
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

March 1993

Fixpoints and Bounded Fixpoints for Complex Objects Fixpoints and Bounded Fixpoints for Complex Objects

Dan Suciu
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Dan Suciu, "Fixpoints and Bounded Fixpoints for Complex Objects", . March 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-32.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/283
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/283
mailto:repository@pobox.upenn.edu

Fixpoints and Bounded Fixpoints for Complex Objects Fixpoints and Bounded Fixpoints for Complex Objects

Abstract Abstract
We investigate a query language for complex-object databases, which is designed to (1) express only
tractable queries, and (2) be as expressive over flat relations as first order logic with fixpoints. The
language is obtained by extending the nested relational algebra NRA with a "bounded fixpoint" operator.
As in the flat case, all PTime computable queries over ordered databases are expressible in this language.
The main result consists in proving that this language is a conservative extension of the first order logic
with fixpoints, or of the while-queries (depending on the interpretation of the bounded fixpoint: inflationary
or partial). The proof technique uses indexes, to encode complex objects into flat relations, and is strong
enough to allow for the encoding of NRA with unbounded fixpoints into flat relations. We also define a
logic based language with fixpoints, the "nested relational calculus", and prove that its range restricted
version is equivalent to NRA with bounded fixpoints.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-32.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/283

https://repository.upenn.edu/cis_reports/283

Fixpoints and Bounded Fixpoints for Complex Objects

Dan Suciu *
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Email: suciu@saul.cis.upenn.edu

March 1993

Abstract

We investigate a query language for complex-object databases, which is designed to (1) express
only tractable queries, and (2) be as expressive over flat relations as first order logic with fixpoints.
The language is obtained by extending the nested relational algebra M'RA with a "bounded fixpoint"
operator. As in the flat case, all PTime computable queries over ordered databases are expressible in
this language. The main result consists in proving that this language is a conservative extension of the
first order logic with fixpoints, or of the while-queries (depending on the interpretation of the bounded
fixpoint: inflationary or partial). The proof technique uses indexes, to encode complex objects into flat
relations, and is strong enough to allow for the encoding of I\/'Rd with unbounded fixpoints into flat
relations. We also define a logic based language with fixpoints, the "nested relational calculus", and
prove that its range restricted version is equivalent to HRd with bounded fixpoints.

1 Introduction

Several query languages for databases with complex objects have been studied lately ([I], [2], [3], [9], [12],
[15], [16], [20], [23], [25]). The various systems investigated tend to share a common - or related - type
system, allowing arbitrary nesting of cartesian products and finite-set constructions, starting from basic
types. The query languages for these complex objects - like in the relational case - come in two different
flavors: logic based languages, and algebraic based languages. Like in the relational case, these two turn out
to be equivalent (Abiteboul and Beeri: ([I])).

These languages fall into two distinct equivalent classes, according to their expressive power. The first class
is less expressive, and all its queries are in PTime: the nested relational algebra JdRA in [9], or the logic
based restricted safe calculus, in [I] and its equivalent algebra without jixpoints in [I] are representatives of
this class. The main property of the languages in this class, is that they are an conservative extension of
the relational algebra (see, e.g., [22]). This is a nontrivial property, proved first in [20], later (in a more
general form) in [29], and also in [23]. As a consequence, complex objects cannot help us to compute more
complicated queries a t flat types (i.e. sets of products of base types): as a classic example, the transitive
closure of a given relation cannot be computed in these languages, because it can't be computed in the
relational algebra.

The languages in the second class have a richer expressive power: they are able to compute the powerset.
Consequently, they can express queries whose time (or space) complexity is exponential (in fact, a tower

*The author was partially supported by grant NSF CCR-90-57570

of exponentials). NRA + powerset in [9], or the logic based safe calculus and the equivalent algebra (with
powersets), from [I], or CALC, in [15], [12], are examples of languages in this class.. In [I], Abiteboul
and Beeri prove that the powerset construction is equivalent to the fixpoint construction, and in [9], Breazu-
Tannen, Buneman and Wong prove that, under certain conditions, it is equivalent to the structural recursion,
a construction more in the style of functional programming. I11 contrast to the first category of languages,
those in the second category are no longer conservative extensions of their first order cousins - first order
logic with fixpoints, for example: using higher types as intermediate types, we can express queries over flat
types which are not expressible in, say, FO+fixpoints. In fact, [15] prove that the expressive power of CALC
at base types becomes strictly more powerful as we allow intermediate types of larger set height. This is not
surprisingly: queries in FO logic with fixpoints are of a low complexity class (PTime, for FO with inflationary
fixpoints, and PSpace, for FO with partialfixpoints), while queries in CALC (or NRA +powerset) have a
complexity which is a tower of exponentials.

In this paper, we design a language whose expressive power lies between the expressive powers of the two
classes mentioned above: all queries it expresses are tractable, and it is an extension of the first order
logic with fixpoints. The language is constructed by adding, to the nested relational algebra NRA of [9],
the bounded fixpoint construction (an idea due to Peter Buneman, who also conjectured the conservativity
result). When f : a x { T) + { r) , then the fixpoint of f is f ix(f) : a -+ {T), with two alternative
semantics: the inf lat ionary semantics f ixi(f)(x) = U,,, y,, where yo = 4, yn+l = yn U f (x, y,), and the -
pa r t i a l semantics fixp(f)(x) = yk, if YO = 4, Y n + l = f (x , yn) and yk = Y k + 1 . We shall give examples
of PTime functions f , for which, when x is some set, fixi(f)(x) is the powerset of x. The b o u n d e d
fixpoint of f and some function g : a -+ {T), is defined to be bfix(f 1 g)(x) = U,,, yn, where yo = 4,
yn+l = yn U f (x, yn) fl g(x). b f ixi(f I g) is in PTime, when f and g are in PTime, wiiile b fix, (f 1 g) is in
PSpace, when f and g are in PSpace. Note that in the flat case, when f is a generic database transformation,
then an upperbound for fix(f)(x) can be easily computed from x, so any fixpoint can be expressed as a
bounded fixpoint.

To give more confidence in the robustness of the resulting language, NRA + bfix, we present a logic
based equivalent, called NRC + f ix , which seems to be different from the range-restricted CALC in [12].
NRA + bfix shares a common property with the languages from the first category: it is a conservative
extension of the first order logic with fixpoints. This has as immediate consequence the fact that NRA+b f i x
cannot express - a t flat types - queries which were not expressible in FO logic with fixpoints (the classical
example being the parity test). But, as in the flat case (see [24] and [17]), n/RA + bfix can compute any
PTime or PSpace database transformation on ordered databases.

The main result of this paper is the conservativity property of NRA + bfix over first order logic with
fixpoints. For the proof, we use a different technique than the one used in [20] and [29]: we don't know how
to adapt their reduction methods for the bounded fixpoint. We use a semantic approach instead, namely we
encode all complex object types into flat types (i.e. relations), using indexes from some infinite set, say I.
The fact that such an encoding is possible, is no mystery: this is the reason for which first order normal form
for databases was advocated in the first place. What is less clear, are the operations one needs to add to the
relational algebra RA, in order to simulate all functions in NRA at higher types. In [23], where indexes were
also used t o prove a conservativity result, "index invention" is used. This is a nondeterministic operation,
and is motivated by the need to encode the nest function, nest : {a x T) -+ {a x {T)), a primitive function
in [23], which creates an arbitrary large number of new sets. Here, we take a different approach, namely we
equip I with two constants, and a binary function pair : I x I --+ I, which we require to be injective.

Note that , in RA with an index I, the bounded fixpoint is no longer equivalent to the unbounded one,
because the latter might produce infinite sets. NRA + f i x can still be translated into the relational algebra
with an index I, but with unbounded fixpoints. Only for %?A + bfiz with indexes can we prove that, in
certain conditions, the indexes may be eliminated altogether, proving thus the conservativity result.

Another proposal for a tractable language for complex objects with fixpoints, was given in Grumbach and
Vianu [12]. I t is a logic based language, whose range-restriction rules enforce polynomial time behavior, even

for the fixpoint. It is not clear to us whether this language is closed under map (following the terminology
of [9] - which we adopt in this paper), or replace (p) (following the terminology of [I]), a property enjoyed
by many complex-object query languages. One reason we are considering a logic based equivalent to our
language, is to compare it with Grumbach and Vianu's. A problem in clarifying the relationship, is the
difference in the range restriction rules. We hope to be able to clarify the relationship between them in the
near future.

In section 2, we give the basic definitions of N R A , and state the most important known results. In section
3, we define the unbounded and the bounded fixpoint, show that both semantics of the unbounded fixpoint
(inflationary and partial) yield the same expressive power, and that the bounded fixpoints capture1 the
complexity classes PTime and PSpace respectively. Section 4 presents a logic based version of NRd + b f ix ,
called hlRC+ f ix, and prove their equivalence. Sections 5 to 9 are devoted to the proof of the main result (the
conservativity theorem): section 5 describes the technique of encoding the set constructor in the relational
algebra RA, section 6 defines the translation from N R d to R d with indexes, sections 7 and 8 show how
to eliminate the indexes, from certain expressions. The proof of the conservativity result is finally given in
section 9. The proof, as given, works only for the case when, all functions in the signature C have set height
0: in section 10, we extend the proof to the case when C contains functions of set height < 1.

2 The Nested Relational Algebra

Consider C t o be a collection of basic types b, and function symbols f : d j + c j , where df and cf are types
(to be formally defined below), called the domain and codomain of f . A set of typed variables X is also
fixed: it contains countable many variable xa for each type a .

