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Abstract 

A large number of problems can be formulated as special cases of the Con- 

straint Satisfaction Problem (CSP). In such a problem, the task specification 

can be formulated to  consist of a set of variables, a domain for each variable 

and a set of constraints on these variables. A typical task is then to  find an 

instantiation of these variables (to values in their respective domains) such that 

all the constraints are simultaneously satisfied. Most of the methods used to  

solve such problems are based on some backtracking scheme, which can be very 

inefficient with exponential run-time complexity for most nontrivial problems. 

Path consistency algorithms constitute an important class of algorithms used 

to  simplify the search space, either before or during search, by eliminating 

inconsistent values from the domains of the corresponding variables. 

However, the use of these algorithms in real life applications has been lim- 

ited, mainly, due to  their high space complexity. Han and Lee [5] presented 

a path consistency algorithm, PC-4, with 0 (n3a3) space complexity, which 

makes it practicable only for small problems. I present a new path consistency 

algorithm, PC-5, which has an O(n3a2) space complexity while retaining the 

worst-case time complexity of PC-4. Moreover, the new algorithm exhibits a 

much better average-case time complexity. The new algorithm is based on the 

idea (due to  Bessiere [I]) that, a t  any time, only a minimal amount of support 

has t o  be found and recorded for a labeling to  establish its viability; one has 

to  look for a new support only if the current support is eliminated. I also show 

that PC-5 can be improved further to yield an algorithm, PC5++, with even 

better average-case performance and the same space complexity. I present ex- 

perimental results evaluating the performance of these algorithms on various 

classes of problems. The results show that both PC-5 and PC5++ significantly 

outperform PC-4, both in terms of space and time, with PC5+$ being the 

better of the two algorithms presented. 
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1 Introduction 

A large number of problems in A1 can be posed as special cases of the Constraint Sat- 

isfaction Problem (CSP). In such a problem, the task specification can be formulated 

to consist of a set of variables, a domain for each variable and a set of constraints on 

these variables. A typical task is then to find an instantiation of these variables (to 

values in their respective domains) such that all the constraints are simultaneously 

satisfied. 

My discussion here is restricted to CSPs that can be stated in terms of a finite 

number of variables, each variable having a finite and discrete domain, and problems 

in which each constraint1 is either unary or binary. The latter does not limit the 

applications of my results since it is possible to convert any CSP with n-ary constraints 

into an equivalent CSP with unary and binary constraints [6, 111. 

Formally, a CSP can be defined as follows (17, 91): 

N = {i, j,. . .) is the set of nodes, with IN1 = n, 

D = {b ,c  ,...) is theset  of labels, with ID1 = a ,  

E = {(i, j)( (i, j) is an edge in N x N), with IEl = e, 

D; = {bl b f D and (i, b)  is admissible), 

R1 is a unary relation, and (i, b) is admissible if Rl (i,  b) ,  

R2 is a binary relation, and (i, b )  - (j, c )  is admissible if R2(i, b, j, c ) .  

Most of the methods used to solve such problems are based on some backtrack- 

ing scheme, which can be very inefficient with exponential run-time complexity for 

most nontrivial problems. One of the reasons for this is that backtracking suffers from 

"thrashing" [7] i.e. search in different parts of the space keeps failing for the same rea- 

sons. Mackworth [7] identified three niain causes for thrashing - node inconsistency, 

arc inconsistency and path inconsistency. 

A number of niethods have been developed to simplify constraint networks (before 

or during the search for solutions) by removing values that lead to such inconsistencies. 

'A constraint is defined over a subset of variables and limits the coIrtbinations of values that the 
variables in this subset can take. 



Node inconsistency concerns unary predicates and occurs when the domain of some 

variable contains one or more values that violate the unary predicate on that variable. 

Thrashing because of node inconsistency can be eliminated by simply removing those 

values from the domain of each variable that do not satisfy the unary ~red ica te  on 

that variable [7]. 

