
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1993

Algorithmic Motion Planning and Related Geometric Problems on Algorithmic Motion Planning and Related Geometric Problems on

Parallel Machines (Dissertation Proposal) Parallel Machines (Dissertation Proposal)

Suneeta Ramaswami
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Suneeta Ramaswami, "Algorithmic Motion Planning and Related Geometric Problems on Parallel
Machines (Dissertation Proposal)", . December 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-98.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/263
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/263
mailto:repository@pobox.upenn.edu

Algorithmic Motion Planning and Related Geometric Problems on Parallel Algorithmic Motion Planning and Related Geometric Problems on Parallel
Machines (Dissertation Proposal) Machines (Dissertation Proposal)

Abstract Abstract
The problem of algorithmic motion planning is one that has received considerable attention in recent
years. The automatic planning of motion for a mobile object moving amongst obstacles is a
fundamentally important problem with numerous applications in computer graphics and robotics.
Numerous approximate techniques (AI-based, heuristics-based, potential field methods, for example) for
motion planning have long been in existence, and have resulted in the design of experimental systems
that work reasonably well under various special conditions [7, 29, 30]. Our interest in this problem,
however, is in the use of algorithmic techniques for motion planning, with provable worst case
performance guarantees. The study of algorithmic motion planning has been spurred by recent research
that has established the mathematical depth of motion planning. Classical geometry, algebra, algebraic
geometry and combinatorics are some of the fields of mathematics that have been used to prove various
results that have provided better insight into the issues involved in motion planning [49]. In particular, the
design and analysis of geometric algorithms has proved to be very useful for numerous important special
cases. In the remainder of this proposal we will substitute the more precise term of "algorithmic motion
planning" by just "motion planning".

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-98.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/263

https://repository.upenn.edu/cis_reports/263

Algorithmic Motion Planning and Related
Geometric Problems on Parallel Machines

(Dissertation Proposal)

MS-CIS-93-98

Suneet a Ramaswami

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 191046389

December 1993

Algorithmic Motion Planning and Related Geometric Problems on

Parallel Machines

A Dissertation Proposal

Suneeta Ramaswami

May 1992

Proposal

Contents

1 Motivation 4

. 1.1 Introduction 4

. 1.2 General Strategies for Motion Planning 5

1.2.1 Application of the projection method for an object with 2 do& 6

1.2.2 Application of the retraction method for an object with 2 dofs 8

. 1.3 Motivation for Parallel Algorithms 9

1.4 Parallel Algorithms for Related Geometric Problems 10

. 1.5 Outline of the Proposal 10

2 Brief Overview of Sequential and PRAM Algorithms and their Complexity 12

. 2.1 Visibility Graphs 12

. 2.1.1 Definitions and Sequential Algorithms 12

. 2.1.2 Parallel Algorithm on the CREW PRAM 13

2.2 Voronoi Diagram of a set of Line Segments in the Plane 14

. 2.2.1 Notation, Definitions and Sequential Algorithms 14

. 2.2.2 Parallel Algorithm on the CREW PRAM 18

3 Preliminaries on the Mesh-Connected-Computer 20

. 3.1 The Mesh-Connected Coniputer 20

. 3.2 Useful Operations on the Mesh 22

4 Mesh Algorithms for Visibility Graphs and the Related Motion Planning Prob-

le m 2 5

. 4.1 Visibility Graphs 25

. 4.2 Motion Planning Using Visibility Graphs 29

5 Mesh Algorithms for the Voronoi Diagram of a Set of Line Segments and the

Related Motion Planning Problem 3 1

Proposal

5.1 Multipoint Location and why it is important . 31

5.2 Voronoi Diagram of a Set of Line Segments in the Plane 34

5.2.1 Details of the Merge Step on the Mesh . 39

5.3 Motion Planning Using Voronoi Diagrams . 49

6 Proposed Research 5 0

List of Figures

1 Obstacle 0 is expanded by object B (which has 2 dofs). 7

2 The visibility graph of a set of line segments. The dashed line segments axe the edges

of the graph. 13

3 The bisector of two line segments sl and s2. 15

4 The Voronoi diagram of a set of closed line segments S = {stl, sf2, sIs, sf4 , sf5}.

st; consists of the two endpoints v2;-l and v2i, and the open line segment s;. Some

of the Voronoi edges have been marked. 16

5 A mesh-connected computer of size n. . 21

6 Indexing schemes on the mesh. (a) Row-major (b) Shuffled row-major (c) Snake-like

row-major (d) Proximity . 22

7 Shuffle on a linear array. 23

8 Shuffle on a mesh with row-major indexing. 24

9 Merging of lower envelopes. (a) The set S with S1 = {sl, sz, sg, s q } (the light line

segments) and S2 = {s5, s ~ , s7, s 8 } (the dark line segments). (b) The recursively

computed lower envelope of S1. (c) The recursively computed lower envelope of Sp .
In (b) and (c), the hidden segment parts are dotted. (d) The final lower envelope. . 27

10 Computing lowerseg in the merge step. As before, the lighter segments form S1 and

the darker ones form S2. (a) The value of lowerseg in each PE after step (i j) of the

merge step. (b) The values of lowersegl after step (iii) of the merge step. (c) The

values of lowerseg2 after step (iv) of the merge step. (d) The final lowerseg value in

each PE, as found in step (v). 29

Proposal

11 An active quad Q of U . & I ; , QI(;+I) (QTj, Q,(j+l), Q, (j+z) , Q7(j+3)) are consecutive
active quads of Ul (U,). The dashed arrowed curves going out of each endpoint

indicate the upper bounding segment of that points quad. 40

12 The Ql-quads and the Q,-quads of an active quad Q of U. We want the endpoints

p, marked by the shaded circles, to be sorted according to the point a t which s (p)

intersects G, (this point is marked by a cross). 42

. 13 A Voronoi diagram augmented with spokes. 45

14 An illustration of Lemma 5.6 (Case 2). Each spoke's o-endpoint, which must lie t o

. the left of the oriented contour, is indicated by the small shaded circle. 47

Proposal

1 Motivation

1.1 Introduction

The problem of algorithmic motion planning is one that has received considerable attention in

recent years. The automatic planning of motion for a mobile object moving amongst obstacles is a

fundamentally important problem with numerous applications in cornputer graphics and robotics.

Numerous approximate techniques (AI-based, heuristics-based, potential field methods, for exam-

ple) for motion planning have long been in existence, and have resulted in the design of experimental

systems that work reasonably well under various special conditions [7, 29, 301, Our interest in this

problem, however, is in the use of algorithmic techniques for motion planning, with provable worst-

case performance guarantees. The study of algorithmic motion planning has been spurred by recent

research that has established the mathematical depth of motion planning. Classical geometry, al-

gebra, algebraic geometry and combinatorics are some of the fields of n~athematics that have been

used to prove various results that have provided better insight into the issues involved in motion

planning [49]. In particular, the design and analysis of geometric algorithms has proved to be very

useful for numerous important special cases. In the remainder of this proposal we will substitute

the more precise term of "algorithmic motion planning" by just 'Lmotion planning".

Let B be a programmable object (for example, a robot) with k degrees of freedom1 (dofs) that

is mobile in two- or three-dimensional space. In its most general form, the algorithmic motion

planning problem can be stated in the following way [46]: Given an initial starting position PI, a

final destination position PF and a set of obstacles whose geometry is known to B, determine if

there exists a continuous obstacle-avoiding motion for B from PI to PF. If one exists, construct

the path for such a motion. There are numerous variations of the motion planning problem; for

example, the set of obstacles might themselves be moving, or B may have incomplete knowledge

about its environment. In addition, it may be necessary to take the dynamics of the systcm into

account i.e. a system may be restricted to move within certain velocity or acceleration bounds

[49]. Our interest, however, is in planning the motion of B in static and known environments;

the obstacles are stationary and B has complete knowledge about them and our interest is in the

geometric nature of the problem. As we will see soon, even under this simplifying assumption,

general cases of motion planning can be computationally intractable. The more general variations

mentioned above are substantially more difficult, and we will not directly address them in our

proposal.

We first give a summary of the results that provide lower bound results for certain general cases

of motion planning. We will see in Subsection 1.2 that planning the motion of an object rapidly

l ~ h e degrees of freedom of an object can be defined as the number of parameters tha t need to be specified in

order t o completely determine the position of the object.

Proposal 5

becomes intractable as the number of degrees of freedom of the object increases. This result was

reinforced by Reif in [38]. In that paper, he shows that planning the motion of a 3 dimensional

system of linkages consisting of arbitrarily many links and moving through a system of narrow

tunnels is P S P A C E - ~ ~ ~ ~ ~ . Subsequently, Hopcroft et al. [19] showed that the general motion

planning problem is PSPACE-hard even in 2 dimensions. They used a mechanical system of 2-

dimensional linkages to establish the result. Another instance of a PSPACE-hard motion planning

problem in 2 dimensions was demonstrated in [21]. N P-hardness or NP-completeness results have

also been established for numerous simpler special cases (in [20], for example). As observed in

[49], these lower bound results are strong since they hold for the decision problem corresponding

to the motion planning problem. In other words, these lower bound results are for the problem of

determining whether or not the object can be moved from PI to PF (a 'yes' or 'no' answer); the

path itself is not constructed.

In what follows, we will give a brief summary of some general strategies that have been developed

for motion planning. These strategies have led to efficient algorithms for some special cases in 2

and 3 dimensions.

1.2 General Strategies for Motion Planning

Despite these discoilraging lower bounds, some general techniques have been developed for algorith-

mic motion planning. These techniques yield polynomial-time algorithms for useful special cases

of motion planning for objects with a low number of dofs. Schwartz and Sharir [42, 43, 44, 451

did some of the earliest and most fundamental work in the design of exact geometric strategies for

planning motion. We give a brief summary of the general strategy. Let n be the size of the obstacle

set and let k be the number of dofs of the mobile object B. Every position of B can be thought

of as a point in k-dimensional parametric space. Let a fwe configuration be a placement of B in

which it does not intersect with any of the obstacles. FP is the subset of k-dimensional space that

contains all the free configurations of B. Construction of FP is the first step. In general, FP will

consist of many path-connected components. A collision-free path from PI to PF exists if and only

if the corresponding k-dimensional configurations lie in the same connected component. Each such

connected comporlent consists of cells. A connectivity graph is now constructed with a node for

each cell. By doing a graph search on the connectivity graph, it is possible to plan a collision-free

path for B, if it exists. Schwartz and Sharir showed that this strategy leads to algorithms whose
k

worst-case run-times are polynomial in n, but doubly exponential in k (i.e. 0 (n 2)) [43].

A dramatic breakthrough was made by Canny [8] who came up with a general algorithm with

2A problem is said t o be PSPACE-hard if it is a t least as hard (with respect to polynomial time reductions) as

any problem that can be solved by using storage that is polynomial in the input size. It is highly unlikely tha t such

problems can be solved by efficient polynomial-time algorithms.

Proposal 6

a worst-case run-time that is polynomial in n, but single exponential in k . Instead of decomposing

FP into cells, Canny constructs a one-dimensional skeleton (he calls this the "road map") that

has a one-to-one correspondence with the curves in FP in the following sense: Every placement in

EP can be moved continuously to a placement on the skeleton, and the intersection of the skeleton

with every corlnected component of FP is non-empty. Thus, in order to plan the motion of B from

PI to PF, we move the corresponding placements in k-dimensions to some points X I and X F on

the skeleton. We then search for a path from X I to X F along the skeleton. If such a path exists,

we know how to move B from PI to PF. If it does not, the property of the skeleton (stated above)

ensures that it is not possible to move B from PI to PF.

A direct application of the above algorithms for special cases may not give us efficient algorithms.

However, they provide us with very useful insights into possible geometric approaches that can be

tailor-made to the specific cases that we are interested in. Note that even though the above

algorithms are exponential in k, for objects with a small number of dofs, they have a worst-case

run-time that is polynomial in n. Acceptably efficient algorithms have been designed for many

special cases.

Two different methods have commo~~ly been used in the design of such algorithms: the projection

method and the retraction method [49, 411. The projection method is a derivative of the strategy

developed by Schwartz and Sharir, outlined earlier. The main goal of this method is to design

efficient ways to come up with a cell decomposition of FP for the specific instance of motion

planning that is being considered. In Subsection 1.2.1, we will briefly describe an algorithm by

Lozano-Pi'rez and Wesley [30] for one such specific instance. The algorithm uses the ideas of the

projection technique. In Section 6, we point out some other cases of motion planning that have

been solved reasonably efficiently by this technique.

The retraction method is similar to the general technique developed by Canny. This method

proceeds by "retracting" FP onto some lower dimensional space in an appropriate way. In Sub-

section 1.2.2, we describe a particular motion planning algorithm by 0 '~ l in la ing and Yap [34] that

uses the ideas of retraction method. Other planning algorithms that also use this method will be

noted in Section 6. We provide the summary of the following specific instances of motion planning

because of our interest in developing efficient parallel algorithms for them.

1.2.1 Application of the projection method for an object with 2 dofs

One of the earliest geometric approaches to motion planning was given by Lozano-Pi'rez and Wesley

in [30]. In that pa,per they give approximate solutions for planning the motion of a 2-d convex

translational object moving amongst convex obstacles, a 2-d convex rotational (3 dofs) object

moving amongst convex obstacles, and a translational convex polyhedron moving amongst convex

polyhedral obstacles.

Proposal

Expanded Obstaclc
Original Obstacle 0

Expanded region

P

Moving Object I3

Figure 1: Obstacle 0 is expanded by object B (which has 2 dofs).

We are interested in the method used in [30] for planning the translational motion of a convex

object B (B has 2 dofs) moving among convex obstacles in the plane. Their method is an approx-

imation of the projection method when applied to this case (their technique actually precedes the

development of the general projection method). Let b be some reference point on B, and without

loss of generality, let us assume that b is at the origin. Let Be be the number of edges in B. The

strategy in [30] is t o first "expand" each convex obstacle 0 by B. This can be done by computing

the Minkowski set difference 0 - B = {x - y 1 x E 0, y E B } (x and y are vectors). It can

be shown that the expansion of 0 has B, + 0, (0, is the number of edges of 0) edges and can be

constructed in time proportional to its size. See Figure 1 for an example of an expanded obstacle.

It is clear that B will not collide with 0 if and only if the reference point b of B lies outside of the

expansion of 0. Let A be the union of all the expanded obstacles, and let E be the set of edges3

of A. Since B has 2 dofs, the configuration space of B is 2-dimensional. In fact, the complement

of A in the plane is the set of free configurations, EP, for B.

The next step is to compute the visibility graph of the set of edges E. The visibility graph gives

us information about which endpoints of the obstacle edges are visible to each other (assuming the

obstacle edges are opaque). We will be considering the problem of visibility graph construction at

more length a.nd we leave its details, including its formal definition, to Section 2. The visibility

graph is precisely the connectivity graph (of the projection method) that we are looking for. In

addition, we have the useful property that the shortest possible path for B between two points in

the pla,ne while avoiding the obstacles is given by the shortest path between the corresponding two

nodes in the visibility graph (where the edge weight is the Euclidean length of the edge). Thus we

can find a shortest path for B by performing a shortest-path graph search on the visibility graph.

Let n be the number of edges in the obstacle set and we assume that tlre size of B is a constant.

3Note tha t the expanded obstacles may now intersect with each other and thus we have to perform some compu-

tation before we can determine E. This step was, in fact, not given in [3 0] , but is given by Sharir in [48]. We will

not go into the details of the relevant results here.

Proposal 8

The expansion of the obstacles and the possible intersections between the expanded obstacles can

be computed in 0(nlog2n) tinie [48]. The computation of the visibility graph can be done in O(n2)

time, and the shortest-path search takes time proportional to the size of the visibility graph. Thus

the sequential run-time of the above algorithm is O(n2).

1.2.2 Application of the retraction method for an object with 2 dofs

In [34], 6 ' ~ f i n l a i n ~ and Yap give a motion planning algorithm for the simple case of a disc moving

in 2-dimensions among polygonal obstacles. The position of a disc is specified by the coordinates

of its center. The algorithm given in [34] is an elegant application of the retraction method (the

method of [34] actually precedes the general retraction approach developed by Canny [S]).