Our core language is the Nes t ed Rela t iona l Algebra NRA(C, X) ([g]). Its t y p e s are: the base types
b from C, the u n i t type unit, the p roduc t type a x r, and the s e t type {a) (where a, r are types). The
ope ra t i ons are described by the following rules:

f E C xu E X
f : df -+ cf xu : unit + a

f : u + r g : r + v
id', : a + a g o f : a + v

: n i t + {a} u, : {a) x {a} -+ {a}

not : {unit) + {unit) eqb : b x b -+ {unit)
(b a base type)

Following [4], a database language Lis said to eaptvre some complexity class C , if all queries in L are in C, and t can express
all database transformations in C on ordered databases.

The semantics of these operations is fully described in [9]. Here, we briefly sketch it: the type unit contains
only (), the elements of the type {a} are finite sets of elements of type a . ~ l (x , y) = x, (f l , f2)(x) =
(fl(x)r f 2 (~)) , LO(%) = 0 , v,(x) = {XI, P,({{x, Y), {z))) = (2, Y, ~ 1 , m a ~ (f) ({ x , Y, ~ 1) = {f(x) , f (y) , f (z)) ,
p2,(,,,) (x, { a , b, c}) = {(x, a), (x , b), (2, c) } , 4, returns the empty set, U, is set union, not($) = {()) and
not({())) = $ 7 eqb(x, 2) = {()I and e q b (~ , Y) = 4 when # Y.
Following [9], we impose equations on the syntactic constructs of the language, making it a category whose
objects are the types, and whose morphisms are the operations of NRA(C, X). This category has binary
products, a terminal object (unit), and is equipped with a r ingad ([21]), i.e. a m o n a d ({), 17, p) (see [19]),
together with a monoid structure ({a), U,, 4,) for each set type {a). The presence of pz,(,,,) makes our
monad a "strong monad" (see [9]).

From p2,(,,,,), one defines its symmetrical pl,(,,,) : {a) x T -+ {a x r}. Note that pz,(,,,), is interdefinable
with the cartesian product W,,,: {a} x {r) -+ {a x r) by W,,,= pox, o (map(pl,(,,,))) o pz,(i,),,) and
P2,(0,7) =W,,, 0(V0 X id{,}).

The "ext" and "extln constructions are derived in a standard way from the monad operations:

f : CT -+ {r) g : a x u + { r)

e x) : {u} + {r} extl(g) : {a} x u + {r)

by ext(f) := p, o (map f) , extl(g) := e ~ t (~) opl,(,,,). ext, map(f), p, and pz,(,,,) can all be derived from
extl, and can all be derived from the extl construction (see also [9]).

doubleton, : a x u -+ {a}, with the intended meaning doubleton,(x, y) = {x, y}, is defined to be U,o(qo xq,).
Conversely, we could define U, := p, o d o u b l e t ~ n ~ , ~ .

The type {unit) plays the role of the booleans (see [9]). From the equality at base types eqa, we can define
equality at all types eq, : a x a + {unit), intersection and difference fl,, -, : {a) x {a) + {u), and the
conditional if then else : {unit} x {a) x {a) -+ {a).

Sometimes, we shall suppress the type indexes when they are clear from the context, writing q, p , U, p2 etc.,
instead of V, 1 pu, Uu 1 P2,(,,,).

NRA(C, X) enjoys a certain combinatorial (functional) completeness property (see [9]):

combina tor ia l (funct ional) completeness For any function f : a -+ r and any variable x : unit -+

u, there exists some function K X . f : u x u + r, which doesn't contain the variable x, such that
nx.f o (i d , x o ~ ~) = f .

This property is used in [9] for the translation of the "monad calculus" into the "monad algebra". In the
"monad calculus", we can write queries in a more readable form: e.g., we can define unnest : { a x {r)} -+ { a x
T) as unnest(x) := {(u, v) (~ w . (u , w) E x Av E w), instead of the almost unreadable unnest := ,u o map(pa)
in the "monad algebra". We shall use freely the monad calculus style of definitions in this paper.

We interpret NRA(C, X) in C-models. A C mode l B, consists of a family of sets Bb for each base type b
in C (this gives us an i n t e rp re t a t i on of types , by: [[b]la = Bb, [[unit]lo = {()I, [[a x r]la = [uBB x [[r]lU
and [{a)]le = Pfin([a]la) (finite sets)), and a function assigning to each function symbol f E C, some
function [[fJa : [dfBa + [cf]ia For some envi ronment - i.e. function p : X -+ U(All types ,) [uIJB s.t.
p(xo) E [[anB - we define the i n t e rp re t a t i on of an ope ra t i on f : a + T in N R A (C , X), to be a function
[[flap : [[u]la + [rJja, in the standard way, s.t. for each variable xu : unit -+ a, ([xu]lup)(()) = p(xu).

We shall avoid writing the square brackets and the environment, I[l ap , when no confusion arises

The variables in X are irrelevant to the expressive power of the language, and are considered only for some
technical reason. We write NRA(C) when X = 4, and simply NRA, when, in addition, C has no function
symbols.

The following result is from [9]:

Propos i t i on 1 If all functions f E C are computable in polynomial time (space), then all functions express-
ible in NRA(C) are computable in polynomial time (space).

The proof is a straightforward induction on the structure of f

NRd is equivalent to the restricted safe calculus or the algebra without powerset in [I]. It is also (almost)
equivalent t o the nested algebra in [20].

Following [15], we define the s e t height of a t y p e a to be: sh(b) = sh(unit) = 0, sh(a x T) =
max(sh(a), sh(.r)), sh({a)) = 1 $ sh(u). The se t he igh t of a func t ion f : a -, T is sh(f) :=
max(sh(a), s ~ (T)) . For k _> 0, define I\/RAk(C, X) to be the following sublanguage of N R d (C , X):

T y p e s All types a of N R A (C , X) with sh(a) 5 k .

Opera t ions The operations are defined in the same way as for N R A (C , X), but without exceeding the
set height k. More, we replace the primitives map and p with extl in this language: then, ext is
derived from ext12, p, is derived as e ~ t (i d ~ , ~) , and map(f) = ext(q o f) . We do this, because for
defining ext(f) = p o map(f), one needs a type with a higher set height, which might not be present
in N R A k (C , X); for similar reasons, we choose W as a primitive, instead of pa.

N R d k (C, X) still enjoys the combinatorial (functional) completeness property (for this, it seems necessary
to choose eztl as a primitive, instead of ezt).

Note that the language N R A (C , X) is not apriori a conservative extension of NRAk(C, X) , because the
former may contain operations f : a -+ T constructed from expressions mentioning "intermediate" types of
higher set height than Ic. However, the following was proven, first in [20] for the nested algebra, and later
by [29] for N R d (C) :

T h e o r e m 1 ([$?!I], [20]) Vk 2 1, if all function symbols in C have set height 5 k, then NRA(C) is a
conservative extension of hTRAk(C)

As a consequence, the nested relational algebra "cuts down" at flat types to the relational algebra. The
significance of this theorem consists in showing that, complex objects serve merely for better organizing
data, not for improving the computational power of the language. Over flat types (i.e. products of relations
types, which are of the form {bl x . . . x b,}, with bi = either a base type, or unit), m d (C) cannot express
more than the relational algebra, as described (for example) in [22]. As a consequence, the transitive closure
tc : {b x b) -+ {b x b), defined by tc(z) = x U (x o x) U (x o x o a) U . . . (here o is relationa composition), is
not expressible in N R d (C) (see [22], pp. 92). But the transitive closure of flat relations can be expressed
in extensions of the relational algebra, for example in DATALOG' (see [22], [6]), in which all queries are
still in PTime. This legitimates the search for extensions of NRA(C) , which are still in polynomial time,
but powerful enough to express the transitive closure.

The result in theorem 1 is in contrast with [15], who shows that the sublanguages of CALC become
strictly more powerful, as types of larger set height are allowed; the reason is that CALC is, essentially,
N R d (C) + powerset, and, by allowing powersets of larger set heights as intermediate results, one can ex-
press more functions a t lower types. As an example (see [I]), tc(x) can be computed by first computing
the domain of x , dom(x) = (m a p (~ l)) (z) U(rnap(xa))(x), then computing all relations over dom(x), iiamely
powerset(dom(x) x dom(x)), then selecting only those which are transitive and contain x , and finally taking
their intersection.

e z t is needed, instead of ext, to enable the proof of combinatorial (functional) completeness.

5

3 Fixpoints

Our goal is to enrich N'RA such that i t becomes at least as expressible (at flat types) as DATALOG*' (while
queries), or DATALOG' (f ixpoint queries): see, e.g. [6]. But simply plugging in the obvious generalization
of the inflationary or noninflationary (partial) fixpoint used to extend the first order logic ([4]), g' lves us a
language whose queries are no longer computable in polynomial time (or space). Therefore we investigate
an alternative fixpoint, the bounded fixpoint (call it bfix as opposed to f ix) , due to Peter Buneman: the
new colistructs (inflationary and partial bounded fixpoint) are equivalent to the traditional fixpoints at flat
types, but they are weak enough to keep our languages within PTime and PSpace respectively.

Define an o r d e r e d t y p e t o be either {a}, or the product r x v of two order types r and v. Intuitively, an
order type r has the form {al) x . . . x {a,) (but, recall, the product is not associative). The interpretation of
an ordered type has a natural order structure, namely the component by component inclusion, under which
it is a lattice with a minimal element: extending the syntax, we write U, fl : r x r -+ r and 4 : unit + 7, for
the lub, glb and the minimal element of the lattice.

