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1 Motivation 

1.1 Introduction 

The problem of algorithmic motion planning is one that has received considerable attention in 

recent years. The automatic planning of motion for a mobile object moving amongst obstacles is a 

fundamentally important problem with numerous applications in cornputer graphics and robotics. 

Numerous approximate techniques (AI-based, heuristics-based, potential field methods, for exam- 

ple) for motion planning have long been in existence, and have resulted in the design of experimental 

systems that work reasonably well under various special conditions [7, 29, 301, Our interest in this 

problem, however, is in the use of algorithmic techniques for motion planning, with provable worst- 

case performance guarantees. The study of algorithmic motion planning has been spurred by recent 

research that has established the mathematical depth of motion planning. Classical geometry, al- 

gebra, algebraic geometry and combinatorics are some of the fields of n~athematics that have been 

used to  prove various results that have provided better insight into the issues involved in motion 

planning [49]. In particular, the design and analysis of geometric algorithms has proved to be very 

useful for numerous important special cases. In the remainder of this proposal we will substitute 

the more precise term of "algorithmic motion planning" by just 'Lmotion planning". 

Let B be a programmable object (for example, a robot) with k degrees of freedom1 (dofs) that 

is mobile in two- or three-dimensional space. In its most general form, the algorithmic motion 

planning problem can be stated in the following way [46]: Given an initial starting position PI,  a 

final destination position PF and a set of obstacles whose geometry is known to B, determine if 

there exists a continuous obstacle-avoiding motion for B from PI to  PF. If one exists, construct 

the path for such a motion. There are numerous variations of the motion planning problem; for 

example, the set of obstacles might themselves be moving, or B may have incomplete knowledge 

about its environment. In addition, it may be necessary to take the dynamics of the systcm into 

account i.e. a system may be restricted to  move within certain velocity or acceleration bounds 

[49]. Our interest, however, is in planning the motion of B in static and known environments; 

the obstacles are stationary and B has complete knowledge about them and our interest is in the 

geometric nature of the problem. As we will see soon, even under this simplifying assumption, 

general cases of motion planning can be computationally intractable. The more general variations 

mentioned above are substantially more difficult, and we will not directly address them in our 

proposal. 

We first give a summary of the results that provide lower bound results for certain general cases 

of motion planning. We will see in Subsection 1.2 that planning the motion of an object rapidly 

l ~ h e  degrees of freedom of an object can be defined as the number of parameters tha t  need to  be specified in 

order t o  completely determine the position of the object. 
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becomes intractable as the number of degrees of freedom of the object increases. This result was 

reinforced by Reif in [38]. In that paper, he shows that planning the motion of a 3 dimensional 

system of linkages consisting of arbitrarily many links and moving through a system of narrow 

tunnels is P S P A C E - ~ ~ ~ ~ ~ .  Subsequently, Hopcroft et al. [19] showed that the general motion 

planning problem is PSPACE-hard even in 2 dimensions. They used a mechanical system of 2- 

dimensional linkages to  establish the result. Another instance of a PSPACE-hard motion planning 

problem in 2 dimensions was demonstrated in [21]. N P-hardness or NP-completeness results have 

also been established for numerous simpler special cases ( in [20], for example). As observed in 

[49], these lower bound results are strong since they hold for the decision problem corresponding 

to the motion planning problem. In other words, these lower bound results are for the problem of 

determining whether or not the object can be moved from PI to PF (a 'yes' or 'no' answer); the 

path itself is not constructed. 

In what follows, we will give a brief summary of some general strategies that have been developed 

for motion planning. These strategies have led to  efficient algorithms for some special cases in 2 

and 3 dimensions. 

1.2 General Strategies for Motion Planning 

Despite these discoilraging lower bounds, some general techniques have been developed for algorith- 

mic motion planning. These techniques yield polynomial-time algorithms for useful special cases 

of motion planning for objects with a low number of dofs. Schwartz and Sharir [42, 43, 44, 451 

did some of the earliest and most fundamental work in the design of exact geometric strategies for 

planning motion. We give a brief summary of the general strategy. Let n be the size of the obstacle 

set and let k be the number of dofs of the mobile object B. Every position of B can be thought 

of as a point in k-dimensional parametric space. Let a fwe configuration be a placement of B in 

which it does not intersect with any of the obstacles. FP is the subset of k-dimensional space that 

contains all the free configurations of B. Construction of FP is the first step. In general, FP will 

consist of many path-connected components. A collision-free path from PI to PF exists if and only 

if the corresponding k-dimensional configurations lie in the same connected component. Each such 

connected comporlent consists of cells. A connectivity graph is now constructed with a node for 

each cell. By doing a graph search on the connectivity graph, it is possible to  plan a collision-free 

path for B, if it exists. Schwartz and Sharir showed that this strategy leads to  algorithms whose 
k 

worst-case run-times are polynomial in n, but doubly exponential in k (i.e. 0 ( n 2  )) [43]. 

A dramatic breakthrough was made by Canny [8] who came up with a general algorithm with 

2A problem is said t o  be PSPACE-hard  if it is a t  least as hard (with respect to  polynomial time reductions) as 

any problem that  can be  solved by using storage that  is polynomial in the input size. It  is highly unlikely tha t  such 

problems can be  solved by efficient polynomial-time algorithms. 
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a worst-case run-time that is polynomial in n, but single exponential in k .  Instead of decomposing 

FP into cells, Canny constructs a one-dimensional skeleton (he calls this the "road map") that 

has a one-to-one correspondence with the curves in FP in the following sense: Every placement in 

EP can be moved continuously to a placement on the skeleton, and the intersection of the skeleton 

with every corlnected component of FP is non-empty. Thus, in order to plan the motion of B from 

PI to  PF, we move the corresponding placements in k-dimensions to  some points X I  and X F  on 

the skeleton. We then search for a path from X I  to  X F  along the skeleton. If such a path exists, 

we know how to move B from PI to PF. If it does not, the property of the skeleton (stated above) 

ensures that it is not possible to  move B from PI to  PF. 

A direct application of the above algorithms for special cases may not give us efficient algorithms. 

However, they provide us with very useful insights into possible geometric approaches that can be 

tailor-made to  the specific cases that we are interested in. Note that even though the above 

algorithms are exponential in k, for objects with a small number of dofs, they have a worst-case 

run-time that is polynomial in n. Acceptably efficient algorithms have been designed for many 

special cases. 

Two different methods have commo~~ly been used in the design of such algorithms: the projection 

method and the retraction method [49, 411. The projection method is a derivative of the strategy 

developed by Schwartz and Sharir, outlined earlier. The main goal of this method is to design 

efficient ways to  come up with a cell decomposition of FP for the specific instance of motion 

planning that is being considered. In Subsection 1.2.1, we will briefly describe an algorithm by 

Lozano-Pi'rez and Wesley [30] for one such specific instance. The algorithm uses the ideas of the 

projection technique. In Section 6, we point out some other cases of motion planning that have 

been solved reasonably efficiently by this technique. 

The retraction method is similar to  the general technique developed by Canny. This method 

proceeds by "retracting" FP onto some lower dimensional space in an appropriate way. In Sub- 

section 1.2.2, we describe a particular motion planning algorithm by 0 '~ l in la ing  and Yap [34] that 

uses the ideas of retraction method. Other planning algorithms that also use this method will be 

noted in Section 6. We provide the summary of the following specific instances of motion planning 

because of our interest in developing efficient parallel algorithms for them. 

1.2.1 Application of the projection method for an object with 2 dofs 

One of the earliest geometric approaches to motion planning was given by Lozano-Pi'rez and Wesley 

in [30]. In that pa,per they give approximate solutions for planning the motion of a 2-d convex 

translational object moving amongst convex obstacles, a 2-d convex rotational (3  dofs) object 

moving amongst convex obstacles, and a translational convex polyhedron moving amongst convex 

polyhedral obstacles. 
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Expanded Obstaclc 
Original Obstacle 0 

Expanded region 

P 

Moving Object I3 

Figure 1: Obstacle 0 is expanded by object B (which has 2 dofs). 

We are interested in the method used in [30] for planning the translational motion of a convex 

object B ( B  has 2 dofs) moving among convex obstacles in the plane. Their method is an approx- 

imation of the projection method when applied to this case (their technique actually precedes the 

development of the general projection method). Let b be some reference point on B,  and without 

loss of generality, let us assume that b is at the origin. Let Be be the number of edges in B. The 

strategy in [30] is t o  first "expand" each convex obstacle 0 by B. This can be done by computing 

the Minkowski set difference 0 - B = {x - y 1 x E 0, y E B }  (x and y are vectors). It can 

be shown that the expansion of 0 has B, + 0, (0, is the number of edges of 0) edges and can be 

constructed in time proportional to its size. See Figure 1 for an example of an expanded obstacle. 

It is clear that B will not collide with 0 if and only if the reference point b of B lies outside of the 

expansion of 0. Let A be the union of all the expanded obstacles, and let E be the set of edges3 

of A. Since B has 2 dofs, the configuration space of B is 2-dimensional. In fact, the complement 

of A in the plane is the set of free configurations, EP, for B. 

The next step is to compute the visibility graph of the set of edges E. The visibility graph gives 

us information about which endpoints of the obstacle edges are visible to  each other (assuming the 

obstacle edges are opaque). We will be considering the problem of visibility graph construction at 

more length a.nd we leave its details, including its formal definition, to  Section 2. The visibility 

graph is precisely the connectivity graph (of the projection method) that we are looking for. In 

addition, we have the useful property that the shortest possible path for B between two points in 

the pla,ne while avoiding the obstacles is given by the shortest path between the corresponding two 

nodes in the visibility graph (where the edge weight is the Euclidean length of the edge). Thus we 

can find a shortest path for B by performing a shortest-path graph search on the visibility graph. 

Let n be the number of edges in the obstacle set and we assume that tlre size of B is a constant. 

3Note tha t  the expanded obstacles may now intersect with each other and thus we have to perform some compu- 

tation before we can determine E. This step was, in fact, not given in [ 3 0 ] ,  but is given by Sharir in [48]. We will 

not go into the  details of the relevant results here. 
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The expansion of the obstacles and the possible intersections between the expanded obstacles can 

be computed in 0(nlog2n) tinie [48]. The computation of the visibility graph can be done in O(n2) 

time, and the shortest-path search takes time proportional to the size of the visibility graph. Thus 

the sequential run-time of the above algorithm is O(n2). 

1.2.2 Application of the retraction method for an object with 2 dofs 

In [34], 6 ' ~ f i n l a i n ~  and Yap give a motion planning algorithm for the simple case of a disc moving 

in 2-dimensions among polygonal obstacles. The position of a disc is specified by the coordinates 

of its center. The algorithm given in [34] is an elegant application of the retraction method (the 

method of [34] actually precedes the general retraction approach developed by Canny [S]). 

The retraction approach of [34] is based on the idea that the disc D should be moved in such 

a way that it should be far away from its nearest obstacles as it moves. In [34], D is moved so 

that during its entire motion, it is equally far away from its closest obstacles. This is achieved 

by the construction of the Voronoi diagram of the set of line segments that form the polygonal 

obstacles. The construction of this diagram is the most important step of this method, and we will 

be considering this problem in much more detail in the following sections. Intuitively speaking, any 

point on the Voronoi diagram is equally distant from two segments, and is closer to  these segments 

than to  any other segment of the input set. 0 ' ~ f i n l a i n ~  et al. prove that the Voronoi diagram 

is in fact a one-dimensional retraction of the free space FP of D. In other words, D can move 

continuously between two points in FP if and only if it can move between a corresponding two 

points on the Voronoi diagram. 

Once the Voronoi diagram is constrncted, they discard those portions of the diagram where the 

closest obstacle edge is too close for D to fit. This will happen if the closest obstacle is closer than 

the radius of the disc. We can plan the motion for D by searching along the remaining Voronoi 

diagram; this can be done by any path-finding method for graphs. Note that this method has the 

useful property that the object always moves in such a way that it is as far away as possible from 

all the obstacles. In other words, it has the maximum clearance property. As observed in [34], the 

motion paths planned by this method may be much longer than the shortest paths. We would also 

like to observe that it is possible to extend this technique to  plan the motion of any convex object 

with 2 dofs moving among polygonal obstacles [48]. 

Let n be the number of edge segments in the polygonal obstacle set. The Voronoi diagram of 

these segments can be constructed sequentially in O(n1ogn) time [25, 26, 571. Also, the size of the 

Voronoi diagram is O ( n )  [26]. Hence the removal of the appropriate edges of the diagram, and the 

search for a path can be done in O ( n )  time. Therefore, the sequential run-time of the above motion 

planning met hod is 0 (n log n). 
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1.3 Motivation for Parallel Algorithins 

It is clear that algorithmic motion planning relies on efficient solutions to a wide variety of geometric 

problems. The goal of this proposal is the study of such geometric problems in the parallel environ- 

ment. The availability of parallel computers has motivated the development of parallel algorithms 

for solving a number of problems. Parallelism, aside from being an interesting problem-solving 

strategy in its own right, is of particular relevance in the arena of computationally expensive and 

intractable problems, such as those in algorithmic motion planning. For a number of special cases 

of motion planning, we know that their sequential algorithms are either optimal or close to optimal 

because of known lower bounds. Therefore, speed-ups obtained from a single sequential processor 

will be limited by a constant or small factor. Parallel algorithms, however, offer the possibility of 

significant speed-ups. Given that speed is an extremely important consideration for motion plan- 

ning problems, we will benefit from the study of parallel algorithms for geometric problems related 

to  motion planning. In addition, attempting to solve a given geometric problem in parallel might 

give us insights into new strategies for solving that problem. 

The Parallel Random Access Machine (PRAM) is the most general shared memory model 

of parallel computation. Communication between any two processors occurs through memory 

cells that are shared by all the processors. Depending on how the processors handle read and 

write conflicts, we have three different kinds of PRAMs: Exclusive Read Exclusive Write (EREW) 

PRAMs (no simultaneous reads or writes are allowed), Concurrent Read Exclusive Write (CREW) 

PRAMs, and Concurrent Read Concurrent Write (CRCW) PRAMs (write conflicts are handled 

in some pre-determined fashion). Let A be a parallel algorithm for some problem whose input is 

of size n, and let B be the best known sequential algorithm for that problem. Let p(n) be the 

number of processors used by A, t (n)  the run-time of A and s(n) the run-time of B. A belongs 

to the parallel complexity class N C ~  if p(n) is polynomial in n and f(n) is O(logkn). The parallel 

complexity class NC is defined to  be Uk N C ~ .  p(n) t t ( n )  is called the PT-product (or P1'-bound) 

of A, also known as the work done by A. A is said to be optimal if its PT-product is s(n) (or even 

8(s(n))). The speedup of A is defined to be the ratio s(n)/t(n).  

The PRAM model is a powerful model of parallel computation and a good place to start when 

we want to  design parallel algorithms. This model frees the designer from having to  worry about 

inter-processor communication issues and memory organization considerations. She or he can thus 

think about the more fundamental issues that arise when designing a parallel algorithm for a 

particular problem; in essence, this model allows onc to think in terms of abstract parallelism. It 

gives us enough flexibility so that we need not be constrained by practical limitations! We will 

rely on the PRAM model of computation in order to look into the design of parallel algorithms for 

various instances of motion planning for which parallel algorithms do not currently exist. 

