
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

12-2-1996

A Secure and Reliable Bootstrap Architecture A Secure and Reliable Bootstrap Architecture

William A. Arbaugh
University of Pennsylvania

David J. Farber
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
William A. Arbaugh, David J. Farber, and Jonathan M. Smith, "A Secure and Reliable Bootstrap
Architecture", . December 1996.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-96-35.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/231
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76359125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/231
mailto:repository@pobox.upenn.edu

A Secure and Reliable Bootstrap Architecture A Secure and Reliable Bootstrap Architecture

Abstract Abstract
In a computer system, the integrity of lower layers is treated as axiomatic by higher layers. Under the
presumption that the hardware comprising the machine (the lowest layer) is valid, integrity of a layer can
be guaranteed if and only if: (1) the integrity of the lower layers is checked, and (2) transitions to higher
layers occur only after integrity checks on them are complete. The resulting integrity "chain" inductively
guarantees system integrity. When these conditions are not met, as they typically are not in the
bootstrapping (initialization) of a computer system, no integrity guarantees can be made. Yet, these
guarantees are increasingly important to diverse applications such as Internet commerce, intrusion
detection systems, and "active networks." In this paper, we describe the AEGIS architecture for initializing
a computer system. It validates integrity at each layer transition in the bootstrap process. AEGIS also
includes a recovery process for integrity check failures, and we show how this results in robust systems.
We discuss our prototype implementation for the IBM personal computer (PC) architecture, and show that
the cost of such system protection is surprisingly small.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-96-35.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/231

https://repository.upenn.edu/cis_reports/231

A Secure and Reliable Bootstrap Architecture

William A. Arbaugh
David J . Farber

Jonathan M. Smith

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

'Submitted to the 1997 IEEE Security and Privacy Conference
'Also with the U.S. Department of Defense

A Secure and Reliable Bootstrap Architecture+

William A. Arbaught
David J . Farber

Jonathan M. Smith
University of Pennsylvania

December 2, 1996

Abstract

In a computer system, the integrity of lower layers is
treated as axiomatic by higher layers. Under the pre-
sumption that the hardware comprising the machine
(the lowest layer) is valid, integrity of a layer can
be guaranteed if and only if: (1) the integrity of the
lower layers is checked, and (2) transitions to higher
layers occur only after integrity checks on them are
complete. The resulting integrity "chain" inductively
guarantees system integrity.

When these conditions are not met, as they typi-
cally are not in the bootstrapping (initialization) of
a computer system, no integrity guarantees can be
made. Yet, these guarantees are increasingly impor-
tant to diverse applications such as Internet com-

- -

merce, intrusion detection systems, and "active net-
works." In this paper, we describe the AEGIS ar-
chitecture for initializing a computer system. It val-
idates integrity at each layer transition in the boot-
strap process. AEGIS also includes a recovery process
for integrity check failures, and we show how this re-
sults in robust systems. We discuss our prototype
implementation for the IBM personal computer (PC)
architecture, and show that the cost of such system
protection is surprisingly small.

1 Introduction

Systems are organized as layers to limit complexity.
A common layering principle is the use of levels of
abstraction to mark layer boundaries. A computer
system is organized in a series of levels of abstraction,
each of which defines a "virtual machine" upon which

'Copyright 0 1 9 9 6 , William A. Arbaugh. Permission is
granted to redistribute this document in electronic or paper
form, provided that this copyright notice is retained.

tsubmitted to the 1997 IEEE Security and Privacy
Conference.

tAlso with the U.S. Department of Defense

higher levels of abstraction are constructed. Each of
the virtual machines presupposes that it is operating
in an environment where the abstractions of under-
lying layers can be treated as axiomatic. When these
suppositions are true, the system is said to possess
integrity. Without integrity, no system can be made
secure.

Thus, any system is only as secure as the founda-
tion upon which it is built. For example, a number of
attempts were made in the 1960s and 1970s to pro-
duce secure computing systems, using a secure oper-
ating system environment as a basis [20]. An essential
presumption of the security arguments for these de-
signs was that system layers underpinning the oper-
ating system, whether hardware, firmware, or both,
are trusted. We find it surprising, given the great
attention paid to operating system security [13] [8]
that so little attention has been paid to the under-
pinnings required for secure operation, e.g., a secure
bootstrapping phase for these operating systems.