Consider the following fixpoint constructions:

f : u x r + r
f ix f : a i r (r an ordered type)

f : C T X T + T g : a + r
bfix(f I g) : a -+ T

(r an ordered type)

Two different semantics, for fixpoints, are defined in the literature: the partial, and the inflationary semantics
(see [4]). To distinguish them, we write f ixp f and f ixi f (respectively b f ixp(f I g) and b f ixi(f (g)). For
x E a, define the sequence yo = 4 E r, y,+l = f(x, y,); if there is some n for which yn = y,+l, then we
define the ~ a r t i a l f ixpoint (sometimes called noninflat ionary f ixpoint) of f to be (fixp f) (z) = yn.
Else, (fix, f)(x) = undefined. The inf lat ionary fixpoint is defined to be the partial fixpoint of fi(x, y) =
y U f (x , y), or, equivalently, (fixi f)(x) = Un>O yn, where yo = 4, Yn+l = Yn U f (x ,yn) . The bounded
partial (inflationary) fixpoint of f and g, is defited to be the partial (inflationary) fixpoint of f (x , y) fl g(x).

Note that the partial fixpoints f ixp(f) and b fixp(f (g) are interpreted as partialfunctions. When C contains
function symbols, the inflationary fixpoints may also be interpreted as partial functions: e.g., consider nut to
be a base type, and 0 : unit + nut, succ : nut + nat be function symbols in C. Then f : nat x {nat) + {nut),
f (x , y) := {x) U map(succ)(y) doesn't have an inflationary fixpoint when nat , succ, 0 have the standard
interpretation.

We don't search for an axiomatization for the equalities valid in the 4 extensions of n/RA(C, X) with
fixpoints, but consider two expressions f , g : a -+ T to be equa l iff [f] ~ p = [g]l~p, for all models t? and
environments p.

Propos i t i on 2 NRA(C, X) + bfixi, N'RA(C, X) + bfixp, NRA(C, X) + fixi, and N R A (C , X) -t fixp
are combinatorial (functional) complete.

The proof simply extends the proof found in [9], to fixpoints. Note that a construction of the form:

f : (7) -+ {r)
f i z (f) : unit + {r)

would not allow for a similar result.

Example We give 3 ways in which one can compute the powerset using the (unbounded) fixpoint. Indeed,
consider fi : {a) x {{a)) --t {{u)), i = 1 ,2 ,3 , given below (ins, del : u x {a) -+ {a) are: ins(e, x) := {e) u x,
del(e, x) := x - {e)):

Then fix(fi) : {a) -+ {{g)} computes the powerset, for all i = 1,2 ,3 , both under inflationary and partial
semantics.

Example The transitive closure can be computed using the bounded fixpoint: let f : {a x a) x {a x a) -+
{a x a) and g : {a x a) + {a x a) be: f (x, y) = x U (x o y) (where x o y is relation composition, which can be
easily defined i11 N R A) , g(x) = (111 (x) UIIz(x)) W (IIl (x) U &(x)) (where II; : {al x az) + {ai} is map(ai),
i = 1 ,2) . Then the transitive closure of x is given by tc(x) = bfix(f (g)(x) (both for inflationary and partial
semantics). One can use tc to construct the set of all strong connected components: scc : {a x a) -+ {{a))

by scc(x) := ma~(Xe.n2 (a~(a,b) .e~(a, e)(tc(x))) n (ox(, ,b).eq(e,b)(tc(x)))) (x) (where UP {r) + (7) is the
selection, for some predicate P : r -+ {unit)).

Example The "same generation" problem sg : (a x a) x {a x a) + {unit) asks whether two nodes a , b are
a t the same depth in a binary tree given by some binary relation x. For this, one computes the set of all
quadruples ((a, a'), (b, b')), with a', b' ancestors of a and b respectively s.t. dist(a, a') = dist(b, b'); one stops
when there is some quadruple in which either a' or b'has no direct ancestor. This set is clearly bounded
by (v W v) W (v W v), where v = II1(x) U I12(x) is the set of all nodes. The "balanced tree" problem asks
whether the tree given by x is balanced: simply check if there is some pair of leaves (a, b) E v W v for which
sg(a, b, x) is false.

For the next two propositions, we introduce the notations f ixi , f ixt , b f ix i , 6 f ixt for the fixpoints restricted
to only one set:

f : a x {a') + {a')
fix; f : a -+ {a'}

and similarly for b f ixl (f I g).

Proposition 3 Under mild conditions on the functions in C, for all Ic 2 1,

NRAk (C) + f izb = NRAk (C) + f ixp

NRAk(C) + f ixt = NRAk (C) + f ixi

NRAk (C) + b f ixk = NRAk (C) + b f ixp

N R A k (C) + b f ixi = NRAk (C) + b f ixi

Proof The proof is a straightforward extension of [13], made even simpler by the presence of a boolean
type (namely the type {unit)). The idea is to encode {r1} x . . . x { ~ k } by {T'}, where r' = (rl x bool) x
. . . x (rk x boo!). Some y = (y l , . . . , yk) E {rl) x . . . x { T ~) will be encoded by any y' E {r ') , such that
V((zl, bl), . . . , (zk , bk)) E y' there is exactly one index i for which b; = true, and:

Vi, yi = {zi I 3x1.. .3zi- l3zi+l . . .3zk((zl, false), . . . , (z;,true), . . ., (zk, false)) E Y'}.

So, each yi is represented by some subset in y', which has all columns not belonging to yi filled arbitrarily.
The problem is, however, that we really have to find those arbitrary values, to put in the other columns.
When yj # f , then, we can simply pick the values in yj. Else, we can still construct some arbitrary values,
if we have atomic values for each base type mentioned in rj. So, starting with the input value x : u , we
apply repeatedly functions in C, trying to generate values of each base type. To keep this process finite, we
impose the following condition on each p : dp + c, in C:

For each base type b mentioned in cp, if, for some value z E dp, p(z) has some subobjects of type b,
but z does not have subobjects of type b, then p(z') should contain subobjects of type b for any other
2' E dp.

E.g. any scalar function, like p : bl x b2 -+ b satisfies the condition, because p(z) always returns some object
of type b; gen : nat -+ {nat), gen(n) := {0 ,1 , . . . , n - 1) satisfies the condition, because is always generates
numbers from an already generated number; the same argument holds for the slightly more complicated
p : {nat) - {nat), p(x) := {v I v2 E x). An example of some functions which does not satisfy the above
condition, is p : { b) -+ {nut), p(x) = f when card(x) 5 10, p(z) = (1) when card(x) > 10: p has the
potential of generating some number out of values of type b, but, even if we have values of type b , we cannot
generate some number.

The rest of the proof is identical to [13], and we skip it.

Proposition 4 Let Q = {R,) be a family offunction symbols indexed by the types a, a, : unit + cr, such
that, for any model B and environment p, [Ro]lap = the (totally) undefined function. hen^:

NRdk (c) + fix:

g NRAk (C) + fix,

c N R A k + l (C U S1) + fix:

As a consequence, extending f lRA(C) with any of fiz; , fix,, fix: or fix: we get, essentially, the same
expressive power. Therefore, we shall abbreviate with N R A (C) + f i x any of them.

Proof (Sketch) The last inclusion is the only nontrivial one, so take some f : u x r + r in N R A k (C) +f ixp .
Define g : a x {r) -+ { T) to be: g(x,Y) = (6) U (map Xy.f(z,y))(Y) and h(x) = (fix: g)(x). Then
(fixp I)(%) = if (3y E h(z) . (f (z , Y) = Y)) then y else Q

As in [16] (see also [12]), we get:

Proposition 5 ([16]) NRA+ f i x = the class of all Kalmar elementary queries, i.e. whose time - or space
- complexity is exp(k, n) (for some k), where n = the size of the input, and exp(O, n) = n , exp(k + 1, n) =
2exp(k1n). More, for each k 2 1, NR.4k+l + f ixi coincides with all queries whose time complexity is
O(exp(k, en)) (for some c > O), while . h l R ~ I k + ~ + f ixp coincides with the queries whose space complexity is
O(exp(k, en)) (for some c > 0).

Proof The proof is similar to [12]. The condition k 2 1 makes it possible t o compute the set of all linear
orders over the universe of the input a t some base type b, lo : {b) -+ {{b x b)). For k = 0, it is known that
the two query languages obtained from f ixi and fixp are strictly weaker than the complexity classes P T i m e

For the language NRAk (C u R), we consider the conditional if then else to be nonstrict in the last two arguments

8

and PSpace (see [24] and [17]). The connection between the set height restriction of the language and its
computational complexity is shown in [16].

So, by extending NRd with any unbounded fixpoints, we can express untractable queries, an undesired
property. As an alternative, we investigate the language obtained by adding one of the two bounded fixpoints,
b f ix , or b f ix i . We have immediately:

Proposition 6

N R A (C) + b f ixP PSpace

N R A (C) + b f ixa c P T i m e

Proof The proof is an easy extension of the induction of proposition 5. For the fixpoint, remark that

(b f i x p f 1 g) (x) g (x) , SO it stays within PSpace, because g(x) does. For b f i x i , we have (b f i x i f 1 g) (x) =
Un2* yn (see the definition), so there is some n , n < card(g(x)) for which yn = yn+l .

Note that in contrast to Proposition 5, this result holds also for the case in which C contains function
symbols.

The main result of this paper is the following theorem, an extension of theorem 1, and in its corollary:

Theorem 2 If all function symbols in C have set height j 1, then

1. N R A (C) + b f i x is a conservative extension of NRA1 (C) + b f i x , for both inflationary and partial
fixpoint semantics. The latter is a conservative extension of R A (C) + b f i x (the relational algebra over
signature C with bounded fixpoints - to be defined).

2. If I is a pair-index type (to be defined), then N R A (C U I) + f i x is a conservative extension o f N R A 1 (C ~
I) + f i x , which is, in turn, a conservative extension of R A (C U I) + f i x .