The retraction approach of [34] is based on the idea that the disc D should be moved in such

a way that it should be far away from its nearest obstacles as it moves. In [34], D is moved so

that during its entire motion, it is equally far away from its closest obstacles. This is achieved

by the construction of the Voronoi diagram of the set of line segments that form the polygonal

obstacles. The construction of this diagram is the most important step of this method, and we will

be considering this problem in much more detail in the following sections. Intuitively speaking, any

point on the Voronoi diagram is equally distant from two segments, and is closer to these segments

than to any other segment of the input set. 0 ' ~ f i n l a i n ~ et al. prove that the Voronoi diagram

is in fact a one-dimensional retraction of the free space FP of D. In other words, D can move

continuously between two points in FP if and only if it can move between a corresponding two

points on the Voronoi diagram.

Once the Voronoi diagram is constrncted, they discard those portions of the diagram where the

closest obstacle edge is too close for D to fit. This will happen if the closest obstacle is closer than

the radius of the disc. We can plan the motion for D by searching along the remaining Voronoi

diagram; this can be done by any path-finding method for graphs. Note that this method has the

useful property that the object always moves in such a way that it is as far away as possible from

all the obstacles. In other words, it has the maximum clearance property. As observed in [34], the

motion paths planned by this method may be much longer than the shortest paths. We would also

like to observe that it is possible to extend this technique to plan the motion of any convex object

with 2 dofs moving among polygonal obstacles [48].

Let n be the number of edge segments in the polygonal obstacle set. The Voronoi diagram of

these segments can be constructed sequentially in O(n1ogn) time [25, 26, 571. Also, the size of the

Voronoi diagram is O (n) [26]. Hence the removal of the appropriate edges of the diagram, and the

search for a path can be done in O (n) time. Therefore, the sequential run-time of the above motion

planning met hod is 0 (n log n).

Proposal

1.3 Motivation for Parallel Algorithins

It is clear that algorithmic motion planning relies on efficient solutions to a wide variety of geometric

problems. The goal of this proposal is the study of such geometric problems in the parallel environ-

ment. The availability of parallel computers has motivated the development of parallel algorithms

for solving a number of problems. Parallelism, aside from being an interesting problem-solving

strategy in its own right, is of particular relevance in the arena of computationally expensive and

intractable problems, such as those in algorithmic motion planning. For a number of special cases

of motion planning, we know that their sequential algorithms are either optimal or close to optimal

because of known lower bounds. Therefore, speed-ups obtained from a single sequential processor

will be limited by a constant or small factor. Parallel algorithms, however, offer the possibility of

significant speed-ups. Given that speed is an extremely important consideration for motion plan-

ning problems, we will benefit from the study of parallel algorithms for geometric problems related

to motion planning. In addition, attempting to solve a given geometric problem in parallel might

give us insights into new strategies for solving that problem.

The Parallel Random Access Machine (PRAM) is the most general shared memory model

of parallel computation. Communication between any two processors occurs through memory

cells that are shared by all the processors. Depending on how the processors handle read and

write conflicts, we have three different kinds of PRAMs: Exclusive Read Exclusive Write (EREW)

PRAMs (no simultaneous reads or writes are allowed), Concurrent Read Exclusive Write (CREW)

PRAMs, and Concurrent Read Concurrent Write (CRCW) PRAMs (write conflicts are handled

in some pre-determined fashion). Let A be a parallel algorithm for some problem whose input is

of size n, and let B be the best known sequential algorithm for that problem. Let p(n) be the

number of processors used by A, t (n) the run-time of A and s(n) the run-time of B. A belongs

to the parallel complexity class N C ~ if p(n) is polynomial in n and f(n) is O(logkn). The parallel

complexity class NC is defined to be Uk N C ~ . p(n) t t (n) is called the PT-product (or P1'-bound)

of A, also known as the work done by A. A is said to be optimal if its PT-product is s(n) (or even

8(s(n))). The speedup of A is defined to be the ratio s(n)/t(n).

The PRAM model is a powerful model of parallel computation and a good place to start when

we want to design parallel algorithms. This model frees the designer from having to worry about

inter-processor communication issues and memory organization considerations. She or he can thus

think about the more fundamental issues that arise when designing a parallel algorithm for a

particular problem; in essence, this model allows onc to think in terms of abstract parallelism. It

gives us enough flexibility so that we need not be constrained by practical limitations! We will

rely on the PRAM model of computation in order to look into the design of parallel algorithms for

various instances of motion planning for which parallel algorithms do not currently exist.

Even though designing parallel algorithms on the PRAM model provides a good starting point,

Proposal 10

it is not sufficient to stop there. Powerful though it might be, the PRAM model is not practical. In

real life, parallel machines are fixed connection networks in which inter-processor communication

cannot be considered to be a constant time operation and there are limits on the amount of memory

available to each processor. Hence, if we are interested in implementing algorithms on existing

parallel machines, then it is important to look into the design of parallel algorithms on practical

fixed-connection network architectures. Theoretically speaking, since it is possible to simulate a

PRAM on fixed-connection networks, PRAM algorithms can immediately lead us to algorithms

on actual parallel machines. However, algorithms designed explicitly for the particular parallel

architecture in which we are interested, are often significantly better than those obtained by a

direct simulation of PRAM algorithnls. In this proposal, we will also consider the design of parallel

algorithms for geometric problems on a particular fixed-connection architecture called the mesh-

connected computer (also known as t.he mesh). The details of the mesh and its operations will be

provided in Section 3.

1.4 Parallel Algorithms for Related Geometric Problems

As we have mentioned before, our interest is in geometric problems that are related to motion

planning and parallel algorithms for them. Our research will be aided by the significant progress

that has been made in the area of parallel algorithms for computational geometry in recent years

([2, 6, 15, 16, 22, 31, 401, for example). In the two specific instances of motion planning that we

mentioned earlier, the important related geometric problems are the construction of the visibility

graph and the Voronoi diagram of the set of line segments in the plane.

Visibility graph construction and Voronoi diagrams are geometric problems which, in addition

to being tools for motion planning, have many useful applications. Given a set of line segments in

the plane, the construction of the visibility graph can lead to information about that part of the

plane that is hidden from a givcn point. This has useful applications in computer graphics. As

we mentioned earlier, we can also find shortest paths in the plane from the visibility graphs. The

Voronoi diagram is an elegant and versatile geometric structure and has applications for a wide

range of problems in computational geometry and in other areas. We note that Goodrich e t al. give

efficient PRAM algorithms both for the visibility graph construction [6] and for the construction

of the Voronoi diagram of a set of line segments [15]. In this proposal, we develop efficient parallel

algorithms for these geometric problems on the mesh-connected-computer, and, as a result, for the

corresponding motion planning problems.

1.5 Outline of the Proposal

In the next section we give the relevant definitions and establish some notation for visibility graphs

and Voronoi diagrams of a set of line segments in the plane. We also summarize the main ideas

Proposal 11

behind the existing sequential as well as PRAM algorithms for these problems. Following that, in

Section 3 we describe important details of the mesh-connected-computer and some useful operations

that are performed on it.

In sections 4 and 5, we describe our contributions to date. In Section 4 we provide an optimal

algorithm for visibility graph construction on the mesh. We also summarize the resulting mesh-

optimal implementation of the motion planning algorithm of [30] outlined earlier. In Section 5, we

first give an optimal mesh algorithm for a special case of Multipoint location. The constant in the

run-time of this algorithm is a significant improvement over the corresponding constant of the algo-

rithm given in [22], leading to an improvement in the mesh algorithm for the general multilocation

problem. In addition, this algorithm is used repeatedly for Voronoi diagram construction. The bulk

of Section 5 consists of the description of the mesh algorithm for Voronoi diagram construction of a

set of line segments in the plane. This algorithm is optimal for the mesh. As a result of thc Voronoi

diagram algorithm, we obtain an optimal mesh implementation of the motion planning algorithm

of [34] (outlined in Subsection 1.2.2). We give this algorithm in the last part of Section 5.

Finally, in Section 6 we discuss the scope of our research and delineate the specific problems of

interest.

Proposal 12

2 Brief Overview of Sequential and PRAM Algorithms and their

Complexity

2.1 Visibility Graphs

The efficient construction of the visibility graph is an interesting problem in its own right and, as

we mentioned earlier, it is an important substep for certain motion planning algorithms. In this

subsection we define the visibility graph and briefly outline the sequential algorithms for the planar

case. Following that , we give a summary of the known PRAM algorithm [6] for this problem.

2.1.1 Definitions and Sequential Algorithms

Given a set S of n line segments in the plane, its visibility graph Gs is the undirected graph which

has a node for every endpoint of the segments in S , and in which there is an edge between two

nodes if and only if they are visible to each other, assuming the line segments are opaque. (see

Figure 2). Assuming that we want the output in sorted order about a specified point (by polar

angle with respect to some fixed axis through that point), the visibility from a point problem

(i.e.identifying those vertices that are visible from that point) has a lower bound of R(n1ogn).

This can be established by showing a straightforward reduction from sorting to this problem.

All the visibility algorithms mentioned here (and those that will be described in the coming

sections) are described for a set of line segments. The construction of the visibility graph when

the input is a set of disjoint polygons can be done with the same complexity (here n is the total

number of polygon edges). The edges of the polygons are considered to be the set S , and those

graph edges that lie in the interior of the polygons can be eliminated, without any increase in the

time complexity.

Welzl [55] and Asano et al. [3] give sequential algorithms for constructing the visibility graph

of a set S of line segrnents with 1st = n that run in O(n2) time. Visibility from a point can

be found in O(n1og n) time by using a recursive algorithm [6] optimally. If we were to apply this

algorithm to each of the endpoints of the segments in S in a straightforward way, we would get an

O(n2 log n) algorithm. The reason for the O(n2) time-bound of [3, 551 is the use of a procedure

called line arrangement construction4, which can be performed sequentially in O(n2) time [9, 121.

By exploiting the point-line duality [9, 121 and using the arrangement construction algorithm, we

can find for every endpoint p, the sorted order of the other. endpoints about p in 0 (n 2) time. Once

this sorted order is obtained, Welzl and Asano et al. use different methods t o find the final visibility

graph.

4 ~ h e line arrangement problem is the construction of the planar graph determined by the pair-wise intersections

of a set of lines in the plane.

Proposal

Figure 2: The visibility graph of a set of line segments. The dashed line segments are the edges of

the graph.

Welzl computes the visibility graph by first establishing a topologically sorted5 order on the

set of directions determined by pl and pz , where p l , pz are endpoints of segments in S (this can

be done by the topological sort of the line arrangement graph determined by the endpoints in the

dual space). Then, by stepping through this sorted set and updating the visibility information (this

visibility information has been initialized in an appropriate way) at every step, he finally ends up

with the visibility graph. Since the number of such pairs is O(n2), and the topological sort can be

done in O(n2) time, the run-time of this algorithm is also O(n2). Asano et al. use a very different

technique for the construction of the visibility graph. Their approach is to solve the problem of

visibility from a given point in O(n) time, and they give two different methods for doing this. The

first method uses triangulation (of the set of line segments), topological sort and set-union. The

second method is a sweep-line technique. Notice that both these algorithms are worst-case optimal.

However, it is still not known whether it is possible to conipute the visibility graph in such a way

that the run-time depends on the size of the visibility graph (e.g. O(n log n) + k where k is the

number of edges in the visibility graph)6. As we mention below, neither of the two sequential

techniques mentioned here lends itself to optimal parallelization.

2.1.2 Parallel Algorithm on the CREW PRAM

The procedures that are common to both the sequential techniques mentioned above are arrange-

ment construction and topological sorting. Goodrich solves the problem of constructing the ar-

rangement of a set of lines optimally in parallel by using some sophisticated algorithmic technqiues

5 A topological so r t of a directed acyclic graph G(V, E) is a mapping ord : V + {I, . . . , n} such tha t for all edges

(v, w) E E , ord(v) < o r d (w) . The topological sort of G can be done in sequential time O(IV1 + IEl).
6We would like t o note that problems involving visibility and shortest paths in simple polygons have been widely

studied, both in the sequential as well as the parallel setting. In this case, the edges of the simple polygon form the

set S. We will not discuss this case here, and refer the interested reader t,o [I, 5, 13, 14, 17, 18, 531.

Proposal 14

[16]. However, topological sorting of a directed acyclic graph cannot be performed optimally by

known techniques. Also, the sweep-line method, although a very useful sequential technique, does

not seem t o be useful in the parallel environment. Hence, the sequential algorithms mentioned

above do not appear to lend themselves to parallelization.

The best known parallel algorithm for constructing the visibility graph is offered by Atallah et al.

in [6], where they use a technique called cascading divide-and-conquer. The cascading divide-and-

conquer method is a powerful technique for designing parallel algorithms on the CREW and EREW

PRAM. It can be applied to problems that are solvable using the divide-and-conquer strategy. The

general techniques developed in [6] consist of non-trivial generalizations of the "cascaded merging"

method used in the optimal PRAM algorithm for merge sort by Cole [ll]. In [6], the authors

use cascading divide-and-conquer to come up with optimal parallel algorithms for a wide variety

of fundamental problems in computational geometry. In particular, they solve the problem of

computing visibility from a point by using a parallel recursive algorithm that runs in O(1og n) time

using 72 processors. By applying this method t o every endpoint of the input set of segments, the

visibility graph can be constructed in O(1ogn) time using n2 processors. We use this divide-and-

conquer method to derive an optimal algorithm for this problem on the mesh in Section 4.

2.2 Voronoi Diagram of a set of Line Segments in the Plane

In the previous section, we noted the relevance of the Voronoi diagram of a set of line segments as

a tool for motion planning. We start off with the definition of this diagram, and establish some

notation that will be used in the coming sections. Next, we give a summary of the sequential

approaches used t o construct the diagram; the approaches provide insight into the geometric issues

involved in the construction of the diagram. Finally, we will give a brief outline of the known

PRAM algorithm [15] for this problem.

2.2.1 Notation, Definitions and Sequential Algorithms

Let S be a set of nonintersecting closed line segmcnts in the plane. Following the convention in

[26, 571, we will consider each segment s E S to be composed of three distinct objects: the two

endpoints of s and the open line segment bounded by those endpoints. Following [15, 261, we now

establish some basic definitions. The Euclidean distance between two points p and q is denoted by

d (p , q). The projection of a point q on to a closed line segment s with endpoints a and b, denoted

proj(q, s) , is defined as follows: Let p be the intersection point of the straight line containing s

(call this line y) , and the line going through q that is perpendicular to 7. If p belongs t o s, then

proj(q, s) = p. If not, then proj(q, s) = a if d(q, a) < d(q, b) and proj(q, s) = b, otherwise.

The distance of a point y from a closed line segment s is nothing but d(q, proj(q, s)) . By an

abuse of notation, we denote this distance as d(q, s). Let sl and sz be two objects in S. The

Proposal

I- B(a, c), a straight line

Figure 3: The bisector of two line segments sl and sz.

bisector of sl and 5-2, B (s l , s z) , is the locus of all points q that are equidistant from sl and sz i.e.

d(q, s l) = d(q, s a) . Since the objects in S are either points or open line segments, the bisectors

will either be parts of lines or parabolas. The bisector of two line segments is shown in Figure 3.

As in [15], let d(q, S) denote the distance between q and the object of S that is closest t o q i.e.

d(q, 3) is mins,s d(q, s) .

Definition 2.1 [26] The Voronoi region, V o r (e) , associated with an object e in S is the locus of

all points that are closer to e than to any other object in S . The Voronoi diagram of S , V o r (S) , is

the union of the Voronoi regions V o r (e) , e E S . The boundary edges of the Voronoi regions are

called Voronoi edges, and the vertices of the diagram, Voronoi vertices.

The Voronoi diagram of a set of segments is shown in Figure 4. Note that a Voronoi region

consists of all points q such that d(q, S) is realized by exactly one object s in S , a Voronoi edge

consists of all points q such that d(q, S) is realized by exactly two objects of S, and a Voronoi

vertex consists of one point q such that d(q, S) is realized by at least three objects of S [15]. The

following is a very important property of V o r (S) .

Theorem 2.2 (Lee et al. [26]) Given a set S of n nonintersecting closed line segments in the

plane, the number of Voronoi regions, Voronoi edges, and Voronoi vertices of V o r (S) are all O (n) .

To be precise, for n 2 3, V o r (S) has at most n vertices and at most 3n - 5 edges.

There is an important relationship between V o r (S) and the convex hull of S C H (S) , which is

stated in the following theorem. The algorithms for the construction of V o r (S) make crucial use

Proposal

Figure 4: The Voronoi diagram of a set of closed line segments S = { s t l , sI2, sI3, sr4 , s f5) . st;

consists of the two endpoints v2i-l and vz;, and the open line segment s;. Some of the Voronoi

edges have been marked.

Proposal

of this property.