Without such a secure bootstrap the operating sys-
tem kernel cannot be trusted since it is invoked by an
untrusted process. Designers of trusted systems of-
ten avoid this problem by including the boot compo-
nents in the trusted computing base (TCB) [6]. That
is, the bootstrap steps are explicitly trusted. We be-
lieve that this provides a false sense of security to the
users of the operating system, and more important,
is unnecessary.

1.1 AEGIS

We have designed AEGIS, a secure bootstrap process.
AEGIS increases the security of the boot process by
ensuring the integrity of bootstrap code. It does this
by constructing a chain of integrity checks, beginning
at power-on and continuing until the final transfer of
control from the bootstrap components to the op-
erating system itself. The integrity checks compare
a computed cryptographic hash value with a stored

digital signature associated with each component.
The AEGIS architecture includes a recovery mech-

anism for repairing integrity failures which protects
against some classes of denial of service attacks. From
the start , AEGIS has been targeted for commercial
operating systems on commodity hardware, making
it a practical "real-world" system.

In AEGIS, the boot process is guaranteed to end
up in a secure state, even in the event of integrity
failures outside of a minimal section of trusted code.
We define a guaranteed secure boot process in two
parts. The first is that no code is executed unless it
is either explicitly trusted or its integrity is verified
prior to its use. The second is that when an integrity
failure is detected a process can recover a suitable
verified replacement module.

1.2 Responses to integrity failure

When a system detects an integrity failure, one of
three possible courses of action can be taken.

The first is to continue normally, but issue a warn-
ing. Unfortunately, this may result in the execution
or use of either a corrupt or malicious component.

The second is to not use or execute the component.
This approach is typically called fail secure, and cre-
ates a potential denial of service attack.

The final approach is to recover and correct the
inconsistency from a trusted source before the use or
execution of the component.

The first two approaches are unacceptable when
the systems are important network elements such as
switches, intrusion detection monitors, or associated
with electronic commerce, since they either make the
component unavailable for service, or its results un-
trustworthy.

1.3 Outline of the paper

In Section 2, we make the assumptions of the AEGIS
design explicit. Section 3 is the core of the paper,
giving an overview of the AEGIS design, and then
plunging into details of the IBM PC boot process and
its modifications to support AEGIS. A model and log-
ical dependencies for integrity chaining are given in
Section 4, and a calculation of the complete boot-
strap performance is given; performance is surpris-
ingly good. Section 5 discusses related work and crit-
ically examines some alternative approaches to those
taken in AEGIS. We discuss the system status and
our next steps in Section 6, and conclude the paper
with Section 7.

2 Assumptions

The first assumption upon which the AEGIS model
is based is that the motherboard, processor, and a
portion of the system ROM (BIOS) are not compro-
mised, i.e., the adversary is unable or unwilling to
replace the motherboard or BIOS. We also depend
on the integrity of an expansion card which contains
copies of the essential components of the boot pro-
cess for recovery purposes, cryptographic certificates,
and optionally a small operating system for recover-
ing components from a trusted network host.

The second assumption is the existence of a cryp-
tographic certificate authority infrastructure in order
to bind an identity with a public key. However, there
is no restriction on its form, e.g., single trusted au-
thority, hierarchical, web of trust [22] [3].

The final assumption is that some trusted source
exists for recovery purposes. This source may be a
host on a network that is reachable through a secure
communications protocol, or it may be the trusted
ROM card located on the protected host.

3 AEGIS Architecture

3.1 Overview

To have a practical impact, AEGIS must be able
to work with commodity hardware with minimal
changes (ideally none) to the existing architecture.
The IBM PC architecture was selected as our pro-
totype platform because of its large user community
and the availability of the source code for several op-
erating systems. We also use the FreeBSD operating
system, but the AEGIS architecture is not limited to
any specific operating system. Porting to a new op-
erating system only requires a few minor changes to
the boot block code so that the kernel can be verified
prior to passing control to it. Since the verification
code is contained in the BIOS, the changes do not
substantially increase the size of the boot block.

AEGIS modifies the boot process shown in fig-
ure 2 so that all executable code, except for a very
small section of trusted code, is verified prior to ex-
ecution by using a digital signature. This is ac-
complished through the addition of an inexpensive
PROM board, and modifications to the BIOS. The
BIOS and the PROM board contain the verification
code, and public key certificates. The PROM board
also contains code that allows the secure recovery of
any integrity failures found during the initial boot-
strap. In essence, the trusted software serves as the
root of an authentication chain that extends to the
operating system and potentially beyond to applica-

3' AEGIS ARCHITECTURE

Operating System rn I OS kernel I
Trusted Network
Recovery Host a

I

Trusted Software

I Boot Block 1

I System BIOS (

I
, , , , , , , , . I Level 3

, , , .