Arc inconsistency involves binary constraints between variables, and occurs when 

two variables are each instantiated to some value from their respective domains and 

this instantiation violates the binary constraint between the two variables. In other 

words, there is at least one value in the domain of one variable that disallows every 

value in the domain of the second variable. Such a value can obviously never ex- 

ist in a solution to the CSP, and hence can be safely removed from the domain of 

the variable concerned. A number of algoritlims have been developed for achieving 

arc consistency in constraint networks including Mackworth's AC-3 algorithm [7], 

Mohr and Henderson's AC-4 algorithm [9] and Bessiere's AC-6 [l] and AC6++ [2] 

algorithms. 

The third cause for thrashing is path inconsistency. Path consistency implies 

that any node-value pair of labelings ( 2 ,  b) - (j, c )  that is consistent with the direct 

constraint between i and j is also allowed by all paths between i and j. To achieve 

path consistency in a constraint network, it is sufficient to make all length-2 paths 

consistent because it has been shown by Montanari [lo] that path consistency in a 

complete graph is equivalent to path consistency of all length-2 paths. Note that an 

incomplete graph can be trivially made complete by adding edges with the always 

"true" relation [9] between nodes that are not connected. 

Once again, a number of algorithms have been designed for achieving path consis- 

tency in constraint networks. Mackworth's PC-2 algorithm [7], an improvement over 

Montanari's PC-1 algorithm [7, 101 has a worst case running time bounded above 

by O(n3a5)  [8]. Mohr and Henderson's path consistency algorithm [9], PC-3, uses 

the same ideas to improve PC-2 as they had used to design AC-4, an improvement 

over AC-3. However, Han and Lee [5] showed that PC-3 is incorrect, and presented 

a corrected version, PC-4, with a worst case time and space complexity of O(n3a3).  



Chen [3] attempted to modify PC-4 in order to improve its average case performance 

while retaining its worst case coniplexity. However, I shall show in Section 2 that this 

algorithm is incorrect. 

I discuss the motivation for this research in Section 2, highlighting the problems 

with PC-4 and pointing out the errors in Chen's path consistency algorithm. In 

Section 3, I present the PC-5 algorithm and analyze its space and time complexity. 

In Section 4, I show how PC-5 can be further improved to yield the PC5++ algorithm2 

while I present some experimental results in Section 5 .  

2 Motivation 

PC-4, Han & Lee's corrected version of PC-3, has an O(n3a3) space complexity. As 

noted by Mohr and Henderson [9], the space complexity of the PC-3 algorithm (and 

hence of PC-4) makes it practicable only for small problems. Hence, it would be 

useful to reduce the space requirements of the PC-4 algorithm while keeping the 

same worst-case time complexity. Another problem with the PC-4 algorithm is that 

it has to consider entire relations in order to construct its data structures. Hence, in 

many problems where path consistency will not remove many values, the initialization 

step will be fairly time consuming. Therefore, it is desirable to reduce the complexity 

of the initialization phase. 

Chen [3] attempted to modify the PC-4 algorithm in order to improve its average- 

case time and space complexity, while retaining its O(n3a3) worst-case time and space 

complexity. However, I have found the following error in Chen's algorithm. This 

algorithm uses Counter[(i, b, j, c),k] to record all supports for a labeling (i,  b) - (j, c) 

in the domain of a node k.  If a counter becomes zero, the corresponding labeling 

is invalid and must be removed from the appropriate relation. However, a labeling 

(i, b) - (j, c) cannot be eliminated from the corresponding relation Rij unless all values 

in the domain of some node E have been tested and found not to support the labeling. 

The error I have found in Chen's PC algorithm [3, procedure PC, page 3471 is that,  

'While PC-5 is based on AC-6 [I], PC5++ call be regarded as an extension to AC6++ [2]. 



in lines 26-31, a labeling ( 2 ,  b) - (k, d) can be eliminated from Rik before all values 

in Dj have been tested (A similar error follows from lines 32-37). This can be seen 

through the following example. 