We first prove the theorem for the more restrictive case, when all function symbols in C have set height 0.
Then, we show how to extend it for function symbols of set height < 1 (in the presence of "set constructors"
in C, like gen : nut + { n u t) , gen(n) = {0,1, . . . , n - 1) - see [18] -, we need "index invention").

Note that , when C doesn't contain function symbols, then NRAl + bf ix, = NRA1 + f i x p (and similarly
for bf ix i and f i x i) , because at flat types we can easily compute an upper bound for each fixpoint. So, we
get:

Corollary 1 1. NRA $ bf ix , is a conservative extension of the relational algebra + partial fixpoint,
which is equivalent to the while - queries ([11]), or to DATALOG*' ([6]).

2. NRA + bfixa is a conservative extension of the relational algebra + inflationary fixpoint which is
equivalent to DATALOG' , or to first order logic with (inflationary or monotone) fixpoints, or to the
whi1e"ueries ([a [6]).

This result has as a negative consequence the fact that the inclusions from proposition 6 are strict, because
the test for even cardinality is not expressible. On the other hand, no database query capable of capturing
exactly the P T i m e queries is currently known, so b fixi and bf ix, seem to offer a reasonable extension to
complex objects, of the fixpoints in the relational algebra (or, equivalently, first order logic). As in the flat
case, we have:

Theorem 3

N R A + b fixp + order = PSpace

NRd + bfiza + order = PTime

Proof (Sketch) We follow closely [12]. Let f : a + r be a PTime (or PSpace) computable query (cf.
[IO], i.e. invariant under isomorphisms). The bounded fixpoint is powerful enough to simulate some Turing
Machine with the techniques in [12], as long as we have counters up to some polynomial of the input size.
To construct such a counter, without using powerset, we consider every subtype a' mentioned in a, and
collect all values of type a' mentioned in the input x (this can be done in N R A) : call this set v,, E {u').
Consider now the cartesian product of those which are nonempty: call it v. One can prove that there are
constants I c , 1 2 0 (which do not depend on x), such that size(z) 5 2'card(v1), where size(x) is the size of
the standard encoding of x (see [12]). So, if we need numbers up to (size(x))P (for p > 0), we can take the
set ({false, true)' x v ') ~ , and order it by lifting the order relation at the base types (this can be done in just
N R A : see e.g. [18]). There are 2" posibilities for the type of this set, where s is the number of subtypes u'
of a, corresponding to all possibilities of empty sets v ,~ , and we choose, with a cascade of i f 's, the right one.
Limited arithmetic function on this counter can be easily expressed, once we can express transitive closure
(we need bfix for that), so we can simultate a Turing Machine (again, bfix suffices, since this is done a flat
types, where we can compute an upper bound). Finally, observe that encoding of x, and decoding of the
result, can be done with bfix.

4 A logic based language

We have two reasons for giving a logic based version of NRA(C) + bfix. First, we want to gain a greater
confidence in its robustness, and secondly, we want to understand how the bounded fixpoint can be expressed
through range restriction.

We shall call our language NRC(C) + bfix, although it is not derived from the monad calculus in [9]. It is
strongly inspired by previous work ([I], [12], [15]), but its syntax is kept closer to the algebraic language,
to make the proof of the conversions easier. Its main interest consists in the rules for range restriction,
especially those connected to the fixpoint construction.

N R C has two syntactical categories, terms and formulas, which are defined recursively (the idea being that
{u /p} is a term, where p is a formula). A signature C is given, as for N R A . There is exactly one input
variable for each type a, xu , and there are denumerable many variables ua, v", . . . for each type a . All
terms are typed.

terms The following are terms:

() (the empty tuple).

xu (the input variable). This variable is considered to be bound.

U" , va , w0 . . . (variables).

(tl , t z) , (the tuple of two terms t l and tz) .

f (t) , where f E C is a function symbol and t is a term.

aa (t), (the i's projection, i = 1 ,2) , where t is some term.

{uT /p}, where uT is a variable and p is some formula (the type of this term is (7)). uT becomes
bound in {u7 / p) (but other variables free in p remain free in {uT /p)) .

formulas The following are formulas:

true, false

p A $, p V I), yp, where p, 4 are formulas.

3uu E t .p , where uU is a variable, t is a term (of type {a)), and p is some formula.

We impose the restriction that all input variables occurring in some term have the same type (i.e. there is
only one input variable in each term).

We extend the language with a fixpoint construction:

fixpoint pw{T} .{uT /cp) is a term, where wi7} and uT are variables, and cp is a formula. The type of the
whole term ~ W { ~ } . { U ~ /cp) is {T}. Both wiT} and uT become bound in ,uw{~}.{u~ /p).

We shall assume that all bounded variables in some term t or formula cp are distinct, and distinct from the
free variables4.

A query of type a -. T in NRC(C) or NRC(C) + f ix , is simply a term of type T , having (all occurrences
of) its input variable of type a. Note that, although we can write some purely algebraic queries, like
(f (r ~ (x) , ~ ~ (z)) , g (~ ~ (x))) , for "real" database queries one has to make use of formulas, like in the following
unnest query, {a x {T}} -+ {a x T}: unnest := {u / 3 v E x.3w E rz(v).u = (T ~ (v) , w)) , or in the following
nest query, {a x T) -+ {a x {T)}, nest := {u /3v E x.u = (r l (v) , {w /(r l (v) , w) E x))).

Queries are interpreted in a C-model B5. An environment is a mapping p from variables (including
the input variable(s)) into UU[a], preserving types. Given a model B, an environment p, we interpret a
term t as a (possible undefined) value [t]p : [TI, and a formula cp as a (possible undefined) truth value
[p]p : {true, false), in the standard way. The intuitive meaning of the formula 3u E t.cp, is 3u.(u E t A p)
(and [3u E t.p]p is defined accordingly). The interpretation of the term {u /p) is: { a /[cp]p[u/a] = true6);
it is undefined, if the latter set is infinite (this will be impossible in the range restricted version of N R A ,
to be defined below). When t (or cp) is a closed term (or formula), then the relevant part of p just assigns
a value to the input variable xu in [a], so [t] (or [cp]) can be viewed as a (partial) function [t] : [a] -+ T

(or [p] : [a] + {true, false)). For the fixpoint construction, we consider both inflationary and partial
interpretations.

This language is too powerful, because it allows us to define the powerset of some set z , by { u { ~ } /Vvu E
u{"}.v0 E x { ~ }) (V is expressed using 3 and 7). It also allows us to define domain dependent infinite sets, like
{U / Y U E x) 7. Therefore, we restrict this language, by defining a range restricted sublanguage (NRC(C))",
or (NRC(C) + bfix)". For this, we define a notion of a range restricted subterm t of some term or
formula M (M = . . . t . . .); when such a subterm is range restricted, we underline it (M = . . . t . . .). Also,
when M is some term or formula and u some variable, we write M as an abbreviation for the statement v

U

"all occurrences of u in M are underlined". The following rules govern the range restriction labeling. Recall
that range restriction is a property of a subterm of some term or formula M.

op(L1 . . (op is any operation) (ill t2>
op(t1, . . . , tm) (hltz) 4

*Any term or formula can be converted to an equivalent form, which satisfies this requirement, by renaming the bound
variables.

5Recall, this is a family of sets Bb for each base type b , together with an assignment of functions to function symbols in C.
'This implies that I [(~] I p [u / a] is defined.
7The interpretation of this term is actually undefined, when the underlying domain is infinite.

,(x is the input variable) tl E k b = t 2 tl = h
- h E h t l - =t, t l - = b

u - u u u U -
U U
v - op(& . . .+&I o p (t ~ , . . . , t,) - false

u -
u u U U

Note that, when a variable u is range restricted in the subformula p of p A $, then it is range restricted also
in $; this does not hold for V. Also, note the rule for the fixpoint (p): we must be able to prove that u is
range restricted, even though the fixpoint variable w is never range restricted. This is a different approach
than in [12].

We emphasize again, that range restriction is a property of subterms of some term or formula M. E.g. it
might be possible that cp , when p is viewed as a subformula of itself, but this is never the case, when cp is

v
u

viewed as a subformula of lp.

We shall write (NRC(C) + fix)" for the range restricted version of n / R C (C) + f ix , i.e. in which, the
toplevel term is range restricted, and every bounding term of some quantifier is range restricted (i.e. the
quantifiers are of the form 3u E 6.y). One can easily verify that the queries nest and unnest defined before,
belong t o this sublanguage.

Theorem 4 (N R C (C) + fix)" and NRA(C) + bfix have the same expressive power.

Proof

1. ,VRA(C) + b f i x (h /RC(C) + f ix)". This is done straightforward, by converting any function
f : u -+ r from JI/RA(C) + b f i x , into some term t J of type r , with input variable of type a . We
present the most significant cases.

17 : a + { a) is translated to t , := { u u / u u = x u) .

p : { { a)) -+ {o) is translated to t p := {u" /3v{"} E z { { " ~ ~ . u u E v { "]) . This term is range restricted,
by the following judgement (we keep the type superscripts for the variables in this example, to make
it more formal):

m a p (f) : { a) - { r) is translated to t rnap(f j := {U / 3 v E x.u = t f [z / v])

U : { u) x {u) i { u) is translated to tu := { u / u E n l (x) V u E n 2 (x))

not : { u n i t) + { u n i t) is translated to tnOt := { u / u = () A d u E x.true).

eq : b x b + { u n i t) is translated to teq := { u / u = () A ~ ~ (2) = n 2 (x)) .