Expansion ROMs Expansion ROMs
I

I

. , , , . ,
Level 1

Figure 1: AEGIS boot overview
~nitidte POST

-
I I

tion software [IS] [9] [15]. A high level depiction of the
bootstrap process is shown in figure 1. In the AEGIS
boot process, either the operating system kernel is
started, or a recovery process is entered in order to
repair any integrity failure detected. Once the repair
is completed, the system is restarted to ensure that
the system boots. This entire process occurs without
user intervention.

-
Level 2

h

In addition to ensuring that the system boots in
a secure manner, AEGIS can also be used to main-
tain the hardware and software configuration of a ma-
chine. Since AEGIS maintains a copy of the signa-
ture for each expansion card, any additional expan-
sion cards will fail the integrity test. Similarly, a new
operating system cannot be started since the boot
block would change, and the new boot block would
fail the integrity test.

d

3.2 AEGIS Boot Process

Every computer with the IBM P C architecture fol-
lows approximately the same boot process. We have
divided this process into four levels of abstraction (see
figure 2), which correspond to phases of the bootstrap
operation. The first phase is the Power on Self Test
or POST [17]. POST is invoked in one of four ways:

1. Applying power to the computer automatically
invokes POST causing the processor to jump to
the entry point indicated by the processor reset
vector.

2. Hardware reset also causes the processor to jump
to the entry point indicated by the processor re-
set vector.

Figure 2: IBM PC boot process

3. Warm boot (ctrl-alt-del under DOS) invokes
POST without testing or initializing the upper
64K of system memory.

4. Software programs, if permitted by the operating
system, can jump to the processor reset vector.

In each of the cases above, a sequence of tests are
conducted. All of these tests, except for the initial
processor self test, are under the control of the system
BIOS.

The final step of the POST process calls the BIOS
operating system bootstrap interrupt (Int 19h). The
bootstrap code first finds a bootable disk by search-
ing the disk search order defined in the CMOS. Once
it finds a bootable disk, it loads the primary boot
block into memory and passes control to it. The code
contained in the boot block proceeds to load the op-
erating system, or a secondary boot block depending
on the operating system [lo] [7].

Once the BIOS has performed all of its power on
tests, it begins searching for expansion card ROMs
which are identified in memory by a specific signa-
ture. Once a valid ROM signature is found by the
BIOS, control is immediately passed to it. When the
ROM completes its execution, control is returned to
the BIOS.

Ideally, the boot process would proceed in a series
of levels with each level passing control to the next
until the operating system kernel is running. Un-
fortunately, the IBM architecture uses a "star like"
model which is shown in figure 2.

3. AEGIS ARCHITECTURE

3.2.1 A Mult i leve l Boo t Process

We have divided the boot process into several levels
to simplify and organize the AEGIS BIOS modifi-
cations, as shown in figure 3. Each increasing level
adds functionality to the system, providing corre-
spondingly higher levels of abstraction. The lowest
level is Level 0. Level 0 contains the small section of
trusted software, digital signatures, public key certifi-
cates, and recovery code. The integrity of this level
is assumed to be valid. We do, however, perform an
initial checksum test in order to identify PROM fail-
ures. The first level contains the remainder of the
usual BIOS code. The second level contains all of the
expansion cards and their associated ROMs, if any.
The third level contains the operating system boot
block(s). These are resident on the bootable device
and are responsible for loading the operating system
kernel. The fourth level contains the operating sys-
tem, and the fifth and final level contains user level
programs and any network hosts.

The transition between levels in a traditional boot
process is accomplished with a jump or a call instruc-
tion without any attempt at verifying the integrity of
the next level. AEGIS, on the other hand, uses public
key cryptography and cryptographic hashes to pro-
tect the transition from each lower level to the next
higher one, and its recovery process ensures the in-
tegrity of the next level in the event of failures.

3.2.2 AEGIS B I O S Modif icat ions

AEGIS modifies the boot process shown in figure 2
by dividing the BIOS into two logical sections. The
first section contains the bare essentials needed for
integrity verification and recovery. Coupled with the
AEGIS ROM, it comprises the "trusted software".
The second section contains the remainder of the
BIOS.