Theorem 2.3 (Lee et al. [26]) An object e of S is on the convex hull C H (S) of S if and only

if the Voronoi region Vor(e) is unbounded.

The general idea behind the sequential algorithms for the construction of Vor(S) is as follows: S

is divided into sets of equal size, S1 and S2. Vor(S1) and Vor(S2) are then recursively computed.

In order t o merge these two Voronoi diagrams to form the final diagram Vor(S) , we need t o

construct the contour between S1 and S2. The contour is the locus of all points in the plane that

are equidistant from S1 and S2. Thus, assuming the correct orientation on the contour, all points

lying to the left (right) of the contour are closer t o S1 (S2) than to S2 (S1). Now, we discard that

part of the diagram of Vor(S1) that lies to the right of the contour, and that part of the diagram

of Vor(S2) that lies t o the left of the contour. The remaining edges of the two diagrams, and

the contour edges give us the final Voronoi diagram Vor(S). This is the motivation behind the

approaclzes used by [25, 26, 571. The algorithms of [25, 571 run in O(n1ogn) time, which is optimal

since a lower bound of R(n1ogn) is known for this problem[47]. The run-time of the algorithm in

[26] is 0(nlog2n).

For the case of the Voronoi diagram of a set of points we have t o construct just a single contour

chain during the merge step. This is because of the fact that we can divide a set of points into two

disjoint subsets of equal size such that they are linearly separable7. This can be done by sorting

the points according t o their x-coordinate, say. In the case of a set of line segments, such a linear

separability cannot be found in general. Thus, an arbitrary separation of the input set S into S1

and S2 could mean that the merge contour is not necessarily composed of a single piece - we could

have several disconnected pieces. In [25], Kirkpatrick divides the input set S arbitrarily into two

disjoint sets S1 and S2 of equal size. In [26], Lee and Drysdale first sort S according to the left

endpoint of the segments; S1 then consists of the first n/2 segments and S2 consists of the last

n/2. In both these methods, we could have several contours. The contours are constructed by

establishing a start point for every contour and, subsequently tracing out the contours by starting

a t these start points. As observed in [15], both these approaches seen1 to be inherently sequential

in nature. Since our goal is to develop parallel algorithms, our interest is directed more towards

the method used by Yap in [57], which uses a different approach to subdivide S.

First, all the endpoints of the segments are sorted. Let m be the median of this sorted set. A

vertical line is drawn through m, cutting segments of S into two, if necessary. S1 then consists

of the segments lying t o the left of this vertical line and Sz consists of those lying t o the right.

Note that this approach simulates linear separability. A naive implementation of this method could

7 ~ w o sets are said t o be l inear ly separable if and only if there exists a hyperplane (in two dimensions, a straight

line) tha t separates them [37] .

Proposal 18

lead to an O (n 2) algorithm. However, since he restricts the computation in the merge step to the

minimum necessary, Yap's algorithm runs in time O(n log n).

The PRAM algorithm of Goodrich, 0 ' ~ l i n l a i n ~ and Yap [15] (which we will summarize briefly in

the following subsection) is based on the sequential approach outlined in the preceding paragraph.

Since our mesh algorithm, t o be presented in Section 5, also relies on this approach, we will give

a brief summary of the main ideas in Yap's technique. Let us assume that a vertical line has been

drawn through each endpoint of the input set of segments S . The vertical strip of region between

any two such (not necessarily adjacent) vertical lines is called a slab. Now consider a particular

slab U, represented by a pair of vertical lines lI and 12 . A closed segment s is said t o span U if

it intersects l I and 1 2 . If we consider all segments that span U, there is a well-defined ordering

(according to the point a t which they intersect 11, say) on these segments. The region of slab U that

is bounded by any two consecutive spanning segments is called a quad. Note that the bottommost

and topmost such regions are unbounded. A quad Q in the slab U is said to be an active quad if it

contains an endpoint of a segment s E S in its interior (thus endpoints along the boundary edges

of & do not count).

Yap's algorithm does a slab-wise and quad-wise computation of the Voronoi diagram. During

the merge step, two adjacent slabs Ul and U,, whose Voronoi diagrams have been recursively

computed, are merged t o form a larger slab U. Now, the Voronoi diagram is computed only for

the active quads of U by using the recursively computed Voronoi diagrams of the active quads of

Ul and U,. As a result, the amount of work done in each slab U is proportional t o the number of

segments with endpoints in that slab8, and this is what was meant by perforniing only the necessary

computations. Notice that a t the topmost level of recursion, the entire plane is the slab, and there

is just one active quad which contains all the segments in S ; hence, V o r (S) will be computed, which

is the goal. The details of the merge procedure will become clearer in the sections that address the

issue of solving this problem in parallel on the mesh-connected-computer.

2.2.2 Parallel Algorithm on the CREW PRAM

The best (and only) known parallel algorithm for the construction of the Voronoi diagram of a

set of line segments in the plane is the CREW PRAM algorithm by Goodrich et al. [15]. Their

algorithm runs in 0(log2n) time using O (n) processors, and is based on Yap's sequential algorithm

[57] and on the parallel approach used by Aggarwal et al. for constructing the Voronoi diagram

of a set of points in the plane [2]. This efficient parallelization of Yap's algorithm is because the

authors manipulate objects called primitive regions to construct the contour in the merge step of

their recursive algorithm. In addition, they use the techniques developed in [6] for solving certain

8 ~ f , instead, the amount of work done in each slab were proportional to the number of segments that span that

slab, then we would have had an O(n2) algorithm.

Proposal 19

planar point location problems. In Section 5, we develop a mesh-optimal parallel algorithm for

constructing the Voronoi diagram of a set of line segments on the mesh. The salient features of

Goodrich et al.'s algorithm will be mentioned in that section, since the mesh algorithm is based on

their PRAM algorithm.

Proposal

3 Preliminaries on the Mesh-Connected-Computer

In this section, we will talk about one particular fixed-connection network architecture, the mesh-

connected computer (mesh). In Sections 4 and 5, we describe algorithms on the mesh for the visibility

graph construction, the multilocation problem (to be described later), and the Voronoi diagram of

sets of line segments in the plane. As mentioned in [31], several large mesh computers have already

been constructed. They can be constructed more economically than hypercubes and other parallel

architectures because of their simple nearest-neighbor wiring and the ease of scalability.

3.1 The Mesh-Connected Computer

A mesh-connected computer of size n is a fixed-connection network of n simple processing elements

(PEs) that are arranged in a square two-dimensional array (see Figure 5). Following the convention

in [31], we will assume that n = 4' for some constant c . There are &rows and & columns in the

mesh. For i , j E (0, 1, 2, . . . , 6- 1)) Pi,j refers to the PE at row i and column j . Each Pisj has

a communication link to each of its four neighboring PEs (processors along the sides of the mesh

will have fewer), Pi*., j*l. These communication links between pairs of processors are not allowed

to vary with time (hence the term fixed-connection network). Each P E has a constant number

of storage registers (each of size R(1og n) bits), and can perform standard arithmetic and boolean

operations on the contents of the registers in unit time. The mesh is a SIMD (Sngle Instruction

stream Multiple Data stream) machine. During each time unit, a single instruction is executed by

all the processors (that are specified by the instruction) in parallel. The communication links are

unit-time bidirectional links; in other words, a PE can send or receive at most one word of data

from each of its neighboring PEs in one unit of time, and this can be achieved through routing

instructions. Concurrent data movement in the mesh is allowed, as long as it is all in the same

direction.

It is important to note that an implicit lower bound of f l (f i) on run-time holds for most

algorithms on the mesh. This is because of the following: The distance between a pair of processors

is the smallest number of wires that have to be traversed in order to get from one processor t o

another, and the diameter d of a network is the maximum distance between any pair of processors

[27]. The diameter of a network is often a lower bound on the run time of an algorithm on that

network, since it is always possible to come up with data arranged in such a way that there needs

to be a n exchange of information between two processors that are separated by a distance d, the

diameter. It takes at least d steps for one of these processors to communicate with the other. The

diameter of a f i x f i mesh is 2 f i - 2, which is the distance between the two processors at

the opposite corners of the mesh. Hence most algorithms on the mesh will have a lower bound of

f l (f i > .

Proposal

Rows

Processing Element

Communication Link

Columns

Figure 5: A mesh-connected computer of size n.

Each P E contains its row and column numbers, and also an identification register. The contents

of the identification register depend on the particular indexing scheme that is being used for the

mesh. The useful and commonly used ways of indexing processors are: row-major indexing, shufled

row-major indexing, snake-like row-major indexing and proximity order indexing, as illustrated in

Figure 6 for a 4 x 4 meslz. The different indexing schemes have their own advantages and which

particular one we choose t o use will depend on the problem that we are trying t o solve. For

instance, as mentioned in [54], row-major indexing is a poor choice for merge sorting. Snake-like

ordering has the useful property that PEs with consecutive numbers are physically adjacent in the

mesh. Shuffled row-major and proximity order indexing schemes are used when divide-and-conquer

approaches are being used. This is because of the fact that in a mesh of size n , the processors with

the first n /4 of the numbers lie in the first quadrant of the mesh, the second fourth in the second

quadrant etc. and this property recursively holds within each quadrant. Proximity order combines

the advantages of both snake-like ordering as well as shuffled row-major ordering. Observe that it

is possible t o generate the number of a processor, in any of these indexing schemes, in O(&) time.

In row-major indexing, each processor can compute its number for the row and column indices

(assuming it knows the size of the mesh, which can be found in O (h) time). Snake-like indexing

is obtained from row-major indexing by reversing the order in even rows, which can be done in

the stated time bound. The number of a processor in the shuffled row-major indexing scheme is

nothing but the shuffleg of the binary representation of that processor in the row-major indexing

scheme. For example, the row-major index 10 in Figure 6(a) has binary representation 1010, the

shuffle of which is 1100, and this is the shuffled row-major index of that same processor.

'The shuf le of "abcdefgh" is "aebfcgdh" and the unshufle of "abcdefgh" is "acegbdfh".

Proposal

Figure 6: Indexing schemes on the mesh. (a) Row-major (b) Shuffled row-major (c) Snake-like

row-major (d) Proximity

3.2 Useful Operations on the Mesh

We will now describe some of the basic operations on the mesh, concentrating on those that will

be heavily used in the following subsections. The perfect shufle and perfect unshufle data-routing

operations are commonly used in mesh algorithms. Obviously, when a shuffle and unshuffle opera-

tion are performed in sequence on a set of elements, we get back the elements in the original order

(the order on the mesh will be determined by the particular indexing scheme that we use). Notice

that on a linear array1' of size k, the shuffle can be achieved by using the triangular interchange

pattern, as shown in Figure 7 (the double headed arrows indicate an interchange, which takes two

routing steps). The unshuffle can be done in a similar manner by using an inverted triangular

interchange pattern [54]. Thus, the perfect shuffle as well as the perfect unshuffle operations can

be done in k/2 - 1 interchanges, i.e. k - 2 routing steps on a linear array of size k. We can use

this result to do the shuffle and unshuffle operations on the mesh efficiently. Consider the case of

row-major indexing. To perform a shuffle, first do a shuffle along each row in parallel, then do a

shuffle along each column in parallel (each row and each column is a linear array, so use the shuffle

method described earlier). Now, for all i E (0 , 2, . . . , f i - 2), j E (1, 3, . . . , @ - I},
the element in P, , needs to be interchanged with the element in Pt+l, j -1, which can be done in

4 steps. Now the elements of the mesh are in shuffled order. See Figure 8 for an illustration. The

unshuffle can be obtained by reversing the order of steps just described (and replacing the shuffies

by unshuffles). Thus both these operations can be performed on a f i x f i mesh in 2 f i steps.

Sorting will be used often in our mesh algorithms, either as a preprocessing step or as a sub-step

in a recursive merge procedure. In [54], the authors gave one of the first algorithms for sorting

optimally on the mesh. Currently, the best known algorithm for sorting n elements distributed one

per processor on a fi x Jn mesh takes 3 f i + o(&) steps [[27], Chapter 1, Section 1.6.31.

In addition t o tlrese basic operations on the mesh, there are a number of others that are com-

''A l inear array of size k is nothing but k linearly connected processors, so that every processor (except the ones

at either end) is connected t o its left and right neighbors.

Proposal

Figure 7: Shuffle on a linear array.

monly used in mesh algorithms. Some of these are Selected Broadcasting, Segmented Prefix Scan,

Random Access Read (RAR) and Random Access Write (RAW). The RAR and RAW operations

allow the mesh to simulate the concurrent read and concurrent write capabilities of PRAMS. The

implementations of these operations are described in detail in [31, 321. We will just describe what

these operations do. As given in [32], in the RAR operation, each P E Pi, 0 < i < n - 1,

contains some index S;, and wants to receive data from some register(s) of Psi. If P; is not to

receive data, then ,!?; = oo. In RAW, each PE P; contains some index W;. Data from some

register(s) of P; is t o be transmitted to PW. If W; = oo, then no data from Pi is transmit-

ted to any PE. Selected broadcasting is the following operation [22]: Let {al, az, . . . , ak) be

some subset of elements on the mesh (not necessarily in consecutive processors). Let the index of

the processor in which a; resides be I(a;). PI((Lt) contains, along with a;, an index $(a;). Also,

I(a;) < I(a;+'), S(a;) < S(U;+~), 1 < i 5 (k - 1). Selected broadcasting sends each

a; to all the processors from Ps(,,) to Ps(,i+,)-l. The prefix scan operation is the following: Let

A = {al, a2 , . . ., a,) be a set of elements such that PE P; has element a; in it, and let @

be some binary associative operation. The prefix scan of the elements of A is the set of elements

B = {bl, b 2 , . . . , b,) where bl = a1 and b; = a1 @ a2 @ . . . @ a; for 2 5 i 5 n. At the end

of the prefix scan operation on the mesh, element b; will be in PE Pi. This can be done in O(&)

time on a f i x fi mesh. In the segmented prefix scan operation, we are interested in computing

the prefix with the same associative operator 8, but on different sets of data. Let All A2 , . . . , Ak

be k sets of elements with IA;(= I;, 1 < i 5 k, and such that 1' + l 2 + . . . + lk = n. A1

resides in the first ll PEs of the mesh, A2 in the next l2 PEs and so on. The segmented prefix scan

operation will compute the prefix scan of the set A; for each i , and place the resulting prefixes in

the corresponding PEs that hold the elements of A;. The set of consecutive PEs that hold A; is

referred to as the i-th component for the segmented prefix scan. RAR, R.AW, selected broadcasting,

and segmented prefix scan1' can all be done in O(fi) time on a fi x mesh.

We explain briefly how the strategy of divide-and-conquer is applied on a f i x f i mesh [22]:

The problem is divided into two halves, one in the top half of the mesh and one in the bottom half.

''The Connection Machine, manufactured by Thinking Machines, Inc., provides the segmented prefix scan as a

primitive operation.

Proposal

Shuffle along 1 each column

Diagonal interchange

can be done in 4 steps

Figure 8: Shuffle on a mesh with row-major indexing.

Each of these halves is then recursively solved, and then merged to give the final solution. An easier

solution to the recurrence relation for the run-time is obtained if we assume that the top half and

bottom half are further divided into two. Each of the four quadrants is solved in parallel. The top

(bottom) two quadrants are merged to give us the solution to the top (bottom) half; this is done

in parallel for the top and bottom halves. These two halves are now merged t o give us the final

solution. Let the time for the first merge (mergel) be TI and that for the second merge (merge2) be

Tz. The recurrence relation for the total run-time is T (6 , f i) = T (6 / 2 , &/2) + TI + T2.

If TI + T2 is 0(@) then the solution to this recurrence is T(@, fi) = 0(&). Thus, our

main conceril when designing divide-and-conquer algorithms on the mesh will be to come up with

merge steps that run in 0(f i) time. The method used for the first and the second merge will be

similar. Thus, for the sake of simplicity, in our algorithms we will discuss the merge step in general

without any reference t o mergel or merge2.

Proposal 2 5

4 Mesh Algorithms for Visibility Graphs and the Related Mo-

tion Planning Problem

4.1 Visibility Graphs

We will now describe a mesh algorithm to compute the visibility graph of a given set of line

segments in the plane. As noted in the earlier sections, the efficient construction of the visibility

graph is an important substep in motion planning. We also noted in Section 2 that the best known

parallel algorithm for this problem is on the CREW PRAM using the cascading divide-and-conquer

approach [6]. To our knowledge, this problem has not been solved on the mesh. In this section, we

design an optimal algorithm for this problem. We will show that , given an input set S (15'1 = N) of

nonintersecting line segments in the plane, we can identify mesh-optimally all the segment vertices

that are visible from a given point p in 8 (f i) (where n = 2N) time on a Jn x Jn mesh. This

will immediately give us an algorithm for constructing the visibility graph, Gs.