The bounded fixpoint of f : u x { T) -+ { T } and g : u -+ {T), b f i x (f (g) : u + { r) , is translated into
t b p i z (f l g) := pw.{u / u E t g A u E t J [x / (x , w)]) . To prove that this term is range restricted, start with
the observation that t g is range restricted, and that x is always range restricted:

W . { u / U E - t g A u E t f [x/(:, { v / v E tg - A v E w))])

pw.{u / a E t g - A U E t f [XI(:, { v 12) E t g - A v E w))])

pw.{u / u E tg - A u E t f [XI(:, { v / v E t g Av E w))])
w

pw.{u / U E - tg A u E i f [x/(:, { v / V E tg A v E w))] }

To prove that all quantifiers are bounded by range restricted terms in t r [z / (x , u)l, proceed as in the - - , - -

proof of t f , but replacing the axiom :, with the derived fact (x , { v / v E tg A v E w)). -

2. NRA(X) + bfix C (NRC(C) + fix)". Let a be the type of the input variable. The translation of
terms t into functions ft : u -+ r, and of formulas cp into predicates P, : a + {unit) is straightforward,
with two (big) exceptions: the term constructions t := {u7 /$) and t := ~ W { ~ } . { U ~ /$). To build the
function ft : a + {r), we first construct a function (in N R A) bu : a + { r) , which is a "bound" for
u , i.e.: [$]p = t rue ==+ p(u) E [bu]l(p(xo)). Then, for the first term, ft(xa) := ap$(bu(xo)), where
ap, is the selection associated to the predicate P$. For the second term, (i.e. t := ~ W { ~ } . { U ~ /$I), let
t' := {u7 /$), and t" := t ' [~ ~ / a ~ (x ~ ~ { ~ ~) , ~ ' / a ~ (x ~ ~ { ~ })] . Then, take ft := bf iz (fp , b,). We shall
show how to construct the bounding function b, by induction on the proof of the fact that t (= {u /$))
is range restricted. (In fact, when t is not range restricted, such a bounding function may not exists).

Suppose I+! is a given formula. We shall consider only subterms of $. $ may have free variables v u ,
some of whom are asserted to be range restricted in $ (i.e. $ is proven in a context outside of $).

v
v

We shall assume that, for each such variable v u , some bounding function c, : a -+ {v) is provided from
outside.

First, from the proof of the range restriction of (the occurrence of) any subterm t of $, we show how
to construct a function bt : u -+ {v) (where v is the type of t) ', satisfying the property below. To
state the property, we shall write p /= t_, whenever [trip E [bt](p(xU)). For v a variable assumed to be
range restricted in $, p 2 means p(v) E [cv](p(xu)). The property is:

If [$]p = true, and p /= 2 for all variables v assumed range restricted in $, then p /= t_.

Secondly, for each propositional subformula occurrence cp of $ ', and for each variable u" free in I+!, we
associate to the proof of cp in $ (under some assumptions 3, a function c, : a + {v}lO, satisfying

v
u V

the following condition:

If [[$Ip = t rue, and [cpJp = true, and p 2 for all variables v assumed range restricted in I+!, then
p ul1.

We give below the functions bt and cu for each proof rule. Verifying the two conditions is routine.

,(x - is the input variable) b,(x) := {x)

* t in b t is an occurrence in +, not just a term: different bt's may arise for different occurrences of the same term. More, even
for some occurrence t , bt is not necessarily unique, because the proof o f t is not necessarily unique.

'1.e. cp is either +, or + = op $9, with op = V, A , and 9 is a propositional subformula of or &.
"The notation here is even more ambiguous, because c,, in fact, depends on 4, the occurrence cp, the variable u, all the

functions c,, and the proof of cp .
v

same cu

u u the intersection of the cu's above
op(tl, . . . , t m) -

false c,(2) := 4
w

take the c, from the premise

Here, add c, := bt - to the premises of p (see the next two rules).

u add c, to the premises of cp
Ju E t. cp

Using the additional premises from the preceding two rules, i11 the proofsystem associated to the
formula p, we get some c, (associated to p). Take c, associated to $, to be the same.

;A$ 9 4
same c.

w w v v

P $
same cu

v v

5 Encoding of finite functions in the relational algebra

A scalar type is either a base type b, or unit, or a product of scalar types. A flat type is either { t } , with
t some scalar type, or a x r , with a, r flat types. Note that a flat type is an ordered type.

We inted t o define the relational algebra over some signature C, RA(C), to be a collection of operations over
flat types, to satisfy the following:

1. It should coincide with the "traditional" relational algebra, when C has no function symbols (cf., e.g.,
[22]), and it should be a "reasonable" extension otherwise.

2. It should be inductively generated.

3. NRA1(C) should be a conservative extension of RA(C).

By simply defining RA(C) to be the set of all functions f : a + T in N R A l (C) over flat types, we violate
both 1 and 2. Indeed, consider some nonmonotone function f : {s} -. {t) in the "traditional" relational
algebra: i t is not obvious that ezt(f 07) is also a relational algebra expression, but it does belong to NRA1(C)
! Induction is also prohibited by the fact that g o f may be in RA(C), although neither f nor g is in R d (C)
(when the intermediate type is not a flat type).

To fulfill these desiderates, and to keep our constructions simple, we restrict ourselves, for the beginning, to
signatures C containing only function symbols of set height 0.

So, we define the relational algebra RA(C, X) to be the following sublanguage of NRA1(C, X): its types
are the flat types, and its operations are closed under composition and pairing, and contain the identities,
the projections, and the following:

union, difference U, - : {t) x {t) + {t).

the empty set 4 : a 4 r , for all flat types a, T .

car tes ian p roduc t W: I t l) x {t2) + {tl x t2) .

project ions a n d scalar funct ions map(f) : {t) + {t ') for each f : t -+ t' in NRAo(C).

selections up : {t) -+ {t), for every P : t + {unit) in NRAl(C) . up is defined to be e x t (~) , where P is

t Pz {unit) x {t) 5 {unit x t) ma*2) { t) Note that P cannot contain variables.

nons t r ic t opera t ions not : {unit} -+ {unit) and zUlT : u + T, for each variable xT E X , and flat types

u , r . The latter is defined to be a I". unit "r. r.

We consider the extensions RA(C, X) + b f ix and RA(C, X) + f ix , by closing RA(C, X) under the bounded
or the unbounded fixpoint constructions. Note that bounding the fixpoints is not redundant when C contains
some function symbols.

When wi : t l x t 2 i ti is a projection, then map(ri) : {tl x t2) + {ti) is the "relational algebra projection",
denoted with IIi. Consider now some function f : t l -+ t2 i11 C, and let s be some scalar type. Then
map(f x id) : {tl x s) + {t2 x s) simply applies f to each element in the first column(s) of its input relation.
This suggests that the map(f) expressions are either already in the "traditional" relational algebra (the
"database projections"), or they form some reasonable extension of it , when C contains function symbols.

Also, aeqOTl : {(t x t) x s) i {(t x t) x s) simply selects those elements whose first and second component
coincide (denoted with al ,2 in [22]). This suggests that the up expressions are not more powerful than
ordinary selections.

Propos i t ion 7 RA(C, X) (+bfix or +fix) is combinatorial (functional) complete, in the following sense:

combinatorial (functional) completeness For any function f : a + r in RA(C, X) (+b f ix or +fix),
and any variable xc>c : J + C, there is some function tcx. f : a x (' i T such that f = KX. f o (id, 4) .

The proof is trivial, but only because predicates P : t -+ {unit), occurring in some selection up : {t) -+ {t),
are not allowed to contain variables.

Our final goal is to translate NRA(C, X) (+b f i z or +fix) into RA(C, X) (+b f ix or +fix). The hard part
is to simulate the set construction {-) in RA(C, X). For this, we represent an element of {g), as the range
of some partial, finite function $: t + a, where t is some scalar type. Not surprisingly, such functions can
be encoded in 72.4. To show that, we start by encoding total functions p : t -+ a with f ini te s u p p o r t (i.e.
for which supp(p) = {x E t l c p (x) # 4) is finite):

Definition 1 Let t be a scalar type (in NRAo) and a be a fiat type. Define the flat type [t i u], and
up, : [t i u] x t + u, by induction on the structure of u:

eqo(mon~ , * a)
1. [t + {t')] := {t xt'), and up,, := {t xt') x t 3 {(t xt') x t) -% {t'), where P := (t xt') x t -

{unit).

2. [t + a x r] := [t + a] x [t -+ T], and up,,, := (up, x up,) o ((r l 0 TI, 7r2), (r 2 0 ~ 2)) .

When p : t -+ a has a finite support, and f : u + r is s t r ic t (i.e. f(4) = 4), then f o p : t -+ r still has a
finite support. This justifies the following:

Proposition 8 Let R A I (C) (+bfix or + f i x) be the strict fragment of R A (C , X) (+b f i x or + f i x) (i.e.
without not and variables). Then for each f : a -+ T in R A l (C) (+bfix or + f i x) , there exists [t -+ f :
[t + u] + [t -+ T] in R A I (C) , such that the following diagram commutes:

Intuitively, [t + f] (p) = f o p.

Proof By straightforward induction on the structure o f f : [t -+ id] := i d , [t -+ g o f] := [t + g] o [t + f] ,
W , t -+ $1 := 4, [t +W] := { t x t l) x {t x t 2) - { (t x t l) x (t x t z)) [t + U] := U , [t + -1 := - [

{(t x t l) x (t x t 2))
map(*10xl,(~20~l,azox~)) e q o (w l o ~ 1 , a l o s z) + { t x (t l x t 2) } , where P := (t x t l) x (t x t 2) - { u n i t) ,

[t -+ u p] := u p o a z , [t + b f i x (f 1 g)] := b f i x ([t + f] I [t + g]) , [t + f i x (f)] := f i x [t + f] .

