of conflict sets.

T h e o r e m 3.3 [Reiter 871 Given a diagnostic problem,
minimal diagnoses are precisely the minimal hitting
sets for CONFLICTS.

Reiter's algorithm is an implementation of T h e e
rem 3.3. In two steps, it first discovers conflicts, and
then runs an HS algorithm on the conflicts discovered.
We shall concentrate on the latter phase.

3.2 D A G - B A S E D A P P R O A C H

Given a collection of conflict sets, Reiter's algorithm
grows an HS-tree in which nodes represent partial hit-
ting sets and leaves represent complete ones. To avoid
highly redundant exploration, Reiter augments this
basic algorithm with a set of rules for reusing and
pruning nodes. [Greiner et al. 891 present a correction
to this algorithm which uses a directed acyclic graph
(dag). It proceeds as follows:

1. Let D represent a growing HS-dag. Label its root
with an arbitrary CECONFLICTS;

2. Process nodes in D in a breadth-first order. To
process a node n:

(a) Let H(n) be the set of edge labels on the
path from the root to n. If H(n) hits all sets
in CONFLICTS, mark it as a minimal hitting
set. Otherwise, label n with the first set of
CONFLICTS which is not hit by H(n).

(b) If n is labeled by C, generate a downward arc
labeled by any a E C .

This algorithm is augmented with three types of rules
for expanding a node n:

1. Reusing: If there is another node m for which
H(m) = H(n) U {g), do not expand n, but rather
link it to m , labeling that link with a.

2. Closing: If there is a node m which is marked as
a hitting set, such that H(m) H (n) , then close
n, i.e. do not expand it at all.

3. Pruning: If a set C is to label a node n and it has
not been used previously, then try to prune D:
(a) If there is a node m which has been labeled

with a set S' such that C S', then relabel
rn with C. Prune all edges from m with arcs
labeled with a s from S'-C.

(b) Interchange S' and C in CONFLICTS.

3.3 S E - T R E E - B A S E D A L T E R N A T I V E

S g H S (Algorithm 3.4) is an SE-tree-based hitting set
algorithm. In a best-first fashion, it explores nodes
in an order conforming to some predetermined prior-
ity function. For that purpose, nodes along the tree's
expanding fringe are kept in a priority queue and the
next node to be expanded is accessed via the Next-
Best operation. Prioritization allows implementation
of various exploration policies, to be discussed shortly.
Let us first assume that nodes are explored by their
cardinality; i.e. breadth-first.

A l g o r i t h m 3.4 Finding Minimal Hitting Sets

Program SE-HS (CONFLICTS)
1. Let HS + {); OPEN-NODES + {{))

2. Until OPEN-NODES is empty do

3. Expand (Next-Best(0PEN-NODES))

Procedure Expand(S)

1. Let Window(S) +- { c 1 c E Vzew(ind,S))

2. For each c~ Window(S) which is
a member of some set from NYH(S) do

3. Unless there is S'EHS such that S'CSU{c)

4 - If %{c) is a hitting set, add it to HS;

5 . Otherwise, add it to OPEN-NODES.

The main SE-HS program simply implements a best-
first search. The algorithm's functionality is embod-
ied in its Expand procedure, where the SE-tree struc-
ture is used. and where hittine sets are identified. "
In choosing viable expansions for a node labeled S,
we restrict ourselves to components within S's View.
Such components are also required to participate in
conflicts not yet hit by S (denoted NYH(S)) . Step
3 in Expand prunes away nodes subsumed by mini-
mal hitting sets. It corresponds to the closing step in
[Greiner et al. 891. However, SE-HS avoids the redun-
dancy for which &using rules were devised, and does
not require pruning.

T h e o r e m 3.5 If nodes are prioritized by their label's
cardinality, then SE-HS is correct (produces all and
only minimal hitting sets.)

3.4 PROJECTED GAIN

The HS-dag algorithm uses three pruning rules, each
of which is computationally expensive and requires nu-
merous calls to a subsumption checking procedure. In
examining the purpose of these rules, we note that (1)
Reusing is aimed a t avoiding redundancy in search,
i.e. the phenomena that same part of the search space
is repeatedly explored within the HS-tree. It requires
comparing each new node to every previous node; (2)
Closing is aimed a t shutting nodes which are super-
sets of minimal diagnoses. For that purpose, if the
HS-dag is explored breadth-first, each node will only
have to be compared against previous minimal hitting
sets; finally (3) Pruning is aimed a t "correcting" the
HS-dag from the effects of non-minimal conflict sets.
The same effect could also be achieved a priori, by
"sorting" C O N F L I C T S by cardinality.

As previously explained, while closing cannot be
avoided, S E H S requires neither reusing, nor pruning.
Avoiding numerous calls to a subsumption checking
procedure results in a tremendous improvement in run
time (see Section 3.7).