Let S = {so, s l , . . . , sjv-l} be the input set of line segments that do not intersect (except

possibly a t endpoints), and let p be the point from which we want to determine visibility. Let v2;

and v2i+l (we will assume x(v2;) < X (V ~ ; + ~)) be the two endpoints of segment s;. The visibility

from a point problem is to determine that part of the plane that is visible from p, assuming that

every segment is opaque. Notice that this is equivalent to identifying those vertices v; that are

"seen" from p. As in [6], we will assume, without loss of generality, that p is a point a t -m. This

is only t o make the description of the algorithm simpler. The case when p is not a t infinity is a

straightforward adaptation of this algorithm. Since p is a t -a, to compute the visibility from p,

we need t o compute the lower envelope of the set of segments in S [6]. The lower envelope is the

collection of those segment parts that can be seen from below.

In [6], the authors give a PRAM algorithm that uses the cascading divide-and-conquer technique

for solving the visibility from a point problem. Along the same lines, we will describe a recursive

algorithm for computing the lower envelope on the mesh. We will first describe the merge step and

then give the details of the mesh algorithm. Let S1 be the set consisting of half the elements of S,

and let S2 contain the other half. Suppose that we have recursively computed the lower envelopes

of S1 and 5'2. The lower envelope of the segments in S, (i = 1 ,2) is available t o us in the following

manner: The endpoints of the segments in S; have been sorted according to their x-coordinates (for

the sake of simplicity, let us assume that no two endpoints have the same x-coordinate). In this

sorted list (call it V,) , assume that a vertical line is placed through each endpoint. This divides the

plane into vertical strips of region called slabs (call these the %-slabs). The recursive computation

gives, for every V,-slab, the segment of S, that is visible from below (i.e. is part of the lower

envelope) in that slab (see Figure 9). Now, we want to merge these two envelopes to form the final

lower envelope. First merge Vl and V2 t o form V. The set V defines a new set of slabs. Each V-slab

Proposal 26

(say u) lies within some unique Vl-slab (say ul) and some unique Vz-slab (say u 2) . Note that u

could, in fact, be the same as either of ul or uz. Let sl and sz be the (recursively computed) lower

envelope segments in the slabs ~1 and uz, respectively. Then, the segment of S that is visible from

below in u is nothing but the lower of s l and sz (note that such an ordering is uniquely defined on

the two segments).

The algorithm for computing the lower envelope (i.e. visibility from -m) is given below. Our

input set consists of a set S of segments along with their endpoints (these total n). As mentioned

earlier, segment s;, i E 10, 1, . . . , N - 1) has endpoints vzi and vzi+17 with x(vai) < X (V ~ ; + ~) .

Algorithm VISFROMPOINT;

Input: The endpoints are distributed one per processor on a z/;Z x f i mesh with the shuffled

row-major indexing scheme. The P E Pj , j E (0, 1, . . ., n - 1) has endpoint vj and also the

segment that vj is an endpoint of.

Output: Tlze endpoints will be in sorted order on the mesh. Thus each PE Pi is associated with a

slab in the obvious way. Pi will also have the segment s that is part of the lower envelope (i.e. is

visible) in that slab.

1. Initialization: Every PE Pi has the following fields as part of its record: endpoint initialized

to v;; lowerseg, which contains, at any stage, the lowest segment (found up to that stage) for

the slab defined by Pi ; whichblock, which indicates (for the merge step) whether an endpoint

came from the left block or the right.

2. Basis: lowerseg is set to the segment s;12 if i is even and to 0 otherwise1? Let S1 be the

subset of segments of S in the left block, and SZ be the subset in the right block.

3. Recursive Step: Solve recursively in parallel using S1 for S in the left block and Sz for S in

the right block.

4. Merge Step:

(i) Set whichblock to 0 if Pi belongs to the left block and to 1 if it belongs to tlre right block.

(ii) Merge the two sets S1 and Sz according to the endpoint field.

Note: We now need to update the lowerseg field in each PE. As explained earlier, every

new slab u of the merged set needs to compare the lowerseg fields of the two old slabs

ul and u2 that it is a part of. How do we find these two lowerseg fields? Let u be a slab

12 Initially, the slabs are those defined by each individual segment, and hence the lowest segment in that slab is

nothing but the segment itself.

Proposal

i s , s , S I $ S,

cegment visiblein each slab of S ,
s

S 8 S, S, S I S 1 S (S 5 S I S 2 S , S, S 6 S 6 S

~ ~ r n e n t visible in each slab in the final lower envelope

Figure 9: Merging of lower envelopes. (a) The set S with S1 = isl, s2, sg, sq) (the light line

segments) and Sz = {s5, sg, S T , s ~) (the dark line segments). (b) The recursively computed

lower envelope of S1. (c) The recursively computed lower envelope of S2. In (b) and (c), the hidden

segment parts are dotted. (d) The final lower envelope.

Proposal

in the merged set (it is represented by the endpoint field) and suppose it is in P E Pi.

One of the two lowerseg fields is already in Pi. This is because endpoint in Pi represents

either the left boundary of ul (the slab from S1 that u is a part of) or the left boundary

of u2 (the slab from Sz that u is a part of). Let us say it is u2. The other lowerseg has

to come from the PE containing ul : call it Pj; note that j will be less than i . Note, of

course, that the endpoint in Pj is the rightmost of all the endpoints of S1 that lie to the

left of the endpoint in Pi. In other words, there are no endpoints of S1 between Pj and

Pi. In fact, the lowerseg of Pj is to be broadcast to all the PEs that lie between Pj and

the P E containing the right end point of ul. We need t o do this for every slab ul of S1.

A similar step needs t o be done for every slab u2 of S2. This can be achieved through

the selected broadcasting operation. Refer to Figure 10 for an illustration of these steps.

(iii) The subset of elements that needs to be broadcast is the lowerseg field in every processor

with whichblock = 0. Let {11, 1 2 , . . . , l n / 2) (where n = 215)) be the set of these

lowersegs in sorted order and let Ili be the index of the processor in which I; resides. The

selected broadcasting operation will send I;, 1 5 i < n/2 to every P E from PI(lt) to

PI(lt+,)-l. Put 1; in a local register called lowersegl.

(iv) Similar to step (iii), except that the broadcast elements are the lowerseg fields from

processors with whichblock = 1. Here, the broadcast element is put in a local register

called lowerseg2.

(v) Every P E updates the lowerseg field to the lower of lowersegl and lowerseg2.

Lemma 4.1 Algorithm V I S F R O M P O I N T , which computes the lower envelope of a set of segments

S , runs in O (f i) time (with no queueing) on a 6 x f i mesh, where IS1 = n / 2 .

Proof: Since there is no preprocessing, our timing analysis is just for the merge step. The first

step of the merge procedure can obviously be done in constant time (this step can be done by

looking a t the appropriate bit in the binary representation of the PE's id.). Step (ii) can be done

in O(+) time using the standard shuffle and exchange technique[54]. Both step (iii) and step (iv)

need O (6) time for the selected broadcasting. Step (v) takes constant time. Therefore, the merge

procedure takes 0 (6)) and this immediately implies that the overall time required is O (6) .

Notice that the computation of the lower envelope on the mesh immediately tells us which

endpoints of S are visible from -a. When the point p is not at -m, the algorithm is the same

as above, except that instead of merging the endpoints of the line segments according t o their

2-coordinate, we merge them according to the polar angle that they make with p (measured with

respect to some fixed axis). In order to construct the entire visibility graph, we can use the above

algorithm in a straightforward way. When a vertex vi is used as p, we can obtain the set of vertices

Proposal

-
(d) s., s., so s3 s1 s3 s 4 s q sq s s , Sz S5 S 5 S 2 $ + lowerseg

Figure 10: Computing lowerseg in the merge step. As before, the lighter segments form S1 and the

darker ones form S2. (a) The value of lowerseg in each P E after step (ii) of the merge step. (b)

The values of lowersegl after step (iii) of the merge step. (c) The values of lowerseg2 after step (iv)

of the merge step. (d) The final lowerseg value in each PE, as found in step (v).

of S that are visible from v;. In other words, we know which nodes are adjacent to the node

corresponding t o v; in the visibility graph. If we repeat this for every endpoint vj, in parallel, we

can construct the visibility graph of a set S of segments in O(+) time using n2 processors (i.e. n

of tlze fi x f i meshes). This is optimal since the visibility graph may have O(n2) edges in the

worst case, and we will need n2 processors t o represent the graph (under the assumption that each

processor has only a constant amount of storage).

4.2 Motion Planning Using Visibility Graphs

We summarized, in Section 1, the method of Lozano-Pkrez and Wesley [30] for planning the motion

of a convex object with two dofs, moving between convex obstacles. Assume the size of the obstacle

set is n (i.e. the obstacle set has n endpoints) and it is stored in a & x f i mesh. Let the

mobile object be A; we will assume that the size of A is a constant. First we expand the obstacles

according to the moving object A as described in Section 1 (Subsection 1.2.1): We relay the

information about A to each of the PEs in f i time. Since the expansion of each obstacle can be

done in time proportional t o its size (refer t o Section I), the expansion of all the obstacles can be

done in a t most O (f i) time. Note that these expanded obstacle edges might now intersect with

each other. When the obstacles are convex, it can be shown that the number of such intersections

can be a t most O(n) [48]. Thus the new obstacle edge set will also be O (n) and there are efficient

sequential algorithms t o compute it [48]. We can also find the new obstacle edges by using a brute

force technique which is very inefficient, but will not alter the run-time of this motion planning

algorithm on the mesh. We can simply compute the intersection of every edge of the expanded

Proposal 30

obstacle set with the other edges of that set. This will give us the new edge segments, and this can

be computed in O(n) time on a mesh with n PEs.

We now have t o make n copies of the new obstacle edge set on n sets of f i x &meshes so that

we may compute visibility from each of the n endpoints. These copies can clearly be made in O(n)

time on a mesh with n2 processors. We know, as mentioned above, that the visibility information

from each endpoint can be computed in 0(&) time by using Algorithm VISFROMPOINT on each

of these submeshes.

Suppose that the object A has to be moved from point a to point b. First we establish the visibil-

ity information from a and b, which can be done in 0 (f i) time using Algorithm VISFROMPOINT.

We can compute the shortest path from a to b by solving the all-pairs shortest path problem for

the visibility graph, using the euclidean length of the edges as the corresponding edge weights13.

In order t o do this, we want to convert the information about the visibility graph into the form

of an adjacency matrix on the mesh with n2 PEs. This can be done easily with a sorting step14,

which will take O(n) time. The all-pairs shortest path can be computed by a method that is very

similar t o the method used to compute the transitive closure of a matrix. As shown in [27], the

all-pairs shortest path problem can be solved in O(n) time by using a pipelining technique on a

n x n mesh. Thus, planning the motion of a convex object of two dofs nioving among convex

obstacles can be done in O(n) time on a n x n mesh. Even though this mesh algorithm is not

very work-efficient when compared to the O(n2) sequential algorithm, note that this is the best we

can do since we will need n2 PEs to represent the adjacency matrix.

13 Note tha t , for our purposes here, solving the single-source shortest path (from a) problem would have sufficed.

However, there are no known optimal parallel algorithms for this problem.
1 4 C ~ n ~ i d e r the f i x f i s u b m e s h that computed visibility from a particular endpoint v,. The PEs in this submesh

have the endpoints in sorted order about v,. Consider the P E P' that holds vertex v,. If v, can see v J , then P' will

send a 1 to row a and column j of the adjacency matrix. If not, then P' does nothing. This is a one-to-one routing

step and can be accomplished through sorting.

Proposal 3 1

5 Mesh Algorithms for the Voronoi Diagram of a Set of Line

Segments and the Related Motion Planning Problem

We start this section with the definition of a problem called the Multipoint Location problem,

which is an important subroutine for the construction of the Voronoi diagram. We also give a

brief description of the mesh algorithm for this problem, given by Jeong and Lee [22] and give a

different approach t o one of the sub-steps used in the algorithm in [22]. Following that , we describe

a mesh-optimal algorithm for the construction of the Voronoi diagram of a set of line segments in

the plane. The resulting mesh implementation of the motion planning algorithm by 0 ~ ~ 6 n l a i n g

and Yap [34] is given in the last part of this section.

5.1 Multipoint Location and why it is important

In this section, we will discuss the problem of Multipoint Location. Multipoint location comes under

the class of problems called planar point location problems. In this class of problems, we are given

some planar subdivision15 S consisting of n edges, and a query point p, and we are t o find the

region of S that p lies in. The main reason for discussing this problem here is that it has very

important applications for the problem t o be discussed in the next section, viz. the problem of the

construction of the Voronoi diagram of a set of line segments in the plane. Before moving on, let

us give the exact statement of the multipoint location problem.

Problem Statement: Given a set S of nonintersecting line segments, and a set P of points, where

IS1 + IPI = n, t o find, for every point p E P , the segments pa, pb E S that lie immediately

above and below p, respectively. If there is no segment that lies immediately above (below) p, pa

(J I ~) is set to s + ~ (spa), an imaginary segment lying at +co (-co).

An 0(fi) algorithm for solving this problem on a f i x f i mesh is given by Jeong and

Lee [22]. The problem is solved for three cases of input: in the first case, the line segments have

the same x-coordinates for the left and right endpoints, in the second case they have the same

x-coordinate for the left endpoints, and the third is the general case. The first is used as a substep

in the second, and the second is used as a substep for the general case. We describe a different

approach for solving the first case. While the approach is not asymptotically faster than Jeong

et al.'s algorithm, the constant factor of our algorithm is significantly smaller16. We mention this

improvement primarily because the first step is used repeatedly as a substep for general multipoint

1 5 ~ planar graph is one that can be embedded in the plane without crossings of edges. A planar subdivision is the

subdivision of the plane induced by a connected planar graph. For our considerations, the vertices of the graph will

be points in the plane, and the edges of the graph will be straight line segments. In the case of the Voronoi diagram

of line segments, some of these edges might be parts of parabolas.
I6The method used in 1221 has a high constant because it uses a recursive method, and uses RARs in its merge

procedure. RARs are expensive operations on the mesh.

Proposal 32

location, and in the construction of the Voronoi diagram of a set of line segments in the plane.

Hence, the improved algorithm is more suitable for possible practical implementations.

Let us consider the case when the nonintersecting segments of the input set S have the same

x-coordinates for the left and right endpoints, say lx and rx respectively. Let the set of points P

be such that they lie between the lines x = 1x and x = rx . We will assume that the mesh

has shuffled row-major indexing, since the other two cases are solved by recursive algorithms. The

elements are distributed so that there is either one segment or one point per PE. First, we will

arrange the elements so that they are in row-major ordering, and then sort the elements so that

the segments are in sorted order (by the decreasing y-coordinate of their left endpoint, say) and

occupy the first IS(PEs. Let s;, 0 5 i 5 ($ 1 - 1 be the i-th segment in this sorted order; s; is

in P E Pi. The point set P occupies the next IPI processors. The following is the basic idea behind

this method: Let us assume that IS1 > fi, since the other case is straightforward17. For every

point p , we want t o perform a search for segments pa and pb on the mesh. Let the segments given

by s - ~ , s-A+, , . . . , s-1 be dummy segments (initialized to the segment a t fco) for points lying

above the topmost segment in each column. Let the segments given by slsl, S ~ , C I + ~ , . . . , s (~ ~ + J ; E - ~

be dummy segments (initialized to the segment a t -00) for points lying below the lowermost

segment in each column.

Suppose a point p E P is in some column j of the mesh. If we send p up along its column, then

there are exactly two segments, S;-J;I and s; (for some 0 5 i 5 IS1 + fi - l), in that column

between which it lies (since the segments are ordered). Thus, p has t o examine just another fi
segments in order t o determine pa and pb. This could be done by letting p sit in P E Pi, and by

passing all these fi segments down that row so that p can determine pa and pb. In order to do

this efficiently we need to ensure that not too many points end up in the same row. We do this by

counting how many points belong in a row. Then we make enough copies of that row so that when

we send a point to a processor in the appropriate row, there is at most one point per processor.