Note that [tl - [t2 + u]] -- [tl x t 2 + u] and [unit + a] --a. For f : t l i t 2 , define [f + (T I - ' : [tl +

a] + [t 2 -+ a] t o be: [f + i t)] - ' := map(f x i d) , [f + (u x T)]- ' := [f -t a]-' x [f + T I - ' . W e have
[f + a] - ' (p o f) = f , so, when f is injective, [f -+ a] is indeed the inverse o f the composition t o the right,
as suggested b y its notation.

Now we proceed t o encode partial, finite, functions 11, : t j { a) as relation pairs red($) = (d l p) E { t) x [t +

a] , where d is the domain o f 4 and p is the function with a finite support defined b y p (x) = $ (x) when + (x) is
defined, and p (x) = $ otherwise. Define the flat type [t + a] := { t } x [t + u] . Note that only those elements
(d l p) f rom [t j a] which satisfy supp(p) d are valid encodings, in the above sense, o f some partial, finite
function $. T h e function decode, : [t 3 a] + a , which computes the range o f some partial function, is

[L ~ ' O] - ~
decode,(d, p) := [t j a] -% [t -+ a] - [unit + a] a . W e also define Ap, : [t j a] x t + a t o
be (informally): Ap,((d, p) , x) = i f x t. d then ap,(p, x) else Q,. Ap, is in RA(C2) (recall that Q , is the
totally undefined t e rm o f type a) . W e have:

Proposition 9 (The Map Lemma) For each f : a + T in R A (C , X) , there is some [t j f] : [t j a] +

[t 3 T] in R A (C , X) , such that the following diagram commutes:

Proof The induction proceeds as in prop 8 for the strict operations. For the nonstrict operations, take
[t 3 not](d, V) := (d, (d W {())) - F) and [t x](d, V) := (d, d W x).

Given some f : u x v i r, we can take advantage of the presence of the variables in our language, to define
[t f] : [t * u] x v i [t + r] : choose some variable xu>" : u i v, not occurring in f , and apply the map

(d , ~ ~ ~ ~) f
lemma to g : a - a x v i r . Then, form [t + g] : [t + u] + [t + r], and define [t f := ~ x . [t + g].

The Map Lemma implies that, whenever f : {t) + {t') is in RA(C), t8hen ext(f o q) : {t) i {t') is also
(a d , I D) [t*fl d e c o d e { , , l

in RA(C)12. Indeed, ext(f o q) := {t) + [t {t)] - [t 3 {t')] + {t'), where ID(x) =
{ (z , z) 12 E z) .

Now we are ready t o define the encoding of n/RA into flat relations.

6 Encoding NRA (+bfix or +fix) into flat relations with pair-
indexes

A pa i r i ndex is some base type I equipped with a binary function pair : I x I i I and two constants
left, right : unit + I. A model for I is a pair- index s t r u c t u r e (2, Pa i r , Left, Right), where P a i r :
Z x Z - Z is injective (this implies that Z is infinite), and Left, Right E Z are distinct. We abbreviate CU I
for C U {I, pair, left, right). If f? is a C model and Z is a pair-index structure, we write f? U Z for the C U I
model obtained from f? by joining 2 .

I plays the role of i ndex s e t , used in [23] to encode the nested relational algebra into the relational algebra.
(The usefulness of using indexes in the Nested Relational Algebra was also recognized in [25].) In contrast
with [23], we don't need inventions, but use pair, left and right instead. pair is motivated by the necessity
to encode the "flatten" operation p : {{a)) + {a). Although the encoding in [23] is easier to understand
on particular examples, we feel that the encoding presented here is formally better motivated, and enables
us to extend the conservativity result to bounded fxpoints.

The translation of NRA(C) + b f iz (or +fix) into R d (C U I) + b f ix (+fix) is given by:

I2This is not intended to be a proof of NRAl (C) being a conservative extension of RA(C)

19

T h e t r ans l a t i on of t ypes a --. a, is: ab := {b} for any base type b , aUnit := {unit), T,,, := a, x T,,

a{,) := [I + a,].

T h e encod ing re la t ions -,G [a]u x [a ,]a~z , defined by:

For the last rule, w and $J are partial, finite functions, and w --, 4 means that Vi E I, w (i) and $(i) are
either both undefined, or w(i) -, +(i). Recall that rel($) E [I +- T,] is the encoding of the partial,
finite function $.

z r means that z may be encoded by r . It is total (any x is encoded by some r) , not functional
(one might use different indexes to encode the same set), and not surjective (for two reasons: only sets
of cardinality 1 in a b and nunit are encodings of something, and only elements of the form rel(+) in
a{,) are valid encodings). However, the encoding is injective: x --, r and x r' implies r = r'.

The encod ing of ope ra t i ons (f : a + T) 2.i (Rj : a, -+ a,) (to be described below) is such that f -- R j ,
i.e. for any models B and 23 U 1, the following soundness p rope r ty holds:

The encoding of the operations f --, Rf proceeds in two steps. First, one encodes all operations f from
N R A (C) (i.e. without fixpoints). For p, we use pair (and rely on the injectiveness of P a i r when proving
soundness), for doubleton : a x a + {a} we use left and right and rely on Left # Right (U is defined
indirectly, using doubleton), Rmop(fl := [I j Rf] (here we use the Map Lemma), and 7 is translated using
Left (chosen arbitrarily from Left and Right). Some function symbol f : t l x . . . x t, + t in C, is encoded
by Rf : {tl} x . . . x {t,) -+ {t), R j (r l , . . . , r,) := map(f)(rl W . . . W r,). The rest of the cases are trivial.

Note that Ru # U and Rn # n: both U and fl are derived operations. More, even if a is an ordered type and
r, q E T, are valid encodings (of, say, x and y), it is not necessarily the case that r U q is a valid encoding,
because r and q might accidentally use the same index for encoding different elements. Therefore, we need
the following two lemmas, to encode bfix(f I g). However, it is the case that x r implies x = 4 r = 4,
for all ordered types cr.

L e m m a 1 (Bounded addi t iveness of -) Let a be some ordered type and ~ 1 , ~ 2 ~ x 3 E a, r l , 7-2, r3 E a,
such that xi -, ri, i = 1 , 2 , 3 and X I CI ~ 3 ~ x 2 23, r1 C r3,rz 5 7-3. Then X I U xz -,, rl U ra.

L e m m a 2 (Improved intersect ion) For each ordered type a there is some function intersect, : a, xa, -+

T, in R A , such that x -, r and y --, q implies a: n y -, intersect,(r, q) and intersect,(r, q) C_ q.

intersect simply selects those elements from q which occur in r. It is not necessarily identical to Rn (we
didn't specify the way Rn was derived), but it does a similar job. The [t -1 construction, described after
the Map Lemma, is used here. The translation of the equality at type T, eq, : T x T + {unit), Req,, is
used here in an essential way. When T is not a base type, eq, is a derived operation (and its translation
is a complicated function in RA) , so we need to make the full translation of N R A (C) into RA(C) before
proving this lemma.

Using these two lemmas, the translation of b fix(f I g) : a + T (T an ordered type) is: RbfiZ(f l g) := bfix(Q I
Rg) where, informally, Q(r, q) := intersect,(Rf(r, q), Rg(r)). Then yo(= 4) -T qo(= 4) and x -, r, yn --T qn

implies both f (xl yn) ng(x) Q(rl qn)nRg (r) alld yn Uf (x, yn)ng(x) --T q, UQ(r, q,) fl R,(r); this concludes
both bf ixp(f, g) - b f ixp(Q, R,) and b fixi(f , g) -- b f ixi(Q, R,).

In the following, we need to to consider a restricted class of pair-index structures (1 , Pa i r , Left, Right). Call
i E Z an a t o m , if Vx, y E 2, i # Pai r (x , y). Call Z and a tomic pair- index s t r u c t u r e , if Left, Right are
atoms, Z has infinitely many atoms, and is generated by them. This implies some acyclicity of P a i r , e.g.
Pa i r (x , Pair(y, z)) # y etc. From now on, we implicitly assume all pair-index structures to be atomic.

L e m m a 3 Let CT be an ordered type. Then there is an R A + f ix expression rename : T , x a, + T , such
that, for all x -, r, y N,, q and x fl y = 4 , we have x rename(r, q) and x U y -- rename(r, q) U q.

rename has to repeatedly rename the indexes in r , e.g. by replacing every i with pair(le f t , i), until a set of
indexes is reached, which is disjoint from the indexes in q. The acyclicity condition assures that this process
will terminate. Then the union with q is indeed an encoding of x U y. An unbounded fixpoint is necessary.

To translate the unbounded fixpoint f ix f , take Rfizf := f ix Q, where Q(r , q) := bet q' = Rf(r , q), q" =
intersect(ql, q) in rename(R-(ql, q), q") U q" (R- is the translation of -). This complicated expression is
needed to insure that y,+l = y, implies q,+l = q,.

This completes the proof of the conservativity result for the unbounded fixpoint:

T h e o r e m 5 If I is a pair index, then NRA(C U I) is a conservative extension of RA(C U I) + f ix .

7 Tagged indexes

The function pair : I x I + I and the two constants left, right in I, together with some semantic constraints
(injectivity of P a i r and atomicity), proved to be enough to encode N R A into R A . We don't try to express
a general encoding function a + a, in N R A - this would inevitably lead to the need of index invention, an
approach taken in [23]. However, the decoding function a, + a is expressible in N R A , and it is even in
R A , when a is flat.

For the conservativity result, we start with some function f : a + r in NRA(C) + bfix, and consider
first Rf : T , + T,. Con~pose it with the decoding function decode, : T , + T to get Qf : a, + T in
RA(C U I) + b f ix, with the property that in all models f? U Z, x N,, r implies f (x) = Qf (r) .