3.5 EXPLORATION POLICIES

Due to its potentially exponential size, it may often be
impossible to completely explore the space of sets. In
such cases, it may be beneficial to characterize partial
outputs of an SE-tree-based algorithm, given a variety
of exploration policies

Definition 3.6 Correct Exploration Policy

A n exploration policy is a priority function 4, defined
for each set. It is correct if whenever open nodes are
so prioritized, the resulting algorithm is correct.

For the particular case of SE-HS, a variety of explo-
ration policies are sensible.

Proposition 3.7 Any monotonic function 4 (i.e.
such that for every S E St we have $ (S) _< $(St))
is a correct exploration policy for SE-HS.

We have already seen that exploration by cardinal-
ity is correct. Simpler diagnoses are explored first
using this exploration policy. Other interesting poli-

def cies include exploration by probability ($(S) -
Prob(S i s a diagnosis)) , and by utility or some other
monotonic external criterion imposed on sets.

3.6 PRUNING UNPROMISING PARTS OF
THE SEARCH SPACE

So far, nodes were pruned only if subsumed by known
hitting-sets, thereby using the minimality requirement
and the monotonicity of the SE-tree with respect to

set-inclusion. We have not used the systematic order-
ing of nodes in the SEtree for that purpose. That or-
dering provides a restriction on node labels which can
occur in a given node's sub-tree. More specifically, let
S be a node's label, then the sub-tree rooted at that
node will only have nodes whose labels are expansions
of S with components from View(ind,S). Thus, in
choosing viable expansions for S, we can restrict our-
selves to expansions such that every set that will not
be hit by the expanded set will still contain compo-
nents within its V i e w (and thus stand the chance of
being hit by any of that node's descendants).

This is, in fact, a general feature of an SE-tree-based
search program: the systematic enumeration embed-
ded in the SE-tree structure allows us to ignore parts
of the space which do not have the potential to lead to
a solution.

To incorporate this pruning rule into SE-HS, it is suf-
ficient to modify the node expansion routine.

Algorithm 3.8 Node Expansion (version 2)

Procedure Expan d(S)

1. Let Window(S)+
{ c (cEView(ind,S) } n
{ c 1 and(c)<mins,ENrcr(s maxctcs~ ind(c ') }

2. For each cE Window(S) which is
a member of some set from NYH(S) do

3. Unless there is S'EHS such that S '&SJ{c)

4. If N { c } is a hitting set, add it to HS;

5. Otherwise, add it to OPEN-NODES.

This algorithm is identical to Algorithm 3.4, except
for the additional restriction in line 1. This change is
an example of a domain-specific SE-tree-based prun-
ing rule. The algorithm remains correct, but fewer
nodes need be explored. We demonstrate this in the
next section by way of an example, and via empirical
experiments.

3.7 DEMONSTRATED GAIN

To demonstrate the advantages of SE-HS over the dag-
based algorithm, we will first work through a complete
example (taken from [Reiter 87]), and will then present
the results of extensive empirical experiments.

Example 3.9 Consider the following collection of
conflicts {{2,4,5), {1,2,3), {I, 3,5), {2,4,6}, (2941,
{ 2 , 3 , 5) , {1,6)) [Reiter 871. Figure 2 depicts the cor-
responding HS-dag, where 0 ' s mark hitting sets, and
X's denote closed nodes. The rightmost branch from
the root was pruned by the last node to be explored
(itself a descendant of that branch).

Figure 2: An HS-dag

In contrast, figure 3 shows an SE-tree for the same
problem. In comparing, note the difference in nota-
tion: nodes in the HS-dag are labeled with the set
that is chosen to be hit next whereas the SE-tree's la-
bels are partial hitting sets. In the HS-dag the partial
hitting sets label the path from the root to the partic-
ular node. The new pruning rule results in fewer nodes
being explored: 16 in SE-HS versus 34 in HS-dag.

Figure 3: An SE-tree

In addition, we have empirically compared SE-HS's
performance with that of an HS-dag implementa-
tion which was provided t o us by Barbara Smith
[Greiner et al. 891. The run-time and number of nodes
generated by each of the two implementations were
tested on hundreds of randomly generated test cases.
Test cases were generated using three parameters:
number of conflicts (denoted #conf), number of com-
ponents in each conflict (#lit), and overall number
of components (#camp). Figures 4 and 5 use loga-
rithmic scale to present one-way sensitivity analyses
with respect to each of the parameters and with re-
spect to both run-time (CPU seconds) and nodes gen-
erated. SE-HS's performance is indicated by the shad-
owed squares, and that of HS-dag by the open ones.
Each data point was obtained by averaging each al-
gorithm's performance on 10 random cases with same
parameters.

4 THE EXTENDED SE-TREE

Sometimes the space being searched consists not of
sets of components, but rather of sets of partially in-
stantiated attributes (variables). We next extend the
SE-tree accordingly.

Definition 4.1 Partial Descriptions

Let A T T R S ~ ~ be a set of attributes, with do-
naains { D O ~ (A ~)) ~ = ~ . A partial description is a sub-
set of ATTRS, each of which is znstantiated with one
value from its domain. It is complete if all attributes
are instantiated.

