
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1995

Implementation Notes to OMEGA Architecture Implementation Notes to OMEGA Architecture

Klara Nahrstedt
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Klara Nahrstedt, "Implementation Notes to OMEGA Architecture", . January 1995.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-95-28.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/198
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/198
mailto:repository@pobox.upenn.edu

Implementation Notes to OMEGA Architecture Implementation Notes to OMEGA Architecture

Abstract Abstract
The OMEGA architecture is an end-point architecture for provision of end-to-end QoS guarantees. The
architecture principles, design, high-level implementation issues, and telerobotics experimental setup for
validation of OMEGA concepts are described in my thesis (MS-CIS-95-31). In this document, I will
concentrate on the structure of the software modules, their naming and content. The complete code is
part of this document. There are approximately 10,000 lines of code.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-95-28.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/198

https://repository.upenn.edu/cis_reports/198

Implementation Notes to OMEGA Architecture

MS-CIS-95-28

Klara Nahrstedt

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

l ~ h i s work was supported by the National Science Foundation and the Advanced Research
Projects Agency under Cooperative Agreement NCR-8919038 with the Corporation for National
Research Initiatives. Additional support was provided by Bell Communications Research under
Project DAWN, by an IBM Faculty Development Award, and by Hewlett-Packard

Implementation Notes to OMEGA Architecture

Klara Nahrstedt"
University of Pennsylvania

e-mail: klara~Gaurora.cis.upenn.edu

1 OMEGA Experimental Platform

The OMEGA architecture is an end-point architecture for provision of end-to-end QoS guarantees.
The architecture principles, design, high-level implementation issues, and telerobotics experimental
setup for validation of OMEGA concepts are described in my thesis [I].

In this document, I will concentrate on the structure of the software modules, their naming and
content. The complete code is part of this document. There are approximately 10,000 lines of code.

1.1 IBM RS/6000

The architecture was implemented on IBLl RS/6000 machines, and is running on Models 530 (master
side) and 360 (slave side). The implementa,tion language is C. The implementation of OMEGA uses
the real-time services of the AIX operating system [2]. particula,rlg it relies on

a the fine granularity of the timers through the functions grttimeofday, usleep and ualarni.

a possibility t o set real-time priorities in the OS scheduler using setpri and use the OS fixecl-
priority scheduling policy. For OMEGA it means tha't the current processes of OMEGA run
with the priority 0 (it must be a priority sillaller t h a , ~ ~ 1 6), therefore they are not pre-empted
by the AIX scheduler and don't undergo t,he recalculation of priority by the OS scheduler (OS
scheduler has priority 16).

a possibility to pin code and data in the uyer space pincorle, pinu. This mean that the piillled
code and data reside in the real memory, are not swapped out/in to/from the disc and don't
undcrly the virtual memory mechal~isms.

All these services help t o provide more deterministic behavior when processing/moving real-time
clat,a.

*This work was supported by the National Science Founda.tion and the Advanced Research Projects Agency under
Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives. Additional support
was provided by Bell Communications Research ilnder Project. Di1IYN. by an IBM Faculty Development Awa.rd, ailcl
by Hewlett,-Packard.

1.2 ATM LAN

The two IBM RS/6000 are connected through a dedicated ATM link. I use ATM host interfaces
which provide a bandwidth of 133 Mbps to the application tlrrough their ,4TM drivers. The driver
provides an access t o two types of connections: (1) the connections, where datagrams can be
sent, use the AAL3/4 CS PDUs, and (2) the connections, where cells can be sent, use the null
A,4L layers, it means raw ATM layer. The size of the clatagrams can be up to 64 KB, the size
of the cells is 44 bytes. The driver interface includes functions to access ATM device services
such as open(/*parameters*/) to open the ATM device, read(/*parameters */) to read PDUs
(datagrams/cells) from the ATM device, wri te(/*parameters*/) to write PDUs. The different
classes of transmission (datagramlcell) are distinguished through assignment of VCI numbers. The
raw ATM layer is accessed if VCI, smaller that 0x4000, are allocates. The AAL3/4 layers is accessed
if VCIs larger that 0x4000 are assigned. I divide the classes in OMEGA by using parameters
DATAGRAM-MODE, or CELL-MODE. The ATRl driver functions are hidden by using the RTNP(Rea1-
Time Network Protocol) functions:

a connectslconnect-r to open simplex ATM conirectiolls wit11 the proper PDU. These fui~ctions
use two routines: init-send-atnz to open the ATM device and set ioctl parameters for simplex
connection in sending direction, init-recv-atm to open the ATM device and set ioct parameters
for simplex connection in receiving direction.

a send-cell, recv-cell to sendlreceive PDUs of size 44 bytes or less;

send-pkt, recv-pkt to sendlreceive PDUs of size 6-1 I iB or less.