1 

Figure 1: A Counterexample to Chen's PC algorithm 

Consider the very simple constraint network of Figure 1. The domains of the 

three variables and the constraints between them are as shown. During the very first 

iteration, Chen's PC algorithm does the following: 

It then checks to  see if the assignment (i, b) - ( j ,  c) is supported by (k, d). Since 

it is not, it sets Rij(b,c) = False and Rj;(c, b) = False. While this is correct, the 

algorithm goes further and also eliminates R13(l, 3) (i.e. Rik(b, d)) as well as Rz3(3, 3) 

(i.e. Rjk(c, d)) because it concludes incorrectly that these assignments also have no 

support. However, the algorithm has not yet checked all the values in D j  (i.e. D2) .  

The value 2 E D2 is a support for both these assignments - in fact, it is a solution to 

the problem. Chen's PC algorithm, however, incorrectly discarded the one and only 

solution to the problem. 

The new algorithm, PC-5, that I present here, reduces the space complexity to 

O(n3a2) (as compared to O(n3a3) of PC-4) while keeping the worst-case time com- 

plexity of PC-4 (O(n3a3)). Moreover, PC-5 finds only as much evidence as is needed 



to support a labeling (i, b) - (j, c) as compared to PC-4 which finds all supports. 

Hence, the average-case time complexity of PC-5 should be substantially better than 

that of PC-4, especially in problems where path-consistency removes very few values. 

PC-5 can be further improved to yield another algorithm, PC5+$, which has an even 

better average-case time complexity as compared to PC-5. 

The main feature of Mohr and Henderson's AC-4 algorithm [9] was that it made 

the "support" of a labeling (i, b) evident by storing the relevant support information 

in an explicit data structure. They had used the same idea in designing PC-3, as did 

Han and Lee [5] in designing PC-4, the corrected version of PC-3. Bessiere7s AC-6 

algorithm [I] improves on AC-4 by reducing the space requirements while retaining 

its (optimal) worst-case time complexity. I use the same ideas as Bessiere to improve 

upon PC-4. 

3 The PC-5 algorithm 

3.1 Description of the Algorithm 

As pointed out in section 2, PC-4 is based on the notion of "support". As long as 

a labeling (i, b) - (j, c )  (that is consistent with Rij3) has supporting values4 on each 

of the variables k (adjacent to both i and j in the constraint graph), this labeling is 

consistent. However, once there is a variable on which no remaining value is consistent 

with this labeling, it must be eliminated from the relation Rij, i.e. Rij(b, c) = false 

and Rj;(c, b) = false. 

In order to make this support evident, the PC-4 algorithm assigns to  each la- 

beling (i, b) - ( j ,  c) a counter[(i, b, j, c), k]. This counter records the number of ad- 

missible pairs (i, b) - (k,  d) that support the binary relation Rij(b, c) where d is any 

admissible label at node k. Any time (i,  b) - (k, d) or (j, c )  - (k ,  d) is removed from 

the corresponding relation, the support for (i, b) - (3, c) at node k diminishes by 1. 

3~ use Rij(b, c) to represent the binary relation Rz(i, b, j ,  c) used earlier in the definition of a CSP 
(page 2). 

4A value d in Dk  is said to  support the labeling (i, b) - ( j ,  c) if Rik(b, d) and Rjk(c, d) are both 
valid. 



Hence counter[(i, b, j, c), k]  and counter[(j, c, i, b), k] are each decremented by 1. If the 

counters become zero, the labeling (i, b) - (j, c )  is removed from Rij. In addition 

to the counters, PC-4 also maintains sets S i b j c  which contain members of the form 

(k, d), where Rik(b, d) and Rk;(d, b) are supported by Rij(b, c). Whenever a labeling 

(i, b) - ( j ,c)  is eliminated from Rij, this information has to be propagated to the 

relations Rik(b, d) and Rjk(c, d) where (k ,  d) is a member of Sibjc. 