Even though designing parallel algorithms on the PRAM model provides a good starting point, 
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it is not sufficient to  stop there. Powerful though it might be, the PRAM model is not practical. In 

real life, parallel machines are fixed connection networks in which inter-processor communication 

cannot be considered to be a constant time operation and there are limits on the amount of memory 

available to  each processor. Hence, if we are interested in implementing algorithms on existing 

parallel machines, then it is important to  look into the design of parallel algorithms on practical 

fixed-connection network architectures. Theoretically speaking, since it is possible to simulate a 

PRAM on fixed-connection networks, PRAM algorithms can immediately lead us to  algorithms 

on actual parallel machines. However, algorithms designed explicitly for the particular parallel 

architecture in which we are interested, are often significantly better than those obtained by a 

direct simulation of PRAM algorithnls. In this proposal, we will also consider the design of parallel 

algorithms for geometric problems on a particular fixed-connection architecture called the mesh- 

connected computer (also known as t.he mesh). The details of the mesh and its operations will be 

provided in Section 3. 

1.4 Parallel Algorithms for Related Geometric Problems 

As we have mentioned before, our interest is in geometric problems that are related to  motion 

planning and parallel algorithms for them. Our research will be aided by the significant progress 

that has been made in the area of parallel algorithms for computational geometry in recent years 

([2, 6, 15, 16, 22, 31, 401, for example). In the two specific instances of motion planning that we 

mentioned earlier, the important related geometric problems are the construction of the visibility 

graph and the Voronoi diagram of the set of line segments in the plane. 

Visibility graph construction and Voronoi diagrams are geometric problems which, in addition 

to  being tools for motion planning, have many useful applications. Given a set of line segments in 

the plane, the construction of the visibility graph can lead to information about that part of the 

plane that is hidden from a givcn point. This has useful applications in computer graphics. As 

we mentioned earlier, we can also find shortest paths in the plane from the visibility graphs. The 

Voronoi diagram is an elegant and versatile geometric structure and has applications for a wide 

range of problems in computational geometry and in other areas. We note that Goodrich e t  al. give 

efficient PRAM algorithms both for the visibility graph construction [6] and for the construction 

of the Voronoi diagram of a set of line segments [15]. In this proposal, we develop efficient parallel 

algorithms for these geometric problems on the mesh-connected-computer, and, as a result, for the 

corresponding motion planning problems. 

1.5 Outline of the Proposal 

In the next section we give the relevant definitions and establish some notation for visibility graphs 

and Voronoi diagrams of a set of line segments in the plane. We also summarize the main ideas 
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behind the existing sequential as well as PRAM algorithms for these problems. Following that,  in 

Section 3 we describe important details of the mesh-connected-computer and some useful operations 

that are performed on it. 

In sections 4 and 5, we describe our contributions to date. In Section 4 we provide an optimal 

algorithm for visibility graph construction on the mesh. We also summarize the resulting mesh- 

optimal implementation of the motion planning algorithm of [30] outlined earlier. In Section 5, we 

first give an optimal mesh algorithm for a special case of Multipoint location. The constant in the 

run-time of this algorithm is a significant improvement over the corresponding constant of the algo- 

rithm given in [22], leading to  an improvement in the mesh algorithm for the general multilocation 

problem. In addition, this algorithm is used repeatedly for Voronoi diagram construction. The bulk 

of Section 5 consists of the description of the mesh algorithm for Voronoi diagram construction of a 

set of line segments in the plane. This algorithm is optimal for the mesh. As a result of thc Voronoi 

diagram algorithm, we obtain an optimal mesh implementation of the motion planning algorithm 

of [34] (outlined in Subsection 1.2.2). We give this algorithm in the last part of Section 5. 

Finally, in Section 6 we discuss the scope of our research and delineate the specific problems of 

interest. 
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2 Brief Overview of Sequential and PRAM Algorithms and their 

Complexity 

2.1 Visibility Graphs 

The efficient construction of the visibility graph is an interesting problem in its own right and, as 

we mentioned earlier, it is an important substep for certain motion planning algorithms. In this 

subsection we define the visibility graph and briefly outline the sequential algorithms for the planar 

case. Following that ,  we give a summary of the known PRAM algorithm [6] for this problem. 

2.1.1 Definitions and Sequential Algorithms 

Given a set S of n line segments in the plane, its visibility graph Gs is the undirected graph which 

has a node for every endpoint of the segments in S ,  and in which there is an edge between two 

nodes if and only if they are visible to  each other, assuming the line segments are opaque. (see 

Figure 2). Assuming that  we want the output in sorted order about a specified point (by polar 

angle with respect to  some fixed axis through that point), the visibility from a point problem 

(i.e.identifying those vertices that are visible from that point) has a lower bound of R(n1ogn). 

This can be established by showing a straightforward reduction from sorting to  this problem. 

All the visibility algorithms mentioned here (and those that will be described in the coming 

sections) are described for a set of line segments. The construction of the visibility graph when 

the input is a set of disjoint polygons can be done with the same complexity (here n is the total 

number of polygon edges). The edges of the polygons are considered to be the set S ,  and those 

graph edges that  lie in the interior of the polygons can be eliminated, without any increase in the 

time complexity. 

Welzl [55] and Asano et al. [3] give sequential algorithms for constructing the visibility graph 

of a set S of line segrnents with 1st = n that run in O(n2)  time. Visibility from a point can 

be found in O(n1og n)  time by using a recursive algorithm [6] optimally. If we were to  apply this 

algorithm to  each of the endpoints of the segments in S in a straightforward way, we would get an 

O(n2 log n) algorithm. The reason for the O(n2) time-bound of [3, 551 is the use of a procedure 

called line arrangement construction4, which can be performed sequentially in O(n2)  time [9, 121. 

By exploiting the point-line duality [9, 121 and using the arrangement construction algorithm, we 

can find for every endpoint p, the sorted order of the other. endpoints about p in 0 ( n 2 )  time. Once 

this sorted order is obtained, Welzl and Asano et  al. use different methods t o  find the final visibility 

graph. 

4 ~ h e  line arrangement problem is the construction of the planar graph determined by the pair-wise intersections 

of a set of lines in the plane. 
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Figure 2: The visibility graph of a set of line segments. The dashed line segments are the edges of 

the graph. 

Welzl computes the visibility graph by first establishing a topologically sorted5 order on the 

set of directions determined by pl and pz ,  where p l ,  pz are endpoints of segments in S (this can 

be done by the topological sort of the line arrangement graph determined by the endpoints in the 

dual space). Then, by stepping through this sorted set and updating the visibility information (this 

visibility information has been initialized in an appropriate way) at every step, he finally ends up 

with the visibility graph. Since the number of such pairs is O(n2),  and the topological sort can be 

done in O(n2) time, the run-time of this algorithm is also O(n2). Asano et  al. use a very different 

technique for the construction of the visibility graph. Their approach is to solve the problem of 

visibility from a given point in O(n) time, and they give two different methods for doing this. The 

first method uses triangulation (of the set of line segments), topological sort and set-union. The 

second method is a sweep-line technique. Notice that both these algorithms are worst-case optimal. 

However, it is still not known whether it is possible to  conipute the visibility graph in such a way 

that the run-time depends on the size of the visibility graph (e.g. O(n log n) + k where k is the 

number of edges in the visibility graph)6. As we mention below, neither of the two sequential 

techniques mentioned here lends itself to optimal parallelization. 

2.1.2 Parallel Algorithm on the CREW PRAM 

The procedures that are common to both the sequential techniques mentioned above are arrange- 

ment construction and topological sorting. Goodrich solves the problem of constructing the ar- 

rangement of a set of lines optimally in parallel by using some sophisticated algorithmic technqiues 

5 A  topological so r t  of a directed acyclic graph G(V, E) is a mapping ord : V + {I, . . . , n} such tha t  for all edges 

(v, w) E E ,  ord(v )  < o r d ( w ) .  The topological sort of G can be done in sequential time O(IV1 + IEl). 
6We would like t o  note that problems involving visibility and shortest paths in simple polygons have been widely 

studied, both in the sequential as well as the parallel setting. In this case, the edges of the simple polygon form the 

set S. We will not discuss this case here, and refer the interested reader t,o [I, 5, 13, 14, 17, 18, 531. 
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[16]. However, topological sorting of a directed acyclic graph cannot be performed optimally by 

known techniques. Also, the sweep-line method, although a very useful sequential technique, does 

not seem t o  be useful in the parallel environment. Hence, the sequential algorithms mentioned 

above do not appear to  lend themselves to  parallelization. 

The best known parallel algorithm for constructing the visibility graph is offered by Atallah et al. 

in [6], where they use a technique called cascading divide-and-conquer. The cascading divide-and- 

conquer method is a powerful technique for designing parallel algorithms on the CREW and EREW 

PRAM. It can be applied to  problems that are solvable using the divide-and-conquer strategy. The 

general techniques developed in [6] consist of non-trivial generalizations of the "cascaded merging" 

method used in the optimal PRAM algorithm for merge sort by Cole [ll]. In [6], the authors 

use cascading divide-and-conquer to  come up with optimal parallel algorithms for a wide variety 

of fundamental problems in computational geometry. In particular, they solve the problem of 

computing visibility from a point by using a parallel recursive algorithm that  runs in O(1og n) time 

using 72 processors. By applying this method t o  every endpoint of the input set of segments, the 

visibility graph can be constructed in O(1ogn) time using n2 processors. We use this divide-and- 

conquer method to  derive an optimal algorithm for this problem on the mesh in Section 4. 

2.2 Voronoi Diagram of a set of Line Segments in the Plane 

In the previous section, we noted the relevance of the Voronoi diagram of a set of line segments as 

a tool for motion planning. We start off with the definition of this diagram, and establish some 

notation that  will be used in the coming sections. Next, we give a summary of the sequential 

approaches used t o  construct the diagram; the approaches provide insight into the geometric issues 

involved in the construction of the diagram. Finally, we will give a brief outline of the known 

PRAM algorithm [15] for this problem. 

2.2.1 Notation, Definitions and Sequential Algorithms 

Let S be a set of nonintersecting closed line segmcnts in the plane. Following the convention in 

[26, 571, we will consider each segment s E S to  be composed of three distinct objects: the two 

endpoints of s and the open line segment bounded by those endpoints. Following [15, 261, we now 

establish some basic definitions. The Euclidean distance between two points p and q is denoted by 

d ( p ,  q). The projection of a point q on to  a closed line segment s with endpoints a and b, denoted 

proj(q, s ) ,  is defined as follows: Let p be the intersection point of the straight line containing s 

(call this line y ) ,  and the line going through q that  is perpendicular to  7. If p belongs t o  s, then 

proj(q,  s) = p. If not, then proj(q, s )  = a if d(q, a )  < d(q, b )  and proj(q, s )  = b, otherwise. 

The distance of a point y from a closed line segment s is nothing but d(q, proj(q, s ) ) .  By an 

abuse of notation, we denote this distance as d(q, s). Let sl and sz be two objects in S. The 
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I- B(a, c), a straight line 

Figure 3: The bisector of two line segments sl and sz. 

bisector of sl and 5-2, B ( s l ,  s z ) ,  is the locus of all points q that  are equidistant from sl and sz i.e. 

d(q,  s l )  = d(q,  s a ) .  Since the objects in S are either points or open line segments, the bisectors 

will either be parts of lines or parabolas. The bisector of two line segments is shown in Figure 3. 

As in [15], let d(q,  S) denote the distance between q and the object of S that  is closest t o  q i.e. 

d(q,  3)  is mins,s d(q,  s ) .  

Definition 2.1 [26] The Voronoi region, V o r ( e ) ,  associated with an object e in  S is the locus of 

all points that are closer to e than to any other object in S .  The Voronoi diagram of S ,  V o r ( S ) ,  is 

the union of the Voronoi regions V o r ( e ) ,  e E S .  The boundary edges of the Voronoi regions are 

called Voronoi edges, and the vertices of the diagram, Voronoi vertices. 

The Voronoi diagram of a set of segments is shown in Figure 4. Note that  a Voronoi region 

consists of all points q such that  d(q, S) is realized by exactly one object s in S ,  a Voronoi edge 

consists of all points q such that d(q,  S )  is realized by exactly two objects of S, and a Voronoi 

vertex consists of one point q such that  d(q,  S )  is realized by at least three objects of S [15]. The 

following is a very important property of V o r ( S ) .  

Theorem 2.2 (Lee et al. [26]) Given a set S of n nonintersecting closed line segments in the 

plane, the number of Voronoi regions, Voronoi edges, and Voronoi vertices of V o r ( S )  are all O ( n ) .  

To be precise, for n 2 3, V o r ( S )  has at most n vertices and at most 3n - 5 edges. 

There is an  important relationship between V o r ( S )  and the convex hull of S C H ( S ) ,  which is 

stated in the following theorem. The algorithms for the construction of V o r ( S )  make crucial use 
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Figure 4: The Voronoi diagram of a set of closed line segments S = { s t l ,  sI2, sI3, sr4 , s f5 ) .  st; 

consists of the two endpoints v2i-l and vz;, and the open line segment s;. Some of the Voronoi 

edges have been marked. 
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of this property. 

Theorem 2.3 (Lee et al. [26]) An object e of S is on the convex hull C H ( S )  of S if and only 

if the Voronoi region Vor(e) is unbounded. 

The general idea behind the sequential algorithms for the construction of Vor(S) is as follows: S 

is divided into sets of equal size, S1 and S2. Vor(S1) and Vor(S2) are then recursively computed. 

In order t o  merge these two Voronoi diagrams to  form the final diagram Vor(S) ,  we need t o  

construct the contour between S1 and S2. The contour is the locus of all points in the plane that 

are equidistant from S1 and S2. Thus, assuming the correct orientation on the contour, all points 

lying to  the left (right) of the contour are closer t o  S1 (S2) than to  S2 (S1). Now, we discard that 

part of the diagram of Vor(S1) that lies to  the right of the contour, and that part of the diagram 

of Vor(S2) that  lies t o  the left of the contour. The remaining edges of the two diagrams, and 

the contour edges give us the final Voronoi diagram Vor(S).  This is the motivation behind the 

approaclzes used by [25, 26, 571. The algorithms of [25, 571 run in O(n1ogn) time, which is optimal 

since a lower bound of R(n1ogn) is known for this problem[47]. The run-time of the algorithm in 

[26] is 0(nlog2n).  

For the case of the Voronoi diagram of a set of points we have t o  construct just a single contour 

chain during the merge step. This is because of the fact that  we can divide a set of points into two 

disjoint subsets of equal size such that  they are linearly separable7. This can be done by sorting 

the points according t o  their x-coordinate, say. In the case of a set of line segments, such a linear 

separability cannot be found in general. Thus, an arbitrary separation of the input set S into S1 

and S2 could mean that  the merge contour is not necessarily composed of a single piece - we could 

have several disconnected pieces. In [25], Kirkpatrick divides the input set S arbitrarily into two 

disjoint sets S1 and S2 of equal size. In [26], Lee and Drysdale first sort S according to  the left 

endpoint of the segments; S1 then consists of the first n/2 segments and S2 consists of the last 

n/2. In both these methods, we could have several contours. The contours are constructed by 

establishing a start point for every contour and, subsequently tracing out the contours by starting 

a t  these start points. As observed in [15], both these approaches seen1 to  be inherently sequential 

in nature. Since our goal is to develop parallel algorithms, our interest is directed more towards 

the method used by Yap in [57], which uses a different approach to subdivide S. 