The first section executes and performs the stan-
dard checksum calculation over its address space in
order to protect against ROM failures. Following
successful completion of the checksum, the crypto-
graphic hash of the second section is computed and
verified against a stored signature. If the signature
is valid, control is passed to the second section, i.e.,
Level 1.

The second section proceeds normally with one
change. Prior to executing an expansion ROM, a
cryptographic hash is computed and verified against
a stored digital signature for the expansion code. If
the signature is valid, then control is passed to the
expansion ROM. Once the verification of each ex-
pansion ROM is complete (Level 2), the BIOS passes
control to the operating system bootstrap code. The

: I Bxpsn\zon ROMI

I I
I I
I I
I I ' I ' I ' I ' I ' I ' I
I I
I I
I I , ,

AEGIS ROM

4 UlOS Sccllon 1

I '.--'
Intlzrts POST

Figure 3: AEGIS boot control flow

bootstrap code was previously verified as part of the
BIOS, and thus no further verification is required.
The bootstrap code finds the bootable device and
verifies the boot block.

Assuming that the boot block is verified success-
fully, control is passed to it (Level 3). If a secondary
boot block is required, then it is verified by the pri-
mary block before passing control to it. Finally, the
kernel is verified by the last boot block in the chain
before passing control to it (Level 4).

Any integrity failures identified in the above pro-
cess are recovered either through storage on the ex-
pansion ROM card, or through a network host. If
the component that fails its integrity check is a por-
tion of the BIOS, then it must be recovered from the
ROM card. The recovery process is a simple mem-
ory copy from the address space of the ROM card to
the memory address of the failed component, in effect
shadowing the failed component.

A failure beyond the BIOS causes the system to
boot into a recovery kernel contained on the ROM
card. The recovery kernel contacts a "trusted host
through a secure protocol, e.g., IPv6 [I], to recover a
verified copy of the failed component. The failed com-
ponent is then replaced and the system is restarted.

The resultant AEGIS boot process is shown in fig-
ure 3. Note that when the boot process enters the
recovery procedure it becomes isomorphic to a secure
network boot.

5' RELATED WORII'

4 Integrity Chaining and Sys-
tem Performance

In AEGIS, system integrity is preserved through the
chain of integrity checks in the boostrap process. The
ideal authentication chain produced by each level ver-
ifying the next can be represented by the recurrence

I. = True ,

+ I = {I L for o < i 5 4.
(1)

Ii is a boolean value representing the integrity of
level i , and is the boolean and operation. I4 is the
verification function associated with the ith level.
takes as its only argument the level to verify, and it
returns a boolean value as a result. The verification
function performs a cryptographic hash of the level,
and compares the result to the value obtained from a
stored signature for the level. As stated earlier, the
IBM PC does not lend itself to such a boot process.
Instead, we alter the recurrence to:

IQ = True,

Ii A K(Li+l) for i = 0,3,4,

Ii+l = li A Cy=l I~ (L{+ ,) for i = 1,
(2)

I l (L +)) for i = 2.

Here, n represents the number of expansion boards
in the system, and our level of assurance is preserved.

4.1 Performance impact on bootstrap
completion time

Using the recurrence relation shown in equation 2,
we can compute the estimated increase in boot time
(TA), without integrity failures, between AEGIS and
a standard IBM PC using the following equation:

where t(op) returns the execution time of op. In es-
timating the time of the verification function, K , we
use the BSAFE benchmarks [19] for an Intel 90Mhz
Pentium computer, shown in table 1. The cost of
verification includes time required for computing a
MD5 message digest, and the time required to verify
the digest against a stored signature. Any signatures
embedded in the public key certificate are ignored at
the moment.

Table 1: BSAFE 3.0 Benchmarks

The BIOS is typically one megabit (128 Kilobytes),
and the expansion ROMs are usually 16 kilobytes
with some, such as video cards, as large as 64 kilo-
bytes. For analysis purposes, we will assume that
one 64 kilobyte card and two 16 kilobyte cards are
present. The size of the boot blocks for FreeBSD 2.2
(August 1996 Snapshot) are 512 bytes for the primary
boot block, 6912 bytes for the secondary boot block,
and 1,352 kilobytes for the size of the GENERIC ker-
nel. Using the performance of MD5 from table 1, the
time required to verify each layer using a 1024 bit
modulus are:

Summing these times gives TA = 0.1665seconds
which is insignificant compared to the length of time
currently needed to bootstrap an IBM PC.