Consider, for example, the space defined by 3 boolean
attributes. The set {A2=T) is a partial description
in that space. {A1=T,A2=F,A3=F} is a complete de-
scription.

As with its basic counterpart, t o define the extended
SE-tree we first impose an ordering (and) on ATTRS,
and define a node's V i e w as all attributes ranked
higher than the highest ranked attribute participating
in that node. Then,

Definition 4.2 An Extended Set Enumeration Tree

Let F be a collection of sets of attribute instantiations
such that each set contains at most one value for each
attribute and such that F is closed under C_, then T is
an extended SE-tree for F ifl:

1. The root of T is labeled by the empty set;

2. The children of a node S i n T are

Figure 6 depicts an extended SE-tree for the complete
space defined by three boolean attributes. Note the
use of reduced notation where i stands for { A ; = T},
and -i represents {Ai = F).

Figure 6: Complete SE-tree for 3 Boolean Attributes

Figure 4: Run Time of SEHS (u) versus HS-dag (0)

Figure 5: Number of Nodes Explored by SEHS (M) versus HS-dag (0)

5 SE-TREE-BASED PRIME itly specify working and non-working condition, with-
IMPLICATE ALGORITHM out any presumption about other components' state.

In this section, we present an extension of SE-HS and
demonstrate its use for the diagnostic framework of
[de Kleer et al. 901. We begin with a short descrip-
tion of the extended theory where kernel diagnoses
are characterized as prime implicants of the (newly
defined) set of conflicts. An extension of SE-HS, pre-
sented next, can be used to find those kernel diag-
noses. The extended SE-HS has other useful prop-
erties: it can be flexibly focused; it can work with
multiple behavioral modes; and it has an incremen-
tal version. A two-niode restriction of this algorithm
corresponds to an old prime implicate generation algo-
rithm [Slagle et al. 701. We first demonstrate the em-
pirical performance of this restricted version compared
to a recent prime implicate generation algorithm. We
then augment it with a new problem decomposition
tactic, thereby obtaining an improved algorithm for
prime implicate generation.

5.1 EXTENDED THEORY OF DIAGNOSIS

[de Kleer et al. 901 extended Reiter's theory with the
notion of kernel diagnoses. Rather than having a diag-
nosis represent only faulty components (with the im-
plicit assumption that all other components function
properly), the new theory allows a diagnosis to explic-

Definition 5.1 AB-Clause [de Kleer et a]. 901

Let an AB-literal be AB(C), or -AB(C) for some
cECOMPS. A n AB-clause as a disjunction of AB-literals
containing no complementary pair of AB-literals. An
AB-clause is positive if all its ~B-li terals are positive.

Definition 5.2 Conflict [de Kleer et al. 901

A conflict is any AB-clause entailed by SDUOBS. A
conflict set is its underlying set of AB-literals.

Note that the new definition extends Reiter's original
definition which, roughly speaking, allows only posi-
tive conflicts. We shall interchangeably speak about
conflicts and their underlying sets.

Definition 5.3 Partial Diagnosis [de Kleer et al. 901

A partial diagnosis is a conjunctzon of AB-literals P
such that P is satisfiable (does not contain complemen-
tary pairs), and for any other satisfiable conjunction
4 covered by P, S W O B A J 4 is satisfiable.

In other words, not only is P consistent with the sys-
tem description and the observed behavior, but also
any extension of P that assigns either A B , or T A B to
components not mentioned in P, is also consistent.

Definition 5.4 Kernel Diagnosis [de Kleer et al. 901

A kernel diagnosis is a partial diagnosis such that the
only partial diagnosis which covers it is itself.

[de Kleer et al. 901 use the notion of prime implicants
to characterize kernel diagnoses:

Definition 5.5 Prime Implicant [de Kleer et al. 901

A conjvnction s of AB-literals, containing no comple-
mentary pairs, is an implicant of S W O B S if it entails
every formula an SDUOBS. It is a prime implicant if
it is not covered by any other implicant.

Theorem 5.6 [de Kleer et al. 901 The kernel diag-
noses are precisely the prome implicants of SDUOBS.

There are several early algorithms for computing
prime implicants (or prime implicates)', used pri-
marily for Boolean minimization (e .g. [Tison 67,
Slagle et al. 701). Recent interest in the A1 commu-
nity, for tasks such as ATMS encoding and circum-
scription, has yielded new algorithms (e.g. [Ngair 921)
as well as improvements to old algorithms (e.g.
[Kean & Tsiknis 90, de Kleer 921). Next, an extension
of SEHS will be shown to find kernel diagnoses, and
therefore to generate all prime implicants of a CNF
formula.

5.2 SE-HS EXTENDED

[de Kleer et al. 901 characterize kernel diagnoses as
the prime implicants of SDUOBS. Alternatively, kernel
diagnoses can be defined in terms of hitting sets.