These functions might be reimplemented when a new ATM card [e.g., commercial ATM Fore
ca,rd) and driver replace our experimental ATM card.

2 Software Organization in Directories

The Figure 1 shows the tree structure of the directories ~vhere the OMEGA software resides.
The software can be found in ftp/pub/dsl/I<lara-Nah~steclt/tele.d directory. Figure 2 shows the
OMEGA related files in the directories, the Figure 3 shows the application related files in the directo-
ries. I briefly describe the content of the most important files which are used in the implementation
of OMEGA. For a more detailed description. tlze conzi~zeizts in the code should help.

This directory includes the QoS Broker protocols (QoSBroker routine), such as broker-buyr
(QoSBrokerBuyer routine) and broker-seller (QoSBrokerSe l le r) . The highest level of pro-
tocols is implemented in QoSbroker . c. QoSkernel . c includes all the services a broker needs
t o make end-to-end guarantees decisions. It means that there are the admission services
(admitAppQoS , adrnitNetQoS routines), negotiation services (negotiateAppQoS, negotiateNetQoS
routines), the QoS translator (QoSTransla tor) , ancl system routines for task manageinent
(setTaskParam, getTaskParam routines and others). In the current iniplementation, the tun-
ing service tuneQoS .c is outside of the s e ~ v i c ~ lternel because it is used to translate between
perceptual and application QoS and is embeclded in GUI (Graphical User Interface) which
resides above the broker.

Figure 1: ,Yoftulcrre orynnization i i i clircctories.

retta.ld*application-specific for GUI*/

main- master.^
GlobalInfoProfile
appQoSprofile
netQoSprofile
systemQoSprofile

argsx.c
STATE /*shared state*/

butt0ns.c
force-data/*robot traces*/ colorx.c dialogCMSMediaQua1ity.c

main-s1ave.c
GlobalInfoProfile
appQoSprofile
netQoSprofile
systemQoSprofile
STATE /*shared state*/
force-data/*robot traces*/

Figure 3: Files relrnt~d to f t lcrobot ics.

This directory includes all .h files OMEGA and the telerohotics application uses. The includc
files are separated by semantics:

- qos .h includes definitions of all application aad rletworli QoS parameter structures.

- systemQoS .h includes definitions of the .;cheduler, tasks which characterize the system?
QoS and other system inforination related to tasks and scheduling.

- r t n p . h includes the ATMJRTNP consta~nts such a,s the supported cell size, datagrain
size, VCIs for negotiation, renegotiation a,ncl forward error correction.

- comm . h includes all da ta structures/constants for communication. suclz as PDUs for ne-
gotiation response, signaling, network cell/clatagram structure, video packet structure,
forward error correction structure.

This directory includes two other snbdircctorie~: r t n p . d includes in r t n p . c the RTNP func-
tions (connect-s, c o n n e c t r , send-cel l , send-pkt. r ecv-ce l l , recv-pkt). The other direc-
tory r t a p . d includes:

- connect ionManagement . c includes procediire (connsetup) for opening connections (us-
ing connect-s and c o n n e c t r) for one illultiinedia call based on VCT assignment in the
network QoS profile from the bl.olier,

- r t a p . c include the RTAP functions and RTAP/RTNP functions plugged into the schecl-
uler. In a full-scaled implementatioil this file lnigllt be split, a more general set of RTAP
functions developed and the scheduler needs to accrqs the functions in a more general
sense, similar t o the OS schecluler. It means there i.; a need to find a more general
application programming interface to plug ill application tasks.

- robapp . c includes functiolls to read robotics data from robotics traces.

QoSut il . c includes utility functions, such as processing of least common multiplier (lcm:
translation between different representations: t r ansRate for translation from application t o
networli rate and vice versa (it is used in QoSTranslator). and t r a n s I n t e r D e l a y for trans-
lating delay from samples/second in secoild range (application input) to nlillisecond range
(network input); help filnctions such as getThroughput to coi~lpute aggregate bandwidth.
ge tp roc t ime t o get a time cluratioil (1 2 - t l); and other f~unctions t o release resources for a

medium and connection.