First, all the endpoints of the segments are sorted. Let m be the median of this sorted set. A 

vertical line is drawn through m, cutting segments of S into two, if necessary. S1 then consists 

of the segments lying t o  the left of this vertical line and Sz consists of those lying t o  the right. 

Note that  this approach simulates linear separability. A naive implementation of this method could 

7 ~ w o  sets are said t o  be l inear ly  separable if and only if there exists a hyperplane (in two dimensions, a straight 

line) tha t  separates them [37] .  
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lead to  an O ( n 2 )  algorithm. However, since he restricts the computation in the merge step to  the 

minimum necessary, Yap's algorithm runs in time O(n log n). 

The PRAM algorithm of Goodrich, 0 ' ~ l i n l a i n ~  and Yap [15] (which we will summarize briefly in 

the following subsection) is based on the sequential approach outlined in the preceding paragraph. 

Since our mesh algorithm, t o  be presented in Section 5, also relies on this approach, we will give 

a brief summary of the main ideas in Yap's technique. Let us assume that  a vertical line has been 

drawn through each endpoint of the input set of segments S .  The vertical strip of region between 

any two such (not necessarily adjacent) vertical lines is called a slab. Now consider a particular 

slab U, represented by a pair of vertical lines lI and 12 .  A closed segment s is said t o  span U if 

it intersects l I  and 1 2 .  If we consider all segments that span U, there is a well-defined ordering 

(according to  the point a t  which they intersect 11,  say) on these segments. The region of slab U that 

is bounded by any two consecutive spanning segments is called a quad. Note that the bottommost 

and topmost such regions are unbounded. A quad Q in the slab U is said to  be an active quad if it 

contains an endpoint of a segment s E S in its interior (thus endpoints along the boundary edges 

of & do not count). 

Yap's algorithm does a slab-wise and quad-wise computation of the Voronoi diagram. During 

the merge step, two adjacent slabs Ul and U,, whose Voronoi diagrams have been recursively 

computed, are merged t o  form a larger slab U. Now, the Voronoi diagram is computed only for 

the active quads of U by using the recursively computed Voronoi diagrams of the active quads of 

Ul and U,. As a result, the amount of work done in each slab U is proportional t o  the number of 

segments with endpoints in that slab8, and this is what was meant by perforniing only the necessary 

computations. Notice that a t  the topmost level of recursion, the entire plane is the slab, and there 

is just one active quad which contains all the segments in S ;  hence, V o r ( S )  will be computed, which 

is the goal. The details of the merge procedure will become clearer in the sections that address the 

issue of solving this problem in parallel on the mesh-connected-computer. 

2.2.2 Parallel Algorithm on the CREW PRAM 

The best (and only) known parallel algorithm for the construction of the Voronoi diagram of a 

set of line segments in the plane is the CREW PRAM algorithm by Goodrich et al. [15]. Their 

algorithm runs in 0(log2n) time using O ( n )  processors, and is based on Yap's sequential algorithm 

[57] and on the parallel approach used by Aggarwal et al. for constructing the Voronoi diagram 

of a set of points in the plane [2]. This efficient parallelization of Yap's algorithm is because the 

authors manipulate objects called primitive regions to construct the contour in the merge step of 

their recursive algorithm. In addition, they use the techniques developed in [6] for solving certain 

8 ~ f ,  instead, the amount of work done in each slab were proportional to  the number of segments that  span that  

slab, then we would have had an O(n2) algorithm. 
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planar point location problems. In Section 5, we develop a mesh-optimal parallel algorithm for 

constructing the Voronoi diagram of a set of line segments on the mesh. The salient features of 

Goodrich et al.'s algorithm will be mentioned in that section, since the mesh algorithm is based on 

their PRAM algorithm. 
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3 Preliminaries on the Mesh-Connected-Computer 

In this section, we will talk about one particular fixed-connection network architecture, the mesh- 

connected computer (mesh). In Sections 4 and 5, we describe algorithms on the mesh for the visibility 

graph construction, the multilocation problem (to be described later), and the Voronoi diagram of 

sets of line segments in the plane. As mentioned in [31], several large mesh computers have already 

been constructed. They can be constructed more economically than hypercubes and other parallel 

architectures because of their simple nearest-neighbor wiring and the ease of scalability. 

3.1 The Mesh-Connected Computer 

A mesh-connected computer of size n is a fixed-connection network of n simple processing elements 

(PEs) that are arranged in a square two-dimensional array (see Figure 5). Following the convention 

in [31], we will assume that n = 4' for some constant c .  There are &rows and & columns in the 

mesh. For i ,  j E (0, 1, 2, . . . , 6- 1)) Pi,j refers to the PE at row i and column j .  Each Pisj has 

a communication link to  each of its four neighboring PEs (processors along the sides of the mesh 

will have fewer), Pi*., j*l. These communication links between pairs of processors are not allowed 

to  vary with time (hence the term fixed-connection network). Each P E  has a constant number 

of storage registers (each of size R(1og n) bits), and can perform standard arithmetic and boolean 

operations on the contents of the registers in unit time. The mesh is a SIMD (Sngle Instruction 

stream Multiple Data stream) machine. During each time unit, a single instruction is executed by 

all the processors (that are specified by the instruction) in parallel. The communication links are 

unit-time bidirectional links; in other words, a PE can send or receive at most one word of data 

from each of its neighboring PEs in one unit of time, and this can be achieved through routing 

instructions. Concurrent data movement in the mesh is allowed, as long as it is all in the same 

direction. 

It is important to note that an implicit lower bound of f l ( f i )  on run-time holds for most 

algorithms on the mesh. This is because of the following: The distance between a pair of processors 

is the smallest number of wires that have to  be traversed in order to  get from one processor t o  

another, and the diameter d of a network is the maximum distance between any pair of processors 

[27]. The diameter of a network is often a lower bound on the run time of an algorithm on that 

network, since it is always possible to  come up with data arranged in such a way that there needs 

to  be a n  exchange of information between two processors that are separated by a distance d, the 

diameter. It takes at least d steps for one of these processors to communicate with the other. The 

diameter of a f i  x f i  mesh is 2 f i  - 2, which is the distance between the two processors at 

the opposite corners of the mesh. Hence most algorithms on the mesh will have a lower bound of 

f l ( f i > .  
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Figure 5: A mesh-connected computer of size n. 

Each P E  contains its row and column numbers, and also an identification register. The contents 

of the identification register depend on the particular indexing scheme that  is being used for the 

mesh. The useful and commonly used ways of indexing processors are: row-major indexing, shufled 

row-major indexing, snake-like row-major indexing and proximity order indexing, as illustrated in 

Figure 6 for a 4 x 4 meslz. The different indexing schemes have their own advantages and which 

particular one we choose t o  use will depend on the problem that  we are trying t o  solve. For 

instance, as mentioned in [54], row-major indexing is a poor choice for merge sorting. Snake-like 

ordering has the useful property that PEs with consecutive numbers are physically adjacent in the 

mesh. Shuffled row-major and proximity order indexing schemes are used when divide-and-conquer 

approaches are being used. This is because of the fact that  in a mesh of size n ,  the processors with 

the first n /4  of the numbers lie in the first quadrant of the mesh, the second fourth in the second 

quadrant etc. and this property recursively holds within each quadrant. Proximity order combines 

the advantages of both snake-like ordering as well as shuffled row-major ordering. Observe that  it 

is possible t o  generate the number of a processor, in any of these indexing schemes, in O(&) time. 

In row-major indexing, each processor can compute its number for the row and column indices 

(assuming it knows the size of the mesh, which can be found in O ( h )  time). Snake-like indexing 

is obtained from row-major indexing by reversing the order in even rows, which can be done in 

the stated time bound. The number of a processor in the shuffled row-major indexing scheme is 

nothing but the shuffleg of the binary representation of that processor in the row-major indexing 

scheme. For example, the row-major index 10 in Figure 6(a) has binary representation 1010, the 

shuffle of which is 1100, and this is the shuffled row-major index of that  same processor. 

'The shuf le  of "abcdefgh" is "aebfcgdh" and the unshufle of "abcdefgh" is "acegbdfh". 
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Figure 6: Indexing schemes on the mesh. (a)  Row-major (b) Shuffled row-major (c) Snake-like 

row-major (d) Proximity 

3.2 Useful Operations on the Mesh 

We will now describe some of the basic operations on the mesh, concentrating on those that  will 

be heavily used in the following subsections. The perfect shufle and perfect unshufle data-routing 

operations are commonly used in mesh algorithms. Obviously, when a shuffle and unshuffle opera- 

tion are performed in sequence on a set of elements, we get back the elements in the original order 

(the order on the mesh will be determined by the particular indexing scheme that  we use). Notice 

that  on a linear array1' of size k, the shuffle can be achieved by using the triangular interchange 

pattern, as shown in Figure 7 (the double headed arrows indicate an interchange, which takes two 

routing steps). The unshuffle can be done in a similar manner by using an inverted triangular 

interchange pattern [54]. Thus, the perfect shuffle as well as the perfect unshuffle operations can 

be done in k/2 - 1 interchanges, i.e. k - 2 routing steps on a linear array of size k. We can use 

this result to  do the shuffle and unshuffle operations on the mesh efficiently. Consider the case of 

row-major indexing. To perform a shuffle, first do a shuffle along each row in parallel, then do a 

shuffle along each column in parallel (each row and each column is a linear array, so use the shuffle 

method described earlier). Now, for all i E ( 0 ,  2, . . . , f i  - 2),  j E (1, 3, . . . , @ - I}, 
the element in P, ,  needs to  be interchanged with the element in Pt+l, j -1,  which can be done in 

4 steps. Now the elements of the mesh are in shuffled order. See Figure 8 for an illustration. The 

unshuffle can be obtained by reversing the order of steps just described (and replacing the shuffies 

by unshuffles). Thus both these operations can be performed on a f i  x f i  mesh in 2 f i  steps. 

Sorting will be used often in our mesh algorithms, either as a preprocessing step or as a sub-step 

in a recursive merge procedure. In [54], the authors gave one of the first algorithms for sorting 

optimally on the mesh. Currently, the best known algorithm for sorting n elements distributed one 

per processor on a fi x Jn mesh takes 3 f i  + o(&) steps [[27], Chapter 1, Section 1.6.31. 

In addition t o  tlrese basic operations on the mesh, there are a number of others that  are com- 

''A l inear array of size k is nothing but k linearly connected processors, so that every processor (except the ones 

at either end) is connected t o  its left and right neighbors. 
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Figure 7: Shuffle on a linear array. 

monly used in mesh algorithms. Some of these are Selected Broadcasting, Segmented Prefix Scan, 

Random Access Read (RAR) and Random Access Write (RAW). The RAR and RAW operations 

allow the mesh to simulate the concurrent read and concurrent write capabilities of PRAMS. The 

implementations of these operations are described in detail in [31, 321. We will just describe what 

these operations do. As given in [32], in the RAR operation, each P E  Pi, 0 < i < n - 1, 

contains some index S;, and wants to receive data from some register(s) of Psi. If P; is not to  

receive data, then ,!?; = oo. In RAW, each PE P; contains some index W;. Data from some 

register(s) of P; is t o  be transmitted to PW. If W; = oo, then no data from Pi is transmit- 

ted to  any PE. Selected broadcasting is the following operation [22]: Let {al, az, . . . , ak)  be 

some subset of elements on the mesh (not necessarily in consecutive processors). Let the index of 

the processor in which a; resides be I(a;). PI((Lt) contains, along with a;, an index $(a;). Also, 

I(a;) < I(a;+'), S(a;) < S(U;+~),  1 < i 5 (k - 1). Selected broadcasting sends each 

a; to  all the processors from Ps(,,) to Ps(,i+,)-l. The prefix scan operation is the following: Let 

A = {al, a2 , . . ., a,) be a set of elements such that PE P; has element a; in it, and let @ 

be some binary associative operation. The prefix scan of the elements of A is the set of elements 

B = {bl, b 2 ,  . . . , b,) where bl = a1 and b; = a1 @ a2 @ . . . @ a; for 2 5 i 5 n. At the end 

of the prefix scan operation on the mesh, element b; will be in PE Pi. This can be done in O(&) 

time on a f i  x fi mesh. In the segmented prefix scan operation, we are interested in computing 

the prefix with the same associative operator 8, but on different sets of data. Let All  A2 , . . . , Ak 

be k sets of elements with IA;( = I;, 1 < i 5 k, and such that 1' + l 2  + . . . + lk = n. A1 

resides in the first ll PEs of the mesh, A2 in the next l2 PEs and so on. The segmented prefix scan 

operation will compute the prefix scan of the set A; for each i ,  and place the resulting prefixes in 

the corresponding PEs that hold the elements of A;. The set of consecutive PEs that hold A; is 

referred to as the i-th component for the segmented prefix scan. RAR, R.AW, selected broadcasting, 

and segmented prefix scan1' can all be done in O(fi) time on a fi x mesh. 

We explain briefly how the strategy of divide-and-conquer is applied on a f i  x f i  mesh [22]: 

The problem is divided into two halves, one in the top half of the mesh and one in the bottom half. 

''The Connection Machine, manufactured by Thinking Machines, Inc., provides the segmented prefix scan as a 

primitive operation. 
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Figure 8: Shuffle on a mesh with row-major indexing. 

Each of these halves is then recursively solved, and then merged to give the final solution. An easier 

solution to  the recurrence relation for the run-time is obtained if we assume that  the top half and 

bottom half are further divided into two. Each of the four quadrants is solved in parallel. The top 

(bottom) two quadrants are merged to give us the solution to the top (bottom) half; this is done 

in parallel for the top and bottom halves. These two halves are now merged t o  give us the final 

solution. Let the time for the first merge (mergel) be TI and that for the second merge (merge2) be 

Tz. The recurrence relation for the total run-time is T ( 6 ,  f i )  = T ( 6 / 2 ,  &/2) + TI + T2. 

If TI + T2 is 0(@) then the solution to  this recurrence is T(@, fi) = 0(&). Thus, our 

main conceril when designing divide-and-conquer algorithms on the mesh will be to  come up with 

merge steps that  run in 0(f i )  time. The method used for the first and the second merge will be 

similar. Thus, for the sake of simplicity, in our algorithms we will discuss the merge step in general 

without any reference t o  mergel or merge2. 
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4 Mesh Algorithms for Visibility Graphs and the Related Mo- 

tion Planning Problem 

4.1 Visibility Graphs 

We will now describe a mesh algorithm to  compute the visibility graph of a given set of line 

segments in the plane. As noted in the earlier sections, the efficient construction of the visibility 

graph is an important substep in motion planning. We also noted in Section 2 that  the best known 

parallel algorithm for this problem is on the CREW PRAM using the cascading divide-and-conquer 

approach [6]. To our knowledge, this problem has not been solved on the mesh. In this section, we 

design an optimal algorithm for this problem. We will show that ,  given an input set S (15'1 = N) of 

nonintersecting line segments in the plane, we can identify mesh-optimally all the segment vertices 

that  are visible from a given point p in 8 ( f i )  (where n = 2N) time on a Jn x Jn mesh. This 

will immediately give us an algorithm for constructing the visibility graph, Gs. 