M t 0; Sibjc = 0; Waitinglist t Emptylist; 
for i =  1, n -  1 do 

for j = i +  1, n do 
f o r k =  1, n; k # i, k # j do 

for b E A; do 
for c E Aj such that Rij(b, c) = true do 
begin 

d t 1; nextsupport(i, b, j, c, k ,  d, emptysupport); 
if emptysupport then 
begin 

M[i,b, j,c] = 1; M[j,c,i,b] = 1; 
Rij(b, c) = false; Rji(c, b) = false; 
append(Waiting_list, (i, b, j, c)) 

end 
else 
begin 

append(Sibkd, ( j ,  c)); 
append(Sj,kd, (i, b) 

end 
end 

Figure 2: The PC-5 algorithm: the initialization phase 

As noted by Bessiere [I], computing the number of supports for each labeling 

(i, b) - ( j ,  c) and recording all of them implies an average-case time complexity and 

space complexity both increasing with the number of allowed pairs in the relations, 

since the number of supports is proportional to the number of pairs allowed in the 

concerned relations. 

PC-5 rectifies this problem by determining and storing only one support for each 

labeling. In the initialization phase (Figure 2)) the algorithm determines one support 

(the first one) for each labeling (i, b) - (j, c) in the domain of a third node k ( k  is 

adjacent to both i and j in the constraint graph). If no such support is found, the 



procedure nextsupport(i, b, j, c, k ,  var d, var emptysuppor t )  
begin 

if d 5 last(Dk) then 
begin 

emptysuppor t  t false 
while ((M[i, b, k ,  dl or M[j, c, k,  dl) and (d 5 last(Dk))) do 

d t d + l ;  
if d 5 last(Dk) then 
begin 

while not ( Rik(b, d) and Rjk(c, d)) and not emptysuppor t  do 
if d < last(Dk) then 

d t next(d, Dk) 
else 

emptysupport  t true 
end 

else 
emptysuppor t  t true 

end 
else 

emptysuppor t  +- true 
end 

Figure 3: The PC-5 algorithm: the next support procedure 

assignment (i, b) - (j, c) is invalid. So this assignment is eliminated from the relations 

Rij and Rj;. Moreover, this labeling is added to the waiting list to be propagated. If, 

however, (k, d) is found as the first support for this labeling on Rik and Rjk, then (j, c) 

is appended to Sibkd (signifying that Rij(bc) is supported by Rik(b, d)). Similarly, (i, b) 

is appended to Sjc(k, d). If then, at a later stage, a labeling (i, b) - (k, d) is removed 

from Rik, the algorithm tries to determine the next support for (i, b) - (j, c )  in k as 

well as for ( j ,  c)  - (k ,  d) in i. The procedure nex t suppor t  (Figure 3) is used to  find 

the first as well as the next support of each labeling (i, b) - ( j ,  c )  in the domain of k. 

This procedure is based on the nextsupport procedure used in AC-6 [I]. 

During the propagation phase (Figure 4), information about the invalid labelings 

(recorded in the waiting-list) has to be propagated to all the nodes. If (k, d, I, e) is 

removed from the waiting list, it nieans that the labeling (k ,  d) - (I, e) is not valid; 



while Waitinglist # Emptylist do 
begin 

choose (k, d, I, e) from the Waitinglist and delete it; 

for ( j ,  c) E Skdle  do 
begin 

remove ( j ,  c) from Skdle and (k, d) from Sjcle; 
if M[k,d, j,c] = 0 then 
begin 

next t e; nextsupport(k, d, j, c ,  1, next, emptysupport); 
if emptysupport then 
begin 