Note that since the total number of points is O (n) , the maximum number of new copied rows that

we need t o make is O (f i) , and hence we can overlay the new copies of rows on the existing mesh

with a constant factor increase in memory per processor. This can be achieved as follows (assume

that pa and pb have been initialized t o s+, and s-,, respectively, for every p) .

1. Pass each segment down its column so that every point p knows the segments of that column

that lie immediately above and below it . Call these ut,,, and Item,, respectively.

2. Pass each point up along its column j so that , at the end of f i steps, P E Pi in column

j knows the number of points from that column that lie above s; and below ~ ~ - 6 . Let

171f the number of segments is less than or equal t o fi, then all we have to do is make copies of the segments in

the first row in every row, and then pass each segment through its entire row so tha t p can determine pa and J J ~ . This

can obviously be done in 3 6 time.

Proposal

aka, akl, . . . , ak(fi-l) be these numbers in row k.

3. Do a parallel prefix on aka, akl, . . . , a k (~ - l) (from left to right) along each row k in order

t o determine the total number of points in each row. Let lko, lkl, . . . , lk(fi-l) be the result

of this parallel prefix in row k. Obviously, the total number of copies of row k that we need

is 1'' 2 - I 1 . Call this number numcopk.

4. We now know how many copies of a particular row we need t o make, but we don't know where

t o start making them, i.e. a t which row of our fi x fi mesh. This can be determined by

doing a parallel prefix on numcopk along the leftmost column. Call the result of this prefix

computation whichrowk, in row k. Propagate the whichrowk and numcopk fields down row

k.

5. Now we need t o figure out the row and column index of the processor t o which we want to

send each point. From this we can determine the id of the PE to which that point needs to

be sent. This can be done by sending each segment in location (k, j) down its column j,

along with the whichrowk, numcopk, akj and lkj fields. Each P E with a point in it can use

this information, along with the utemp and ltemP computed in step 1, to determine the row

and column index of the processor that it should be sent to.

6. We now make numcopk copies of each row k. Before doing this, each segment notes down the

segment that lies in the processor immediately above it, and forms a segnient pair. This is

necessary in the final step to determine pa and pb. The numcopk copies of each row (i.e. the

segment pair in each row) can be made in a t most fi steps by as many downward pulses of

each row.

7. Send the points to the PE as determined in step 5. This can be done by a sort step

8. Send the segment pair of each row down that row, once in either direction, and we can

determine pa and pb for every point p.

9. The elements can be sent back t o their original configuration by a sort step.

The time taken t o perform the above steps is O (f i) with the constant factor being a significant

(about 10-fold) improvement over that of the method given by Jeong and Lee [22]. Note that in

the above technique, we are essentially doing a simultaneous search of all the points among the line

segments. We will refer to this as Algorithm SIMULTSRCH.

After solving the above special case, Jeong and Lee [22] solve the case in which all the segments

in the segment set have the same left endpoint. This is done recursively, and the above special

case is used as a subroutine in the merge step. They call this Algorithm LB-MULTILOC, and

it runs in O(&i) time on a f i x f i mesh. Finally, they solve the general case of multipoint

location by using a recursive algorithm, Algorithm MULTILOC. MULTILOC uses LB-MULTILOC

Proposal 34

as a subroutine in the merge step, and runs in O (f i) time on a f i x f i mesh. At the end of

Algorithm MULTII,OC, each point p in P will know segments pa and pb, along with the index of

these segments.

As we mentioned earlier, an important application of multipoint location is the problem of

planar point location, which we stated earlier. Given a planar subdivision, and a set of points P,

we find for each point p the region of the subdivision that p lies in. In particular, we are interested

in performing planar point location for a set of points, given the planar subdivision induced by the

Voronoi diagram of a set of line segments. This can be done by almost a direct application of the

MULTILOC algorithm of [22], with some minor modifications. We state the pertinent lemma from

Pal.

Lemma 5.1 (Jeong and Lee [22]) Given a planar subdivision PS with a set S of edges and a

set P of query points, the planar point location can be executed in 0(&) time on a f i x f i
mesh, where IS\ + I PI < n .

In the case when PS is the Voronoi diagram of a set of n line segments, IS1 is O (n) since the

number of Voronoi edges is O (n) .

5.2 Voronoi Diagram of a Set of Line Segments in the Plane

The Voronoi diagram is a very useful geometric structure, with applications to varied problems

in computational geometry. In particular, as we discussed in Section 1, the Voronoi diagram of

a set of line segments turns out to be a useful tool in motion planning [34, 33, 561. We are

interested in the parallel construction of the Voronoi diagram. In Section 2, we briefly described

the PRAM algorithm of [15] for this problem. In this section, we will develop a parallel algorithm

for constructing the Voronoi diagram of a set of n line segments in the plane on a f i x f i mesh

that runs in 0(&) time, which is optimal for the mesh. We would like to point out that there is

an optimal O (6) time parallel algorithm for the Voronoi diagram of a set of n points in the plane,

on a mesh with as many PEs [22], but none (to our knowledge) for n line segments.

Let us recapitulate some of the important issues in the Voronoi diagram construction. We will

use the notation established in Section 2; V o r (S) refers to the Voronoi diagram of a set of elements

S , and V o r (e) , e E S refers to the Voronoi region associated with the element e. The usual

method is t o divide the input set S into two sets of equal size S1 and S2, recursively compute

the Voronoi diagram of each half, and then merge the two resulting diagrams to form the final

Voronoi diagram. The merge step involves the construction of the contour, which is the locus of

all points that are equidistant from S1 a.nd Sz. The contour will give us information about (a)

the new Voronoi edges that need to be added to the final diagram and (b) which of the edges of

Proposal 3 5

the recursively computed diagrams need to be discarded. Thus, the construction of the contour

is the single most important step. For the case of a set of points in the plane, we have the nice

property that there is exactly one contour to be constructed, and this contour is monotone with

respect t o the y axis. In [22], the authors exploit this property by first identifying those Voronoi

edges of Vor(S1) and Vor(Sa) that are intersected by the contour. They then use the monotonicity

property t o explicitly sort these edges according to the order in which they are intersected. Once

this is done, some additional computation gives us the contour.

The parallel construction of the Voronoi diagram of a set of line segments is much more involved.

As observed in Section 2, the sequential algorithms of [25, 261 do not lend themselves well to

parallelization. In that section, we also noted that the best (and only) known parallel algorithm for

the construction of the Voronoi diagram of a set of n line segments is the CREW PRAM algorithm

by Goodrich et al. 1151, which runs in O(log2n) time and uses O(n) processors. This algorithm is

based on the approaches in the sequential algorithm by Yap [57], and on some of the techniques

of the CREW PRAM algorithm for the Voronoi diagram of a set of points 121. In the remainder

of this section, we will show that Voronoi diagram of a set of N line segments in the plane can be

constructed in 0(fi) time on a f i x fi mesh, where n = 2N. Our method on the mesh is

based on the approach used in [15].

Let S = {so, s l , . . . , SN-1) be the input set of line segments that do not intersect (except

possibly a t endpoints). As before, let v2; and v2;+1 be the two endpoints of segment s;, such that

x(v2;) < X (V ~ ; + ~) . Each segment s of S is actually represented as three elements: the two endpoints

and the open line segment. Let E = {po, p l , . . . , p,-1) be the ordered set consisting of these

endpoints sorted according to their x-coordinates (each pj is some v; and n = 2N). The mesh

algorithm for constructing Vor(S) will be a divide-and-conquer algorithm, and so we will a.ssunie

shuffled row-major indexing on the mesh. Let U be a slab1'. The subset of E in the interior of U

will be referred t o as Eu (thus, endpoints lying on the vertical boundaries of U do not count). The

set of segments obtained by restricting S to the slab U will be called S u i.e. S u = {s n U I s E S

and s n U # 0). Recall that Yap's algorithm [57] does a slab-wise and quad-wise computation

of the Voronoi diagram. Let U be the slab obtained by merging the adjacent slabs Ul and U2.

The merge step computes the Voronoi diagram in all the active quads of U; this is done by using,

with some additional computation, the recursively computed Voronoi diagrams of the active quads

of Ul and U2 t o construct the contour. Thus, the most important step in the merge procedure

is to compute efficiently, for every active quad Q in U , Vor(Su n Q). Following 1151, we let

VorSet(Su) represent the set containing the Voronoi diagrams of all the active quads Q of U i.e.

VorSet(Su) = {Vor(Su fl Q) 1 & is an active quad of U) . At the topmost level of recursion, the

18 \lie recall some definitions. Suppose a vertical line is drawn through each point in S . The vertical strip of region

between any two such (not necessarily adjacent) vertical lines is called a slab. Consider the set of segments that span

a slab U . T h e region of U that is enclosed between two such consecutive spanning segments is called a quad of U . A

quad is said t o be an active quad if i t contains an endpoint of S in its interior.

Proposal 3 6

entire plane is the slab U , and the algorithm computes Vor(S), since VorSet(Su) is nothing but

Vor(S). The recursion bottoms out when a slab has just one point in its interior, which happens

when a slab is defined by the two vertical lines x = p; and x = p;+a, for all even i between 0 and

n - 3. p;+l is the point in the interior of the slab.

Initially, each PE contains an endpoint v; (i.e. the coordinates of v;), the segment that v; is an

endpoint of, and the other endpoint of that segment. In other words, each PE Pi, 0 5 i 5 n - 1

has a packet that contains v;, which will be the key, s;i2 and v;+l, if i is even. If i is odd, these will

be v;, s (; - ~) / ~ and v;-1 respectively'". In either case, initially v; is used as the key for processor

Pi's information.

Preprocessing:

In this step, (a) first we sort the packets according to the x-coordinate of the key. Notice that

now the arrangement of the keys of the packets is as in the ordered set E. (b) Next, we run

Algorithm MULTILOC, using S and E as the set of segments and points, respectively. At the end

of this step, we will have for every endpoint p; in PE P;, the segments that lie vertically above

and below it. Call these pia and pib, respectively. As mentioned in the description of Algorithm

IL~ULTILOC, pia will be represented by its two endpoints and its index; similarly for pib. pia and

pib are now added on to the packet in PE Pi. It will become clear later on that this preprocessing

step is necessary in order t o determine active quads. Clearly, (a) and (b) take 0(fi) time on a

fi x fi mesh.

Basis:

The base step is executed when there is exactly one point in the interior of the slab. This point

will be p;, for odd i, 1 5 i 5 n - 1. The slab that pi lies in is defined by the vertical lines

going through pi-1 and p;+l (p , is some dummy point that lies to the right of all points in E).

The active quad to which pi belongs (obviously, it is the only active quad in said slab) is given by

the spanning segments pia and pib. Clearly, the Voronoi diagram of this quad can be computed in

constant time. Hence the base step takes constant time.

Merging:

Let Ul and U, be two adjacent slabs, and let IEu, I = IEur I = 5 (i.e. each slab has k endpoints

in its interior). Suppose that VorSet(Su,) and VorSet(Su,) have been recursively computed in

two adjacent sub-blocks of the mesh, where each sub-block is of size d m x d m . Let the left

sub-block be called Ml and the right sub-block M T . We will show that we can perform the merge

in 0 (&) time, using O(k) PEs.

The information that is necessary for the merge procedure is available in Ml in the following

l g w h e n we say tha t a particular segment s, is stored in PE P,, we mean that the index j of that segment is stored.

We will, however, continue to refer to this as "storing the segment sl".

Proposal

manner.

(1) Active Quads of Ul : The active quads in Ul have a sorted order defined on them in the natural

way. Let Al be the number of active quads in Ul (Al 5 k); let these be Qll, Q12, . . . , QIA,
in sorted order (from top t o bottom, say). Let the number of endpoints in these active quads be

kll, klz, . . . , klA,, respectively. Note that kL1 + k12 + . . . + klA, = k. In Ml, the endpoints

in Qll are in the first kll processors, the endpoints in Q12 are in the next k12 processors and so on.

We will call this the active-quad-wise ordering of the endpoints of Eu,. Each endpoint in Q1; will

specify its quad by the upper and lower bounding segments of Qli.

(2) Voronoi Edges of VorSet(Su,) : As stated earlier, VorSet(Su,) is the collection of the Voronoi

diagrams of all the active quads in Ul. Because of the quad-wise computation of the Voronoi

diagram, the Voronoi edges of VorSet(Su,) are stored in a quad-wise manner. In other words, in

M17 we will first have the Voronoi edges of Vor(Su, n Qll), followed by the edges of Vor(SrJ, n Q12),

and so on. Notice that since VorSet(Su,) consists of the Voronoi diagram of at most k line segments

(since only the active quads are considered), it will have O (k) edges; there will be a constant number

of these Voronoi edges in each processor of Ml. More importantly, the following observation holds,

which follows directly from a lemma by Yap [[57], Lemma 51: The number of Voronoi edges in the

Voronoi diagram of an active quad Q1; of Ul is proportional to the number of segments in that

quad. In other words, the number of Voronoi edges in Vor(Su, n Ql;) is O(k1;)20. Therefore, the

PEs of Ml that store active quad Qli suffice to store the complete diagram Vor(Su, n Q1;), with

just a constant number of Voronoi edges per PE.

Let A, be the number of active quads of U,, and let k,; be the number of points in the i-th (in the

sorted order) active quad Q,;, 1 5 i 5 A,. The information about the active quads of U, and

the Voronoi edges of VorSet(SrJT) are available in MT in a similar and analogous way.

Following the PRAM technique of Goodrich et al. in [15], we first give a concise summary of

the steps involved (and the mesh operations needed) in performing the sub-problem merge. In the

final part of this section, we give the details of the implementation of each of these steps on the

mesh.

Summary of the Merge Step on the Mesh

The merge part of this divide-and-conquer algorithm consists of three important substeps: the

determination of the active quads of U, the vertical merge, and the horizontal merge.

(1) Determination of the active quads of U : In this step we compute the active quads of U by

using the information about the active quads of Ul and U, available in Ml and M T , respectively.

20 Intuitively speaking, the lemma states that for any two quads QI and Q2 in a slab U ' , the objects in QI and the

objects in 9 2 do not interact with each other. In other words, the Voroiloi edges of the diagram V O T (S ~ , n Q1) will

not be affected by the segments in SU, n Q2. Hence the assertion that the number of edges in V o r (S v , n Q,,) is

O(k1.).

Proposal 3 8

This can be done by an appropriate sort step, followed by a selected broadcasting step on the mesh

Ml U M,. This takes o(&) time on the mesh M1 U M, (which has 2k + 2 PEs).

Consider an active quad Q from the slab U . Let Ql (Q,) represent the part of Q that lies in the

left (right) slab Ul (U,). In other words, Ql = Q n Ul and Q, = & fl U,. Observe that Ql (Q,)

is the union of a contiguous set of quads of slab Ul (U,). Some of these quads may be active and

some or all of them may not be (see Figure 12 for an example). We will call these quads (whether

active or not) the Ql-quads (&,-quads). In order to find the Voronoi diagram of Q, Vor(Su n Q) ,

we need to "merge" the Voronoi diagrams of all the Ql-quads and the Q,-quads in the appropriate

way. This merging is achieved by first doing a vertical merge, followed by a horizontal merge.

(2) The vertical merge: In this step we find, for every active quad Q of U, the Voronoi diagram

of Su, n Q1, called the Ql-diagram and of Su, n Q,, called the &,-diagram. Notice that the

Voronoi diagram of the non-empty Ql-quads (&,-quads) has already been recursively computed.

The Voronoi diagram of the empty Ql-quads (&,-quads) is easy t o compute. On the mesh, we can

find the empty Ql-quads and their Voronoi diagrams by doing an appropriate sort step, followed

by a segmented prefix scan operation. An analogous application of these steps give us the empty

Q,-qua.ds and their Voronoi diagrams. The construction of the Ql-diagram (&,-diagram) requires

us t o merge together the Voronoi diagrams of all the Ql-quads (&,-quads), empty as well as non-

empty. As will be seen in the detailed version of this step, this merging turns out t o be very

straightforward. This step takes o(&) time on Ml U M,.

(3) The horizontal merge: In this final stage of the merge step, we obtain the Voronoi diagram

of each active quad Q. This is done by merging the Q1- and the Q,-diagram, which involves the

construction of the contour. The basic objects of manipulation in this step are primitive regions

or prims [15], which will be defined in the detailed version of this step. The horizontal merge is

the most complicated part of this algorithm, and depends on certa.in crucial lemmas developed in

[15]. Once the contour is constructed, the Ql-diagram to the left of the contour, the contour itself,

and the &,-diagram t o the right of the contour give us the final Voronoi diagram Vor(Su n Q)

for every active quad Q of U . The mesh implementation of this step requires the application of

the planar point location algorithm (Lemma 5.1), and a sort step. The final determination of the

contour requires the application of Algorithm SIM ULTSRCH (with some minor modifications), a

prefix scan operation, one routing step, one selected broadcasting step, and one RAR. This takes

0(&) time on Ml U Mr.