Theorem 5.7 Kernel Diagnoses and Conflicts

Let CONFLICTS be the collection of conflict sets. The
kernel diagnoses are precisely those minimal hitting
sets for CONFLICTS that do not contain complemen-
tary pairs of AB-literals.

Two important implications are (a) that SE-HS can
be modified to find kernel diagnoses, and (b) that
the modified algorithm can also serve to find prime
implicants (implicates) in other settings. The proof
for an extended version of this theorem can be found
in [Rymon 92a]. Algorithm 5.8 presents the extended
version of SE-HS's Expand procedure; the main pro-
gram remains as previously described.

'Prime implicates are the disjunctive counterparts of
prime implicants. Although for the purpose of diagnosis,
we will be interested in prime implicants, most algorithms
can compute both.

Algorithm 5.8 Node Expansion (version 3)

Procedure Expand(S)

1. Let Window(S)+
{ c I cE View(and,S)) fl
{ C 1 i n d (c) < m i n s ~ ~ ~ y ~ (s) maxcl appears in ~ ' i n d (c f) 1

2. For each cE Window(S) for which there exists
some BE { A B , TAB} such that B(c) participates

in some set from NYH(S) do

3. Unless there is S'EHS such that S'C.W{B(c)}

4- If SU{B(c)) is a hitting set, add it to HS;

5. Otherwise, add it to OPEN-NODES.

The new Expand procedure assigns state (A B or TAB)
to a new component, not yet in the expanded set. The
algorithm's correctness is easy to verify.

Besides its simplicity, being derived from a general SE-
tree-based framework, SE-HS enjoys the following fea-
tures:

1. Focusing facility. Due to the possibly overwhelm-
ing number of hypothetical diagnoses, much re-
search on ATMS-based diagnostic programs has
centered on methods for focusing on the most
probable solutions (e.g. [Forbus & de Kleer 1988,
de Kleer 911). [Provan & Poole 911 advocate a
preference criterion that is based on a diagnosis'
use. Exploration policies, as in Section 3.5, can
be used for that purpose.

2. Fault models. The importance of explicit
models of faulty behavior has been recog-
nized in the model-based diagnosis community
(e.g. [Holzblatt 88, de Kleer & Williams 891). In
[Rymon 92a], we extend the diagnostic theory of
[de Kleer et al. 901 to multiple behavioral modes
and prove that kernel diagnosis in the new theory
can still be characterized in terms of hitting sets.
SE-HS can be easily extended to any number of
behavioral modes.

3. Incrementalism. [Rymon 92a] outlines an incre-
mental diagnostic framework that is based on a
variation of SE-HS which can incrementally refine
its hypothesis as conflicts arrive.

5.3 PERFORMANCE EVALUATION

We have implemented the extended SE-HS algorithm
and have compared its performance to that of a PHI-
based prime implicate generation algorithm [Ngair 921.
As before, the two algorithms were run on hundreds
of examples that were randomly generated according
to the three parameters (#conf, #lit, #camp). Due
to the relative strength of both algorithms, we used
larger examples in this experiment. As a side note,

the SE-HS implementation is general in that it can
take any number of behavioral modes. This general-
ity is not useful in the experiment, where examples
are bi-modal. Figure 7 depicts two one-way sensitivity
analyses (for #conf, #lit) and one three-way analysis.
Again, shadowed squares correspond to SEHS perfor-
mance, open ones t o that of the PHI-based algorithm.

lection of sets (e.g., using a union-find strategy
[Tarjan 831). Moreover, even if there is no facilitating
partitioning to begin with, it is possible that one exists
when a node's particular view is considered. Given a
node S, recall that any of S's descendants will only ex-
pand with respect to View(ind, S) . Thus, it is enough
to look for a partition in the restriction of N Y H (S)
to View(ind, S) .

5.4 PROBLEM DECOMPOSITION
Algorithm 5.10 An Amendment to Expand

As so far presented, we could draw a correspondence
between nodes explored by the bi-modal version of the
extended SE-HS algorithm and the operation of an
old prime implicate generation algorithm proposed by
[Slagle et al. 701. This is important for two reasons:
first, it reveals the general SE-tree-based features of
Slagle et a1.k algorithm, but more importantly, our
next improvement to SE-HS will result in an improved
version of their algorithm.

Where feasible, problem decomposition (also referred
to as divide-and-conquer) is a well known strategy
to sharply reduce problem solving costs (time, space,
etc.) In the context of diagnosis, such an opportunity
may arise when a fault is composed of a number of un-
related, or partially related sub-faults. [Wu 901 shows
tremendous gain in utilizing problem decomposition
techniques in diagnosis.

In the context of multiple fault diagnosis, in addition
to potential saving of time and space, decomposition
may also lead to more compact revresentation-of a s*
lution. In many cases, a solution can be wn'tt en more
compactly if it is factored. For example, a solution of
the form { A B (C ~ (- ~) , A B (c ~ ~) }, when expanded,
consists of 2n minimal diagnoses. Put differently, like
formulae, some solutions can be re~resented com~actlv *

as CNF whereas others are more-concise in their dis-
junctive form. This is, roughly, the intuition behind
the following heuristic.