5 Related work

The first presentation of a secure boot process was
done by Yee [21]. In Yee's model, a cryptographic
coprocessor is the first to gain control of the system.
Unfortunately, this is not possible without a complete
architectural revision of most computer systems-
even if the coprocessor is tightly coupled. Yee ex-
pands his discussion of a secure boot in his thesis [23],
but he continues to state that the secure coprocessor
should control the boot process verifying each com-
ponent prior to its use. Yee states that boot ROM
modifications may be required, but since a prototype
secure boot process was never implemented more im-
plementations questions are raised than answered by
his discussion.

Clark [5] presents a secure boot process for DOS
that stores all of the operating system bootstrap code
on a PCMCIA card. He does not address the veri-
fication of any firmware (system BIOS or expansion
cards). Clark's model, however, does permit mutual
cryptographic authentication between the user and
the host which is an important capability. However,

7 CONCLUSIONS 6

the use of a PCI\IICIA card containing all of the sys-
tem boot files creates several configuration manage-
ment problems, e.g., a system upgrade requires the
reprogramming of all the cards in circulation.

Lampson [12] describes a secure boot model as an
example for his authentication calculus. I11 Lamp-
son's model, the entire boot ROM is trusted, and
lie does not address the verification of expansion
cards/ROMs. The Birlix [ll] Security Architecture
proposes a model designed by Michael Gross that is
similar to Lampson's. The Birlix model also suffers
from the same problems. In both cases, the boot
ROM is responsible for generating a public and pri-
vate key pair for use in host based authentication
once the operating system is running. In AEGIS we
leave any security related functions, beyond the boot
process, to the operating system without loss of se-
curity. To do otherwise limits security choices for the
operating system.

None of the approaches address a recovery process
in the event of an integrity failure.

5.1 Discussion and alternative ap-
proaches

A possible criticism of this work is that booting from
a floppy disk provides the same level of protection.
There are several reasons why this is not so. The
first is that providing physical security for the floppy
disk is extremely difficult. Users can take the disks
wherever they like, and do whatever they like to
them. One can envision a user building their own
boot floppy that gives them system level privileges.
The user is now free to read and write anywhere on
the local disk circumventing any security systems put
in place by the "real" boot floppy or the on disk op-
erating system. This problem is described by Mi-
crosoft [16] as a method of circumventing the Win-
dows N T file system (NTFS). The major shortcom-
ing, however, in using a boot disk is that none of the
firmware is verified prior to use. Thus, a user can add
or replace expansion boards into the system without
any security controls, potentially introducing unau-
thorized expansion cards.

6 Status and Future Work

The AEGIS prototype is nearing completion, and
we are confident that a complete description of its
performance and implementation will be provided at
the conference. Difficulty in obtaining BIOS source
code has been a roadblock to modifying it to support
AEGIS as described in the body of the paper. We

have reached an agreement with a BIOS vendor to
provide the source code after some legal details are
finalized.

The current recovery kernel prototype uses IPv6 as
a means of recovering replacement files. FVe intend
to switch to the Internet Engineering Task Force's
(IETF) Internet Security Association and Key Man-
agement Protocol (ISAKMP) [14] to allow user choice
of a secure protocol. Additionally, the method with
which the recovery kernel contacts a host is currently
via a fixed address. We hope to develop or use a
protocol in which the recovery host's address can be
determined when needed.

The process by which components are vetted,
signed, and the resultant signature and public key
certificate installed needs to be addressed carefully.
We plan to address this once a full prototype is com-
pleted, and will report on the results. As a minimum,
we expect to use flaw detection techniques such as
those from Bishop [2], Kannan [4], and others to as-
sist in a technical vetting before the actual signing of
the component.

We are also investigating the use of a cryptographic
sideboard as a high end solution to improve perfor-
mance and increase security.

7 Conclusions

Current operating systems cannot provide security
assurances since they are started via an untrusted
process. With the explosive growth in Internet com-
merce, the need for security assurances from com-
puter systems has grown considerably. AEGIS is a
guaranteed secure boot process that ensures that the
computer system is started via a trusted process, and
ensures that the system starts in spite of integrity
failures.