Let S = {so, s l ,  . . . , sjv-l} be the input set of line segments that  do not intersect (except 

possibly a t  endpoints), and let p be the point from which we want to  determine visibility. Let v2; 

and v2i+l (we will assume x(v2;) < X ( V ~ ; + ~ ) )  be the two endpoints of segment s;. The visibility 

from a point problem is to  determine that  part of the plane that is visible from p, assuming that  

every segment is opaque. Notice that  this is equivalent to  identifying those vertices v; that  are 

"seen" from p. As in [6], we will assume, without loss of generality, that  p is a point a t  -m. This 

is only t o  make the description of the algorithm simpler. The case when p is not a t  infinity is a 

straightforward adaptation of this algorithm. Since p is a t  -a, to  compute the visibility from p, 

we need t o  compute the lower envelope of the set of segments in S [6]. The lower envelope is the 

collection of those segment parts that can be seen from below. 

In [6], the authors give a PRAM algorithm that uses the cascading divide-and-conquer technique 

for solving the visibility from a point problem. Along the same lines, we will describe a recursive 

algorithm for computing the lower envelope on the mesh. We will first describe the merge step and 

then give the details of the mesh algorithm. Let S1 be the set consisting of half the elements of S, 

and let S2 contain the other half. Suppose that we have recursively computed the lower envelopes 

of S1 and 5'2. The lower envelope of the segments in S, ( i  = 1 ,2 )  is available t o  us in the following 

manner: The endpoints of the segments in S; have been sorted according to  their x-coordinates (for 

the sake of simplicity, let us assume that no two endpoints have the same x-coordinate). In this 

sorted list (call it V, ) ,  assume that  a vertical line is placed through each endpoint. This divides the 

plane into vertical strips of region called slabs (call these the %-slabs). The recursive computation 

gives, for every V,-slab, the segment of S, that is visible from below (i.e. is part of the lower 

envelope) in that  slab (see Figure 9). Now, we want to merge these two envelopes to  form the final 

lower envelope. First merge Vl and V2 t o  form V. The set V defines a new set of slabs. Each V-slab 
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(say u) lies within some unique Vl-slab (say ul) and some unique Vz-slab (say u 2 ) .  Note that u 

could, in fact, be the same as either of ul or uz. Let sl and sz be the (recursively computed) lower 

envelope segments in the slabs ~1 and uz, respectively. Then, the segment of S that is visible from 

below in u is nothing but the lower of s l  and sz (note that such an ordering is uniquely defined on 

the two segments). 

The algorithm for computing the lower envelope (i.e. visibility from -m) is given below. Our 

input set consists of a set S of segments along with their endpoints (these total n). As mentioned 

earlier, segment s;, i E 10, 1, . . . , N - 1) has endpoints vzi and vzi+17 with x(vai) < X ( V ~ ; + ~ ) .  

Algorithm VISFROMPOINT; 

Input: The endpoints are distributed one per processor on a z/;Z x f i  mesh with the shuffled 

row-major indexing scheme. The P E  Pj , j E (0, 1, . . ., n - 1) has endpoint vj and also the 

segment that vj is an endpoint of. 

Output: Tlze endpoints will be in sorted order on the mesh. Thus each PE Pi is associated with a 

slab in the obvious way. Pi will also have the segment s that is part of the lower envelope (i.e. is 

visible) in that slab. 

1. Initialization: Every PE Pi has the following fields as part of its record: endpoint initialized 

to v;; lowerseg, which contains, at any stage, the lowest segment (found up to that stage) for 

the slab defined by Pi ; whichblock, which indicates (for the merge step) whether an endpoint 

came from the left block or the right. 

2. Basis: lowerseg is set to the segment s;12 if i is even and to 0 otherwise1? Let S1 be the 

subset of segments of S in the left block, and SZ be the subset in the right block. 

3. Recursive Step: Solve recursively in parallel using S1 for S in the left block and Sz for S in 

the right block. 

4. Merge Step: 

(i) Set whichblock to 0 if Pi belongs to  the left block and to 1 if it belongs to  tlre right block. 

(ii) Merge the two sets S1 and Sz according to the endpoint field. 

Note: We now need to update the lowerseg field in each PE. As explained earlier, every 

new slab u of the merged set needs to compare the lowerseg fields of the two old slabs 

ul and u2 that it is a part of. How do we find these two lowerseg fields? Let u be a slab 

12 Initially, the  slabs are those defined by each individual segment, and hence the lowest segment in that  slab is 

nothing but the segment itself. 



Proposal 
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cegment visiblein each slab of S , 
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~ ~ r n e n t  visible in each slab in the final lower envelope 

Figure 9: Merging of lower envelopes. (a) The set S with S1 = isl, s2, sg, sq) (the light line 

segments) and Sz = {s5, sg, S T ,  s ~ )  (the dark line segments). (b) The recursively computed 

lower envelope of S1. (c) The recursively computed lower envelope of S2. In (b) and (c),  the hidden 

segment parts are dotted. (d) The final lower envelope. 
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in the merged set (it is represented by the endpoint field) and suppose it is in P E  Pi. 

One of the two lowerseg fields is already in Pi. This is because endpoint in Pi represents 

either the left boundary of ul (the slab from S1 that  u is a part of) or the left boundary 

of u2 (the slab from Sz that u is a part of). Let us say it is u2. The other lowerseg has 

to  come from the PE containing ul :  call it Pj; note that j will be less than i .  Note, of 

course, that the endpoint in Pj is the rightmost of all the endpoints of S1 that  lie to  the 

left of the endpoint in Pi. In other words, there are no endpoints of S1 between Pj and 

Pi. In fact, the lowerseg of Pj is to be broadcast to  all the PEs that  lie between Pj and 

the P E  containing the right end point of ul.  We need t o  do this for every slab ul of S1. 

A similar step needs t o  be done for every slab u2 of S2.  This can be achieved through 

the selected broadcasting operation. Refer to  Figure 10 for an illustration of these steps. 

(iii) The subset of elements that needs to  be broadcast is the lowerseg field in every processor 

with whichblock = 0. Let {11, 1 2 ,  . . . , l n / 2 )  (where n = 215)) be the set of these 

lowersegs in sorted order and let Ili be the index of the processor in which I; resides. The 

selected broadcasting operation will send I;, 1 5 i < n/2 to  every P E  from PI(lt) to  

PI(lt+,)-l. Put  1; in a local register called lowersegl. 

(iv) Similar to  step (iii), except that the broadcast elements are the lowerseg fields from 

processors with whichblock = 1. Here, the broadcast element is put in a local register 

called lowerseg2. 

(v) Every P E  updates the lowerseg field to  the lower of lowersegl and lowerseg2. 

Lemma 4.1 Algorithm V I S F R O M P O I N T ,  which computes the lower envelope of a set of segments 

S ,  runs in O ( f i )  time (with no queueing) on a 6 x f i  mesh, where IS1 = n / 2 .  

Proof: Since there is no preprocessing, our timing analysis is just for the merge step. The first 

step of the merge procedure can obviously be done in constant time (this step can be done by 

looking a t  the appropriate bit in the binary representation of the PE's id.). Step (ii) can be done 

in O(+) time using the standard shuffle and exchange technique[54]. Both step (iii) and step (iv) 

need O ( 6 )  time for the selected broadcasting. Step (v) takes constant time. Therefore, the merge 

procedure takes 0 (6)) and this immediately implies that  the overall time required is O ( 6 ) .  

Notice that  the computation of the lower envelope on the mesh immediately tells us which 

endpoints of S are visible from -a. When the point p is not at -m, the algorithm is the same 

as above, except that  instead of merging the endpoints of the line segments according t o  their 

2-coordinate, we merge them according to  the polar angle that  they make with p (measured with 

respect to  some fixed axis). In order to  construct the entire visibility graph, we can use the above 

algorithm in a straightforward way. When a vertex vi is used as p, we can obtain the set of vertices 
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(d) s., s., so s3 s1 s3 s 4  s q  sq s s , Sz S5  S 5 S 2  $ + lowerseg 

Figure 10: Computing lowerseg in the merge step. As before, the lighter segments form S1 and the 

darker ones form S2.  (a)  The value of lowerseg in each P E  after step (ii) of the merge step. (b) 

The values of lowersegl after step (iii) of the merge step. (c) The values of lowerseg2 after step (iv) 

of the merge step. (d) The final lowerseg value in each PE, as found in step (v). 

of S that  are visible from v;. In other words, we know which nodes are adjacent to  the node 

corresponding t o  v; in the visibility graph. If we repeat this for every endpoint vj, in parallel, we 

can construct the visibility graph of a set S of segments in O(+) time using n2 processors (i.e. n 

of tlze fi x f i  meshes). This is optimal since the visibility graph may have O(n2)  edges in the 

worst case, and we will need n2 processors t o  represent the graph (under the assumption that  each 

processor has only a constant amount of storage). 

4.2 Motion Planning Using Visibility Graphs 

We summarized, in Section 1, the method of Lozano-Pkrez and Wesley [30] for planning the motion 

of a convex object with two dofs, moving between convex obstacles. Assume the size of the obstacle 

set is n (i.e. the obstacle set has n endpoints) and it is stored in a & x f i  mesh. Let the 

mobile object be A; we will assume that the size of A is a constant. First we expand the obstacles 

according to  the moving object A as described in Section 1 (Subsection 1.2.1): We relay the 

information about A to  each of the PEs in f i  time. Since the expansion of each obstacle can be 

done in time proportional t o  its size (refer t o  Section I), the expansion of all the obstacles can be 

done in a t  most O ( f i )  time. Note that these expanded obstacle edges might now intersect with 

each other. When the obstacles are convex, it can be shown that the number of such intersections 

can be a t  most O(n)  [48]. Thus the new obstacle edge set will also be O ( n )  and there are efficient 

sequential algorithms t o  compute it [48]. We can also find the new obstacle edges by using a brute 

force technique which is very inefficient, but will not alter the run-time of this motion planning 

algorithm on the mesh. We can simply compute the intersection of every edge of the expanded 
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obstacle set with the other edges of that set. This will give us the new edge segments, and this can 

be computed in O(n) time on a mesh with n  PEs. 

We now have t o  make n  copies of the new obstacle edge set on n  sets of f i  x &meshes so that  

we may compute visibility from each of the n  endpoints. These copies can clearly be made in O(n) 

time on a mesh with n2 processors. We know, as mentioned above, that  the visibility information 

from each endpoint can be computed in 0(&) time by using Algorithm VISFROMPOINT on each 

of these submeshes. 

Suppose that  the object A has to  be moved from point a to  point b.  First we establish the visibil- 

ity information from a and b, which can be done in 0 ( f i )  time using Algorithm VISFROMPOINT. 

We can compute the shortest path from a to  b by solving the all-pairs shortest path problem for 

the visibility graph, using the euclidean length of the edges as the corresponding edge weights13. 

In order t o  do this, we want to  convert the information about the visibility graph into the form 

of an adjacency matrix on the mesh with n2 PEs. This can be done easily with a sorting step14, 

which will take O(n) time. The all-pairs shortest path can be computed by a method that  is very 

similar t o  the method used to  compute the transitive closure of a matrix. As shown in [27], the 

all-pairs shortest path problem can be solved in O(n) time by using a pipelining technique on a 

n  x n  mesh. Thus, planning the motion of a convex object of two dofs nioving among convex 

obstacles can be done in O(n) time on a n  x n  mesh. Even though this mesh algorithm is not 

very work-efficient when compared to  the O(n2) sequential algorithm, note that  this is the best we 

can do since we will need n2 PEs to represent the adjacency matrix. 

13 Note tha t ,  for our purposes here, solving the single-source shortest path (from a)  problem would have sufficed. 

However, there are no known optimal parallel algorithms for this problem. 
1 4 C ~ n ~ i d e r  the f i  x f i s u b m e s h  that  computed visibility from a particular endpoint v,. The  PEs  in this submesh 

have the endpoints in sorted order about v,.  Consider the P E  P' that  holds vertex v,. If v, can see v J ,  then P' will 

send a 1 to row a and column j of the adjacency matrix. If not, then P' does nothing. This is a one-to-one routing 

step and can be accomplished through sorting. 
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5 Mesh Algorithms for the Voronoi Diagram of a Set of Line 

Segments and the Related Motion Planning Problem 

We start this section with the definition of a problem called the Multipoint Location problem, 

which is an important subroutine for the construction of the Voronoi diagram. We also give a 

brief description of the mesh algorithm for this problem, given by Jeong and Lee [22] and give a 

different approach t o  one of the sub-steps used in the algorithm in [22]. Following that ,  we describe 

a mesh-optimal algorithm for the construction of the Voronoi diagram of a set of line segments in 

the plane. The resulting mesh implementation of the motion planning algorithm by 0 ~ ~ 6 n l a i n g  

and Yap [34] is given in the last part of this section. 

5.1 Multipoint Location and why it is important 

In this section, we will discuss the problem of Multipoint Location. Multipoint location comes under 

the class of problems called planar point location problems. In this class of problems, we are given 

some planar subdivision15 S consisting of n edges, and a query point p, and we are t o  find the 

region of S that  p lies in. The main reason for discussing this problem here is that  it has very 

important applications for the problem t o  be discussed in the next section, viz. the problem of the 

construction of the Voronoi diagram of a set of line segments in the plane. Before moving on, let 

us give the exact statement of the multipoint location problem. 

Problem Statement: Given a set S of nonintersecting line segments, and a set P of points, where 

IS1 + IPI = n, t o  find, for every point p E P ,  the segments pa, pb E S that  lie immediately 

above and below p,  respectively. If there is no segment that lies immediately above (below) p, pa 

( J I ~ )  is set to  s + ~  (spa),  an imaginary segment lying at +co (-co). 

An 0(fi) algorithm for solving this problem on a f i  x f i  mesh is given by Jeong and 

Lee [22]. The problem is solved for three cases of input: in the first case, the line segments have 

the same x-coordinates for the left and right endpoints, in the second case they have the same 

x-coordinate for the left endpoints, and the third is the general case. The first is used as a substep 

in the second, and the second is used as a substep for the general case. We describe a different 

approach for solving the first case. While the approach is not asymptotically faster than Jeong 

et al.'s algorithm, the constant factor of our algorithm is significantly smaller16. We mention this 

improvement primarily because the first step is used repeatedly as a substep for general multipoint 

1 5 ~  planar graph is one that  can be embedded in the plane without crossings of edges. A planar subdivision is the 

subdivision of the plane induced by a connected planar graph. For our considerations, the vertices of the graph will 

be points in the  plane, and the edges of the graph will be straight line segments. In the case of the  Voronoi diagram 

of line segments, some of these edges might be parts of parabolas. 
I6The  method used in 1221 has a high constant because it uses a recursive method, and uses RARs in its merge 

procedure. RARs are expensive operations on the mesh. 
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location, and in the construction of the Voronoi diagram of a set of line segments in the plane. 