I11 this directory the profiles are stored u~here iinl,ortant .;l~al-ed information are stored (appQoSprof i l e ,
netqosprof i l e , GlobalInf oProf i l e , systemQoSprof i l e) . They are exchanged between
the broker and the scheduler of RTAP/RTNP tasks. The mainmas te r . c initializes all the
profiles and calls the GUI.

From the master directory the human-interf ace . d directory inchides the X files in X . d and
thc GIJI dialog files in dia1og.d. The C4UI is verJ- iiluch telerobotics oriented. This user

interface could lead t o a more general interface to register (specify) stream QoS. This is future
work. GUI is implemented in hierarchical layers. The main (highest control layer) menu
control is implemented in X . d/but tonx . c file, routine pressButton. Here, the event loop
controls the user interface buttons EXIT, Qo,S'C'onfiq. ('crl1,Sc t Up, ,ETL4RT, ,STOP, IIeZp. ITirder
each button, different functions are called to provide the f~~nctionality. For esaiuple, under
QoSConfig the routines in d i a l o g . d dirc)ctory arc called to provide a GUI for the configuration
of a multinledia call. Under CallSetl'l,, partially tlre GITI routines from d i a l o g . d directory are
called, but a t some point of the menu hieral-chy tlrc hrolter from QoSmanagement .d directory
is called to make resource admissioils and allocatioas. The menu button START accesses
the routines in r t a p . d directory to start the RTAP/RrI'l\JP scheduler in r t a p . c file. The
,STOP menu button accesses the routines in r t a p . d / r t a p . c file to stop the scheduler. It i q

important t o stress that the menu events influence the events at the slave side as well, llellce
the information about the GUI events must be l~ropagated to tlre slave, so tha t the slave side
linorvs in which state the GUI (master side) is. For this task, the application negotiation
coirnections are used.

s l a v e . d includes the m a i n s l a v e . c file and the shared profiles (the same profile naming as in
mas te r . d directory) used in for exclralrge of infornlation between tlre broker and the sclrecluler.
They represent the contract between the broker and the scheduler, the same way as the master
case. The main-slave. c file includes the l~igll level lllenu control loop similar t o the GUI in
bu t tonx . c file to be consistellt with the rlraster side and follow the activity on the master
side.

3 User Interfaces of OMEGA

ITsing the makef i l e in the master.d and s1ave.d directories, the executable code is t e l e m a s t e r
in mas te r . d directory for master side and t e l e s l a v e in s l a v e .d directory for the slave side.
Telemaster provides a GUI for the huinan operator to enter the application QoS for the master
robot side and the slave robot side. It irleairs that tlle operator configures remotely the slave as
well.

3.1 Iilfluence of GUI Menu Control on other Systein Components

'rhe C+VI is Irrenu driven. The operator must set 111) the QoS cllaracteristics for the multimedia
call in each direction sending and receiving (TNPUT/OUTPUT) and parameterize application QoS
for both sides sender and receiver (h1ASTERISLAVE). The teleslave does not have a GUI. At the
beginning (before any connection is established) it immediately calls the broker and waits for the
application QoS on the application negotiation connection. On the second run, the main application
program waits on the application iregotiation connection for a menu control. The reason is that tlre
operator (remote application) decides either to 1.111 only one stream and then immediately t o start
m-it11 transn~ission, or the establish another connection for a neI\ stream. Hence, the application
negotiation co~lnection is not only used to exchange 11le application QoS parailieters during the
application negotiation, but also for exchange of llienu contl-01 commands, so that the hrolier at
the SL-2VE side knows in which state tlre hl_ZSTER is. Thi5 inenu control is propagated to th r

scheduler state too. It means that tlze renegotiation tasli recognizes the menu state a t the SLAVE
side. and can react if the MASTER decides to quit, or jnst to 5top the transmission.