Theorem 5.9 Problem Decomposition

If CONFLICTS can be partationed into two disjoint sub-
sets C' and C", such that no component appears in
both subsets, then the minimal hitting sets (MHS) for
CONFLICTS are given by:

If a partition exists, it can clearly save significant work.
Recursive application of SE-HS to each of the two par-
titions can cut the exponential search space into two
smaller search spaces. The notion of partitioning can
be extended to any number of partitions, making the
latter equivalence classes and making the partitioning
unique. The solution in such case is the Cartesian
product of the sub-solutions.

Fortunately, if one exists, there is a simple, almost-
linear, algorithm that finds a partitioning for a col-

1. Let I' be the restriction of NYH(S) to components
in Vaew(ind,S).

2. If there is a partitioning I'=X:=~I'~ then

3. Run SE-HS on each of the ri independently.
Let Hitting(ri) be the corresponding results,
merge { S } x (x:=~ Hitting(ri)) into HS
while checking for possible subsumption.

4. Otherwise, expand S as usual.

Exact prioritization is a problem in the augmented al-
gorithm since every node in a new tree represents only
part of (possibly many) solutions. For similar reasons,
subsumption has to be more aggressively monitored
(although this is easily done when hitting sets are
cached in an SE-tree-based data structure). Before,
subsumption was avoided by the subsuming solution
being discovered prior to the subsumed one. Now, it
is possible that a solution node in the original SE-tree
will be subsumed by some but not all of the solutions
in which a given node in some new tree participates.
Nevertheless, problem decomposition is still attractive
since it is particularly effective in problems which ad-
mit highly disjunctive solutions. Those are hardest for
the original SE-HS algorithm. The following example
demonstrates the effectiveness of the problem decom-
position heuristic.

Example 5.11 Consider the following collection of
conflicts: { { A B (~) TAB(^) ,AB(~)} , { A B (~) , A B (~) } ,
{ A B (~) , A B (~)) , { A B (~) , - I A B (~)) } . Figure 8 illustrates
the SE-tree explored by SE-HS without decomposition.
As before, 0 ' s denote hitting sets, X's mark closed
nodes. Exploration for the same problem with de-
composition is depicted in Figure 9. There, the first
step involved partitioning the collection of conflicts
into two disjoint sets. Thereafter, two sub-problems
are solved, and the solution is the cross-product of
the respective results, i.e. {{AB(~) ,AB(~)} , {AB(~)})
x { { A B (~) , A B (~)) , { A B (~) , A B (~)) , {-4~(5),7-4~(6))1.
The reductions in time and space are obvious.

5.5 ABDUCTIVE DIAGNOSTIC MODELS

In [Reggia et al. 851, diagnosis is formulated as a gen-
eralized set covering (GSC) problem. I11 their basic

#conf=100 to 1000 step 25

1 2 I 4

#conf=20 to 35 step 5
#lit=12 to 15

#comp=12 to 15

Figure 7: Run Time of extended SE-HS (M) versus PHI-based algorithm (0)

Figure 8: SE-tree without Decomposition

model, a diagnostic problem is represented in a bi-
partite graph in which symptoms and disorders form
each of the respective partitions. Each disorder in the
graph is linked to all of its symptoms via a causes re-
lation. Given a set of observed symptoms, a diagnosis
is defined as a minimal set of disorders which covers
all symptoms.

A most-probable-first search algorithm for that prob-
lem is described in [Peng & Reggia 871. It searches the
space of sets of disorders for such sets which cover all
symptoms. This algorithm, however, is redundant in
that partial hypotheses may be discovered repeatedly
during search. That redundancy could be avoided if
an SEtree framework were adopted.

Alternatively, the problem can be turned into a hitting

Figure 9: SE-tree Exploration with Decomposition

set problem. [b i t e r 871 presents a transformation of
a GSC representation of a diagnostic problem into his
own framework. There is, in fact, a better transfor-
mation which avoids the conflict generation part of
Reiter's theory by mapping the GSC problem directly
into an HS one. Then, we could simply use SE-HS.
Given a set of symptoms si, we could define a "con-
flict set" for each symptom:

conflict(si) sf {d) d is a disease, d causes si)

Presented with sj, the conflict asserts that it is impos-
sible that none of its causing disorders are present. It
is easy to prove that a set of disorders is a minimal set
cover iff it is a minimal hitting set for such conflicts.

In [Peng & Reggia 871, hypotheses are explored by
their likelihood. The SE-tree-based framework allows
such exploration, as well as a variety of other explo-
ration policies. In [Peng & Reggia 871, non-minimal
hypotheses are also explored. This is easily done in
SEHS by removing the subsumption requirement (Ex-
pand, step 3). In addition, pruning rules (cf. Sec-
tion 3.6) can be used to avoid unpromising parts of
the search space. Problem decomposition (cf. Sec-
tion 5.4) may also be helpful in reducing time and
cost. Finally, it seems that other models of diagno-

sis in which solutions are defined in terms of sets, e.g.
[Bylander et al. 91, Poole 91, Console & Torasso 911,
can also use an SE-tree-based search framework in
their implementations.