References

[I] ATKINSON, R. J., MCDONALD, D. L., PHAN,
B. G., METZ, C . W., AND CHIN, K . C . Im-
plementation of ipv6 in 4.4 bsd. In Proceedings
of the 1996 USENIX Technical Conference (Jan-
uary 1996), USENIX, pp. 113-125.

[2] BISHOP, M., AND DILGER, M. Checking for
race conditions in file accesses. Computing Sys-
tems 9, 2 (Spring 1996), 131-152.

[3] BLAZE, M., FEIGENBAUM, J. , AND LACY, J .
Decentralized Trust Management. In IEEE Con-
ference on Security and Privacy (May 1996),
IEEE.

[4] BLUM, M., A N D KANNAN, S . Designing pro- [16] MICROSOFT. Overview of fat, hpfs, and ntfs file
grams that check their work. JACM 42, 1 (Jan- systems. Knowledge Base Article Q100108, Mi-
uary 1995), 269-291. crosoft, October 1996.

[5] CLARK, P. C . BITS: A Smartcard Protected PHOENIX TECHNOLOGIES, L. System BIOS for
Operating System. PhD thesis, George Wash- IBM PCs, Compatiables, and EISA Computers,
ington University, 1994. 2nd ed. Addison FVesley, 1991.

[6] DOD. Trusted computer system evaluation cri- [18] POZZO, R/I. &I., A N D GRAY, T. E . A model

teria. Tech. Rep. DOD 5200.28-STD, Depart- for the containment of computer viruses. In

ment of Defense, December 1985. 1989 IEEE Symposium on Security and Privacy
(1989), IEEE, pp. 312-318.

[7] ELISCHER, J . 386 boot. [19] RSA DATA SECURITY, I. Bsafe 3.0 benchmarks.
/sys/i386/boot/biosboot/README.386, July RSA Data Security Engineering Report, 1996.
1996. 2.1.5 FreeBSD. http://www.rsa.com/rsa/developers/bench.htm.

[8] ENGLER, D. R. , KAASHOEK, M. F., AND J R . ,
J . W. 0. The operating system kernel as a se-
cure programmable machine. In Proceedings of
the Sixth SIGOPS European Workshop (Septem-
ber 1994), pp. 62-67.

[9] G. DAVIDA, Y. D., AND MATT, B. Defending
systems against viruses through cryptographic
authentication. In 1989 IEEE Symposium on Se-
curity and Privacy (1989), IEEE, pp. 312-318.

[lo] GRIMES, R. At386 pro-
tected mode bootstrap loader.
/sys/i386/boot/biosboot/README.MACH,
October 1993. 2.1.5 FreeBSD.

[ll] HARTIG, H., KOWALSKI, O., AND

KUHNHAUSER, W. The Birlix security ar-
chitecture. Journal of Computer Security 2, 1
(1993), 5-21.

[12] LAMPSON, B. , ABADI, M., AND BURROWS, M.
Authentication in distributed systems: Theory
and practice. ACM Transactions on Computer
Systems vlO (November 1992), 265-310.

[13] M. BRANSTAD, H. TAJALLI, F. M., AND

DALVA, D. Access mediation in a message-
passing kernel. In IEEE Conference on Security
and Privacy (1989)) pp. 66-71.

[14] MAUGHAN, D., SCHERTLER, M., SCHNEIDER,
M., AND TURNER, J . Internet security associ-
ation and key management protocol (isakmp).
Internet-draft, IPSEC Working Group, June
1996.

[20] SCHROEDER, M. Engineering a security kernel
for multics. In Fifth Symposium on Operating
Systems Principles (November 1975), pp. 125-
132.

[21] TYGAR, J . , A N D YEE, B. Dyad: A system
for using physically secure coprocessors. Techni-
cal Report CMU-CS-91-140R, Carnegie Mellon
University, May 1991.

[22] VERISIGN, I. Verisign certification practice
statement. Tech. Rep. Version 1.1, Verisign, Inc.,
Mountain View, CA., August 1996.

[23] YEE, B. Using Secure Coprocessors. PhD thesis,
Carnegie IvIellon University, 1994.

[15] MICROSOFT. Authenticode techonology. Mi-
crosoft's Developer Network Library, October
1996.

	A Secure and Reliable Bootstrap Architecture
	Recommended Citation

	A Secure and Reliable Bootstrap Architecture
	Abstract
	Comments

	tmp.1252079514.pdf.DRaVZ