M[k, d, j, c] = 1; M[j ,  c, k, dJ = 1; 
append(Waitinglist, (k, d, j ,  c)); 
Rkj(d, c) = false; Rjk(c, d) = false 

end 
else 
begin 

append(Skdlnezt, ( j ,  c)); 
append(Sj,inext, (k, dl) 

end 
end 

end 
for ( j ,  c) E S l e k d  do 
begin 

remove ( j ,  c) from Slekd and (1, e) from Sjckd; 
if M[1, e, j, c] = 0 then 
begin 

next t d; nextsupport(1, e, j ,  c, k, next, emptysupport); 
if emptysupport then 
begin 

M[l,e, j,c] = 1; M[j,c ,  E,e] = 1; 
append(Waiting-list, (I,  e, j, c)); 
Rlj(e, c) = false; Rjl(c, e) = false 

end 
else 
begin 

append(Sleknext, ( j ,  c)); 
append(SjckneXt (1 ,  e)) 

end 
end 

end 
end 

Figure 4: The  PC-5 algorithm: the propagation phase 



so all relations supported by it (members of Skdle) are also invalid and tlie algorithm 

must find the next support for each one of these relations. So for each (j, c )  in Skdle, 

the algorithm tries to find the next support for the labeling (k, d) - (j, c )  in Dl as 

well as (I, e) - (j, c) in Ilk. If a support is found it is recorded in the relevant S set; 

otherwise the labeling is elirninated from the correspondiilg relations and is added to 

the waitinglist to be propagated to the other nodes. 

Using PC-5 requires a total ordering on all domains; however, as pointed out by 

Bessiere [I], this is not a restriction since any implementation imposes a total ordering 

on the domains. 

3.2 Space Complexity 

The matrix M requires O(n2a2) space where a is the size of the largest domain and 

n is the number of variables. Moreover, the sum of the size of the different sets Sibj, 

is bounded by: 

This is because each set Sibj, can be, at most, of size n since it contains at most one 

support for the labeling (i, b) - (j, c) in each node. Hence the space complexity of the 

entire algorithm is O(n3a2) as compared to the 0(n3a3) space complexity of PC-4. 

Moreover, PC-5 does not use the counters used in PC-4 (which are very expensive 

requiring an additional O(n3a2) space). 

3.3 Time Complexity 

The time complexity analysis of PC-5 is similar to that of PC-4. In the initialization 

phase, the innermost for loop will be executed on the order of n3a2 since JD;I and 

IDj I are both of size O(a). Moreover, the inner loop requires a call to the procedure 

neztsupport which computes a support for a labeling, say ( i ,  b) - ( j ,  c), in the domain 

of a variable, say k, starting at the current value. Hence, for each such assignment 



(of the form (i, b) - (j, c)), each value in Dk will be checked at most once. So the 

worst-case time complexity of the initialization phase will be O(n3a3). 

In the propagation phase, the while loop is executed at most n2a2 times since 

there are at most n2a2 sets of type Sibj,. Moreover, each of the for loops is bounded 

by the size of Skdle which is of the order n. Moreover, each for loop requires a call 

to  the procedure nextsupport which, as shown above, requires O(a) time. Hence, the 

worst-case time complexity of the propagation phase is O(n3a3). 

Hence, PC-5 has the same worst-case time complexity as PC-4. Moreover, the 

average-case time complexity of PC-5 is substantially better than that of PC-4 since 

it stops processing of a value assignment to an edge just when it has proof that it is 

viable (i.e. the first support). 