Hence, the improved algorithm is more suitable for possible practical implementations. 

Let us consider the case when the nonintersecting segments of the input set S have the same 

x-coordinates for the left and right endpoints, say lx and rx respectively. Let the set of points P 

be such that  they lie between the lines x = 1x and x = rx .  We will assume that the mesh 

has shuffled row-major indexing, since the other two cases are solved by recursive algorithms. The 

elements are distributed so that  there is either one segment or one point per PE.  First, we will 

arrange the elements so that  they are in row-major ordering, and then sort the elements so that  

the segments are in sorted order (by the decreasing y-coordinate of their left endpoint, say) and 

occupy the first IS( PEs. Let s;, 0 5 i 5 ( $ 1  - 1 be the i-th segment in this sorted order; s; is 

in P E  Pi. The point set P occupies the next IPI processors. The following is the basic idea behind 

this method: Let us assume that  IS1 > fi, since the other case is straightforward17. For every 

point p ,  we want t o  perform a search for segments pa and pb on the mesh. Let the segments given 

by s - ~ ,  s-A+, , . . . , s-1 be dummy segments (initialized to the segment a t  fco) for points lying 

above the topmost segment in each column. Let the segments given by slsl, S ~ , C I + ~ ,  . . . , s ( ~ ~ + J ; E - ~  

be dummy segments (initialized to  the segment a t  -00) for points lying below the lowermost 

segment in each column. 

Suppose a point p E P is in some column j of the mesh. If we send p up along its column, then 

there are exactly two segments, S;-J;I and s; (for some 0 5 i 5 IS1 + fi - l), in that  column 

between which it lies (since the segments are ordered). Thus, p has t o  examine just another fi 
segments in order t o  determine pa and pb. This could be done by letting p sit in P E  Pi, and by 

passing all these fi segments down that  row so that p can determine pa and pb. In order to  do 

this efficiently we need to  ensure that not too many points end up in the same row. We do this by 

counting how many points belong in a row. Then we make enough copies of that  row so that  when 

we send a point to  a processor in the appropriate row, there is at most one point per processor. 

Note that  since the total number of points is O ( n ) ,  the maximum number of new copied rows that  

we need t o  make is O ( f i ) ,  and hence we can overlay the new copies of rows on the existing mesh 

with a constant factor increase in memory per processor. This can be achieved as follows (assume 

that pa and pb have been initialized t o  s+, and s-,, respectively, for every p ) .  

1. Pass each segment down its column so that every point p knows the segments of that  column 

that  lie immediately above and below it .  Call these ut,,, and Item,, respectively. 

2. Pass each point up along its column j so that ,  at the end of f i  steps, P E  Pi in column 

j knows the number of points from that  column that lie above s; and below ~ ~ - 6 .  Let 

171f the number of segments is less than or equal t o  fi, then all we have to do is make copies of the segments in 

the first row in every row, and then pass each segment through its entire row so tha t  p can determine pa and J J ~ .  This 

can obviously be done in 3 6  time. 
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aka, akl, . . . , ak(fi-l) be these numbers in row k. 

3. Do a parallel prefix on aka, akl, . . . , a k ( ~ - l )  (from left to  right) along each row k in order 

t o  determine the total number of points in each row. Let lko, lkl, . . . , lk(fi-l) be the result 

of this parallel prefix in row k. Obviously, the total number of copies of row k that  we need 

is 1'' 2 - I  1 . Call this number numcopk. 

4. We now know how many copies of a particular row we need t o  make, but we don't know where 

t o  start making them, i.e. a t  which row of our fi x fi mesh. This can be determined by 

doing a parallel prefix on numcopk along the leftmost column. Call the result of this prefix 

computation whichrowk, in row k. Propagate the whichrowk and numcopk fields down row 

k. 

5. Now we need t o  figure out the row and column index of the processor t o  which we want to  

send each point. From this we can determine the id of the PE to  which that  point needs to  

be sent. This can be done by sending each segment in location (k, j) down its column j, 

along with the whichrowk, numcopk, akj and lkj fields. Each P E  with a point in it can use 

this information, along with the utemp and ltemP computed in step 1, to  determine the row 

and column index of the processor that it should be sent to. 

6. We now make numcopk copies of each row k. Before doing this, each segment notes down the 

segment that  lies in the processor immediately above it, and forms a segnient pair. This is 

necessary in the final step to  determine pa and pb. The numcopk copies of each row (i.e. the 

segment pair in each row) can be made in a t  most fi steps by as many downward pulses of 

each row. 

7. Send the points to the PE as determined in step 5. This can be done by a sort step 

8. Send the segment pair of each row down that row, once in either direction, and we can 

determine pa and pb for every point p. 

9. The elements can be sent back t o  their original configuration by a sort step. 

The time taken t o  perform the above steps is O ( f i )  with the constant factor being a significant 

(about 10-fold) improvement over that of the method given by Jeong and Lee [22]. Note that  in 

the above technique, we are essentially doing a simultaneous search of all the points among the line 

segments. We will refer to  this as Algorithm SIMULTSRCH. 

After solving the above special case, Jeong and Lee [22] solve the case in which all the segments 

in the segment set have the same left endpoint. This is done recursively, and the above special 

case is used as a subroutine in the merge step. They call this Algorithm LB-MULTILOC, and 

it runs in O(&i) time on a f i  x f i  mesh. Finally, they solve the general case of multipoint 

location by using a recursive algorithm, Algorithm MULTILOC. MULTILOC uses LB-MULTILOC 
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as a subroutine in the merge step, and runs in O ( f i )  time on a f i  x f i  mesh. At the end of 

Algorithm MULTII,OC, each point p in P will know segments pa and pb, along with the index of 

these segments. 

As we mentioned earlier, an important application of multipoint location is the problem of 

planar point location, which we stated earlier. Given a planar subdivision, and a set of points P, 

we find for each point p the region of the subdivision that p lies in. In particular, we are interested 

in performing planar point location for a set of points, given the planar subdivision induced by the 

Voronoi diagram of a set of line segments. This can be done by almost a direct application of the 

MULTILOC algorithm of [22], with some minor modifications. We state the pertinent lemma from 

Pal. 

Lemma 5.1  (Jeong and Lee [22]) Given a planar subdivision PS with a set S of edges and a 

set P of query points, the planar point location can be executed in  0(&) time on a f i  x f i  
mesh, where IS\ + I PI < n .  

In the case when PS is the Voronoi diagram of a set of n line segments, IS1 is O ( n )  since the 

number of Voronoi edges is O ( n ) .  

5.2 Voronoi Diagram of a Set of Line Segments in the Plane 

The Voronoi diagram is a very useful geometric structure, with applications to varied problems 

in computational geometry. In particular, as we discussed in Section 1, the Voronoi diagram of 

a set of line segments turns out to be a useful tool in motion planning [34, 33, 561. We are 

interested in the parallel construction of the Voronoi diagram. In Section 2, we briefly described 

the PRAM algorithm of [15] for this problem. In this section, we will develop a parallel algorithm 

for constructing the Voronoi diagram of a set of n line segments in the plane on a f i  x f i  mesh 

that runs in 0(&) time, which is optimal for the mesh. We would like to point out that there is 

an optimal O ( 6 )  time parallel algorithm for the Voronoi diagram of a set of n points in the plane, 

on a mesh with as many PEs [22], but none (to our knowledge) for n line segments. 

Let us recapitulate some of the important issues in the Voronoi diagram construction. We will 

use the notation established in Section 2; V o r ( S )  refers to the Voronoi diagram of a set of elements 

S ,  and V o r ( e ) ,  e E S refers to the Voronoi region associated with the element e. The usual 

method is t o  divide the input set S into two sets of equal size S1 and S2, recursively compute 

the Voronoi diagram of each half, and then merge the two resulting diagrams to form the final 

Voronoi diagram. The merge step involves the construction of the contour, which is the locus of 

all points that are equidistant from S1 a.nd Sz. The contour will give us information about (a) 

the new Voronoi edges that need to be added to the final diagram and (b) which of the edges of 
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the recursively computed diagrams need to be discarded. Thus, the construction of the contour 

is the single most important step. For the case of a set of points in the plane, we have the nice 

property that  there is exactly one contour to be constructed, and this contour is monotone with 

respect t o  the y axis. In [22], the authors exploit this property by first identifying those Voronoi 

edges of Vor(S1) and Vor(Sa) that  are intersected by the contour. They then use the monotonicity 

property t o  explicitly sort these edges according to  the order in which they are intersected. Once 

this is done, some additional computation gives us the contour. 

The parallel construction of the Voronoi diagram of a set of line segments is much more involved. 

As observed in Section 2, the sequential algorithms of [25, 261 do not lend themselves well to  

parallelization. In that  section, we also noted that the best (and only) known parallel algorithm for 

the construction of the Voronoi diagram of a set of n line segments is the CREW PRAM algorithm 

by Goodrich et al. 1151, which runs in O(log2n) time and uses O(n) processors. This algorithm is 

based on the approaches in the sequential algorithm by Yap [57], and on some of the techniques 

of the CREW PRAM algorithm for the Voronoi diagram of a set of points 121. In the remainder 

of this section, we will show that  Voronoi diagram of a set of N line segments in the plane can be 

constructed in 0(fi) time on a f i  x fi mesh, where n = 2N.  Our method on the mesh is 

based on the approach used in [15]. 

Let S = {so, s l ,  . . . , SN-1) be the input set of line segments that  do not intersect (except 

possibly a t  endpoints). As before, let v2; and v2;+1 be the two endpoints of segment s;, such that 

x(v2;) < X ( V ~ ; + ~ ) .  Each segment s of S is actually represented as three elements: the two endpoints 

and the open line segment. Let E = {po, p l ,  . . . , p,-1) be the ordered set consisting of these 

endpoints sorted according to  their x-coordinates (each pj is some v; and n = 2N).  The mesh 

algorithm for constructing Vor(S) will be a divide-and-conquer algorithm, and so we will a.ssunie 

shuffled row-major indexing on the mesh. Let U be a slab1'. The subset of E in the interior of U 

will be referred t o  as Eu (thus, endpoints lying on the vertical boundaries of U do not count). The 

set of segments obtained by restricting S to  the slab U will be called S u  i.e. S u  = {s n U I s E S 

and s n U # 0). Recall that  Yap's algorithm [57] does a slab-wise and quad-wise computation 

of the Voronoi diagram. Let U be the slab obtained by merging the adjacent slabs Ul and U2. 

The merge step computes the Voronoi diagram in all the active quads of U; this is done by using, 

with some additional computation, the recursively computed Voronoi diagrams of the active quads 

of Ul and U2 t o  construct the contour. Thus, the most important step in the merge procedure 

is to  compute efficiently, for every active quad Q in U ,  Vor(Su n Q). Following 1151, we let 

VorSet(Su) represent the set containing the Voronoi diagrams of all the active quads Q of U i.e. 

VorSet(Su) = {Vor(Su fl Q) 1 & is an active quad of U ) .  At the topmost level of recursion, the 

18 \lie recall some definitions. Suppose a vertical line is drawn through each point in S .  The  vertical strip of region 

between any two such (not necessarily adjacent) vertical lines is called a slab. Consider the set of segments that  span 

a slab U .  T h e  region of U that  is enclosed between two such consecutive spanning segments is called a quad of U .  A 

quad is said t o  be an active quad if i t  contains an endpoint of S in its interior. 
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entire plane is the slab U ,  and the algorithm computes Vor(S),  since VorSet(Su) is nothing but 

Vor(S). The recursion bottoms out when a slab has just one point in its interior, which happens 

when a slab is defined by the two vertical lines x = p; and x = p;+a, for all even i between 0 and 

n - 3. p;+l is the point in the interior of the slab. 

Initially, each PE contains an endpoint v; (i.e. the coordinates of v;), the segment that  v; is an 

endpoint of, and the other endpoint of that segment. In other words, each PE Pi, 0 5 i 5 n - 1 

has a packet that contains v;, which will be the key, s;i2 and v;+l, if i is even. If i is odd, these will 

be v;, s ( ; - ~ ) / ~  and v;-1 respectively'". In either case, initially v; is used as the key for processor 

Pi's information. 

Preprocessing: 

In this step, (a)  first we sort the packets according to  the x-coordinate of the key. Notice that  

now the arrangement of the keys of the packets is as in the ordered set E. (b) Next, we run 

Algorithm MULTILOC, using S and E as the set of segments and points, respectively. At the end 

of this step, we will have for every endpoint p; in PE P;, the segments that  lie vertically above 

and below it.  Call these pia and pib, respectively. As mentioned in the description of Algorithm 

IL~ULTILOC, pia will be represented by its two endpoints and its index; similarly for pib. pia and 

pib are now added on to  the packet in PE Pi. It will become clear later on that  this preprocessing 

step is necessary in order t o  determine active quads. Clearly, (a) and (b) take 0(fi) time on a 

fi x fi mesh. 

Basis: 

The base step is executed when there is exactly one point in the interior of the slab. This point 

will be p;, for odd i, 1 5 i 5 n - 1. The slab that pi lies in is defined by the vertical lines 

going through pi-1 and p;+l ( p ,  is some dummy point that  lies to  the right of all points in E). 

The active quad to  which pi belongs (obviously, it is the only active quad in said slab) is given by 

the spanning segments pia and pib. Clearly, the Voronoi diagram of this quad can be computed in 

constant time. Hence the base step takes constant time. 

Merging: 

Let Ul and U,  be two adjacent slabs, and let IEu, I = IEur I = 5 (i.e. each slab has k endpoints 

in its interior). Suppose that  VorSet(Su,) and VorSet(Su,) have been recursively computed in 

two adjacent sub-blocks of the mesh, where each sub-block is of size d m  x d m .  Let the left 

sub-block be called Ml and the right sub-block M T .  We will show that  we can perform the merge 

in 0 (&)  time, using O(k) PEs. 

The information that  is necessary for the merge procedure is available in Ml in the following 

l g w h e n  we say tha t  a particular segment s, is stored in PE P,, we mean that  the index j of that  segment is stored. 

We will, however, continue to  refer to  this as "storing the segment sl".  
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manner. 

(1) Active Quads of Ul : The active quads in Ul have a sorted order defined on them in the natural 

way. Let Al be the number of active quads in Ul (Al 5 k); let these be Qll, Q12, . . . , QIA, 
in sorted order (from top t o  bottom, say). Let the number of endpoints in these active quads be 

kll, klz, . . . , klA,, respectively. Note that kL1 + k12 + . . . + klA, = k. In Ml,  the endpoints 

in Qll are in the first kll processors, the endpoints in Q12 are in the next k12 processors and so on. 

We will call this the active-quad-wise ordering of the endpoints of Eu,. Each endpoint in Q1; will 

specify its quad by the upper and lower bounding segments of Qli. 