As mentioned earlier, the run-time of the preprocessing step is O (f i) . From the summary of the

merge step described above, it is seen that the merge step takes 0(*) time. From the recurrence

relation for divide-and-conquer algorith~ns on the mesh, given in Section 3.2, it therefore follows

that the Voronoi diagram of a set of n line segments in the plane can be computed in O (J n) time

on a f i x f i mesh. We state this result as a lemma.

Proposal 3 9

Lemma 5.2 The Voronoi diagram of a set of n nonintersecting (except possibly a t endpoints) line

segments in the plane can be found on a f i x f i mesh in 0(fi) time (with no queueing).

We now provide details of the implementation of the merge step on the mesh. These details

can be skipped without any loss of continuity; the summary of the motion planning algorithm on

the mesh is given in section 5.3.

5.2.1 Details of the Merge Step on the Mesh

We will now give details of the method to compute VorSet(Su), using the recursively computed

VorSet(Su,) and VorSet(Su,) (where U is the slab obtained by merging the adjacent slabs, Ul

and U,). In other words, we will describe the details of how each of the three substeps outlined

above are executed on the mesh. Without loss of generality, let us assume that the PEs in the

mesh Ml U M, are PI, P2, . . . , P2k+2.

Determination of the Active Quads of U : As before, let Qll, Q12, . . ., QIAl be the active

quads of Ul in sorted order. Each such quad Q1; is defined by an upper and lower bounding segment.

Call these segments Qlia and Qlib, respectively. If the upper bounding segment does not exist for

Qll, Qlla is set t o s+,, an imaginary segment lying at +m. Similarly, Q ~ ~ , ~ is set t o s-,, if QIAl

does not have a lower bounding segment. In an analogous manner, we define QTia and QTib to be

the upper and lower bounding segment of the i-th quad Q,; (1 5 i 5 A,) of UT (see Figure 11

for an example of such bounding segn~ents). The active quads of Ul and U, are available t o us from

the recursive computation, and are arranged in Ml and M T , respectively, in the manner described

earlier. Thus all endpoints p belonging to a particular quad Ql; of Ul will be in consecutive PEs.

Each endpoint p of Ur will indicate its quad Ql; by specifying Qlia and &lib; similarly for every

endpoint p' of U,. Let us use pQ to denote the current active quad that the point p lies in.

Now we want to determine the active quads of U. In the active-quad-wise ordering of the

endpoints of Eul (Eu,)~', let el; (er;) be the endpoint in the i - t l ~ (1 5 i 5 k) processor of MI

(M,). Let &u, (Eur) be the ordered set containing these endpoints according t o their active-quad-

wise ordering in Ml (M) i.e. £u, = {ell, . . . , elkll, elkllS1, . . ., . . . , e l k) (LUr =

{erl , . . . , erkrl, erkT1+l, . . . , e ~ k , ~ + l c , ~ , . . . , erk)). Let 'Flu, (Xu,) be the ordered set consisting of

all the active quads of UZ (U,) i.e. 'Flu, = {QII, Ql2, . . . , Q ~ A ~) and Xu, = {QT1, QT2, . . . , QTA,).

Consider the set 'Ft = 'Hu, U 'Flu,. The bounding segments of the quads in the set 'H have a unique

ordering defined on them; this ordering is given by the intersection of these bounding segments with

the common boundary of the slabs Ul and U,. Consider an active quad Q of U , and let Qa and

Qb be its bounding segments. Obviously, Qa will be an upper bounding segment for some active

"Recall that Eu, (Eu,) is the ordered set of endpoints that Lie in the interior of the slab Ul (U,). In this set,

the endpoints are ordered according to their 2-coordinates. We described the notion of active-quad-wise ordering on

page 37.

Proposal

Figure 11: An active quad Q of U. Qz;, (Qr j , QT(j+ l) , QT(j+z) , Qr(j+3)) are consecutive

active quads of Ul (U,). The dashed arrowed curves going out of each endpoint indicate the upper

bounding segment of that points quad.

quad of Ul or U, (possibly both). Similarly, Q~ will be a lower bounding segment for some active

quad of Ul or U, (note that the quad(s) in this case might be different from the quad(s) for Qa).

For example, in Figure 11, Qa is an upper bounding segment for QTj and Q~ is a lower bounding

segment for Qz(i+l) and for Qr(j+3). Hence, the bounding segments for all the active quads in U

can be found from the bounding segments of the quads in the set 'H.

We now want t o arrange the endpoints in Eu in the desired active-quad-wise order. This can

be achieved in the following way.

(a) First, we merge the ordered sets of endpoints, EuL and Eur . This merging of endpoints el; (E Eu,)

and er; (E fur) is done according to the ordering given by the upper bounding segments of the

quads el;& E Xu, and eriQ E 'HUT. In Figure 11, these upper bounding segments are indicated

by the dashed arrowed curves from each endpoint. Let this merged (ordered) set of endpoints be

EU = {el, ez, . . . , ezk+l} (EU consists of the endpoints from Eu,, EuT, and tlze endpoint on the

common boundary of Ul and u ,) ~ ~ .
(b) For every e; in PE Pi, either eiQ E Xu, or eiQ E Xu,. Each Pi determines if the upper

bounding segment of e;Q spans the entire slab U. If so, then let us say that some field in P; is

set t o 1, and if not, it is set t o 0. Corresponding to every such spanning segment s of U, there

will be a consecutive set of PEs with endpoints that have s as an upper bounding segment: all

these PEs will be set t o 1. Let Dl and Uz be two such successive sets of PEs. Now, we know that

2 2 W e would like t o point ou t a small detail: Let p b e t h e point on the boundary o f Ui and U,. I f t h e segments pa

and pb (t h e segments tha t lie immediately above and below p) span U, t h e n t h e active quad o f U t ha t p lies i n is

t h e one defined b y pa and pb. I f pa does not span U, t h e n p's active quad is t h e same as t h e active quad t h a t t h e

endpoint (s) o f pa lies in .

Proposal 4 1

the endpoints have already been sorted according t o the upper bounding segments of their quads.

Thus, all endpoints that lie in PEs between Dl and D2 (and which are hence set to 0) must lie in

the same active quad of U. We can now update the information to indicate which active quad of

U each e; lies in: this can be done by an appropriate selected broadcasting operation, which will

update, for every e;, the upper and lower bounding segments of eiQ to the new values. Obviously,

all such active quads of U lie in sorted order on the mesh MI U ill,. Hence, the determination of

the active quads takes o(&) time on lVIl U M,.

The Vertical Merge: Let Q' be a QI-quad (a similar argument will hold for a &,-quad.). If Q' is

an a,ctive quad, then we already know its Voronoi diagram Vor(SU, n Q'), since it was computed

recursively. If Q' is not active, then, since Su, n Q' consists of just the two bounding segments Qta

a,nd Q ' ~ , the Voronoi diagram of Q' can be computed trivially in constant time. There is an obvious

upper bound on the total number of such empty quads that we can have in all such Q1 of Ul. Notice

that an endpoint of a t least one of Qta and Q ' ~ must lie in Q,. Hence, the number of empty quads

of Ul that we will need to consider can be at most O(k), since that is the number of endpoints in

U,. Therefore, the computation of Vor(Su, n Q') for all such empty Q' will take a t most O(k)

time, sequentially. In the vertical merge step, we want to merge the Voronoi diagrams of all the

Ql-quads. The result of such a merge is called the Ql-diagram, denoted by Vor(Su, n Q1). The

analogous diagram in Q, is called the Q,-diagram, Vor(Su, n Q,). Since, as we just mentioned,

the Voronoi diagram of each QI-quad Q' is readily available to us, this merge step involves just

merging these Vor(Sv, n Q ') , which turns out to be fairly straightforward. This will become clear

as we describe the computation of the Ql-diagram on the mesh. The Q,-diagram can be computed

in a similar way. Keep in mind that we are talking about one active quad Q of U , and that such a

computation needs to be performed for every active quad of U .

Let C, represent the comnion boundary line between Ul and ll,, C1 the left boundary line of Ul,

and C, the right boundary line of U,. We use s(p;) t o represent the segment that p; is an endpoint

of. We will first give the description of the method to find the empty quads of Ql and Q,, since this

information is not immediately available to us at the end of the previous step (the determination

of the active quads of U). Consider all the Ql-quads and the Q,-quads. Clearly, there is a sorted

order on the bounding segments of these quads according to the point at which they intersect C,.

In this technique on the mesh, we will arrange these bounding segments in this sorted order on the

mesh &ll U M,. Suppose s(p;) and s(pj) a,re two successive spanning segments of Ql . We want all

points of Q, (if any) that lie between these two segments to lie between the PEs that hold p; and

pj. Similarly for Q,. As we will see later, this arrangement will enable us to determine the empty

Ql-quads, and the empty Q,-quads.

Recall that in the previous step the endpoints in Ev, and Ev, were merged according to the

ordering given by the upper bounding segment of their quads. Thus the points in Q will still be

grouped according to their old quads (from Ul or U,). As an example, the points in quad Q of

Proposal

9

empty Q, -quad
Y

Q r (,+',

Figure 12: The Ql-quads and the &,-quads of an active quad Q of U. We want the endpoints p,

marked by the shaded circles, t o be sorted according t o the point at which s(p) intersects C, (this

point is marked by a cross).

Figure 12 are arranged quad-wise in the order specified: points of QTj, Qli, Q,(j+l), QT(j+2), Q1(;+l)

and finally Q,(j+3). Rut this ordering does not necessarily guarantee that the points are in the

order that we want. To achieve this, we will need t o a further sort of the points of Q . The gist of

the method used t o find this new order of the points of Q is this23: All points p of quad Q such

that s(p) spans either Ul or U, are sorted according t o the point at which s(p) intersects C,. In

Figure 12, such endpoints are marked by the small shaded circles. For those points p such that s(p)

does not span Ul or U, (in Figure 12, these are the unmarked endpoints), we solve this problem by

affiliating p with the upper bounding segment of its (recursively computed old) quad. This segment

will certainly be a spanning segment of either Ul or U,, depending on whether p lies in Ul or U,,

respectively. This can be given as follows. Let pi and p2 be two points that belong to Q.

Case 1: pl E Ul, p2 E Ul. The order between these two points was established during the

recursive step: we maintain that order (i.e. the order given by the upper bounding segments

of the active Ql-quads that pl and p2 belong to).

Case 2: pl E U,, pa E U r . Similar t o above.

Case 3: pi E Ul, pz E U,. Let &I (Q 2) be the active Ql-quad (Q,-quad) that pl (p2) lies in.

Case 3.1: s(p1) intersects C,. If p2 lies above s(pl) , then pa < pi, else pi < p2.

Case 3.2: s(pz) intersects Ll. If pl lies above s(p2), then pl < p2, else p2 < pi .

2 3 N ~ t e tha t we could actually have done this sort during the previous merge step of determining the active quads.

However, we choose to do it here since these details are not really necessary to determine the active quads of U .

Proposal 4 3

Case 3.3: s(p1) does not intersect C, and s(p2) does not intersect Cl. In this case, we

maintain the order as established by the upper bounding segment of each point's quad.

In other words, if Qla intersects C, a t a higher point than or same point as Q2a , then

Pl < 132. If not, pa < Pl.

Case 4: p l E U,, p2 E Ul. Similar to above.

lu will now refer to the set of endpoints of U in this updated ordering. Now that we have the

points of Q in the desired order, we will describe the method used to find the empty quads of Ql .

The idea is simple: If two consecutive spanning segments of Ul (U,) in Ql (Q,) do not have any

endpoints of Ql (Q,) between them, then they must define an empty Ql-quad (Q,-quad). On the

mesh this works as follows. The endpoint p in each P E of Ml U hlT determines if s(p) spans Ul.

If so, some field in Pi is set to 1, say, and to 0 otherwise. In the PEs that contain the endpoints of

Q , consider two PEs Pj and Pk that are successive in the set of PEs set to 1. Let the endpoints in

these be pl and p2, respectively. Clearly, s(pl) and s(p2) are two consecutive spanning segments of

Ul. If there are no endpoints of Q1 in the PEs between P, and PA, then s(pl) and s(p2) will define

the upper and lower bounding segment of an empty quad. Let InUleft be a field in each P E Pi that

is set to 1 if the endpoint in Pi belongs to Ul; otherwise, it is set to 0. The next step is t o use, for

each such Pj and Pk, the PEs Pj+1, . . . , Pk as one of the components for a segmented prefix scan.

We perform the segmented scan operation on InUleft. If P E Pk has 0 as the result of the segmented

prefix scan, then that means that there are no points from QI in the PEs between Pj and Pk. We

have thus found an empty Ql-quad. We compute the Voronoi diagram of this empty quad, which

is nothing but B(s(pl) n Q1, s(p2) n Q1) and this consists of at most 5 Voronoi edges. We store

the diagram of this empty quad in P E Pk and mark the edges to indicate that they are bisectors of

segments in Ul. In the next phase, we perform steps analogous t o the above, and find the Voronoi

diagram of the empty quads of Q,.

Now that we have the Voronoi diagram of all the Ql-quads and the Q,-quads, we can compute

the Ql-diagram and the Q,-diagram. This turns out to be very straightforward. We will describe

how to construct the Ql-diagram; the Q,-diagram can be computed in a similar way. Let Q1 and

Q2 be two adjacent quads in Ql with Q1 above Q2. Also, let Vorl = Vor(Sv, n Q1) and

v0~2 = Vor(SUl n Q2) . We want to merge Vorl and Vor2 in order to find the Voronoi diagram

of Q1 U Q2. From a lemma by Yap [[57], Lemma 51 we know that the objects of Q1 and the objects

of Qz do not interact with each other. Thus the edges of Vorl (Vor2) will not be modified in any

way by the objects of Q2 (Q1). The only point to note is about the segment s E Su, that forms

the boundary of Q1 and Q2: Vor(s) now consists of the edges of Vor(s) from Vorl and the edges

of Vor(s) from Vor2.

Thus, none of the bisectors of Vorl and Vor2 have to be modified in any way when we merge

the two diagrams. The set of Voronoi edges in the merged diagram is the union of the sets of

Voronoi edges of Vorl and Vor2. In essence, we just have to "concatenate" the Voronoi diagrams

Proposal 44

of the adjacent quads in the correct sorted order[l5]. This fact makes the computation of the

Ql-diagram very straightforward. To merge the Voronoi diagrams of all the Ql-quads Q', we just

have to arrange the Vor(Su, n Q') in the correct sorted order. The method that we just described

to find the empty Q1-quads ensures that all the Ql-quads are in the correct sorted order on the

mesh Ml U Mr. Hence, all their Voronoi diagrams are also in the correct sorted order. With a sort

step we can ensure that within Q, we have all the Voronoi edges of the Ql-diagram in consecutive

PEs, followed by the Voronoi edges of the Q,-diagram.

From the above, it can be seen that the vertical merge step takes 0(&) time on the k PEs of

Ml u Mr .

The Horizontal Merge: This is the most important part of the merge process. In the horizontal

merge step, we reach our final goal of constructing the Voronoi diagram Vor(Su n Q) for every

active quad Q of U , and this is done by merging the Q1 and &,-diagrams. Recall that the merging

of these two diagrams involves the construction of the contour, which is the locus of all points that

are equidistant from the objects in Su, n Q (call these tlze Ql-objects) and the objects in Su, fl Q

(Q,-objects). As before, our discussion will be based on the computation performed for one active

quad Q, with the assumption that the same steps are carried out for all the active quad-s of U .

As in the sequential methods of [25, 571 and the parallel PRAM method of [15], we will manip-

ulate objects known as primitive regions, to be defined shortly, for the construction of the contour.