The PC5++ algorithm 

4.1 Description of the Algorithm 

It is possible to improve the average-case time complexity of PC-5 by increasing the 

space requirements slightly. The worst-case time and space complexities still remain 

0(n3a3) and O(n3a2) respectively. The improvement comes from the observation that 

each time PC-5 determines a support d in Dk for the labeling (i, b) - (j, c), it in fact 

also finds a support (b in D;) for ( j ,  c) - (k, d) as well as a support (c in Dj )  for 

( 2 ,  b) - ( k ,  d). Hence, by recording the supports at this time, it is possible to  avoid 

duplicating the effort in determining these supports at a later time. The problem with 

this approach is that now the algorithm has to keep track of the position from which it 

started checking for the first support. PC-5 starts looking for a support from the very 

first value in the domain; hence, it looks over the entire domain and if it reaches the 

last element in the domain without finding a support, it safely concludes that there is 

no support for the labeling under consideration in that domain. However, if we make 

the above mentioned modification, then when the support d in Dk is found for the 

labeling (2 ,  b) - (j, c), we also store the fact that b in D; supports (j, c) - (k, d) and c in 

D j  supports (i, b) - ( k ,  d) . However, the labels preceding b in D; have not been checked 



procedure nextsupport(i, b, j, c, k ,  d, emptysupport) 
begin 

if d 5 last(Dk) then 
begin 

empty support t false 
while ((M[i, b,  k, d] or M[j, c ,  k, dl) and (d < last(Dk))) do 

d t d + l ;  
if d 5 last(Dk) then 
begin 

while not ( Rik(b, d) and Rjk(c, d)) and not emptysupport do 
if d < last(Dk) then 

d t next(d, Dk) 
else 

emptysupport t true 
end 

else 
emptysupport t true 

end 
else 
emptysupport t true 

end 

Figure 5: The PC5++ algorithm: the next support procedure 

to see if they support the labeling ( j ,  c) - ( I c ,  d). Similarly, the labels preceding c in 

Dj have not been checked to see whether any one supports the labeling ( 2 ,  b) - (lc, d). 

This problem can be taken care of by using a data structure Tag[(i,b,j,c),k] which 

records the first position in Dk where the algorithm started looking for the support of 

a labeling (i, b) - (3, c). The nextsupport procedure can be easily modified to  take this 

fact into account. Instead of stopping after considering the last value in the domain, 

the procedure continues examining the values from the first value in the domain, and 

stops only when all values have been checked once (it reaches the value from where 

it started from i.e. Tag[(i,b,j,c),k]). 

Figure 6 shows the initialization phase of the PC5++ algorithm. The propagation 

phase is the same as for PC-5. 



M t 0 ;  Sibjc = 0 ;  Wai t ing l i s t  t Empty l i s t ;  Tag t 0 ;  
for i = 1 ,  n - 1  do 

for j = i +  1 ,  n d o  
fork = 1,  n, k # i , j  do 

for b E A; do 
for c E Aj such that  Ri j (b ,  c )  = true do 
begin 

if Tag[ ( i ,  b, j ,  c),k] = 0 then 
begin 

Tag[ ( i ,  b, j ,  c) ,k]  = 1; T a g [ ( j ,  c ,  i ,  b),k] = 1; 
d t 1; nextsupport( i ,  b, j ,  c ,  k ,  d ,  emptysupport);  
if emptysupport then 
begin 

M [ i ,  b, j ,  c] = 1; M [ j ,  c ,  i ,  b] = 1; 
Ri j (b ,  c )  = false; R j ; ( c ,  b )  = false; 
append(Wait ingl is t ,  ( i ,  b, j ,  c ) )  

end 
else 
begin 

append(Sibkd 1 ( 3 7  c )  ); 
append(Sjckd ( i 1  b) )  
if Tag[ ( i ,  b, k ,  d ) , j ]  = 0 then 
begin 

append(Sibjc, (k7 d l ) ;  
append(Skdjc 7 (i7 b ) ) ;  
Tag[ ( i ,  b, k ,  d ) , j ]  = c; T a g [ ( k ,  d ,  i ,  b) , j]  = c; 

end 
if T a g [ ( j ,  c,  k ,  d),i] = 0 then 
begin 

append(Skdib7 (j1 c ) ) ;  
ap~end(Sjcib7 ( k ,  d ) ) ;  
Tag[ ( j , c , k ,d ) , i ]  = b; T a g [ ( k , d ,  j ,c) , i]  = b; 

end 
end 

end 
end 

Figure 6: T h e  PC5++ algori thm: t h e  initialization phase 



4.2 Space Complexity 

PC5++ uses the same data structures as PC-5 with the exception of the Tag data 

structure. Since the algoritlim has to maintain tags for each assignment (i, b) - ( j ,  c )  

and node k ,  the total storage required for the tags is O(n3a2). Since the space 

requirement of the other structures is also O(n3a2), the overall space complexity of 

the algorithm still remains O(n3a2). 