3.2 Usage of GUI

I'he user/operator specifies through GUJ the QoS for a nlultlizledia all in one direction QoSConf i g ,
nnd goes directly t o Callsetup menu. Here the broker is called to establish the resource deal
between the BUYER and the SELLER. When setting up the QoS, both (MASTER and SI,_AYE)
QoS must be configured. The broker uses both. master QoS to setup its own databases and the slave
QoS t o send t o the SLAVE and configure thc slave QoS databases. After one multimedia call is set
up, then the user can go back to QoSConf i g menu and ietup QoS for the opposite multimedia call.
After this is done, the CallSetUp menu is chosen and a brokerage performed on this stream. FVIien
all calls are registered with the broker, the S'TA4RThutton is pushed and the transmission starts.
The ,STOP button is pressed to stop the traniiniss~on, but not t o release the resources. What it
rneans is tha t the contract still exists and the user by ~ > u s l ~ i i ~ g the START button can continue the
transmission. Only the EXIT button will release the negotiated deal. During the transmission, tlic
user can press tlze CallSetUp button and initiate lenegotiatioil hv pressing MOD/Pnram button in
tlle e5tahlishment CnllS~tUp menu. Here, tlze possibility is to decrease the quality of a video rate,
for example, from 5 frames/second to 1 frame/seconcl. I don't support currently increase of a video
rate.

4 Conclusion

OMEGA implementation is a prototype of the 0AlEC;A architecture. The goal of the impleinenta-
tion was t o prove a concept of OMEGA, i.e.. t o \lio\v that nrhen application QoS are specified to
the broker, the broker provides the right answer about the resource availability (using the serviccs
such as translation, admission and negotiation in an integrated fashion) and the scheduler provides
t 1 1 ~ timing guarantees. A full-scaled implementatioll is h~ ture work.

During the prototype implementation, many limitation> of 1 he chosen platform and iny ow11
choices in the implementation became clear. Both type> of limitations are discussed in my thesis.
IIence. the implementor must be aware of these choices, he/shc lnalies with respect t o tlze chosen
platform (morkstatio~ls, multimedia devices, real-time OS 5111)port) as well as his/lzer own imple-
~zlentation choices (constants, da ta structures, system principles, iinderlying system services). Many
issues, although designed in OMEGA architecture. need fiiture work t o map these design issues to
a real system environment.

References

[I] I<. Nahrstedt, "An Architecture for End-to-Eiicl Quality of Service Provision and its Experi-
mental Validation", PhD Thesis, July 1995

[2] I R h l Corporation, "AIX Version 3.1: RISC System/6000 as a Real-Time System", IRM Inter-
national Technical Support Center, Austin. Llarch. 1991

Fri Ju l 7 14:46:28 1995

.
/ * Filename: Q0SBroker.c * /
/ * Purpose : QoS management protocol for QoS set-up * /
/ * Author : Klara Nahrstedt * /
/ * Update : 6/29/95 * /
.

int QoSBroker(Param,Add_Param,Notification,side,inout,state)
APP-QOS *Param;
ADD-INFO *Add-Param;
NOTIFY *Notification;
int side; / * Spec of the initiator (BUYER/SELLER) * /
int inout;
int state;
(
struct timeval tvl,tv2;
struct timezone tz;
long clock;

case BUYER:
gettimeofday(&tvl,&tz);
if (QoSBroker~Buyer(Add~Param,Notification,inout) == BAD-VALUE)

(
return(BAD-VALUE);

1
if (Add-Param->info[GET-1MAGEI.done == TRUE)

(
return(0);

1
gettimeofday(&tv2,&tz);
getproctime(tvl,tv2,&clock);
printf("CALL ESTABLISHMENT = %d microsecond \nu, clock);
break;

case SELLER:
if (QoSBroker-Seller(Add-Param,Notification,inout) == BAD-VALUE)

r

1
if (Add-Param->info[GET-IMAGE1 .done == TRUE)

(
return (0) ;

1
break;

default:
break;

1

.
/ * BROKER - BUYER PROTOCOL * /
.

int QoSBroker-Buyer(Add-Param, Notification,inout)
ADD-INFO *Add-Param;
NOTIFY *Notification;
int inout;
i

int vcil;
int conidl;
FEC-FLAGS err;
NEG-RESPONSE response;
int result;
APP-QOS AParam;
NET-QOS-TABLE NParam ;
struct timeval tvl,tv2;
struct timezone tz;
long runtime;
GLOBAL-STATE Systemstate;
RATE-MONOTONIC-SCHEDULER rms;
INFO-STATE WhatInfo;

if (Add-Param->info[GET-IMAGE1 .done == FALSE)
i
gettimeofday(&tvl,&tz);
if ((result = AdmitAppQoS(&AParam, Notification,inout,BU~~~)) == BAD-VALUE)