For the rest of this discussion, we will assume that the Ql-diagram is augmented in the following

way (The &,-diagram will be augmented in a similar way): For every element e (either a point or

an open line segment) in Su, fl Ql, we add spokes [25] to the Voronoi region Vor(e) of e. If v is a

Voronoi vertex of Vor(e), and if v' = proj(v, e) (the projection of v on e), then the line segment

obtained by joining v and v' is a spoke of Vor(e). See Figure 13 for a Voronoi diagram augmented

with spokes. In [15], the authors add some additional spokes. For all e that are point elements, we

check if the horizontal leftward ray from e crosses any spokes before it intersects the boundary of

Vor(e). If not, then let p be the point of intersection on the boundary. The line segment from e t o

p is also added as a spoke. We do a similar step for the rightward ray from e. If these leftward and

rightward rays do not intersect any spokes or Voronoi edges, then these rays are also considered

t o be spokes. Tlzese additional spokes are indicated by bold dotted lines in Figure 13. All spokes

define new sub-regions within Vor(e). These sub-regions bounded by two spokes on two sides, part

of e on one side, and a piece of Voronoi edge on the other side are called primitive regions (prims for

short) [15]. The piece of Voronoi edge that forms one of the boundary edges of each prim is called a

semi-edge [15]. Notice that since VorSet(Su,) consists of a t most O(k) Voronoi edges and vertices,

the number of prims will also be O (k) . For the rest of this discussion, we will call the spokes of

the Q1-diagram as Ql-spokes, the prims of the Ql-diagram as Ql-prims, and the semi-edges of the

Ql-diagram as Ql-semi-edges.

In the merge computation on the mesh so far, our technique has been t o store a constant number

Proposal

Figure 13: A Voronoi diagram augmented with spokes.

of Voronoi edges per PE. Notice that each Voronoi edge (part of B (e l , e 2) , say) actually defines

two prims: one in each of the two Voronoi regions V o r (e l) and V o r (e 2) . So we will assume that

both these prims are stored along with the Voronoi edge. It is also easy to determine the additional

spokes (mentioned above) that need to be added. Every prim in V o r (e l) , where el is either an

endpoint or an open line segment corresponding to segment sl in Su, n Q, determines if it is

intersected in the desired manner by the leftward and rightward rays from both the endpoints of

s l . This can be done in constant time for each prim, and in constant total time for all the prims

since there are a constant number of prims per PE.

We now want to construct the contour between the Ql-diagram and the &,-diagram. This

construction depends crucially on certain properties of the contour. We state these properties as

lemmas below, and refer the reader to [15, 571 for the proofs.

L e m m a 5 . 3 (Goodrich e t al. [15]) Let a and P be Q l - and &,-prims, respectively. Let s , E Su,
and sp E Su, be such that a C Vor(s,) and ,O 5 V o r (s p) . Let b,,p = B(s,, so) fl a n ,O. If

b,,@ is non-empty, then be,@ defines a piece of the contour.

L e m m a 5.4 (Goodrich e t al. [15]) The contour is monotone with respect to the y-axis.

L e m m a 5.5 (Goodrich e t al. [15]) The contour intersects each spoke and each Voronoi semi-

edge at most once.

From the above lemmas it is easy to see that the contour intersects each prim in at most one

continuous piece [15].

The motivation behind the method to construct the contour (as developed in 1151) is as follows:

Since the contour is the locus of points that are equidistant from the Ql-objects and the Q,-objects,

Proposal 46

it will be made up of parts of bisectors of the form B(el , e,), where el is a &[-object and e, is

a Q,-object. The construction of the contour involves finding all such pairs (el, e,). Obviously,

every such Ql-object el that contributes a bisector to the contour will have some of its Ql-prims

intersected by the contour. Thus the first step towards the construction of the contour is t o find

all the Ql-prims that are intersected by the contour, and the order in which they are intersected.

Similarly, we identify all the Q,-prims that are intersected by the contour and put them in the

right order. Once we have these two ordered sets of prims, we identify all (el, e,) pairs such that

part of B(el , e,) is a piece of the contour.

Given below are the important details of the construction of the contour on the mesh. Notice

that at this stage of the merge all the active quads of U are in sorted order in Ml U Mr , and within

each such Q , we have the Ql-diagram, followed by the &,-diagram.

(1) Finding the intersected Ql-prims in the correct order The method described below can be

applied in an obvious way to find the intersected &,-prims in the correct order.

(1.1) Finding the Ql-spokes that are intersected by the contour: We wish to determine the Q1-

prims that are intersected by the contour. This is equivalent t o identifying the Ql-spokes

that are intersected by the contour because, by Lemma 5.5, if the contour intersects a

prim, it must intersect at least one of the spokes of that prim. For every Ql-spoke If , one

endpoint a of the spoke is adjacent on a Ql-object el and one endpoint b is adjacent on

a Q l - ~ e m i - e d g e ~ ~ . If b is closer to a Q,-object than it is to el, then I' must be intersected

by the contour. In order t o determine if b is closer t o a &,-object, we find the Voronoi

region Vor(e,) of the &,-diagram that b lies in. If d(b, e,) > d(b, el), then the contour

must intersect 1'. Call a (b) the o-endpoint (s-endpoint) of 1'.

We can find such a Vor(e,) for the s-endpoint of every &[-spoke by doing planar point

location. From Lemma 5.1, we know that we can do this by running Algorithm MUL-

TILOC with some slight modifications: The set S is the set of &,-semi-edges of all the

active quads Q and the set P js the set of s-endpoints of the Ql-spokes of all the active

quads Q. Since IS1 + I PI = O (k) , this step can be done on Ml U Mr in o(&) time.

Once we find such a Vor(e,) for every Ql-spoke, we can determine, in constant time, if

it is intersected by the contour. Let us assume that all Ql-spokes that are intersected

by the contour are marked in an appropriate way.

(1.2) Sorting the intersected Ql-spokes: In this step we sort the set of intersected Ql-spokes

according t o the well-defined sorted order that is guaranteed by Lemma 5.4. If we

assume that the contour is oriented from bottom to top, we know that the o-endpoint of

every intersected Ql-spoke must lie to the left of the contour and the s-endpoint of every

24what about unbounded spokes? we should be able t o deal with it in a manner similar t o that in [22]

Proposal

I

(a) I J > I " (b) 1 ' < l "

(d) I < I

(e) I ' > I " cn 1'. I "

Figure 14: An illustration of Lemma 5.6 (Case 2). Each spoke's o-endpoint, which must lie to the

left of the oriented contour, is indicated by the small shaded circle.

intersected Ql-spoke must lie to the right of the contour. The spokes will be sorted from

top t o bottom. The following lemma gives us the method to find the ordering.

Lemma 5.6 Let 1' and I" be two Ql-spokes, and let yll (yll') be the y-coordinate of the

o-endpoint of 1' (1") and y2' (y2") be the y-coordinate of the s-endpoint of 1' (2"). The

order between I' and I" is determined in the following way:

Case 1 One of 1' or I" lies entirely above the other i.e. [ylt, y2'] n [yl", y2"] = 0.
(a) min(yll, y2') > max(yll', y2"): I' > I".

(b) min(ylf', y2") > rnax(yll, y2'): 1" > 1'.

Case 2 [YI', y2'1 n [YI", y2"] # 0.
For the sake of brevity, we refer the reader to Figure 14 for an illustration of the

difjerent cases that are possible in this instance.

Proof: Case 1 is obviously true, by Lemma 5.4. The details of the proof for Case 2 are

also fairly obvious: a figurative proof is offered in Figure 14. EI

This step can be done in o(&) time on Ml U M,. Let this ordered set of intersected

Ql-spokes (&,-spokes) be called ISl (IS,). Note that the information about the ordered

set of intersected Ql-prims (Q,-prims) is implicit in ISl (IS,): call this ordered set IPl

(IP,) . Within each quad Q in Ml U iWT, we have the the prims of IPl in order, followed

by the prims of I P , .

Proposal 48

(2) Finding the contour between Ql-diagram and the &,-diagram: We use the two sorted sets IPl

and IP, to construct the contour. The PRAM niethod of Goodrich et al. [15] does this in the

following way: Let a be the median prim in the sorted set IPl, and let s, be its &[-object.

For every prim /3 in IP, (whose &,-object is so), we compute b,,p = B(s,, so) n a n /3.
From Lemma 5.3, we know that if b,, p is non-empty, then it is part of the contour. Also,

all the p's such that b,, p is non-empty form a continuous interval I, of prims in IP, [15].

Furthermore, all the prims of IPl that lie above (below) a can interact only with the prims

of IP, that lie above (below) I,. In[15], the authors recurse on the half above a and above

I,, and below a and below I,, in parallel.

We will give a brief description of a non-recursive solution of this final step on the mesh.

Consider a prim a from I P r . We wish to find the interval I, of prims from IP, that interact

with a. One way to do this is by identifying the topmost prim of the interval I, (call this

at) and the bottommost prim of the interval I, (call this a b) . Sequentially, we can find at

by doing a binary search in the following way (ab can be found in a similar way): Let ,!? be

the median prini of IP, . (a) If b,,p is non-empty, then we know that at must lie in the top

half of IP,, so we recurse on that half to find a t . (b) If b,,p is empty, then we can determine

which of a and ,!? the contour intersects first. This can be done by comparing the order of

a and /3 in a manner analogous to that given in Lemma 5.6. If a > P (i.e. the contour,

oriented from bottom to top, intersects /3 before it intersects a) , then the binary search for

at has to recurse on the top half of IP,. If a < /3, then it recurses on the bottom half of

IP,.

Now, in order to find at for every a in IPl in parallel, we have to do a simultaneous search. The

mesh implenientation of such a step can be done by an application of Algorithm SIMULTSRCH,

by using prims from IPl as the equivalent of the point set P, and the prims from IP, as the

equivalent of the segment set S in Algorithm SIMULTSRCH. Similarly, ab can be found by a

similar application of Algorithm SIMULTSRCH. Let us assume that every cu also knows the

PE ids Pt and Pb of cut and ab, respectively. From this information, a can find the length

(I, 1 of the interval I,. If we now make II, 1 copies of a, each of those copies can read the

prim /3 from one of the PEs from Pt to Pb. We can thus determine the piece of the contour

ha,@. Making I I,] copies of every a in IPl can be done by a prefix scan on 1 I@ 1 , followed by a

one-to-one routing, and finally by a selected broadcasting step. To determine each b,,p that

is part of the final contour, each of the copies of a reads the ,6' from one of the PEs from Pt

to Pb. This can be done with one RAR step.

Since the lengths of the lists IPI and IP , are each O (k) for all the active quads Q of U , the

above step can be done in 0(&) time on Ml U M,.

Proposal

5.3 Motion Planning Using Voronoi Diagrams

We summarized, in Section 1, the main ideas behind the method by 0 ' ~ 6 n l a i n ~ and Yap for

planning the motion of an object (a disc) with two dofs, moving amongst obstacles [34]. They use

the Voronoi diagram of the line segments that make up the obstacles t o plan the motion of the

object. We give the mesh-optimal parallel implementation of this method of motion planning. Let

us assume that the object A has to be moved from point a to b. First we construct the Voronoi

diagram and this takes 0(&) time on a fi x & mesh, as we have just shown. Recall that the

next step is to remove all the Voronoi edges that do not satisfy the minimum clearance requirement.

In other words, we want to delete all Voronoi semi-edges v' = B(el , ez) such that the minimum

distance of the points on v' from el and ez is less than some prespecified length r (the radius in the

case of a moving disc). Clearly, assuming that we know r, this deletion can be done in constant

time on the mesh, since each PE has a consta.nt number of Voronoi edges. The remaining Voronoi

edges define a graph which may be disconnected.

The next step is t o find the Voronoi cells V o r , and Vorb that contain the points a and b,

respectively. By Lemma 5.1, this can be done in 0(&) time. The last step is t o find a path from

an (undeleted) edge of V o r , to an (undeleted) edge of Vorb. One way t o do this is by constructing

the spanning tree and then finding this path, if one exists. In [4], Atallah and Hambrusch show

that in a graph with edge set E, we can solve this problem in on a mesh with (El PEs. In the

graph defined by the Voronoi diagram, IE(is O(n). It follows, therefore, that we can implement

the motion planning technique of [34] in 0(+) time on a + x f i mesh.

Proposal

6 Proposed Research

In recent years, there has been steady progress in the development of exact algorithms for various

special cases of motion planning. These algorithms provide us with polynomial-time solutions

that are often worst-case optimal. However, in many cases, the sequential complexity is high

enough to merit investigation into possible speed-ups offered by parallelization. The goal of our

research is two-fold. On the one hand, we are interested in the parallelization of existing sequential

algorithms for various special cases of motion planning. On the other hand, there is a wide array

of useful motion planning problems that have important applications, but whose solutions are

computationally intractable in practice. The intractability of such problems is related to the number

of degrees of freedom of the moving object. In such cases, it may be feasible to apply approximation

techniques as well as randomization, which provide faster run-times. Randomization has been

shown to be a particularly suitable strategy for "breaking" the inherently sequential nature of

many problems. In what follows, we state problems that we propose to investigate for solutions on

fixed-connection networks and/or on PRAMS.

In our investigation so far, we have derived efficient mesh algorithms for certain geometric

techniques that are used in special instances of motion planning viz. planning the motion of

an object in two dimensions with 2 dofs by using visibility graphs or Voronoi diagrams. These

techniques are specialized applications of general motion planning strategies. We would like to look

into the development of efficient parallel algorithms for other special cases of motion planning for

which polynomial sequential algorithms exist. Efficient parallel algorithms for such cases, whether

on the PRAM or on fixed-connection networks, offer the possibility of significant speed-ups, which

will prove to be very useful. For example, consider an object with 3 dofs moving in 2-dimensional

space among polygonal obstacles. Lozano-PQez and provide an approximate technique

(assuming the moving object is convex) for this case in [30]. Although this technique can be

incorporated into our mesh algorithm, we are interested in parallel algorithms for the more exact

methods of solving this problem.

(a) As we mentioned in Section 1, Sharir et al. [42, 45, 501 have developed polynomial-time

sequential algorithms for a number of special cases by applying the projection method. By

using discrete combinatorial representations of the free configuration space, they come up

with algorithms for problems such as a rod (a line segment, sometimes also called a ladder)

moving among convex obstacles, a rigid polygonal object (with 3 dofs) moving among convex

obstacles etc. Even though these algorithms are polynomial-time algorithms, they are not

very efficient. Refinements for some of these algorithms have been proposed. In particular, the

exact algorithm for a rod moving among polygonal obstacles has been improved substantially

to run in time O(n2 log n) [28, 521. We would like to look into how special applications of the

projection method can benefit from parallelism. In particular, we are interested in designing

Proposal 5 1

fast ~ara l le l algorithms for planning the motion of a rod or a polygonal object with 3 dofs

moving among polygonal obstacles.

(b) The retraction method was mentioned in Section 1, and we noted there that this approach has

the advantage of providing "maximum clearance" from the obstacles for the moving object .
In Section 5, we developed efficient mesh algorithms for one such application of the retraction

approach of [34], namely using Voronoi diagrams to plan the motion of an object with 2

dofs (either a disc or a convex object) moving among polygonal obstacles. The principle of

retraction has led to efficient algorithms for planning the motion of a rod (3 dofs) moving

among polygonal barriers [33] and of two independent discs in the plane [56].

For the former problem, ~ ' ~ h l a i n g , Sharir and Yap [33] generalize the retraction approach

by defining a a variant of the Voronoi diagram in the 3 dimensional configuration space of

the rod [41]. They construct a one-dimensional diagram by performing two retractions (as

opposed to just one in the case of [34]), followed by a graph search on this diagram in order to

find a motion path. Via a con~plicated geometric analysis, they show that their algorithm runs

in time O(n210g nlog*n). We observed in Section 5 that even for the simpler case of an object

with 2 dofs, the parallel constnlction of the Voronoi diagram is fairly involved. The retraction

method for the rod promises to be even more involved! However, given that this retraction

method is an exact technique that has the appealing "maximum clearance" property, we

would like to investigate the adaptation of this strategy to the parallel environment.

(c) We have considered various geometric algorithms for the motion planning problem in 2 dimen-

sions. As previously noted, the problem rapidly becomes harder in 3 dimensions. In general,

the geometric characterizations of the various special cases of motion planning in 3 dimen-

sions, even for small degrees of freedom, are much less understood than the corresponding

problems in 2 dimensions. Consider the problem of a purely translational object moving in

3 dimensions among polyhedral obstacles. For the 2 dimensional counterpart of this prob-

lem, the method by Lozano-Pkrez et al. [30] provides us with an exact algorithm that plans

the shortest path for the object. We developed a mesh-optimal algorithm for this case in

Section 4.