4.3 Time Complexity 

The propagation phase is the same as for PC-5, whereas the extra steps in the initial- 

ization phase can all be performed in constant time. The procedure nextsupport still 

examines each value in a domain at most once. Hence, its complexity is still O(a), 

and so the worst-case time complexity of PC5++ is still O(n3a3). 

Experiment a1 Results 

In order to  compare the performance of PC-5 and PC5++ to that of PC-4, I carried 

out a series of experiments on a large spectrum of problems (described in the next 

section). For each problem, I counted the number of constraint checks (to compare 

the time complexity) and the number of supports recorded, i.e. size of the sets 

Sibjc (to compare the space complexity). A constraint check5 is performed each time 

the algorithm checks an assignment ( i ,  b) - - ( j ,  c )  for consistency with respect to  

the constraint Rij (i.e. whether Rij = true). Although the performance of the three 

algorithms was measured on the same sets of problems, I present the results separately 

in order to  emphasize the improvement of PC5++ over PC-5 (which would not always 

be apparent if all results were shown on the same figure). 

51f the algorithms had been tested on problems where the constraints involved more than two 
variables, the time for performing a constraint check could not be regarded as constant [4]. 



5.1 Comparison of PC-5 and PC-4 

The first experiment was done on the zebra problem [4, 11 which has similarities to 

some problems encountered in real life. I used the same encoding of the problem as 

used by Dechter [4]. Table 1 shows the results of this experiment. PC-5 outperformed 

PC-4 significantly both in terms of the number of constraint checks as well as the 

number of supports recorded. I also tested the various algorithms on the n-queens 

Table 1: Comparison of PC-4 with PC-5 and PC5++ on the zebra problem 

PC-4 
PC-5 
Pc5++ 

problem which was encoded as a constraint network by representing each column by 

a variable whose values are the rows. The constraint network is complete with a very 

weak constraint present between each pair of variables. A constraint Rij between 

No. of Constraint checks 
1,682,560 
551,373 
412,537 

variables i and j specifies the positions (rows) in which two queens can be placed in 

columns i and j .  As can be seen from Figure 7, both the space and time complexity of 

No. of Supports recorded 
1,326,250 
333,118 
340,300 

PC-4 deteriorates as the number of queens increases; PC-5 performs markedly better. 

I also tested the algorithms on a variety of randomly generated problems, with 

different values of 

n ,  the number of variables 
a ,  the number of values per variable 
pc, the probability that a constraint Rij exists between variables i and j 
pu, the probability that a pair (a, b) belongs to a relation Rij 

If two nodes did not have a constraint between them, the constraint with the al- 

ways "true" relation was introduced between them. I generated twenty instances of 

problems for each set of parameter values, and averaged the results so as to get a 

more representative picture of each class. Figures 8 - 11 show the results of these 

experiments. In Figures 9 - 11, a broken vertical line shows the borderline between 

problems where wipe-out is generally produced (located on the left of the line) and 

problems where path-consistency is produced (on the right of the line). 
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The space requirement of PC-4 increases very rapidly with increasing pu (i.e. 

constraints become weaker) as seen in Figures 9-11 as well as with increasing number 

of values per attribute as seen in Figure 8. The space requirements of PC-5 (as 

expected from the algorithm's complexity) are significantly lower. 