-
The we perform two translations on Q : Q * Q and Q * Q f . Q is in the language RA(C U I) + b f ix -
(where f is a new signature, to be described), while Q is in RA(C) + b f ix. Combining the, rather subtle, -
relationships between the interpretations of Qf , &f and Qf (in 3 different kind of models !), we get the
desired result.

Supposecr= { t l)x . . . ~ { t ~ } ~ ~ , a n d t h a t t h e i n ~ u t t o f i s x = (x l , . . . , x m) . Consideraset To = {TI , . . . , rm)
of bas ic t ags , and define a t a g to be either r k E To, or LEFT or R I G H T or < t , t l > where t , t l are tags.
Let T stand for the set of tags. Examples of tags are: < 72 , < LEFT, rs >>, << RIGHT, R I G H T >, <
T I , T ~ >> etc.

The signature 7 is defined to contain a type It for each tag t , and function symbols left : unit -+

TLEFT, Tight : unit + IRIGHT and pair,,,, : It x + T<t,t,>, for all t , t l E T. A model for I is
- -- - -

({Z)t_ET, Pairt,t&ft, Right), where we always assume P a i r < t , t ~ > : Zt x I t , - f< t , t ,> to be bi ject ions,
and ZLEFT = {Left), %RIGHT = {Right}. We call such a structure a tagged pair- index s t ruc tu re , and

13The cartesian product is not associative in our language, so consider that some parentheses are present, in some arbitrary
order.

abbreviate it with f . Sometimes we simply call RA(C U 7) and RA(C U I) the tagged and the untagged
language.

We say that a tagged pair-index structure f is embedded into some pair-index structure Z, f _C 1, if
W E T,Tt Z, %<t,t,> is the restriction of Pa i r , Left = Left, Right = Right, and, for all basic tags
TI , . . . , T,,, , fT1 , . . . , z7, are disjoint sets of atoms, which do not contain Left or Right.

There is an obvious translation from the tagged to the untagged language, erase : (RA(C U 7) + bfix) +

(RA(C U I) + b f ix) which simply erases the tags of the indexes. When 3 C Z, then [C]lau-- [erase(a)Jnuz,
for all types b in the tagged language, and one can easily check that, for every f : u -+ 7, Vx E
[a]BuT, [fJauz(x) = [e r a ~ e (f)] ~ ~ ~ (x) . The following lemma shows that we can enforce tags on any un-
tagged function f .

Lemma 4 (Tagging lemma) Let f : a -+ T be a function in the untagged language, and @ be such that
erase(*) = a . Then, there are some q tagged types TI, . . . Tq, and q tagged functions fi, : + Tk, such that
erase(T1) = . . . = erase(q) = T, and for a21 f Z,Twe have [f]lBuz(x) = [f1lauz(x) U . . . u [f4.]IaUz(x),
where x E [uJsuZ.

Proof (Sketch) The tagging strategy of f is guided by the observation that, whenever Z C Z, we have
ft n ft1 = 4, for t # t'. We tag f by induction on the structure of f . The most relevant cases are f
= - and f = U. For f = -, f : {t) x {t) -+ {t), we are given two tagged types f l and f2, such that
erase(fl) = erase(f2) - = t . If il = G, then take q = 1, T1 = ($1) and fl = -. But when El # f2, then take
q = 1, TI = ($1) and fl = xl (the first projection): indeed, [fl]lBUZ and [f2Jauz are disjoint, so the difference
equals always the first argument. The case f = U forces us to values q > 1: simply take q = 2, T1 = {fl),
72 = {&), and fl = T I , & = 7r2.

We also illustrate the case f = map(g), for, say, g : (I x I) x v i I x v, g = pair x id. Then a = (ft x xi)) x C,
-

for some tags t , t': here we take r := x v and map(pair x id) := map(pairt,tt x id).

For the complete proof however, we need to do the induction on a stronger hypothesis, namely: Vp > 1,
Val, . . . , Cp such that erase(u1) = . . . = erase(Cp), there are some q tagged types TI, . . .Tq and q tagged
functions fk : al x . . . x ap + Tk, k = 1,q , such that [f] lau~(x l U . . . U xp) = UI=l,q[fllBUZ(xl, . . . , xp) ,
whenever xk E [ak]lBuT, Vk = 1,p . Then composition becomes straightforward. The only complicated case
is bfix(f I g) : a + T. We first apply induction hypothesis to g, to get gl : al x . . . x ap + Tl, 1 = I , q.
Then apply again induction hypothesis for f , by forcing ul x . . . x ap x Tl x . . . x Tq as its input, t o get q'
tagged functions fi : al x . . . x Cp x x1 x . . . x Tq + ?/, E = 1, q'14. Now we use the fact that, for the bounded
fixpoint, it is the intersection f n g that matters, and so we select only the tagged types r l , , . . .rlq1, which
also occur in T;, . . . , Ti, (so q" 5 min(q, q')). Finally, replace all arguments in f i z , i = 1, q", correspoding to
types rl which are not among T1,, . . . Tl; , with +, and call 3, the resulting function. This gives us q'' functions
f,!, : bl x . . . x Cp x ill x . . . x Fig,, + Tl,. Take bfix((fil , . . . , f/gl,) / (&,, . . .glql,)): its q" projections form
the desired tagging of b fix(f (g).

Notice that, when we apply this lemma to our Qf : T, + T, we get all taggings of T to be equal to T itself
! (Because T doesn't contain any occurrence of the index I) . So we may construct the union of the tagged
functions in the language, t o get some Qf : F , + T such that [& f] B u z (~) = [Qf]auz (~) , for all x E [T ,] ~ ~ ~ .

14To be precise, we should enforce rIk=l,p,l=l,q(t?k x 71) as the tagged input type for f , and obtain, by induction, some
functions of type rIk=l,p,l=l,q(@k x 71) + 7;. But then, we compose these functions, to the right, with the obvious grouping
function ul x .. . x ap x 71 x . . . x T~ + IIk=l,p,l=l,q(bk x 71).

8 Eliminating the tagged indexes

Now we define a second translation, () from RA(C U I) + b f ix to RA(C) + b f ix. For this, fix some m scalar
types t l , . . . , tm15, and translate any tagged type i? to 6, by replacing occurrences of I,, with t k , occurrences - -
of ILEFT or IRIGHT with unit, and with It x It!. Then, translate each expression $: u + r , by
replacing every occurrence of pairt,,,, left or right, with the identity of the appropriate type.

In the same spirit, we define a tagged pair-index structure from an ordinary model f?. Consider m finite
sets xk [tk18, k = 1, m (i.e. xk E [{tk}la); we define the tagged index pair structure f x generated by x
(x = (X I , . . . , xm)) to be: f~~ := xk, TiEFT = fgIGHT := {()I, f t t , := f~ x f;, and Left, Right, P a i ~ ~ , ~ '
to he the identities of appropriate types. Clearly, [i?]Iauzz [[6]]a, for each tagged type F . The following
lemma is trivial:

-
Lemma 5 (Soundness of the () translation) For every f : I? + r in RA(C U I), Vz E [i?JBuzz,

Ufnuz-(z) = U?IB(Z)-

9 Proof of the conservativity theorem

To conclude the proof of theorem 2, we first establish:

Proposition 10 When all function symbols in C have set height 0, then n/RA(C) + b f ix is a conservative
extension of RA(C) + b f ix .

Proof Consider some function f : u + T, where u = i t l } x . . . x {t,), and construct Qf : T, - T. An input
for f is an m-tuple x = (x l , . . . , x,) of sets, xk : i t k) . Any encoding of x is an m-tuple r = (r l , . . . , r,), with
rk : {I} x [I - jrtk]. We pick some particular encoding, namely we choose m disjoint sets of atoms f,, Z,
k = 1, m , which don't contain Left or Right, such that card(f,,) = card(xk). Then r k = rel($k)16, where

is some bijection from f,, to the set of encodiiigs of the elements of xk. To be precise, for some bijection
wtk : f T k - xk, we have wtk - $ k , Vk = 1, m. The collection (f,, , . . . , fTm) generates a tagged pair-index
structure embedded in Z, f C Z. After tagging Qf : ({I) x [I + rt1]) x . . . x ({I) x [I + ntm]) - T, like in
lemma 4, we get Qf : ({I,,} x [I,, + ~ t ,]) x . . . x ({I,_) x [I,_ + ~ t ,]) - T for which [[Qf]]auz(rl, . . . , r,) =
U Q f I ~ u ~ (r 1 ~ . . . r rm).

-
The next step is to eliminate the tagged indexes from Qf , using the technique in lemma 5, and get Qf :

(I t l} x [tl + t l]) x . . . x ({t,} x [tm + t m]) From our input x , we construct the tagged index-pair structure -
fx (like in lemma 5), for which the functions [QfJjaulz and [&f]B coincide on [u]lBulz.

Now we make the key observation that the tagged index-pair structures f and 2" are isomorphic, because
they have finite sets of the same cardinality at the base tags ! Recall that f ~ , = xk; then wtk : f T k + xk is the
desired (canonical) bijection, and it extends to a family of isomorphisms w, : [uIauz - [U]B at each type v
(which is the identity a t T, because T doesn't contain any index type). So, to compute [Q f] a u z (~ l , . . . , rm), -
we simply compute [Q f] l a (~ { t l l (~ l) l . . . , ~ { ~ _ l (r ,)) . This is trivially done, because the isomorphisms wt,
are "canonical", so w (~ ,) (T ~) : {tk} x [tk + dk] can be uniquely computed from xk (it doesn't depend on
the choice of the indexes in f,,): namely, wltk1(rk) = (xk , ID,,), where ID,, is the function with finite
support (viewed as a relation) assigning to each value z E xk (which is a scalar, i.e. tuple of basic values
z = (zl , ~ 2 , . . .)) its encoding (which is ({zl}, {zZ}, . . .)). Clearly, the function xk -+ (xk, ID,,) is computable
in R A , and this concludes our proof.