(2) Voronoi Edges of VorSet(Su,) : As stated earlier, VorSet(Su,) is the collection of the Voronoi 

diagrams of all the active quads in Ul. Because of the quad-wise computation of the Voronoi 

diagram, the Voronoi edges of VorSet(Su,) are stored in a quad-wise manner. In other words, in 

M17 we will first have the Voronoi edges of Vor(Su, n Qll), followed by the edges of Vor(SrJ, n Q12), 

and so on. Notice that since VorSet(Su,) consists of the Voronoi diagram of at most k line segments 

(since only the active quads are considered), it will have O ( k )  edges; there will be a constant number 

of these Voronoi edges in each processor of Ml. More importantly, the following observation holds, 

which follows directly from a lemma by Yap [[57], Lemma 51: The number of Voronoi edges in the 

Voronoi diagram of an active quad Q1; of Ul is proportional to  the number of segments in that  

quad. In other words, the number of Voronoi edges in Vor(Su, n Ql;) is O(k1;)20. Therefore, the 

PEs of Ml that  store active quad Qli suffice to  store the complete diagram Vor(Su, n Q1;), with 

just a constant number of Voronoi edges per PE. 

Let A, be the number of active quads of U,, and let k,; be the number of points in the i-th (in the 

sorted order) active quad Q,;, 1 5 i 5 A,. The information about the active quads of U, and 

the Voronoi edges of VorSet(SrJT) are available in MT in a similar and analogous way. 

Following the PRAM technique of Goodrich et al. in [15], we first give a concise summary of 

the steps involved (and the mesh operations needed) in performing the sub-problem merge. In the 

final part of this section, we give the details of the implementation of each of these steps on the 

mesh. 

Summary of the Merge Step on the Mesh 

The merge part of this divide-and-conquer algorithm consists of three important substeps: the 

determination of the active quads of U, the vertical merge, and the horizontal merge. 

(1) Determination of the active quads of U : In this step we compute the active quads of U by 

using the information about the active quads of Ul and U, available in Ml and M T ,  respectively. 

20 Intuitively speaking, the lemma states that  for any two quads QI and Q2 in a slab U ' ,  the  objects in QI and the 

objects in 9 2  do not interact with each other. In other words, the Voroiloi edges of the diagram V O T ( S ~ ,  n Q1) will 

not be affected by the segments in SU,  n Q2. Hence the assertion that  the number of edges in V o r ( S v ,  n Q,,) is 

O(k1.). 
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This can be done by an appropriate sort step, followed by a selected broadcasting step on the mesh 

Ml U M,. This takes o(&) time on the mesh M1 U M, (which has 2k + 2 PEs). 

Consider an active quad Q from the slab U .  Let Ql (Q,) represent the part of Q that  lies in the 

left (right) slab Ul (U,). In other words, Ql = Q n Ul and Q, = & fl U,. Observe that  Ql  (Q,) 

is the union of a contiguous set of quads of slab Ul (U,). Some of these quads may be active and 

some or all of them may not be (see Figure 12 for an example). We will call these quads (whether 

active or not) the Ql-quads (&,-quads). In order to  find the Voronoi diagram of Q,  Vor(Su n Q) ,  

we need to  "merge" the Voronoi diagrams of all the Ql-quads and the Q,-quads in the appropriate 

way. This merging is achieved by first doing a vertical merge, followed by a horizontal merge. 

(2) The vertical merge: In this step we find, for every active quad Q of U, the Voronoi diagram 

of Su, n Q1, called the Ql-diagram and of Su, n Q,, called the &,-diagram. Notice that  the 

Voronoi diagram of the non-empty Ql-quads (&,-quads) has already been recursively computed. 

The Voronoi diagram of the empty Ql-quads (&,-quads) is easy t o  compute. On the mesh, we can 

find the empty Ql-quads and their Voronoi diagrams by doing an appropriate sort step, followed 

by a segmented prefix scan operation. An analogous application of these steps give us the empty 

Q,-qua.ds and their Voronoi diagrams. The construction of the Ql-diagram (&,-diagram) requires 

us t o  merge together the Voronoi diagrams of all the Ql-quads (&,-quads), empty as well as non- 

empty. As will be seen in the detailed version of this step, this merging turns out t o  be very 

straightforward. This step takes o(&) time on Ml U M,. 

(3) The horizontal merge: In this final stage of the merge step, we obtain the Voronoi diagram 

of each active quad Q. This is done by merging the Q1- and the Q,-diagram, which involves the 

construction of the contour. The basic objects of manipulation in this step are primitive regions 

or prims [15], which will be defined in the detailed version of this step. The horizontal merge is 

the most complicated part of this algorithm, and depends on certa.in crucial lemmas developed in 

[15]. Once the contour is constructed, the Ql-diagram to  the left of the contour, the contour itself, 

and the &,-diagram t o  the right of the contour give us the final Voronoi diagram Vor(Su n Q )  

for every active quad Q of U .  The mesh implementation of this step requires the application of 

the planar point location algorithm (Lemma 5.1), and a sort step. The final determination of the 

contour requires the application of Algorithm SIM ULTSRCH (with some minor modifications), a 

prefix scan operation, one routing step, one selected broadcasting step, and one RAR. This takes 

0(&) time on Ml U Mr.  

As mentioned earlier, the run-time of the preprocessing step is O ( f i ) .  From the summary of the 

merge step described above, it is seen that the merge step takes 0(*) time. From the recurrence 

relation for divide-and-conquer algorith~ns on the mesh, given in Section 3.2, it therefore follows 

that  the Voronoi diagram of a set of n line segments in the plane can be computed in O ( J n )  time 

on a f i  x f i  mesh. We state this result as a lemma. 



Proposal 3 9 

Lemma 5.2 The Voronoi diagram of a set of n nonintersecting (except possibly a t  endpoints) line 

segments in the plane can be found on a f i  x f i  mesh in 0(fi) time (with no queueing). 

We now provide details of the implementation of the merge step on the mesh. These details 

can be skipped without any loss of continuity; the summary of the motion planning algorithm on 

the mesh is given in section 5.3. 

5.2.1 Details of the  Merge Step on the Mesh 

We will now give details of the method to  compute VorSet(Su), using the recursively computed 

VorSet(Su,) and VorSet(Su,) (where U is the slab obtained by merging the adjacent slabs, Ul 

and U,). In other words, we will describe the details of how each of the three substeps outlined 

above are executed on the mesh. Without loss of generality, let us assume that  the PEs in the 

mesh Ml U M, are PI, P2, . . . , P2k+2. 

Determination of the Active Quads of U : As before, let Qll, Q12, . . ., QIAl be the active 

quads of Ul in sorted order. Each such quad Q1; is defined by an upper and lower bounding segment. 

Call these segments Qlia and Qlib, respectively. If the upper bounding segment does not exist for 

Qll, Qlla is set t o  s+,, an imaginary segment lying at +m. Similarly, Q ~ ~ , ~  is set t o  s-,, if QIAl 

does not have a lower bounding segment. In an analogous manner, we define QTia and QTib to be 

the upper and lower bounding segment of the i-th quad Q,; (1 5 i 5 A,) of UT (see Figure 11 

for an example of such bounding segn~ents). The active quads of Ul and U, are available t o  us from 

the recursive computation, and are arranged in Ml and M T ,  respectively, in the manner described 

earlier. Thus all endpoints p belonging to  a particular quad Ql; of Ul will be in consecutive PEs. 

Each endpoint p of Ur will indicate its quad Ql;  by specifying Qlia and &lib; similarly for every 

endpoint p' of U,. Let us use pQ to  denote the current active quad that the point p lies in. 

Now we want to  determine the active quads of U. In the active-quad-wise ordering of the 

endpoints of Eul (Eu,)~', let el; (er;) be the endpoint in the i - t l ~  (1 5 i 5 k )  processor of MI 

(M,).  Let &u, (Eur) be the ordered set containing these endpoints according t o  their active-quad- 

wise ordering in Ml ( M )  i.e. £u, = {ell, . . . , elkll, elkllS1, . . ., . . . , e l k )  (LUr = 

{erl ,  . . . , erkrl, erkT1+l, . . . , e ~ k , ~ + l c , ~ ,  . . . , erk)). Let 'Flu, (Xu,) be the ordered set consisting of 

all the active quads of UZ (U,) i.e. 'Flu, = {QII, Ql2, . . . , Q ~ A ~ )  and Xu, = {QT1, QT2, . . . , QTA,). 

Consider the set 'Ft = 'Hu, U 'Flu,. The bounding segments of the quads in the set 'H have a unique 

ordering defined on them; this ordering is given by the intersection of these bounding segments with 

the common boundary of the slabs Ul and U,. Consider an active quad Q of U ,  and let Qa and 

Qb be its bounding segments. Obviously, Qa will be an upper bounding segment for some active 

"Recall that Eu, (Eu,)  is the ordered set of endpoints that Lie in the interior of the slab Ul (U,). In this set, 

the endpoints are ordered according to their 2-coordinates. We described the notion of active-quad-wise ordering on 

page 37. 
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Figure 11: An active quad Q of U. Qz;, (Qr j ,  QT( j+ l ) ,  QT( j+z ) ,  Qr(j+3)) are consecutive 

active quads of Ul (U,). The dashed arrowed curves going out of each endpoint indicate the upper 

bounding segment of that  points quad. 

quad of Ul or U, (possibly both). Similarly, Q~ will be a lower bounding segment for some active 

quad of Ul or U, (note that  the quad(s) in this case might be different from the quad(s) for Qa).  

For example, in Figure 11, Qa is an upper bounding segment for QTj and Q~ is a lower bounding 

segment for Qz(i+l) and for Qr(j+3). Hence, the bounding segments for all the active quads in U 

can be found from the bounding segments of the quads in the set 'H. 

We now want t o  arrange the endpoints in Eu in the desired active-quad-wise order. This can 

be achieved in the following way. 

(a)  First, we merge the ordered sets of endpoints, EuL and Eur . This merging of endpoints el; ( E  Eu,) 

and er; ( E  fur) is done according to  the ordering given by the upper bounding segments of the 

quads el;& E Xu, and eriQ E 'HUT. In Figure 11, these upper bounding segments are indicated 

by the dashed arrowed curves from each endpoint. Let this merged (ordered) set of endpoints be 

EU = {el, ez, . . . , ezk+l} (EU consists of the endpoints from Eu,, EuT, and tlze endpoint on the 

common boundary of Ul and u , ) ~ ~ .  
(b) For every e; in PE Pi, either eiQ E Xu, or eiQ E Xu,. Each Pi determines if the upper 

bounding segment of e;Q spans the entire slab U. If so, then let us say that  some field in P; is 

set t o  1, and if not, it is set t o  0. Corresponding to  every such spanning segment s of U, there 

will be a consecutive set of PEs with endpoints that have s as an upper bounding segment: all 

these PEs will be set t o  1. Let Dl and Uz be two such successive sets of PEs. Now, we know that  

2 2 W e  would like t o  point ou t  a small detail: Let p b e  t h e  point on the  boundary o f  Ui and U,. I f  t h e  segments pa 

and pb ( t h e  segments tha t  lie immediately above and below p) span U, t h e n  t h e  active quad o f  U t ha t  p lies i n  is 

t h e  one defined b y  pa and pb. I f  pa does not  span U, t h e n  p's active quad is t h e  same as t h e  active quad t h a t  t h e  

endpoint (s)  o f  pa lies in .  
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the endpoints have already been sorted according t o  the upper bounding segments of their quads. 

Thus, all endpoints that  lie in PEs between Dl and D2 (and which are hence set to  0) must lie in 

the same active quad of U. We can now update the information to indicate which active quad of 

U each e; lies in: this can be done by an appropriate selected broadcasting operation, which will 

update, for every e;, the upper and lower bounding segments of eiQ to the new values. Obviously, 

all such active quads of U lie in sorted order on the mesh MI U ill,. Hence, the determination of 

the active quads takes o(&) time on lVIl U M,. 

The Vertical Merge: Let Q' be a QI-quad (a similar argument will hold for a &,-quad.). If Q' is 

an a,ctive quad, then we already know its Voronoi diagram Vor(SU, n Q'), since it was computed 

recursively. If Q' is not active, then, since Su, n Q' consists of just the two bounding segments Qta 

a,nd Q ' ~ ,  the Voronoi diagram of Q' can be computed trivially in constant time. There is an obvious 

upper bound on the total number of such empty quads that  we can have in all such Q1 of Ul. Notice 

that an endpoint of a t  least one of Qta and Q ' ~  must lie in Q,. Hence, the number of empty quads 

of Ul that  we will need to  consider can be at  most O(k),  since that  is the number of endpoints in 

U,. Therefore, the computation of Vor(Su, n Q') for all such empty Q' will take a t  most O(k)  

time, sequentially. In the vertical merge step, we want to  merge the Voronoi diagrams of all the 

Ql-quads. The result of such a merge is called the Ql-diagram, denoted by Vor(Su, n Q1). The 

analogous diagram in Q, is called the Q,-diagram, Vor(Su, n Q,). Since, as we just mentioned, 

the Voronoi diagram of each QI-quad Q' is readily available to  us, this merge step involves just 

merging these Vor(Sv, n Q ' ) ,  which turns out to  be fairly straightforward. This will become clear 

as we describe the computation of the Ql-diagram on the mesh. The Q,-diagram can be computed 

in a similar way. Keep in mind that  we are talking about one active quad Q of U ,  and that  such a 

computation needs to  be performed for every active quad of U .  

Let C, represent the comnion boundary line between Ul and ll,, C1 the left boundary line of Ul, 

and C, the right boundary line of U,. We use s(p;) t o  represent the segment that  p; is an endpoint 

of. We will first give the description of the method to  find the empty quads of Ql and Q,, since this 

information is not immediately available to  us at  the end of the previous step (the determination 

of the active quads of U). Consider all the Ql-quads and the Q,-quads. Clearly, there is a sorted 

order on the bounding segments of these quads according to the point at  which they intersect C,. 

In this technique on the mesh, we will arrange these bounding segments in this sorted order on the 

mesh &ll U M,. Suppose s(p;) and s(pj)  a,re two successive spanning segments of Ql .  We want all 

points of Q, (if any) that  lie between these two segments to  lie between the PEs that  hold p; and 

pj. Similarly for Q,. As we will see later, this arrangement will enable us to  determine the empty 

Ql-quads, and the empty Q,-quads. 

Recall that  in the previous step the endpoints in Ev, and Ev, were merged according to  the 

ordering given by the upper bounding segment of their quads. Thus the points in Q will still be 

grouped according to  their old quads (from Ul or U,). As an example, the points in quad Q of 
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empty Q, -quad 
Y 

Q r  (,+', 

Figure 12: The Ql-quads and the &,-quads of an active quad Q of U. We want the endpoints p, 

marked by the shaded circles, t o  be sorted according t o  the point at which s(p) intersects C, (this 

point is marked by a cross). 