{
perror("AdmitAppQoS: not admitted ") ;

gettimeofday(&tv2,&tz);
getproctime(tvl,tv2,&runtime);
print£(" AdmitApp QoS runtime = %d usec \nM,runtime);

1
else

(
Notification->note = NEG-SUCCESS;

1
switch(Notification->note)

(
case NEG-SUCCESS:

. NEGOTIATE APPLICATION QoS WITH REMOTE SITE * * * * * * * * * * * * * /
gettimeofday(&tvl,&tz);
negotiateAppQos(&AParam,Add_Param,Notification,BUYER,&inout);
if (Add-Param-zinfo[GET-IMAGE1 .done == TRUE)

(
return(0);

1
gettimeofday(&tv2,&tz);
getproctime(tvl,tv2,&runtime);
printf(" Negotiate App QoS runtime = 8d usec \nV,runtime);
break;

case NEG-MODIFY:
case NEG-REJECT:

/ * send to Seller a message about admission problems * /
What1nfo.i-set101 = SystemStateInfo;
WhatInf0.i-set[l] = NOT-SPECIFIED;
RetrieveGlobalState(&SystemState,&rms,WhatIn£o);
if (SystemState.net.heg-in.status == FREE)

(
veil = APP-SIGNALl-VCI;
connect~s(vcil,&conidl,DATAGRAM_MODE,sizeof(APP~QOS)) ;

SystemState.net.Aneg-in.status = TAKEN;
SystemState.net.Aneg-in.id = conidl;

Fri Jul 7 14:46:28 1995

err.err-flag = FALSE;
if ((result = sendgkt(SystemState.net.Aneg_in.id,&response,

sizeof(NEG-RESPONSE),err)) = = WRONG-SIZE1

perror("negotiateAppQoS datagram too small for response transmission");
exit(1);

I

/ * * * * * * * * * * * * deallocate resources Systemstate, Scheduler
is done in the admission procedure******/

return(BAD-VALUE);
break;

1

switch(Notificati0n->note)
{
case NEG-SUCCESS:
gettimeofday (&tvl,&tz) ;
~os~ranslator(APP~TO~NET,BUYER,inout);
gettimeofday(&tv2,&tz);
getproctime(tvl,tv2,&runtime);
print£(" QOS Translator runtime = %d usec \nU,runtime);
break;

case NEG-MODIFY:
case NEG-REJECT:

/ * * * * * * * * * * * * deallocate resources
is done in the negotiation procedure * * * * * * /

return(BAD-VALUE);
break;

1
. GET NETWORK QOS .

getNetQoS(&NParam,inoutl;
printf("QoSBr0kerBuyer: NParam.connection[0l.load.end~to~end~delay=%f \nM,

~~aram.connection[O].load.end-to-end-delay);
. ADMIT NETWORK QOS .
gettimeofday(&tvl,&tz);
if ((result = AdmitNetQoS(&NParam, Notification,inout,BUYER)) == BAD-VALUE)

{
perror("AdmitNetQ0S: not admitted "1;

gettimeofday(&tv2,&tz);
getproctime(tvl,tv2,&runtime);
print£(" Admit Net QoS runtime = %d usec \nM,runtimel;

/ * * * * * i * * * * * * * * * * t t t * NETWORK QOS .
switch(Notification->note)

1

case NEG-SUCCESS:
gettimeofday(&tvl,&tz);
negotiateNetQoS(&NParam,Notification,BWER,inout);
gettimeofday(&tv2,&tz);
getproctime(tvl,tv2,&runtime);
print£(" Negotiate Net QoS runtime = %d usec \nN,runtime);
break;

case NEG-MODIFY:
case NEG-REJECT:

/ * * * * * * * * * * * deallocate resources Scheduler
is done in the admission procedure * * * * * * /

return (BAD-VALUE) ;
break;

i

switchiNotification->note)
{
case NEG-SUCCESS:
QoSTranslator(NET-TO-APP,BUYER,inout);
break;

case NEG-MODIFY:
case NEG-REJECT:

/ * * * * * * * * * * * deallocate resources
is done in the negotiation procedure * * * * * * /
return(BAD-VALUE);
break;

I
I

int QoSBroker-Seller(Add-Param, Notification,inout)
ADD-INFO *Add-Param;
NOTIFY *Notification;
int inout;
i
APP-QOS AParam;
NET-QOS-TABLE NParam;

struct timeval tvl.tv2;
struct timezone tz;
long clock;

int Acidl,Acid2;
int Ncidl.Ncid2;

. NEGOTIATE APPLICATION QOS .

negotiateAppQoS(&AParam,Add-Param,Notification,SELLER,&inout);
printf("BROKER/SELLER: after negotiation \n");
if (Add-Param->info[GET-IMAGE] .done == TRUE)

i
return (0 1 ;

1
. NEGOTIATE NETWORK QOS .
printf("BROKER/SELLER: before network negotiation \nu);
switch(Notification->note)

{
case NEG-SUCCESS:
printf("BROKER/SELLER: negotiation success \nu);
gettimeo£day(&tvl,&tz);
negotiateNetQoS(&NParam,Notification,SELLER,inout);
gettimeofday(&tv2,&tz);
getproctime(tvl,tv2,&clock);
printf("negotiateNetQoS = %d microsecond \nu, clock);

break;
case NEG-MODIFY:
case NEG-REJECT:

/ * * * * * * * * * * * deallocate resources
is done in the admission procedure * * * * * * /

return(BAD-VALUE);
break;

I
switch(Notification->note)

{
case NEG-SUCCESS:
QoSTranslator(NET-TO-APP,SELLER,inout);
break;

case NEG-MODIFY:
case NEG-REJECT:

/ * * * * * * * * * * * deallocate resources

QoSbroker-c F r i Jul 7 14:46:28 1995

is done in the negotiation procedure * * ' * * * /
return(BAD-VALUE);
break;

1

QoSkerne1.c Fri Jul 7 14:59:22 1995 1

.
/ * Filename : ServiceKerne1.c * /
/ * Purpose : Functions for QoS management, such as QoS translations, * /
/ * negotiation, mapping of QoS and resource * /
/ * Author : Klara Nahrstedt * /
/ * update : 7/06/95 * /
.

.
/ * UMS includes * /
...

/ * UMS variables * /
.

UMSVideoIO videocobj;
Environment *ev;
long colormap-size;

.
* X variables
.

Display * ~ P Y ;
Window wid;
int screen;
GC gC;
int depth;
int pixelgad;
Visual *my-visual;
Status result;
XVisualInfo info;
XSetWindowAttributes wa;
long colormap-size;

.
/ * Initiatlization of application QoS and multimedia devices to zeros * /
.

int init-app-qos(~aram)
APP-QOS *param;

int init-devices(dev)
m-DEVICES 'dev;
{

bzero((char *) (dev),sizeof(MMcDEVICES)) ;

}
.
/ * openprofile opens the QoS database for application, system,network*/
.

openProfile(fd,name)
int *fd;
char name [10 I ;
(

if ((*fd=open(name,o-RDWR (O-CREAT)) == -1)
(
perror("Cou1dn't open profile database ") ;

exit(-1) ;
I

I

.
/ * close Profile closes the QoS database * /
.

closeProfile(fd)
int fd;
{
if (close(fd) == -1)

(
perror("Cou1dn't close the profile database ") ;

exit(-1);
1

1
.
/ * SetAppQoS procedure sets application QoS in Application QoS Profile * /
.

int setAppQoS(Param,inout)
APP-QOS *Param;
int inout;
(
int n-bytes;
int fd;
.
/ * The application QoS profile is organized as follows: first come the*/
/ * application Qos of the sending stream, then comes the output QoS * /
/ * i.e., application QoS of receiving stream * /
.

openProfile(&fd, "appQoSprofile");
if (inout == INPUT)

(
lseek(fd,OL,O); /*position at the beginning of the file * /
if ((n-bytes=write(fd, (char *) (Param),sizeof(APP-QOS))) = = -1)

{
perror("setAppQoS: write QoS input to profile failure");
return(-1);

1
closeProfile(fd);
return(0);

	Implementation Notes to OMEGA Architecture
	Recommended Citation

	Implementation Notes to OMEGA Architecture
	Abstract
	Comments

	tmp.1182968605.pdf.4_Pwo