In 2 dimensions, we have the useful property that the shortest path from one point to another

can be found by performing a shortest-path graph search on the visibility graph. Unfortu-

nately, this useful relation between visibility graphs and shortest paths does not hold in 3

dimensions. The shortest paths between two points while avoiding polyhedral obstacles is still

known to be piecewise linear. However, the vertices of the path can now lie on the edges of the

polyhedra, and need not always coincide with the vertices of the polyhedra [41]. For general

polyhedra in 3 dimensions, algorithms for finding such shortest paths have run-times that

are no better than doubly-exponential [51]. An approximating pseudopolynomial technique

for finding shortest paths among general polyhedral objects is given in [35]. Polynomial-time

Proposal 5 2

algorithms are also offered for certain special cases; for example, when the obstacles are a

small number of convex polyhedra [51]. We would like to study these problems in the parallel

setting.

(d) As we have seen, the efficiency of solving various subroutines like the Voronoi diagram con-

struction for line segments, multipoint location etc., directly affects the efficiency of many

general motion planning strategies. There are several interesting open problems in this re-

gard. For example, the best known parallel algorithm for the Voronoi diagram of a set of

n line segments uses n processors and runs in O(log2n) time. This is not optimal in P T

bounds, since the best known sequential algorithms for this problem are O(n log n). A similar

result holds for the Voronoi diagram of a set of points in the plane, i.e. there are sequential

algorithms which run in optimal O(n1ogn) time, but the best known deterministic parallel

algorithm for this problem uses n processors and runs in O(log2n) time. There are a num-

ber of important geometric problems for which sub-optimal parallel algorithms were given in

[[2], [lo]]. For many of these problems, optimal parallel algorithms have since been derived,

largely due t o the work of Atallah, Cole and Goodrich [6], using the versatile technique of

cascading divide-and-conquer to construct the algorithms. However, the important problems

of the Voronoi diagram of a set of points and of a set of line segments have eluded optimal

deterministic parallel solutions e.g. solutions that use n processors and run in O(1og n) time.

As observed in [40], it appears that very different techniques would have t o be used in order

t o eliminate the extra log n factor in the PT-product.

One such technique could be randomization. A randomized algorithm makes some of its

decisions on the basis of the outcomes of coin-flips, and we must be able to show that such

a strategy will result in a fast run-time on any input with high probability. Theoretical

development in the area of randomized algorithms has shown that randomization can be a

very useful strategy for designing parallel algorithms for problems that seem to be inherently

sequential. In addition, randomization has often resulted in parallel algorithms with better

P T products than the best known deterministic parallel algorithms for numerous problems.

For instance, Reif and Sen [40] show that the Voronoi diagram of a set of points in the plane

can be constructed optimally on a CRCW PRAM with n processors in O(1ogn) time with

high probability. Additional applications of randomization t o problems in computational

geometry can be found in 1391.

We are interested in applications of randomization for different motion planning problems.

Randomization might be a particularly well-suited strategy for running motion planning al-

gorithms in simulated environments, as in computer graphics. In particular, we would like

t o investigate the possibility of developing an optimal randomized PRAM algorithm for the

construction of the Voronoi diagram of a set of line segments in the plane.

(e) A very important class of problems in motion planning that we have not yet mentioned is

Proposal 5 3

the algorithmic planning of movement for a chain of links, also known as a robot arm or a

multilink. The problem of planning the motion of a chain of links is one that has very useful

applications, especially in the arena of human figure animation in computer graphics. If the

number of links, k, in the chain is our input size, then from the results stated in Section 1,

the best algorithm for planning the motion of a multilink moving among obstacles takes time

exponential in k. In fact, general motion planning for chains of links even i n the absence of

obstacles is intractable.

Consider a chain of links hinged together consecutively such that each link is allowed to

rotate freely about its joint (the links may cross over one another). This is also known as the

carpenter's ruler. In [20], Hopcroft et al. show that the problem of deciding whether such a

ruler can be folded to within a specified length (thus every link makes an angle of 0 or n with

the previous link) is NP-complete. Clearly then, if the chain consists of links that are only

allowed to make an angle of 0 or T with the previous link, the reachability decision problem

(i.e. does the free endpoint of the end effector reach a particular point or not) for this chain

is NP-complete. Thus general motion planning for a chain of links appears to be intractable,

even in the abscence of obstacles.

In addition, Hopcroft et al. [20] show that the reachability decision problem for a chain

of k links moving aniong certain rectilinear barriers is NP-hard. The goal then is to look

for classes of problems for which efficient algorithms (i.e. polynomial in k) can be found.

For example, there are polynomial time algorithms for planning the motion of a carpenter's

ruler in which every joint of the ruler is confined to move within a circle [20, 231. When the

motion is restricted by corners, the problem becomes more difficult and in fact, some lower

bound results have been established. For example, Ke and 07Rourke [24] have established a

lower bound of Q (n 2) elementary submotions for moving a line segment (a single link) in a

2-dimensional polygonal space with n corners.

A link such that one of its endpoints is free is known as the end efector. For human figure

animation in computer graphics, an important problem is to move a chain of links (such

as an arm) so that the end effector (the hand, say) reaches a specified point, subject to

additional constraints such as the angle limits for every joint. Approximate techniques have

been developed for this problem. For instance, if we are given the position of the end effector,

we can use inverse kinematics to find joint angles for the other links. This problem can

be formulated as a non-linear programming problem. In the Computer Graphics Lab. at

Penn, the approach to this problem has been to use approximate numerical techniques for

non-linear programming with linear constraints [58]. For some simple cases of non-linear

programming, closed form solutions are possible [36], but for more general problems only

approximate numerical techniques25 are possible.

2 5 ~ s opposed to closed form solutions, numerical techniques find only one solution t o the non-linear prograninling

Proposal 5 4

We are interested in looking into the usefulness of parallelism for specific cases of this im-

portant class of motion planning problems. The more exact polynomial-time techniques for

simpler cases could benefit from valuable speed-ups offered by parallel algorithms. In addi-

tion, we would like t o explore the possibility of applying other approximate techniques as well

as randomization to cases that are more computationally expensive.

problem.

Proposal 55

References

[I] P. K. Agarwal, A. Aggarwal, B. Aronov, S. R. Kosaraju, B. Scheiber, and S. Suri. Computing

External-Farthest Neighbors in a Simple Polygon. Discrete Applied Mathematics, 31(2):97-111,

1991.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C. ~ ' ~ l i n l a i n ~ , and C. K. Yap. Parallel Computational

Geometry. Algorithrnica, 3:293-327, 1988.

[3] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility of Disjoint Polygons.

Algorithmica, 1986.

[4] M. Atallah and S. Hambrusch. Solving Tree Problems on a Mesh-connected Processor Array.

Information and Computation, 69(1-3):168-187, 1986.

[5] M. J. Atallah and D. Z. Chen. Optimal Parallel Algorithm for Visibility of a Simple Polygon

From a Point. In Proc. 5th ACM Symp. on Comp. Geo., pages 114-123, 1989.

[6] M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading Divide-and-Conquer: A Technique for

Designing Parallel Algorithms. SIAM I. Comput., 18(3):499-532, June 1989.

[7] R. A. Brooks. Solving the Find-Path Problem by Good Representation of Free Space. IEEE

Trans. on Systems, Man, and Cybernetics, 13(3):190-197, March/April 1983.

[8] J. Canny. Complexity of Robot Motion Planning. PhD thesis, MIT, 1987.

[9] B. Chazelle, L. J. Guibas, and D. T. Lee. The Power of Geometric Duality. In Proc. 24th

IEEE Synzp. on Foundations of Computer Science, pages 217-225, 1983.

[lo] A. Chow. Parallel Algorithms for Geometric Problems. PhD thesis, University of lllinois a t

Urbana-Champaign, 1980.

[11] R. Cole. Parallel Merge Sort. SIAM J. Comput., 17(4):770-785, 1988.

[12] H. Edelsbrunner, J. 07Rourke, and R. Seidel. Constructing Arrangements of Lines and Hy-

perplanes with Applications. In Proc. 24th IEEE Symp. on Foundations of Computer Science,

pages 83-91, 1983.

[13] H. ElGindy and D. Avis. A Linear Algorithm for Computing the Visibility Polygon From a

Point. J. of Algorithms, 23186-197, 1981.

[14] H. ElGindy and M. T. Goodrich. Parallel Algorithms for Shortest Path Problems in Polygons.

The Visual Computer, 3(6):371-378, 1988.

Proposal 5 6

[15] M. T. Goodrich, C. 0 7 ~ l i n l a i n g , and C. K. Yap. Constructing the Voronoi Diagram of a Set of

Line Segments in Parallel. In Lecture Notes in Computer Science: 382, Algorithms and Data

Structures, WADS, pages 12-23. Springer-Verlag, 1989.

[16] M.T. Goodrich. Constructing Arrangements Optimally in Parallel. Technical report, Johns

Hopkins University, 1991.

[17] L. J. Guibas, J . Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear Time Algorithms

for Visibility and Shortest Patlz Problems Inside Simple Polygons. In Proc. 2nd ACM Symp.

on Comp. Geo., pages 1-13, 1986.

[18] J. Hershberger. Finding the Visibility Graph of a Simple Polygon in Time Proportional to its

Size. Algorithmica, 4:141-155, 1989.

[19] J. E. Hopcroft, D. A. Joseph, and S. H. Whitesides. Movement Problems for Two-Dimensional

Linkages. SIAM J. Comput., 13:610-629, 1984.

[20] J. E. Hopcroft, D. A. Joseph, and S. H. Whitesides. On the Movement of Robot Arms in

Two-Dimensional Bounded Regions. SIAM J. Comput., 14(2):315-333, 1985.

[21] J. E. Hopcroft, J . T. Schwartz, and M. Sharir. On the Complexity of Motion Planning for

Multiple Independent Objects; PSPACEHardness of the 'Warehouseman's Problem'. The

Int'l Journal of Robotics Research, 3(4):76-88, Winter 1984.

[22] C. S. Jeong and D. T. Lee. Parallel Geometric Algorithms on a Mesh-Connected Computer.

Algorithmica, 5(2):155-177, 1990.

[23] V. Kantabutra and S. R. Kosaraju. New Algorithms for Multilink Robot Arms. Journal of

Computer and System Sciences, 32:1.36-153, 1986.

[24] Y. Ke and J. O'Rourke. Moving a Ladder in Three Diniensions: Upper and Lower Bounds. In

Proc. Third ACM Symp. on Computational Geometry, pages 136-146, 1987.

[25] D. G. Kirkpatrick. Efficient Computation of Continuous Skeletons. In Proc. 20th IEEE Symp.

on Foundations of Computer Science, pages 18-27, 1979.

[26] D. T . Lee and R. L. Drysdale. Generalization of Voronoi Diagrams in the Plane. SIAM J .

Comput., 10(1):73-87, February 1981.

[27] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes. Morgan Kaufmann, San Mateo, California, 1992.

[28] D. Leven and M. Sharir. An Efficient and Simple Motion Planning Algorithm for a Ladder

Amidst Polygonal Barriers. J. Algorithms, 8:192-215, 1987.

Proposal 57

[29] T . Lozano-P6rez. A Simple Motion-Planning Algorithm for General Robot Manipulators.

I E E E Journal of Robotics and Automation, RA-3(3):224&238,1987.

[30] T . Lozano-P6rez and M. A. Wesley. An Algorithm for Planning Collision-Free Paths Among

Polyhedral Obstacles. Comm. ACM, 22(10):560-570, 1979.

[31] R. Miller and Q. I?. Stout. Mesh Computer Algorithms for Computational Geometry. IEEE

Transactions on Computers, 38(3):321-340, March 1989.

[32] D. Nassimi and S. Sahni. Data Broadcasting in SIMD Computers. IEEE Transactions on

Computers, 30:lOl-107, 1981.

1331 C. 0 7 ~ l i n l a i n g , M. Sharir, and C. I<. Yap. Retraction: A New Approach to Motion-Planning.

In J . E. Hopcroft, J. T. Schwartz, and M. Sharir, editors, Planning, Geometry and Complexity

of Robot Motion, chapter 7, pages 193-213. Ablex Pub. Co., Norwood, N.J., 1987.

[34] C. 0 ' ~ d n l a i n ~ and C. K. Yap. A 'Retraction' Method for Planning the Motion of a Disc. J.

Algorithms, 6:104-111, 1985.

[35] C. Papadimitriou. An Algorithm for Shortest Path Motion in Three Dimensions. Info. Proc.

Letters, 20:259-263, 1985.

[36] R. P. Paul. Robot Ahnipulators. MIT Press, Cambridge, Mass., 1981.

[37] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag

New York Inc., 1985.

[38] J. Reif. Complexity of the Movers' Problem and Generalizations. In Proc. 20th IEEE Symp.

on Foundations of Computer Science, pages 421-427, 1979.

[39] J . H. Reif and S. Sen. Optimal Randomized Parallel Algorithms for Computational Geometry.

In Proc. 1987 IEEE International Conf. on Parallel Processing, pages 270-277, 1987.

[40] J. H. Reif and S. Sen. Polling: A New Randomized Sampling Technique for Comp~itational

Geometry. In Proc. Blst ACAJ Symp. on Theory of Computing, pages 394-404, 1989.

1411 J. F. Schwartz and M. Sharir. Motion Planning and Related Geometric Algorithms in Robotics.

Proc. Int '1 Congress of Mathematicians, 2: 1594-161 1, August 1986.

1421 J. T. Schwartz and M. Sharir. On the Piano Movers' Problem: I. The Case of a Two-

Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers. Comm. Pure and

Applied Math., 36:345-398, 1983.

1431 J . T. Schwartz and M. Sharir. On the Piano Movers' Problem: 11. General Techniques for

Computing Topological Properties of Real Algebraic Manifolds. Adv. in Appl. Math, 4:298-

351, 1983.

Proposal 58

[44] J. T. Schwartz and M. Sharir. On the Piano Movers' Problem: 111. Coordinating the Motion

of Several Independent Bodies: The Special Case of Circular Bodies Moving Amidst Polygonal

Barriers. Robotics Res., 2:46-75, 1983.

[45] J. T. Schwartz and M. Sharir. On the Piano Movers' Problem: V. The Case of a Rod Moving

in Three-Dimensional Space Amidst Polyhedral Obstacles. Comm. Pure and Appl. Math,

37:815-848, 1984.

[46] J. T . Schwartz and M. Sharir. A Survey of Motion Planning and Related Geometric Algorithms.

Artijicial Intelligence, 1988.

[47] M. I. Shamos. Geometric Complexity. In Proc. 7th ACM Symp. on Theory of Computing,

pages 224-233, 1975.

[48] M. Sharir. Efficient Algorithms for Planning Purely Translational Collision-Free Motion in Two

and Three Dimensions. In Proc. IEEE Symp. on Robotics and Automation, pages 1326-1331,

Los Alamitos, Calif., 1987. CS Press.

[49] M. Sharir. Algorithmic Motion Planning in Robotics. IEEE Computer, March 1989.

[SO] M. Sharir and E. Ariel-Sheffi. On the Piano Movers' Problem: IV. Various Decomposable Two-

Dimensional Motion-Planning Problems. Comm. Pure and Appl. Math, 37:479-493, 1984.

[51] M. Sharir and A. Schorr. On Shortest Paths in Polyhedral Spaces. SIAM J. Comput.,

15(1):193-215, 1986.

[52] S. Sifrony and M. Sharir. An Efficient Motion-Planning Algorithm for a Rod Moving in Two-

Dimensional Polygonal Space. Algorithmica, 2:367-402, 1987.

[53] S. Suri. Computing Geodesic Furthest Neighbors in Simple Polygons. Journal of Computer

and System Sciences, pages 220-235, 1989.

[54] C. D. Thompson and H. T. Kung. Sorting on a Mesh-Connected Parallel Computer. Comm.

ACM, 20(4):263-271, April 1977.

[55] E. Welzl. Constructing the Visibility Graph for n Line Segments in O(n2) Time. Info. Proc.

Letters, 20:167-171, 1985.

[56] C. K. Yap. Coordinating the Motion of Several Discs. Technical report, Courant Institute of

Ma.thematica1 Sciences, 1983.

[57] C. K. Yap. An O(n1ogn) Algorithm for the Voronoi Diagram of a Set of Siniple Curve

Segments. Discrete and Computational Geometry, 2:365-393, 1987.

[58] J. Zhao. Real-time Inverse Kinematics with Joint Limits and Spatial Constraints. Technical

Report MS-CIS-89-89, Univ. of Penn., 1989.

	Algorithmic Motion Planning and Related Geometric Problems on Parallel Machines (Dissertation Proposal)
	Recommended Citation

	Algorithmic Motion Planning and Related Geometric Problems on Parallel Machines (Dissertation Proposal)
	Abstract
	Comments

	tmp.1187187268.pdf.7M5xy