Figure 12  are arranged quad-wise in the order specified: points of QTj, Qli, Q,(j+l), QT(j+2), Q1(;+l) 

and finally Q,(j+3). Rut this ordering does not necessarily guarantee that  the points are in the 

order that  we want. To achieve this, we will need t o  a further sort of the points of Q .  The gist of 

the method used t o  find this new order of the points of Q is this23: All points p of quad Q such 

that  s(p) spans either Ul or U, are sorted according t o  the point at which s(p) intersects C,. In 

Figure 12, such endpoints are marked by the small shaded circles. For those points p such that  s(p) 

does not span Ul or U, (in Figure 12, these are the unmarked endpoints), we solve this problem by 

affiliating p with the upper bounding segment of its (recursively computed old) quad. This segment 

will certainly be a spanning segment of either Ul or U,, depending on whether p lies in Ul or U,, 

respectively. This can be given as follows. Let pi and p2 be two points that belong to  Q. 

Case 1: pl E Ul, p2 E Ul. The order between these two points was established during the 

recursive step: we maintain that  order (i.e. the order given by the upper bounding segments 

of the active Ql-quads that  pl and p2 belong to). 

Case 2: pl E U,, pa E U r .  Similar t o  above. 

Case 3: pi E Ul, pz E U,. Let &I ( Q 2 )  be the active Ql-quad (Q,-quad) that  pl (p2) lies in. 

Case 3.1: s(p1) intersects C,. If p2 lies above s(pl) ,  then pa < pi,  else pi < p2. 

Case 3.2: s(pz) intersects Ll.  If pl lies above s(p2), then pl < p2, else p2 < pi .  

2 3 N ~ t e  tha t  we could actually have done this sort during the previous merge step of determining the active quads. 

However, we choose to  do it here since these details are not really necessary to  determine the active quads of U .  
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Case 3.3: s(p1) does not intersect C, and s(p2) does not intersect Cl. In this case, we 

maintain the order as established by the upper bounding segment of each point's quad. 

In other words, if Qla  intersects C, a t  a higher point than or same point as Q2a ,  then 

Pl < 132. If not, pa < Pl.  

Case 4: p l  E U,, p2 E Ul. Similar to  above. 

lu will now refer to  the set of endpoints of U in this updated ordering. Now that  we have the 

points of Q in the desired order, we will describe the method used to  find the empty quads of Ql .  

The idea is simple: If two consecutive spanning segments of Ul (U,) in Ql  (Q, )  do not have any 

endpoints of Ql (Q,) between them, then they must define an empty Ql-quad (Q,-quad). On the 

mesh this works as follows. The endpoint p in each P E  of Ml U hlT determines if s(p) spans Ul. 

If so, some field in Pi is set to  1, say, and to  0 otherwise. In the PEs that  contain the endpoints of 

Q ,  consider two PEs Pj and Pk that  are successive in the set of PEs set to  1. Let the endpoints in 

these be pl  and p2, respectively. Clearly, s(pl)  and s(p2) are two consecutive spanning segments of 

Ul. If there are no endpoints of Q1 in the PEs between P, and PA,  then s(pl) and s(p2) will define 

the upper and lower bounding segment of an empty quad. Let InUleft be a field in each P E  Pi that  

is set to  1 if the endpoint in Pi belongs to  Ul; otherwise, it is set to 0. The next step is t o  use, for 

each such Pj and Pk, the PEs Pj+1, . . . , Pk as one of the components for a segmented prefix scan. 

We perform the segmented scan operation on InUleft. If P E  Pk has 0 as the result of the segmented 

prefix scan, then that  means that  there are no points from QI in the PEs between Pj and Pk. We 

have thus found an empty Ql-quad. We compute the Voronoi diagram of this empty quad, which 

is nothing but B(s(pl) n Q1, s(p2) n Q1) and this consists of at  most 5 Voronoi edges. We store 

the diagram of this empty quad in P E  Pk and mark the edges to  indicate that  they are bisectors of 

segments in Ul. In the next phase, we perform steps analogous t o  the above, and find the Voronoi 

diagram of the empty quads of Q,. 

Now that  we have the Voronoi diagram of all the Ql-quads and the Q,-quads, we can compute 

the Ql-diagram and the Q,-diagram. This turns out to be very straightforward. We will describe 

how to  construct the Ql-diagram; the Q,-diagram can be computed in a similar way. Let Q1 and 

Q2 be two adjacent quads in Ql  with Q1 above Q2.  Also, let Vorl = Vor(Sv, n Q1) and 

v0~2 = Vor(SUl n Q2) .  We want to merge Vorl and Vor2 in order to find the Voronoi diagram 

of Q1 U Q2. From a lemma by Yap [[57], Lemma 51 we know that  the objects of Q1 and the objects 

of Qz do not interact with each other. Thus the edges of Vorl (Vor2) will not be modified in any 

way by the objects of Q2 (Q1). The only point to  note is about the segment s E Su, that  forms 

the boundary of Q1 and Q2: Vor(s) now consists of the edges of Vor(s)  from Vorl and the edges 

of Vor(s) from Vor2.  

Thus, none of the bisectors of Vorl and Vor2 have to  be modified in any way when we merge 

the two diagrams. The set of Voronoi edges in the merged diagram is the union of the sets of 

Voronoi edges of Vorl and Vor2. In essence, we just have to  "concatenate" the Voronoi diagrams 
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of the adjacent quads in the correct sorted order[l5]. This fact makes the computation of the 

Ql-diagram very straightforward. To merge the Voronoi diagrams of all the Ql-quads Q', we just 

have to  arrange the Vor(Su, n Q') in the correct sorted order. The method that  we just described 

to  find the empty Q1-quads ensures that all the Ql-quads are in the correct sorted order on the 

mesh Ml U Mr. Hence, all their Voronoi diagrams are also in the correct sorted order. With a sort 

step we can ensure that  within Q,  we have all the Voronoi edges of the Ql-diagram in consecutive 

PEs, followed by the Voronoi edges of the Q,-diagram. 

From the above, it can be seen that the vertical merge step takes 0(&) time on the k PEs of 

Ml u Mr .  

The Horizontal Merge: This is the most important part of the merge process. In the horizontal 

merge step, we reach our final goal of constructing the Voronoi diagram Vor(Su n Q )  for every 

active quad Q of U ,  and this is done by merging the Q1 and &,-diagrams. Recall that the merging 

of these two diagrams involves the construction of the contour, which is the locus of all points that  

are equidistant from the objects in Su, n Q (call these tlze Ql-objects) and the objects in Su, fl Q 

(Q,-objects). As before, our discussion will be based on the computation performed for one active 

quad Q,  with the assumption that  the same steps are carried out for all the active quad-s of U .  

As in the sequential methods of [25, 571 and the parallel PRAM method of [15], we will manip- 

ulate objects known as primitive regions, to  be defined shortly, for the construction of the contour. 

For the rest of this discussion, we will assume that the Ql-diagram is augmented in the following 

way (The &,-diagram will be augmented in a similar way): For every element e (either a point or 

an open line segment) in Su, fl Ql, we add spokes [25] to  the Voronoi region Vor(e) of e. If v is a 

Voronoi vertex of Vor(e), and if v' = proj(v,  e) (the projection of v on e), then the line segment 

obtained by joining v and v' is a spoke of Vor(e). See Figure 13 for a Voronoi diagram augmented 

with spokes. In [15], the authors add some additional spokes. For all e that  are point elements, we 

check if the horizontal leftward ray from e crosses any spokes before it intersects the boundary of 

Vor(e). If not, then let p be the point of intersection on the boundary. The line segment from e t o  

p is also added as a spoke. We do a similar step for the rightward ray from e. If these leftward and 

rightward rays do not intersect any spokes or Voronoi edges, then these rays are also considered 

t o  be spokes. Tlzese additional spokes are indicated by bold dotted lines in Figure 13. All spokes 

define new sub-regions within Vor(e). These sub-regions bounded by two spokes on two sides, part 

of e on one side, and a piece of Voronoi edge on the other side are called primitive regions (prims for 

short) [15]. The piece of Voronoi edge that forms one of the boundary edges of each prim is called a 

semi-edge [15]. Notice that since VorSet(Su,) consists of a t  most O(k) Voronoi edges and vertices, 

the number of prims will also be O ( k ) .  For the rest of this discussion, we will call the spokes of 

the Q1-diagram as Ql-spokes, the prims of the Ql-diagram as Ql-prims, and the semi-edges of the 

Ql-diagram as Ql-semi-edges. 

In the merge computation on the mesh so far, our technique has been t o  store a constant number 
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Figure 13: A Voronoi diagram augmented with spokes. 

of Voronoi edges per PE. Notice that each Voronoi edge (part of B ( e l ,  e 2 ) ,  say) actually defines 

two prims: one in each of the two Voronoi regions V o r ( e l )  and V o r ( e 2 ) .  So we will assume that 

both these prims are stored along with the Voronoi edge. It is also easy to determine the additional 

spokes (mentioned above) that need to be added. Every prim in V o r ( e l ) ,  where el is either an 

endpoint or an open line segment corresponding to segment sl in Su, n Q, determines if it is 

intersected in the desired manner by the leftward and rightward rays from both the endpoints of 

s l .  This can be done in constant time for each prim, and in constant total time for all the prims 

since there are a constant number of prims per PE. 

We now want to  construct the contour between the Ql-diagram and the &,-diagram. This 

construction depends crucially on certain properties of the contour. We state these properties as 

lemmas below, and refer the reader to  [15, 571 for the proofs. 

L e m m a  5 . 3  (Goodrich e t  al. [15]) Let a and P be Q l -  and &,-prims, respectively. Let s ,  E Su, 
and sp E Su, be such that a C Vor(s,)  and ,O 5 V o r ( s p ) .  Let b,,p = B(s,, so) fl a n ,O. If 

b,,@ is non-empty, then be,@ defines a piece of the contour. 

L e m m a  5.4 (Goodrich e t  al.  [15]) The contour is monotone with respect to the y-axis. 

L e m m a  5.5 (Goodrich e t  al.  [15]) The contour intersects each spoke and each Voronoi semi- 

edge at most once. 

From the above lemmas it is easy to see that the contour intersects each prim in at most one 

continuous piece [15]. 

The motivation behind the method to construct the contour (as developed in 1151) is as follows: 

Since the contour is the locus of points that are equidistant from the Ql-objects and the Q,-objects, 
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it will be made up of parts of bisectors of the form B(el ,  e,), where el is a &[-object and e, is 

a Q,-object. The construction of the contour involves finding all such pairs (el, e,). Obviously, 

every such Ql-object el that contributes a bisector to  the contour will have some of its Ql-prims 

intersected by the contour. Thus the first step towards the construction of the contour is t o  find 

all the Ql-prims that  are intersected by the contour, and the order in which they are intersected. 

Similarly, we identify all the Q,-prims that are intersected by the contour and put them in the 

right order. Once we have these two ordered sets of prims, we identify all (el, e,) pairs such that  

part of B(el ,  e,) is a piece of the contour. 

Given below are the important details of the construction of the contour on the mesh. Notice 

that  at this stage of the merge all the active quads of U are in sorted order in Ml U Mr , and within 

each such Q ,  we have the Ql-diagram, followed by the &,-diagram. 

(1) Finding the intersected Ql-prims in the correct order The method described below can be 

applied in an obvious way to  find the intersected &,-prims in the correct order. 

(1.1) Finding the Ql-spokes that are intersected by the contour: We wish to  determine the Q1- 

prims that  are intersected by the contour. This is equivalent t o  identifying the Ql-spokes 

that  are intersected by the contour because, by Lemma 5.5, if the contour intersects a 

prim, it must intersect at least one of the spokes of that prim. For every Ql-spoke If ,  one 

endpoint a of the spoke is adjacent on a Ql-object el and one endpoint b is adjacent on 

a Q l - ~ e m i - e d g e ~ ~ .  If b is closer to a Q,-object than it is to el, then I' must be intersected 

by the contour. In order t o  determine if b is closer t o  a &,-object, we find the Voronoi 

region Vor(e,) of the &,-diagram that b lies in. If d(b, e,) > d(b, el), then the contour 

must intersect 1'. Call a (b)  the o-endpoint (s-endpoint) of 1'. 

We can find such a Vor(e,) for the s-endpoint of every &[-spoke by doing planar point 

location. From Lemma 5.1, we know that we can do this by running Algorithm MUL-  

TILOC with some slight modifications: The set S is the set of &,-semi-edges of all the 

active quads Q and the set P js the set of s-endpoints of the Ql-spokes of all the active 

quads Q. Since IS1 + I PI = O ( k ) ,  this step can be done on Ml U Mr in o(&) time. 

Once we find such a Vor(e,) for every Ql-spoke, we can determine, in constant time, if 

it is intersected by the contour. Let us assume that all Ql-spokes that  are intersected 

by the contour are marked in an appropriate way. 

(1.2) Sorting the intersected Ql-spokes: In this step we sort the set of intersected Ql-spokes 

according t o  the well-defined sorted order that is guaranteed by Lemma 5.4. If we 

assume that  the contour is oriented from bottom to top, we know that  the o-endpoint of 

every intersected Ql-spoke must lie to  the left of the contour and the s-endpoint of every 

24what about unbounded spokes? we should be able t o  deal with it in a manner similar t o  that  in [22] 
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I 

(a) I J >  I "  (b) 1 ' < l " 

(d) I  < I  

(e)  I ' > I " cn 1'.  I "  

Figure 14: An illustration of Lemma 5.6 (Case 2). Each spoke's o-endpoint, which must lie to  the 

left of the oriented contour, is indicated by the small shaded circle. 

intersected Ql-spoke must lie to  the right of the contour. The spokes will be sorted from 

top t o  bottom. The following lemma gives us the method to  find the ordering. 

Lemma 5.6 Let 1' and I" be two Ql-spokes, and let yll (yll') be the y-coordinate of the 

o-endpoint of 1' (1") and y2' (y2") be the y-coordinate of the s-endpoint of 1' (2"). The 

order between I' and I" is determined in the following way: 

Case 1 One of 1' or I" lies entirely above the other i.e. [ylt, y2'] n [yl", y2"] = 0. 
(a) min(yll, y2') > max(yll', y2"): I' > I". 

(b) min(ylf', y2") > rnax(yll, y2'): 1" > 1'. 

Case 2 [YI', y2'1 n [YI", y2"] # 0. 
For the sake of brevity, we refer the reader to Figure 14 for an illustration of the 

difjerent cases that are possible in this instance. 

Proof: Case 1 is obviously true, by Lemma 5.4. The details of the proof for Case 2 are 

also fairly obvious: a figurative proof is offered in Figure 14. EI 

This step can be done in o(&) time on Ml U M,. Let this ordered set of intersected 

Ql-spokes (&,-spokes) be called ISl (IS,). Note that  the information about the ordered 

set of intersected Ql-prims (Q,-prims) is implicit in ISl (IS,): call this ordered set IPl 

(IP,) .  Within each quad Q in Ml U iWT, we have the the prims of IPl in order, followed 

by the prims of I P , .  
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(2) Finding the contour between Ql-diagram and the &,-diagram: We use the two sorted sets IPl 

and IP, to construct the contour. The PRAM niethod of Goodrich et al. [15] does this in the 

following way: Let a be the median prim in the sorted set IPl, and let s, be its &[-object. 