6 LEARNING MINIMAL
CLASSIFICATION RULES

Decision trees are an important tool, and serve as
an underlying representation in many problem solv-
ing tasks. Significant research in Machine Learn-
ing has used decision trees in architectures for induc-
tion of classification knowledge from examples. Best
known are ID3 [Quinlan 861 and its descendants. In
[Rymon 92b], we present an SE-tree-based character-
ization of the induction task, contrast it from classifi-
cation and search perspectives with the decision-tree-
based framework, and compare the two empirically.
Here, we will only contrast features of the two repre-
sentations, concentrating on search aspects.

Definition 6.1 Rules

A training set (T S E T) is a collection of examples.
Each example is a complete description for which a
correct classification (denoted T) is known. A rule is
a partial description R such that i f t , t '€TSET are such
that RCt,t', then ~ (t) = ~ (t ') . It is minimal if none
of its subsets is a rule.

The objective of a learning system is to learn rules
that can be expected to perform well not only on the
training set, but also on new examples. While there is
no consensus as t o the precise composition of such a
collection, it is fairly acceptable that general (minimal)
rules are preferable to specific ones. We shall therefore
concentrate on finding minimal classification rules2.

Goodman & Smyth $81. As Quinlan notes, one can of-
ten not afford to generate all possible decision trees in
order to choose the best one. Thus, ID3 (as do other
algorithms) uses a heuristic to guide its choice of at-
tributes. One prominent heuristic is based on entropy-
minimization, using Shannon's information-theoretic
measure.

6.2 SE-TREE-BASED ALTERNATIVE

Aimed at all minimal rules, SE-Learn (Algorithm 6.3)
uses an SEtree-based framework. As before, open
nodes are prioritized, facilitating various exploration
policies. In the context of learning, these will be used
to represent bias and will be briefly discussed in the
end of this section. As before, SE-Learn exploits the
systematic ordering to prune away unpromising parts
of the search space (i.e. nodes which cannot lead to
minimal rules).

Definition 6.2 Candidate Expansions

Let S be a node, TSET(S) ef { ~ E T S E T I SCt} .
W e say that (A=v) as a candidate ezpansion of
S i f AgView(ind,S), vgDom(A), and in addition
TSET(,W{(A=v)))#TSET(S). A node S will be called
impotent if either (1) TSET(S) is empty; or (2) there
exist t , t J€TSET(S) disagreeing on their class, and
only digering in their assignment to attributes not in
View(ind,S).

Algorithm 6.3 Induction of Minimal Rules

Program SE-Learn (T S E T)

1. Let RULES t {), OPEN-NODES c {{}I
2. Until OPEN-NODES is empty do

6.1 PROPOSED SOLUTION

ID3 constructs a decision tree in which internal nodes
are labeled with attributes, edges with instantiations
of these attributes, and leaves with a class prediction.
Briefly, the tree is constructed by successively parti-
tioning the set of training examples until all remaining
examples are equally classified. Such node becomes a
leaf and is labeled with that class.

While construction of an arbitrary decision tree that
correctly classifies the training data is straightforward,
it is well known that the success of decision-tree-based
algorithms on future data is crucially dependent on the
particular order in which the attributes were chosen
in the successive refinement steps [Fayyad & Irani 88,

2We simplify here. Motivation for learning all minimal
rules, variations of an SE-tree-based algorithm that learn
subsets of this collection, and empirical results are given in
[Rymon 92b].

Procedure Expand(S)
1 . For each candidate expansion (A=v), let

R e f 5U{(A=v)} , do

2. If R is not impotent, nor is it
subsumed b y any R'ERULES then

3. If R is a rule then add it to RULES;

4. Or else add it to OPEN-NODES.

Theorem 6.4 If open nodes are prioritized b y their
label's cardinality then SE-Learn is correct (produces
all and only minimal rules.)

Given the incompleteness of the examples with which
they are presented, learning programs may often
have to choose among a number of candidate clas-
sifiers, all of which are consistent with the training

set. External preference criteria, also referred to as
bias [Mitchell 801, may be necessary for that purpose.
Within an SEtree-based framework, exploration poli-
cies can serve in the implementation of such bias. In
programs such as SELearn, where all rules are ex-
plored during the learning phase, an exploration pol-
icy will serve in the classification of new objects by
guiding preference over possibly conflicting rules. In
variants of SE-Learn in which only a subset of the
rules are learned, an exploration policy will implement
a preference among possible subsets. As was the case
for SE-HS, any exploration policy that is monotonic
will result in a correct algorithm. Important policies
include (1) exploration by cardinality, where a prefer-
ence is given to simpler rules; (2) by probability (us-
ing either a known distribution or frequency in the
training set), resulting in preference to characteriza-
tion of denser parts of the search space; (3) using Shan-
non's information-theoretic measure, preferring more
discriminating rules; and (4) by utility or some other
monotone preference criterion.