15Later, we pick them from the input types of our function f : I t l } x . . . x { t , } 4 { t } t o be translated.
16Recall that re l ($) is the encoding, as a tuple of relations, of some partial, finite function $.

23

To obtain the desired result for NRAl (C) , we make the following observation, which is easily proven by
induction on the structure of f :

Lemma 6 If all function symbols in C have set height 0 and f : s x a + t is in N R A (C) (s, t scalar types,
a a flat type), then there is some g : s + t in NRAo(C), such that f = g o TI.

Proposition 11 If all function symbols in C have set height 0 then NRA(C) is a conservative extension of
N E A i (Z)

Proof It suffices to consider two kinds of functions in NRA(C) : f : s x a + t and g : s x a -+ {t), with s , t
scalar types and a a flat type. The previous lemma takes care o f f . For the second function, we write g as

q x i d
s x a - {s) x a {t). By the previous proposition, extl(g) is in Rd(X) , so g is in N R d I (B) .

10 How to extend the conservativity theorem in the presence of
external functions of set height 1

Function symbols in C of set height 1 may be, essentially, of two kinds (s, s' are scalar types, a is some flat
type):

Aggregate functions f : a + s (or f : s' x a + s).

Set constructors f : s + {s'), or f : s x a -+ {s').

It is not too difficult to define a reasonable relational algebra in this case: instead of the projections and
scalar functions and selections rules in the definition of RA(C, X), simply add the following two rules:

ext For every f : s + {st) in NRA1(C), ext(f) : {s) + {s') is in RA(C, X).

extl For every f : s x a -+ {s') in IZ/RAl(C), ext l (f) : {s) x a -+ {s') is in 'RA(C, X).

Because J\TRA1(C) was a conservative extension of RA(C), when all function symbols in C had set height
0, we can argue that this language is a reasonable extension of the relational algebra, for external functions
of height 1.

The two map lemmas, propositions 8 and 9, still hold (note that extl(f) is not strict in its first argument):
[t -+ ext(f)] := ext(idt x f) , and [t + eztl(f)] := (~ ~ , e x t l (~) o srz), where g : (t x s) x [t -+ a] -+ {t x s t)
is g(i, x , p) := {i) W f (x, i)) . It is also easy to translate an aggregate function f : a -+ s (or
f : s' x a -+ s) into Rf : sr, + {I x s) (or Rf : n , ~ x T, + T,). The difficulties arise when we try t o
translate a set constructor f : t + {s) (or f : t x a + {s)): then Rf needs to invent indexes for the set
it constructs ! We handle this by adding function symbols c, : {s) + {I x s) for "inventing" indexes, like
in [23], t o the extended signature C U I (one c, for each scalar type s which is the codomain of some set
constructor in C), such that c,(x) simply chooses some index for each element in x. For a given atomic
pair-index structure 1, we consider a family of infinite sets of atoms A, (s a scalar type), s.t. A, n A,, = q5
(when s # s'), Left, Right @ A, and there remain infinitely many atoms outside of U A,. Then, we require
the interpretation of c, to return only atoms in A,. We add < s > to the basic tags, for each scalar type
s, and we tag c, : {s) + {I x s) as c, : {s) + {j..,, x s). When we eliminate the tags, we encode I<,>
by s , f:,, := and we translate F , by &(y) := {(z, z) /z E y). Finally, when we encode the inputs
X I , . . . , x, (see the proof of proposition l o) , we choose atomic indexes outside of U A,.

11 Concluding remarks and further research

We have investigated the power of the nested relational algebra enriched with a bounded fixpoint. The
language turned out to be still of polynomial time or space complexity - according to the interpretation
of the fixpoint: inflationary or partial - and it can express all PTime or PSpace queries, in the presence
of some order relation on its inputs. The main result consists in proving that, at flat types, the language
coincides with well known languages, like first order logic with (inflationary or monotone) fixpoints (or
DATALOG') - in the inflationary case - or the while queries (or the first order logic with partial fixpoints,
or DATALOG*'), in the case of partial fixpoints.

The technique developed for proving the conservativity result, can be used to prove a (weaker) conservativity
result for unbounded fixpoints. Indexes have been used before, for a similar conservativity result (without
fixpoints), but in the presence of inventions. Here, we make the observation that two constants and a binary
function over the set of indexes are all one needs to encode operations of higher types. These operations can
be simply viewed as any other functions in the signature C, so that indexes need not be treated as special
extensions of the language.

The pair function over an index set I should be viewed in a different way than the interpretedfunction symbols
in [I]. It's interpretation is not fixed apriori, but the computing device for some query may interrogate pair
as an oracle. As a consequence, we would like to view the query f : I -+ {I), f(x) = {y /pair(y, y) = x)
as not being domain independent, because it depends on the particular interpretation of pair, and cannot
be answered in finite time, by interrogating pair as an oracle. We intend to investigate these aspects in the
future.

12 Acknowledgements

I wish give special thanks to Val Breazu-Tannen, for numerous discussions and comments, which made this
work possible. I am deeply grateful to Peter Buneman, for his suggestions and encouragement. I also wish
to thank Leonid Libkin and Limsoon Wong, for their help and suggestions.

References

[l] S. Abiteboul, C. Beeri, On the power of languages for the manipulation of complex objects, Technical
Report 846, INRIA, 1988

[2] S. Abiteboul, S. Grumbach, A. Voisard, E. Waller An Extensible Rule-Based Language with Complex
Objects and Data-Functions, Proc. DBPL-I1 Workshop, Oregon, 1989

[3] S. Abiteboul, P. Kanellakis, Object Identity as a Query Language Primitive, Proc. of ACM SIGMOD
conf, 1989

[4] S. Abiteboul, M. Vardi, V. Vianu, Fixpoint Logics, Relational Machines, and Computational Complexity,
Proc. Conf. on Structure in Complexity Theory, 1992.

[5] S Abiteboul, V. Vianu, Fixpoint extensions of first-order logic and Datalog-like languages, Proc. 4th
IEEE Symp. on Logic in Computer Science, pp 71-79, 1989

[6] S. Abiteboul, V. Vianu, Expressive Power of Query Languages, Theoretical Studies in Computer Science,
ed. J. Ullman, Academic Press, 1991.

[7] S. Abiteboul, V Vianu, Generic Computation and Its Complexity, Proc ACM Symposium on Theory of
Computing, 1991

[8] V. Breazu-Tannen, P. Buneman, S. Naqvi, Structural Recursion As A Query Language, MS-CIS-92-17,
University of Pennsylvania

[9] V. Breazu-Tannen, P. Buneman, L. Wong, Naturally Embedded Query Languages, MS-CIS-92-47, Uni-
versity of Pennsylvania, 1992

[lo] A. Cliandra, D. Harel, Computable Queries for Relational Data Bases, Journal of Computer and System
Sciences, 21:156-178, 1980

[11] A. Chandra, D. Harel, Structure and complexity of relational queries, Journal of Computer and System
Sciences, 25:99-128, 1982

[12] S. Grumbach, V. Vianu, Tractable Query Languages fo r Complex Object Databases, Proc ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, 1991

[13] Y. Gurevich, S. Shelah, Fixed-point extensions of first-order logic. Annals of Pure and Applied Logic,
32:265-280, 1986

[14] R. Hull, J . Su, On Accessing Object-Oriented Databases: Expressive Power, Complexity, and Restric-
tions, Proc. ACM SIGMOD Int. Conf. on Management of Data, 1989

[15] R. Hull, J . Su, On the Expressive Power of Database Queries with Intermediate Types Proc 7th Symp.
on Principles of Database Systems, 1988

[16] R. Hull, J.Su, Untyped Sets, Invention and Computable Queries Proc 8th ACM Symp. on Principles of
Database Systems, 1989

[17] N. Immerman, Relational queries computable in polynomial time, Information and Control, 68:86-104,
1986

[18] L. Libkin, L. Wong, Query Languages for Bags, TR, University of Pennsylvania, 1993

[19] S. MacLane, Categories for the working mathematician, Springer-Verlag, Berlin,1972

[20] J Paredaens, D Van Gucht, Converting nested algebra expressions into flat algebra expressions ACM
Transactions on Database Systems, 17(1):65-93, 1992

[21] P. Trinder, Comprehensions, a Query Notation for DBPLs, Proc. of 3rd International Workshop on
Database Programming Languages, 1990

[22] J . D. Ullman, Database and Knowledge-Base Systems, Vol I and 11, Computer Science Press, 1989

[23] J . Van den Bussche, Complex Objed Manipulation through Identifiers - an Algebraic Perspective, TR
92-41, Universitaire Instelling Antwerpen

[24] M. Vardi, The complexity of relational query languages, Proc ACM SIGACT Symp. on the Theory of
Computing, pp 137-146, 1982

[25] D. Van Gucht, P. Fischer Multilevel Nested Relational Structures, Journal of Computer and System
Sciences 36, 77-105, 1988

[26] P. Wadler, Comprehending Monads, Proc of ACM Conference on Lisp and Functional Programming,
1990

[27] P Wadler, Notes on monads and ringads, personal notes, personal notes, 1990

[28] D. Watt, P. Trinder, Towards a Theory of Bulk Types, Fide Technical Report 91/26, Glasgow University,
Glasgow G12 8QQ, 1991

[29] L. Wong, A Conservative Property of a Nested Relational Query Language, MS-CIS-92-59, University
of Pennsylvania, 1992

	Fixpoints and Bounded Fixpoints for Complex Objects
	Recommended Citation

	Fixpoints and Bounded Fixpoints for Complex Objects
	Abstract
	Comments

	tmp.1184680905.pdf.GEHp8