Both PC-4 and PC-5 perform roughly the same number of constraint checks when 

the constraints are strong (pu is small) and wipe-out is produced (on the left of the 

broken line). However, at higher values of pu when path consistency is produced 

(right of the broken line), the performance of PC-4 rapidly deteriorates whereas PC-5 

performs substantially better. 

Similarly, PC-5 performs significantly fewer constraint checks than PC-4 as the 

number of values per attribute increase (Figure 8). 

5.2 Comparison of PC-5 and PC5++ 

As can be seen from Table 1, PC5++ easily outperformed both PC-4 and PC-5 on 

the zebra problem. A similar improvement was observed for the n-queens problems 

(Figure 12) where PC5++ performed upto 38% fewer constraint checks than PC-5. 

4 6 8 10 12 14 

No. of queens 

Figure 12: Comparison of PC-5 and PC5++ on the n-queens problem. 

As call be seen from Figures 13-16, PC5++ also performed substantially better 



4 6 8 10 12 14 

No. of values per attribute 

Figure 13: PC-5 and PC5++ on randomly generated CNs with 10 variables where 
pu = 0.7 and pc = 0.5. 

than PC-5 on all the problems tested. PC5++ reduced the number of constraint 

checks performed by PC-5 by upto 26% in Figure 13, upto 23% in Figures 14 and 

15 and upto 27% in Figure 16. The space requirements were almost the same for all 

problems. 

Once again, the broken vertical line in Figures 14-16 shows the borderline between 

problems where wipe-out is generally produced and problems where path consistency 

is produced. I also checked the statistical significance of the difference between PC-5 

and PC5++ by performing a paired t-test at a 99% confidence level. For Figure 13, 

PC5++ was found to be always significantly better than PC-5. For Figures 14-16, 

there was no statistical difference to the left of the broken vertical line (i.e. when 

wipe-out is produced). In each case, PC5++ performed significantly lesser number of 

constraint checks than PC-5 to the right of the broken vertical line. Thse results are 

as one would expect - when the problem has no solution, all algorithms will perform 

virtually the same amount of work, effectively checking all values in all constraints 

for consistency; however, for problems where a solution exists, then PC5++ makes 

the network consistent much faster than does PC-5. 



Figure 14: PC-5 and PC5$+ on randomly generated CNs with 10 variables having 
10 possible values where pc = 0.7. 

Figure 15: PC-5 and PC5++ on randomly generated CNs with 20 variables having 
5 possible values where pc = 0.3. 



Figure 16: PC-5 and PC5++ on randomly generated CNs with 15 variables having 
5 possible values. 

6 Conclusion 

I have presented a new algorithm, PC-5, for achieving path consistency in constraint 

networks. The main improvement of PC-5 over previous path consistency algorithms 

is its reduced space complexity (O(n3a2)). Moreover, it retains the O(n3a3) worst-case 

time complexity of PC-4 while improving its average-case time complexity, especially 

on networks with weak constraints. I further show that PC-5 can be modified to  yield 

another algorithm, PC5++, which retains the O(n3a2) space complexity but exhibits 

even better average case performance. I also present experimental results which show 

that both PC-5 and PC5++ vastly outperform PC-4 on all the problems tested with 

PC5++ performing better, as expected, than PC-5. I must emphasize, though, that 

I do not claim that the algorithms presented have the best possible time complexity 

as our main aim has been to reduce the space complexity. 

It may be possible to improve the performance of the algorithms even further. Note 

that a value b in D;, which initially had support in D j  (where j is a neighboring node 

in the constraint graph) may lose all that support because every pair (b, c ) ,  c E Dj  



has been eliminated from Rij due to the absence of support for each such labeling 

( 2 ,  b) - ( j ,  C )  at one or more of the remaining nodes. As such, it is now possible to 

remove b from D;, thereby preventing further consideration of this value. By keeping 

track of these changes, it may be possible to increase the efficiency of the algorithm. 

However, this will increase the space requirements which may not be worth the savings 

achieved. 
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