6.3 PROJECTED GAIN AND COST

Three related problems arise when a decision tree is
used as a framework for search and representation of
minimal rules:

1. The minimality problem - rules will often not be
discovered in their minimal form;

2. The multiplicity problem - a minimal rule may be
discovered repeatedly, disguised in a number of its
minimal subsets; and

3. The incompleteness problem - some minimal rules
may not be discovered at all.

The minimality problem is often addressed by sub-
sequently pruning the rules extracted from the de-
cision tree [Quinlan 871. The replication problem,
a special case of multiplicity in which sub-trees are
replicated within a single decision tree, has been
addressed by several researchers, e.g. [Rivest 87,
Pagallo & Haussler 901. The more general multiplic-
ity problem, however, may take many other forms.
Incompleteness is the result of the mutual exclu-
siveness property of decision-tree-based rules (see
[Weiss & Indurkhya 911).

In contrast, the SEtree-based framework does not suf-
fer from these problems:

1. Rules are always discovered in minimal form;

2. Minimal rules are always discovered uniquely; and

3. All minimal rules are discovered.

The fact that any given decision tree may suffer from
those problems suggests that none is globally optimal.
The SE-tree, however, can be shown to embed many

decision trees. More specifically, all decision trees in
which attributes are chosen monotonically with re-
spect to some arbitrary indexing, are topologically and
semantically equivalent to a tree formed from a subset
of the SEtree's edges.

Complexity-wise, the SEtree's exhaustiveness and rel-
atively large initial branching factor are deceiving. Its
complexity is fairly close t o that of a single decision
tree:

Theorem 6.5 SETree Size

If all attributes are b-valued, then the number of nodes
in a complete decision tree is ~?='=,b" bn. In sharp
contrast, the size of a super-tree in which all decision
trees are embedded is significantly larger: bn . n!. The
size of a complete SE-tree is only (b + 1)".

7 Summary

Many problems in which partial sets or partially in-
stantiated set of variables are targeted share a com-
mon structure when viewed as search problems. We
presented the Set-Enumeration (SE)-tree as a sim-
ple, complete and irredundant vehicle for represent-
ing and/or enumerating sets in a best-first fashion. As
such, it can serve as the basis for a search-based frame-
work for many such problems.

To demonstrate its usefulness and effectiveness, we
presented SEtree-based algorithms for the hitting-
set problem, in the context of consistency-based di-
agnosis. We used the particular instantiations of
these algorithms to demonstrate general features of
the paradigm, and compare it with current algorithms.
Throughout this process, we developed several add-on
tactics including SE-tree-based pruning rules, explo-
ration policies, and problem decomposition methods.
Besides their particular incarnations in the SE-HS al-
gorithms, those methods are general and can be shared
across many problem domains. In the last part of this
paper, in the context of rule induction, we compared
features of an SEtree-based representation with one
that is based on decision trees.

Acknowledgements

This research was supported in part by a graduate fel-
lowship ARO Grant DAAL03-89-C0031PRI. I thank
Teow-Hin Ngair, Greg Provan, Russ Greiner, Alex
Kean, and Ron Rivest for useful discussions and sug-
gestions. I also thank Kevin Atteson, Michael Niv,
Philip Resnik, Jeff Siskind, and Bonnie Webber for
comments on previous drafts. Finally, I am grateful to
Barbara Smith for providing the HS-dag implementa-
tion and Teow-Hin Ngair for providing the code of his
prime implicate generation algorithm.

References

[Bylander et al. 911 Bylander, T., Allemang, D., Tan-
ner, M. C., and Josephson, J. , The Computa-
tional Complexity of Abduction. Artificial Intel-
ligence 49, pp. 25-60, 1991.

[Console & Torasso 911 Console, L., and Torasso, P.,
A Spectrum of Definitions of Model-Based Diag-
nosis. Computational Intelligence, 7, pp. 133-141,
1991.

[de Kleer & Williams 891 de Kleer, J . and Williams,
B., C., Diagnosis with Behavioral Modes. Proc.
IJCAI-89, Detroit MI, pp. 1324-1330, 1989.

[de Kleer e t al. 901 de Kleer, J., Mackworth, A. K.,
and b i t e r , R., Characterizing Diagnoses. Proc.
AAAI-90, pp. 324330, Boston MA, 1990.

[de Kleer 911 de Kleer, J., Focusing on Probable Diag-
noses. Proc. AAAI-91, pp. 842-848, Anaheim CA,
1991.

[de Kleer 921 de Kleer, J ., An Improved Incremental
Algorithm for Generating Prime Implicates. Proc.
AAAI-92, pp. 780-785, San Jose CA, 1992.