For every prim /3 in IP, (whose &,-object is so), we compute b,,p = B(s,, so) n a n /3. 
From Lemma 5.3, we know that if b,, p is non-empty, then it is part of the contour. Also, 

all the p's such that b,, p is non-empty form a continuous interval I, of prims in IP, [15]. 

Furthermore, all the prims of IPl that lie above (below) a can interact only with the prims 

of IP, that lie above (below) I,. In[15], the authors recurse on the half above a and above 

I,, and below a and below I,, in parallel. 

We will give a brief description of a non-recursive solution of this final step on the mesh. 

Consider a prim a from I P r .  We wish to find the interval I, of prims from IP, that interact 

with a. One way to  do this is by identifying the topmost prim of the interval I, (call this 

at) and the bottommost prim of the interval I, (call this a b ) .  Sequentially, we can find at 

by doing a binary search in the following way (ab can be found in a similar way): Let ,!? be 

the median prini of IP, .  (a) If b,,p is non-empty, then we know that at must lie in the top 

half of IP,, so we recurse on that half to find a t .  (b) If b,,p is empty, then we can determine 

which of a and ,!? the contour intersects first. This can be done by comparing the order of 

a and /3 in a manner analogous to  that given in Lemma 5.6. If a > P (i.e. the contour, 

oriented from bottom to top, intersects /3 before it intersects a ) ,  then the binary search for 

at has to recurse on the top half of IP,. If a < /3, then it recurses on the bottom half of 

IP,. 

Now, in order to find at for every a in IPl in parallel, we have to do a simultaneous search. The 

mesh implenientation of such a step can be done by an application of Algorithm SIMULTSRCH, 

by using prims from IPl as the equivalent of the point set P, and the prims from IP, as the 

equivalent of the segment set S in Algorithm SIMULTSRCH. Similarly, ab can be found by a 

similar application of Algorithm SIMULTSRCH. Let us assume that every cu also knows the 

PE ids Pt and Pb of cut and ab, respectively. From this information, a can find the length 

(I, 1 of the interval I,. If we now make II, 1 copies of a, each of those copies can read the 

prim /3 from one of the PEs from Pt to Pb. We can thus determine the piece of the contour 

ha,@. Making I I,] copies of every a in IPl can be done by a prefix scan on 1 I@ 1 ,  followed by a 

one-to-one routing, and finally by a selected broadcasting step. To determine each b,,p that 

is part of the final contour, each of the copies of a reads the ,6' from one of the PEs from Pt 

to Pb. This can be done with one RAR step. 

Since the lengths of the lists IPI and IP ,  are each O ( k )  for all the active quads Q of U ,  the 

above step can be done in 0(&) time on Ml U M,. 
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5.3 Motion Planning Using Voronoi Diagrams 

We summarized, in Section 1, the main ideas behind the method by 0 ' ~ 6 n l a i n ~  and Yap for 

planning the motion of an object (a disc) with two dofs, moving amongst obstacles [34]. They use 

the Voronoi diagram of the line segments that  make up the obstacles t o  plan the motion of the 

object. We give the mesh-optimal parallel implementation of this method of motion planning. Let 

us assume that  the object A has to  be moved from point a to  b. First we construct the Voronoi 

diagram and this takes 0(&) time on a fi x & mesh, as we have just shown. Recall that  the 

next step is to  remove all the Voronoi edges that  do not satisfy the minimum clearance requirement. 

In other words, we want to  delete all Voronoi semi-edges v' = B(el ,  ez) such that  the minimum 

distance of the points on v' from el and ez is less than some prespecified length r  (the radius in the 

case of a moving disc). Clearly, assuming that we know r, this deletion can be done in constant 

time on the mesh, since each PE has a consta.nt number of Voronoi edges. The remaining Voronoi 

edges define a graph which may be disconnected. 

The next step is t o  find the Voronoi cells V o r ,  and Vorb that  contain the points a and b, 

respectively. By Lemma 5.1, this can be done in 0(&) time. The last step is t o  find a path from 

an (undeleted) edge of V o r ,  to  an (undeleted) edge of Vorb. One way t o  do this is by constructing 

the spanning tree and then finding this path, if one exists. In [4], Atallah and Hambrusch show 

that in a graph with edge set E, we can solve this problem in on a mesh with (El PEs. In the 

graph defined by the Voronoi diagram, IE( is O(n). It follows, therefore, that  we can implement 

the motion planning technique of [34] in 0(+)  time on a + x f i  mesh. 
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6 Proposed Research 

In recent years, there has been steady progress in the development of exact algorithms for various 

special cases of motion planning. These algorithms provide us with polynomial-time solutions 

that are often worst-case optimal. However, in many cases, the sequential complexity is high 

enough to merit investigation into possible speed-ups offered by parallelization. The goal of our 

research is two-fold. On the one hand, we are interested in the parallelization of existing sequential 

algorithms for various special cases of motion planning. On the other hand, there is a wide array 

of useful motion planning problems that have important applications, but whose solutions are 

computationally intractable in practice. The intractability of such problems is related to  the number 

of degrees of freedom of the moving object. In such cases, it may be feasible to  apply approximation 

techniques as well as randomization, which provide faster run-times. Randomization has been 

shown to be a particularly suitable strategy for "breaking" the inherently sequential nature of 

many problems. In what follows, we state problems that we propose to  investigate for solutions on 

fixed-connection networks and/or on PRAMS. 

In our investigation so far, we have derived efficient mesh algorithms for certain geometric 

techniques that are used in special instances of motion planning viz. planning the motion of 

an object in two dimensions with 2 dofs by using visibility graphs or Voronoi diagrams. These 

techniques are specialized applications of general motion planning strategies. We would like to  look 

into the development of efficient parallel algorithms for other special cases of motion planning for 

which polynomial sequential algorithms exist. Efficient parallel algorithms for such cases, whether 

on the PRAM or on fixed-connection networks, offer the possibility of significant speed-ups, which 

will prove to  be very useful. For example, consider an object with 3 dofs moving in 2-dimensional 

space among polygonal obstacles. Lozano-PQez and provide an approximate technique 

(assuming the moving object is convex) for this case in [30]. Although this technique can be 

incorporated into our mesh algorithm, we are interested in parallel algorithms for the more exact 

methods of solving this problem. 

(a) As we mentioned in Section 1, Sharir et al. [42, 45, 501 have developed polynomial-time 

sequential algorithms for a number of special cases by applying the projection method. By 

using discrete combinatorial representations of the free configuration space, they come up 

with algorithms for problems such as a rod (a  line segment, sometimes also called a ladder) 

moving among convex obstacles, a rigid polygonal object (with 3 dofs) moving among convex 

obstacles etc. Even though these algorithms are polynomial-time algorithms, they are not 

very efficient. Refinements for some of these algorithms have been proposed. In particular, the 

exact algorithm for a rod moving among polygonal obstacles has been improved substantially 

to  run in time O(n2 log n) [28, 521. We would like to look into how special applications of the 

projection method can benefit from parallelism. In particular, we are interested in designing 
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fast ~ara l le l  algorithms for planning the motion of a rod or a polygonal object with 3 dofs 

moving among polygonal obstacles. 

(b) The retraction method was mentioned in Section 1, and we noted there that this approach has 

the advantage of providing "maximum clearance" from the obstacles for the moving object . 
In Section 5, we developed efficient mesh algorithms for one such application of the retraction 

approach of [34], namely using Voronoi diagrams to  plan the motion of an object with 2 

dofs (either a disc or a convex object) moving among polygonal obstacles. The principle of 

retraction has led to efficient algorithms for planning the motion of a rod (3 dofs) moving 

among polygonal barriers [33] and of two independent discs in the plane [56]. 

For the former problem, ~ ' ~ h l a i n g ,  Sharir and Yap [33] generalize the retraction approach 

by defining a a variant of the Voronoi diagram in the 3 dimensional configuration space of 

the rod [41]. They construct a one-dimensional diagram by performing two retractions (as 

opposed to just one in the case of [34]), followed by a graph search on this diagram in order to  

find a motion path. Via a con~plicated geometric analysis, they show that their algorithm runs 

in time O(n210g nlog*n). We observed in Section 5 that even for the simpler case of an object 

with 2 dofs, the parallel constnlction of the Voronoi diagram is fairly involved. The retraction 

method for the rod promises to be even more involved! However, given that this retraction 

method is an exact technique that has the appealing "maximum clearance" property, we 

would like to investigate the adaptation of this strategy to the parallel environment. 

( c )  We have considered various geometric algorithms for the motion planning problem in 2 dimen- 

sions. As previously noted, the problem rapidly becomes harder in 3 dimensions. In general, 

the geometric characterizations of the various special cases of motion planning in 3 dimen- 

sions, even for small degrees of freedom, are much less understood than the corresponding 

problems in 2 dimensions. Consider the problem of a purely translational object moving in 

3 dimensions among polyhedral obstacles. For the 2 dimensional counterpart of this prob- 

lem, the method by Lozano-Pkrez et al. [30] provides us with an exact algorithm that plans 

the shortest path for the object. We developed a mesh-optimal algorithm for this case in 

Section 4. 

In 2 dimensions, we have the useful property that the shortest path from one point to  another 

can be found by performing a shortest-path graph search on the visibility graph. Unfortu- 

nately, this useful relation between visibility graphs and shortest paths does not hold in 3 

dimensions. The shortest paths between two points while avoiding polyhedral obstacles is still 

known to be piecewise linear. However, the vertices of the path can now lie on the edges of the 

polyhedra, and need not always coincide with the vertices of the polyhedra [41]. For general 

polyhedra in 3 dimensions, algorithms for finding such shortest paths have run-times that 

are no better than doubly-exponential [51]. An approximating pseudopolynomial technique 

for finding shortest paths among general polyhedral objects is given in [35]. Polynomial-time 
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algorithms are also offered for certain special cases; for example, when the obstacles are a 

small number of convex polyhedra [51]. We would like to  study these problems in the parallel 

setting. 

(d) As we have seen, the efficiency of solving various subroutines like the Voronoi diagram con- 

struction for line segments, multipoint location etc., directly affects the efficiency of many 

general motion planning strategies. There are several interesting open problems in this re- 

gard. For example, the best known parallel algorithm for the Voronoi diagram of a set of 

n line segments uses n processors and runs in O(log2n) time. This is not optimal in P T  

bounds, since the best known sequential algorithms for this problem are O(n log n).  A similar 

result holds for the Voronoi diagram of a set of points in the plane, i.e. there are sequential 

algorithms which run in optimal O(n1ogn) time, but the best known deterministic parallel 

algorithm for this problem uses n processors and runs in O(log2n) time. There are a num- 

ber of important geometric problems for which sub-optimal parallel algorithms were given in 

[[2], [lo]]. For many of these problems, optimal parallel algorithms have since been derived, 

largely due t o  the work of Atallah, Cole and Goodrich [6], using the versatile technique of 

cascading divide-and-conquer to construct the algorithms. However, the important problems 

of the Voronoi diagram of a set of points and of a set of line segments have eluded optimal 

deterministic parallel solutions e.g. solutions that  use n processors and run in O(1og n)  time. 

As observed in [40], it appears that very different techniques would have t o  be used in order 

t o  eliminate the extra log n factor in the PT-product. 

One such technique could be randomization. A randomized algorithm makes some of its 

decisions on the basis of the outcomes of coin-flips, and we must be able to  show that  such 

a strategy will result in a fast run-time on any input with high probability. Theoretical 

development in the area of randomized algorithms has shown that  randomization can be a 

very useful strategy for designing parallel algorithms for problems that  seem to  be inherently 

sequential. In addition, randomization has often resulted in parallel algorithms with better 

P T  products than the best known deterministic parallel algorithms for numerous problems. 

For instance, Reif and Sen [40] show that the Voronoi diagram of a set of points in the plane 

can be constructed optimally on a CRCW PRAM with n processors in O(1ogn) time with 

high probability. Additional applications of randomization t o  problems in computational 

geometry can be found in 1391. 

We are interested in applications of randomization for different motion planning problems. 

Randomization might be a particularly well-suited strategy for running motion planning al- 

gorithms in simulated environments, as in computer graphics. In particular, we would like 

t o  investigate the possibility of developing an optimal randomized PRAM algorithm for the 

construction of the Voronoi diagram of a set of line segments in the plane. 

(e) A very important class of problems in motion planning that we have not yet mentioned is 
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the algorithmic planning of movement for a chain of links, also known as a robot arm or a 

multilink. The problem of planning the motion of a chain of links is one that has very useful 

applications, especially in the arena of human figure animation in computer graphics. If the 

number of links, k, in the chain is our input size, then from the results stated in Section 1, 

the best algorithm for planning the motion of a multilink moving among obstacles takes time 

exponential in k. In fact, general motion planning for chains of links even i n  the absence of 

obstacles is intractable. 

Consider a chain of links hinged together consecutively such that each link is allowed to 

rotate freely about its joint (the links may cross over one another). This is also known as the 

carpenter's ruler. In [20], Hopcroft et al. show that the problem of deciding whether such a 

ruler can be folded to  within a specified length (thus every link makes an angle of 0 or n with 

the previous link) is NP-complete. Clearly then, if the chain consists of links that are only 

allowed to make an angle of 0 or T with the previous link, the reachability decision problem 

(i.e. does the free endpoint of the end effector reach a particular point or not) for this chain 

is NP-complete. Thus general motion planning for a chain of links appears to  be intractable, 

even in the abscence of obstacles. 

In addition, Hopcroft et al. [20] show that the reachability decision problem for a chain 

of k links moving aniong certain rectilinear barriers is NP-hard. The goal then is to look 

for classes of problems for which efficient algorithms (i.e. polynomial in k )  can be found. 

For example, there are polynomial time algorithms for planning the motion of a carpenter's 

ruler in which every joint of the ruler is confined to  move within a circle [20, 231. When the 

motion is restricted by corners, the problem becomes more difficult and in fact, some lower 

bound results have been established. For example, Ke and 07Rourke [24] have established a 

lower bound of Q ( n 2 )  elementary submotions for moving a line segment (a  single link) in a 

2-dimensional polygonal space with n corners. 

A link such that one of its endpoints is free is known as the end efector. For human figure 

animation in computer graphics, an important problem is to move a chain of links (such 

as an arm) so that the end effector (the hand, say) reaches a specified point, subject to  

additional constraints such as the angle limits for every joint. Approximate techniques have 

been developed for this problem. For instance, if we are given the position of the end effector, 

we can use inverse kinematics to find joint angles for the other links. This problem can 

be formulated as a non-linear programming problem. In the Computer Graphics Lab. at 

Penn, the approach to this problem has been to  use approximate numerical techniques for 

non-linear programming with linear constraints [58]. For some simple cases of non-linear 

programming, closed form solutions are possible [36], but for more general problems only 

approximate numerical techniques25 are possible. 

2 5 ~ s  opposed to closed form solutions, numerical techniques find only one solution t o  the  non-linear prograninling 
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We are interested in looking into the usefulness of parallelism for specific cases of this im- 

portant class of motion planning problems. The more exact polynomial-time techniques for 

simpler cases could benefit from valuable speed-ups offered by parallel algorithms. In addi- 

tion, we would like t o  explore the possibility of applying other approximate techniques as well 

as randomization to  cases that are more computationally expensive. 

problem. 
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