[Fayyad & Irani 881 Fayyad, U. M., and Irani, K. B.,
What Should be Minimized in a Decision Tree?
Proc. AAAI-90, pp. 749-754, Boston MA, 1990.

[Forbus & de Kleer 19881 Forbus, K. D., and de Kleer,
J ., Focusing the ATMS. Proc. AAAI-88, pp. 193-
198, Saint Paul MN, 1988.

[Goodman & Smyth 881 Goodman, R., and Snlyth,
P., Decision Tree Design from a Communication
Theory Standpoint. IEEE Rans. on Information
Theory, 34(5), 1988.

[Greiner et al. 891 Greiner, R., Smith, B. A., and
Wilkerson R. W., A Correction to the Algorithm
in Reiter's Theory of Diagnosis. Artificial Intelli-
gence, 41, pp. 79-88, 1989.

[Holzblatt 881 Holzblatt, L. J., Diagnosing Multiple
Failures Using Knowledge of Component States.
Pmc. IEEE A I Applications, pp. 139-143, 1988.

[Karp 721 Karp, R. M., Reducibility Among Combi-
natorial Problems. In Miller and Thatcher eds.,
Complexity of Computer Computations, Plenum
Press, New York, pp. 85-103, 1972.

[Kean & Tsiknis 901 Kean, A., and Tsiknis, G., An
Incremental Method for Generating Prime impli-
cants/Implicates. Journal of Symbolic Computa-
tion, 9:185-206, 1990.

[Knuth 731 Knuth, D. E., The Art of Computer Pro-
gramming, Vol. 3: Sorting and Searching. Addi-
son Wesley, 1973.

[Mitchell 801 Mitchell, T. M., The Need for Biases
in Learning Generalizations. TR 5-110, Rutgers
University, 1980.

[Ngair 921 Ngair, T., Convex Spaces as an Order-
Theoretic Basis fo r Problem Solving, Ph. D. The-
sis, Department of Computer and Information
Science, University of Pennsylvania, 1992.

[Pagallo & Haussler 901 Pagallo, G., and Haussler, D.,
Boolean Feature Discovery in Empirical Learning.
Machine Learning, 5, pp. 71-99, 1990.

[Peng & Reggia 871 Peng, Y., and Reggia, J . A., Be-
ing Comfortable with Plausible Diagnostic Hy-
potheses. TR 1753, University of Maryland, 1987.

[Poole 911 Poole, D., Representing Diagnostic Knowl-
edge for Probabilistic Horn Abduction. Proc.
IJCAI-91, Sydney, Australia, 1991.

[Provan & Poole 911 Provan, G. M., and Poole, D.,
The Utility of Consistency-Based Diagnostic
Techniques. Proc. KR-91, Cambridge MA, pp.
461-472, 1991.

[Quinlan 861 Quinlan, J . R., Induction of Decision
Trees. Machine Learning, 1(1):81-106, 1986.

[Quinlan 871 Quinlan, J . R., Generating Production
Rules from Decision Trees. Proc. IJCAI-87, pp.
304-307, 1987.

[Reggia et al. 851 Reggia, J . A., Nau, D. S. and Wang,
P. Y., A Formal Model of Diagnostic Inference. I.
Problem Formulation and Decomposition. Infor-
mation Sciences, 37, pp. 227-285, 1985.

[Reiter 871 Reiter, R., A Theory of Diagnosis From
First Principles. Artificial Intelligence, 32, pp. 57-
95, 1987.

[Rivest 871 Rivest, R., Learning Decision Lists. Ma-
chine Learning, 2, pp. 229-246, 1987.

[Rymon 92a] Rymon, R., SE-tree-based Candidate
Generation: Systematic Exploration in Model-
Based Diagnosis. In preparation, 1992.

[Rymon 92b] Rymon, R., An SE-tree-based Charac-
terization of the Induction Problem. In prepara-
tion, 1992.

[Tison 671 Tison, P., Generalized Consensus Theory
and Application t o the Minimization of Boolean
Functions. IEEE Trans. on Computers, 16(4):446-
456, 1967.

[Slagle et al. 701 Slagle, J . R., Chang, C , and Lee R.
C., A New Algorithm for Generating Prime Inl-
plicants. IEEE Rans. on Computers, 19(4), 1970.

[Tarjan 831 Tarjan, R., Data Structures and Network
Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia PA, 1983.

[Weiss & Indurkhya 911 Weiss, S. M., and Indurkliya,
N., Reduced Complexity Rule Induction. Proc.
IJCAI-91, pp. 678-684, Sydney, Australia, 1991.

[Wu 901 Wu, T . D., A Problem Decomposition
Method for Efficient Diagnosis and Interpretation
of Multiple Disorders. Proc. SCA MC-90, pp. 86-
92, Washington DC, 1990.

	Search Through Systematic Set Enumeration
	Recommended Citation

	Search Through Systematic Set Enumeration
	Abstract
	Comments

	tmp.1185304273.pdf.4WPYy

